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Abstract
State-of-the-art keyphrase generation methods001
generally depend on large annotated datasets,002
limiting their performance in domains with003
constrained resources. To overcome this chal-004
lenge, we investigate pre-training strategies to005
learn an intermediate representation suitable for006
the keyphrase generation task. We introduce007
salient span recovery and salient span predic-008
tion as guided denoising language modeling009
objectives that condense the domain-specific010
knowledge essential for keyphrase generation.011
Through experiments on benchmarks spanning012
multiple domains, we show the effectiveness013
of the proposed approaches for facilitating low014
resource and zero-shot keyphrase generation.015

1 Introduction016

Keyphrases of a document are the phrases that iden-017

tify and summarize the most important information.018

Given a document, the task of keyphrase genera-019

tion requires the prediction of a set of keyphrases,020

each of which is classified as a present keyphrase if021

it appears in the document, or an absent keyphrase022

otherwise. The generated keyphrases can facilitate023

a wide range of applications, such as recommen-024

dation (Wu and Bolivar, 2008; Dave and Varma,025

2010), text summarization (Zhang et al., 2004), text026

classification (Hulth and Megyesi, 2006; Wilson027

et al., 2005; Berend, 2011), document clustering028

(Hammouda et al., 2005), and information retrieval029

tasks (Jones and Staveley, 1999; Kim et al., 2013;030

Tang et al., 2017; Boudin et al., 2020).031

Despite the promising results of keyphrase gen-032

eration methods (Meng et al., 2017; Chen et al.,033

2018, 2019; Ahmad et al., 2021), they often require034

a large amount of annotated data. In real-world ap-035

plications, the limited availability of such resources036

has proposed challenges beyond optimization and037

weak abilities to generalize. For instance, news038

topics emerge frequently and require precise recog-039

nition as keyphrases. The input genre and style may040

also change, leading to the domain shift effect.041

In this paper, we focus on tackling the challenges 042

of keyphrase generation in low resource settings 043

by learning a domain-specific representation with 044

unlabeled data. Motivated by the observation that 045

keyphrases are often snippets or synonyms of the 046

salient in-text information, and that such informa- 047

tion can be identified by statistical methods, we 048

design salient span recovery (SSR) and salient 049

span prediction (SSP) to fine-tune BART (Lewis 050

et al., 2020). Through corrupting the most salient 051

parts of the input document, SSR and SSP encour- 052

age the model to focus on the information most 053

important within domain and most conducive to 054

the subsequent fine-tuning on the small dataset. 055

Through low-resource benchmarks covering var- 056

ious domains, we show the advantage of training 057

in-domain intermediate representations1. More- 058

over, compared with other objectives such as title 059

generation and text infilling, we find that salient 060

span recovery achieves the best performance for 061

both low resource absent keyphrase generation and 062

zero-shot cross-domain transfer. 063

2 Methodology 064

Problem Definition We define a keyphrase gen- 065

eration dataset Dkp as a set of tuples (xi, pi), 066

where xi = (xi
1 xi

2 ... xi
|xi|) is the ith input doc- 067

ument, and pi = {pi
1, pi

2, ..., pi
|pi|} is the set of 068

corresponding keyphrases. In addition, we intro- 069

duce Daux to refer to the set of unlabeled doc- 070

uments from the same domain as Dkp. Follow- 071

ing Yuan et al. (2020), we formulate keyphrase 072

generation as generating a sequence of tokens 073

that is the concatenation of the keyphrases yi = 074

(pi
1 [sep] pi

2 [sep] ... [sep] pi
|pi|)

2 based on 075

the source text xi. 076

1We will release the source code for reproducing our ex-
periments upon paper acceptance.

2We use semicolon as [sep] in our implementation.
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2.1 Intermediate Representation Learning077

We argue that, in order to generate good keyphrases,078

both intra-article and domain-wise reasoning are079

necessary. Intra-article reasoning entails identify-080

ing, connecting, and abstracting spans in the arti-081

cle. In contrast, domain-wise reasoning determines082

whether a phrase is salient within a specific domain083

and thus qualifies as a keyphrase.084

As |Dkp| is small, directly fine-tuning the base085

BART model leads to sub-optimal performance.086

Therefore, we aim to leverage information in Daux087

to learn domain-specific intermediate representa-088

tions before fine-tuning on Dkp.089

One straightforward approach to use Daux is to090

continue performing text infilling, one of the ob-091

jectives for pre-training BART (Lewis et al., 2020).092

However, it mainly focuses on intra-article reason-093

ing, and may not efficiently model domain-wise094

knowledge. Alternatively, as suggested by Ye and095

Wang (2018), knowledge from title generation096

can benefit keyphrase generation. Indeed, title097

generation is a form of summarization which re-098

quires intra-document reasoning and to some extent099

uses domain-wise information. However, it fails100

to model the structure of keyphrases, hides the di-101

versity of the keyphrase space, and is often of an102

extractive nature. Therefore, we propose the fol-103

lowing task-specific pre-training loss for learning104

domain-specific intermediate representation.105

Salient Span Recovery To condense the knowl-106

edge of both types of reasoning and to benefit107

absent keyphrase generation as much as present108

keyphrase generation, we design salient span re-109

covery as a variant of text infilling objective where110

the tokens for masking are strategically chosen.111

Given Daux, we first use TF-IDF to identify a112

set of n-grams {qi
1, ..., qi

n} for each xi ∈ Daux.113

During training, each occurrence of qi
j in xi is re-114

placed with a single [MASK] token with probabil-115

ity ks. To create additional perturbation, we also116

mask each of words in xi \ (qi
1 ∪ ... ∪ qi

n) with117

probability ko to obtain the final input xi
SSR. The118

model is trained to minimize the cross entropy loss119

LCE(zi, xi), where zi is the model’s reconstruc-120

tion of the corrupted input xi
SSR.121

Salient Span Prediction To represent the struc-122

tures of keyphrases more explicitly, we de-123

sign SSP as an alternative to SSR. SSP’s in-124

put is still xi
SSR, but the output is the con-125

catenation of the TF-IDF predictions xi
SSP =126

(qi
1 [sep] qi

2 [sep] ... [sep] qi
n). The model 127

is trained to minimize the cross entropy loss 128

LCE(zi, xi
SSP), where zi is the model’s recon- 129

struction of the corrupted input xi
SSR. 130

3 Experimental Setup 131

3.1 Datasets 132

We conducted experiments on two benchmarks. 133

For each benchmark, we split the train set into 134

a small Dkp and a large Daux, while keeping the 135

validation and test sets the same. The statistics of 136

test datasets we use are presented in the appendix. 137

Scientific Articles. We use KP20k (Meng et al., 138

2017) for training and evaluate on KP20k (test 139

set), Inspec (Hulth, 2003a), Krapivin (Krapivin 140

et al., 2009), NUS (Nguyen and Kan, 2007), and 141

SemEval (Kim et al., 2010). After removing arti- 142

cles overlapping with the validation or test set, the 143

KP20k train set contains 509,818 instances. We 144

set |Dkp| = 20, 000 for KP20k, i.e., only 20, 000 145

documents will be used for supervised training. 146

News. We use KPTimes (Gallina et al., 2019) 147

for training and evaluation. After necessary pre- 148

processing, the KPTimes train set contains 259,923 149

instances. We set |Dkp| = 10, 000 for KPTimes. 150

3.2 Baseline and Evaluation Metrics 151

Using the Dkp, we fine-tune the pre-trained BART 152

and its derivative models obtained by text infill- 153

ing, title generation, salient span recovery, and 154

salient span prediction. We also compare with a 155

randomly initialized Transformer (Vaswani et al., 156

2017), TextRank (Hulth and Anette, 2004), and 157

AutoKeyGen (Shen et al., 2021). 158

Following Chan et al. (2019), we use greedy 159

decoding and report the F1@5 and F1@M for 160

both present and absent keyphrases, where F1@k 161

only considers the top k predictions, and F1@M 162

takes all predictions from the model for evalua- 163

tion. We do not report F1@M for TextRank and 164

AutoKeyGen because the total number of predic- 165

tions is a hyperparameter for these unsupervised 166

methods. We repeat each experiment using three 167

different seeds and report the average scores. 168

4 Results and Analysis 169

4.1 Intermediate Representation Learning 170

Table 1 and 2 show the performance of low resource 171

absent keyphrase generation and present keyphrase 172

generation with intermediate representation learn- 173

ing in the scientific domain. 174
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Method KP20k Inspec Krapivin NUS Semeval
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Transformer 0.96 1.47 0.31 0.46 1.16 1.76 1.02 1.38 0.95 1.18
BART 1.14 1.80 0.88 1.28 1.40 2.09 1.33 1.75 0.83 1.01

BART+TI 1.71 2.78 1.20 1.80 2.12 3.15 1.88 2.56 1.18 1.54
BART+TG 1.77 2.62 1.34 1.91 2.36 3.16 2.20 2.77 1.00 1.21
BART+SSP 1.89 3.11 1.14 1.63 2.87 4.31 2.30 2.93 1.46 1.83
BART+SSR 2.11 3.43 1.65 2.31 2.84 4.15 2.44 3.12 1.36 1.65

Table 1: F1 scores of absent keyphrase generation on five benchmarks from the scientific domain. "TI" = Text
Infilling; "TG" = Title Generation; "SSP" = Salient Span Prediction; "SSR" = Salient Span Recovery. SSR and SSP
outperform the other approaches in all benchmarks. Some example outputs are presented in the appendix.
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Figure 1: A comparison of KP20k low resource
validation loss of BART with different initializions.
BART+SSR converges to the lowest loss in 3 epochs.

Baselines From Table 1 and 2, it is apparent that175

fine-tuning BART significantly outperforms the176

Transformer trained from scratch, with the scores177

more than doubled for the four additional evalu-178

ation benchmarks. This shows the advantage of179

leveraging the pre-trained language model. On180

top of the pre-trained BART, performing domain-181

specific text infilling can further benefit both182

present and absent keyphrase generation on KP20k.183

By contrast, using the representation learned with184

title generation achieves the best low resource185

present keyphrase generation performance. How-186

ever, its absent keyphrase generation performance187

is worse than most of the other methods (except for188

Inspec). Intuitively, titles summarize and empha-189

size the most salient message of the articles, and190

tend to be extractive instead of abstractive.191

Salient Span Recovery According to Table 1192

and 2, SSR is effective for improving both present193

and absent keyphrase generation performance com-194

pared to text infilling, achieving the highest ab-195

sent keyphrase performance and the second highest196

present keyphrase performance on KP20k and most197

of the four evaluation benchmarks. In addition, we198

find predictions of BART+SSR generally having 199

higher relevance to the input. We include some of 200

the qualitative results in the appendix. 201

Figure 1 presents the validation loss for low re- 202

source fine-tuning. We observe that all intermediate 203

representation learning methods we study outper- 204

form the BART fine-tuning baseline. Initializing 205

with salient span recovery converges the fastest 206

and achieves the best validation loss. In addition, 207

we find that salient span recovery consistently out- 208

performs salient span prediction. One reason may 209

be that the quality of the keyphrases obtained us- 210

ing TF-IDF may be too low to be used as-is like 211

manually annotated keyphrase labels. We provide 212

additional results on KPTimes in the appendix. 213

4.2 Zero-Shot Adaptation Performance 214

After confirming the effectiveness of the interme- 215

diate representations on facilitating low resource 216

training, we continue to experiment with zero-shot 217

adaptation. With Dkp replaced by the KPTimes 218

train set and Daux still being the KP20k train set, 219

we then measure and compare the performance of 220

the methods on the KP20k test set. 221

The results are presented in Table 3. Although 222

no manual labels are used in the intermediate train- 223

ing, the learned representation indeed condenses 224

domain-specific knowledge, which results in bet- 225

ter zero-shot transfer performance. SSR achieves 226

the best zero-shot performance, outperforming the 227

other methods by a large margin in all metrics. We 228

also report the score of predictions from the inter- 229

mediate SSP model. Despite competitive perfor- 230

mance on present keyphrases, its absent keyphrase 231

performance is worse than the baseline. 232

4.3 Can TF-IDF Better Indicate Saliency? 233

Although we have shown the effectiveness of in- 234

termediate representations trained with SSR and 235

SSP, it is still worth understanding whether TF- 236

IDF actually captures domain-wise saliency knowl- 237

edge. Therefore, we compute the overlap between 238
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Method KP20k Inspec Krapivin NUS Semeval
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

TextRank 18.1 N/A 26.3 N/A 14.8 N/A 18.7 N/A 16.8 N/A
AutoKeyGen 23.4 N/A 30.3 N/A 17.1 N/A 21.8 N/A 18.7 N/A

Transformer 8.60 13.31 3.35 4.30 6.72 10.50 9.99 13.78 7.12 9.51
BART 21.36 25.61 22.10 25.58 20.45 22.68 26.28 28.91 21.89 23.54

BART+TI 24.23 28.80 21.18 24.20 21.18 22.27 28.12 29.45 21.59 23.01
BART+TG 27.97 31.29 25.01 28.93 25.28 27.86 32.68 35.35 26.00 28.25
BART+SSP 25.02 28.51 21.62 24.60 22.13 22.99 29.44 31.19 25.01 27.24
BART+SSR 26.32 29.76 22.24 25.29 24.39 25.20 31.02 32.64 23.47 24.84

Table 2: F1 scores of present keyphrase generation on five benchmarks from the scientific domain. BART+TG
achieves the best performance on most benchmarks, while BART+SSR also gives competitive scores. We use the
scores of TextRank and AutoKeyGen reported by Shen et al. (2021).

Method Present Absent
F1@5 F1@M F1@5 F1@M

BART 3.41 5.28 0.16 0.19
SSP-only 8.76 8.96 0.13 0.17
BART+TI 7.21 11.05 0.26 0.34
BART+TG 5.91 9.02 0.26 0.31
BART+SSP 7.09 10.82 0.32 0.41
BART+SSR 9.75 14.28 0.40 0.56

Table 3: F1 scores of zero-shot keyphrase generation
on KP20k. "SSP-only" = the SSP model on KP20k.
BART+SSR significantly outperforms other methods.

TF-IDF’s prediction (or titles) and the manually239

annotated keyphrases as a proxy measure. We240

define phrase recall as the proportion of present241

keyphrases that are also identified by TF-IDF or242

titles, word recall as the proportion of all words in243

present keyphrases that are also identified by TF-244

IDF or titles, and word precision as the proportion245

of words in TF-IDF’s predictions or titles that are246

included in any keyphrase of the same document.247

As presented in Table 4, compared to document248

titles, TF-IDF’s predictions have high phrase recall249

and word recall with lower word precision. Salient250

span recovery fully takes advantage of this high251

coverage to exercise a wide range of keyphrase-252

related salient information. Meanwhile, the false253

positives of TF-IDF are converted into non-harmful254

random masks during training.255

5 Related Work256

Low Resource Keyphrase Generation Auto-257

matic keyphrase generation has been a popular258

topic of study. While keyphrase extraction only ex-259

tracts present keyphrases as spans of the document260

(Hulth, 2003b; Mihalcea and Tarau, 2004; Wan and261

Xiao, 2008; Zhang et al., 2016), keyphrase gen-262

eration directly predicts both types of keyphrases263

(Meng et al., 2017; Chen et al., 2018, 2019; Zhao264

and Zhang, 2019; Chan et al., 2019; Yuan et al.,265

2020; Swaminathan et al., 2020; Ahmad et al.,266

2021; Ye et al., 2021). However, there are only267

a few works on low resource keyphrase genera-268

Metric KP20k KPTimes
Title TF-IDF Title TF-IDF

Phrase Recall 0.2553 0.4184 0.1223 0.2673
Word Recall 0.5441 0.8064 0.2829 0.6355

Word Precision 0.3937 0.1730 0.2929 0.1164

Table 4: An analysis of overlaps with present keyphrases
for titles and TF-IDF predictions.

tion. Ye and Wang (2018) used synthetic labeling 269

and multitask learning to leverage large unlabeled 270

datasets. Lancioni et al. (2020) used reinforce- 271

ment learning to exploit learning signals from a 272

pre-trained discriminator in the setting of Genera- 273

tive Adversarial Networks. 274

Language Modeling for Low Resource Learning 275

Recent studies have successfully used pre-trained 276

language models for rich-resource keyphrase gen- 277

eration (Liu et al., 2021) and keyphrase extraction 278

(Sahrawat et al., 2019). Meanwhile, for various 279

other tasks, studies explored continued domain- 280

adaptive pre-training of the autoencoding (Guru- 281

rangan et al., 2020; Lee et al., 2019) and encoder- 282

decoder language models (Yu et al., 2021). Our ap- 283

proach belongs to the latter type. Our masking gran- 284

ularity is most similar to Lewis et al. (2020) and 285

Joshi et al. (2020), while our span selection is most 286

similar to Guu et al. (2020). Different from Guu 287

et al. (2020), our approach infers domain-adaptive 288

masks and mainly uses phrase-level infilling. 289

6 Conclusion 290

This paper considers the problem of low resource 291

keyphrase generation. We show that learning an 292

in-domain intermediate representation greatly facil- 293

itates fine-tuning with constrained resources. We 294

design salient span recovery and salient span pre- 295

diction as intermediate objectives and verify their 296

effectiveness in both low resource and zero-shot 297

scenarios. Future works may consider extending 298

this work by composing the intermediate objec- 299

tives and combining the representation learning 300

techniques with a data-oriented approach. 301
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Supplementary Material: Appendices

A Test Set Statistics544

Dataset #Examples #KP |KP| %AKP
KP20k 20000 5.28 2.04 37.06
Inspec 500 9.83 2.48 26.38

Krapivin 400 5.85 2.21 44.34
NUS 211 11.65 2.22 45.61

SemEval 100 14.66 2.38 57.37
KPTimes 20000 5.03 2.00 37.84

Table 5: Statistics of all the test sets we use. #KP:
average number of keyphrases of each instance; |KP|:
average length of each keyphrase; %AKP: the percent-
age of absent keyphrases.

B Implementation Details545

We use Fairseq’s3 BART-base implementation and546

its pre-trained checkpoint to conduct the experi-547

ments. BART-base has about 140 million param-548

eters in total with 6 encoder and 6 decoder layers549

and hidden size 768. We truncate the input doc-550

uments to 1024 tokens. We use Adam optimizer551

with momentum with β1 = 0.9, β2 = 0.999 and552

polynomial decay with 1000 warm-up steps. The553

initial learning rate is set to 0.00003, and we use554

effective batch size of 64. For each experiment, we555

use the validation dataset of KP20k and KPTimes556

to choose the best checkpoint. We use greedy de-557

coding to generate predictions until the EOS token558

is generated. To encourage the model to generate559

more keyphrases, we prohibit the generation of the560

EOS token until 16 tokens have been generated.561

We use the same optimizations parameters for both562

the intermediate representation learning and fine-563

tuning on keyphrase generation. All experiments564

are run on two GTX 1080Ti GPUs.565

We implement the objectives for intermediate566

representation learning in the following manner.567

Salient Span Recovery and Salient Span Pre-568

diction. We adapt the implementation in this repos-569

itory to obtain TF-IDF predictions. We gather570

phrases up to trigrams and generate 30 n-grams571

per document. During training, we use ks = 0.8572

and ko = 0.2. We run the mask generation algo-573

rithm offline to prepare data for each epoch, and574

use Fairseq’s translation task and the shard-575

ing functionality for training.576

Text Infilling. Given xi, text infilling randomly577

selects spans with lengths following a Poisson dis-578

3https://github.com/pytorch/fairseq

tribution (λ = 3), and replaces the span with a 579

single [MASK] token to obtain xi
Infilling. The 580

model is trained to minimize the cross entropy 581

loss LCE(zi, xi), where zi is the model’s recon- 582

struction of the corrupted input xi
Infilling. We use 583

Fairseq’s denoising task for training. 584

Title Generation. We remove the titles from xi 585

and fine-tune BART for generating the titles. The 586

model is trained to minimize the cross entropy loss 587

between the titles and the model’s prediction based 588

on the articles without titles. We use Fairseq’s 589

translation task for training. 590

C Performance versus Resource 591

To define the resource-constrained scenarios and 592

to find whether learning is equally sensitive to in- 593

creasing resource in all resource settings, we gen- 594

erate subsets of KP20k with different sizes, and 595

directly fine-tune BART on them. Figure 2 shows 596

how test performance improves as more training 597

data is given. We observe that for both present 598

and absent keyphrase generation, the performance 599

increases sharply before gradually levels off. In 600

addition, for KP20k, we find the growth rate of 601

present keyphrase generation performance scales 602

better with resource, while the growth of absent 603

keyphrase generation slows down after 200,000 604

documents. Therefore, for each scenario, we pick 605

roughly 4% of the entire dataset as the size of 606

the low resource training set. As a side remark, 607

with the full train set of KP20k, we obtain 0.37 608

F1@M for present keyphrases and 0.04 F1@M for 609

absent keyphrases, which is on par with previous 610

works such as Yuan et al. (2020); Swaminathan 611

et al. (2020); Ye et al. (2021). 612

D Results on KPTimes 613

We report the results on KPTimes in Table 6. Dif- 614

ferent from the scientific domain, we found that 615

title generation results in the best downstream 616

fine-tune performance for both present and absent 617

keyphrases. This suggests that the help from title 618

generation can be domain-dependent. 619

E Example Outputs 620

We present two set of outputs in Figure 3 and Fig- 621

ure 4. Figure 3 presents the predictions of zero-shot 622

models on KP20k (corresponding to Table 3). Fig- 623

ures 4 presents the predictions of the low resource 624
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Figure 2: KP20k test performance of BART fine-tuned
on subsets of KP20k with difference sizes. For each
size, we repeat the experiment for three times.

models on the scentific benchmark datasets (corre-625

sponding to Table 1 and 2).626

F Limitations and Ethical Statement627

One core assumption of this work is that BART is a628

competitive pre-trained model for keyphrase gener-629

ation and has its unique advantages for domain-630

adaptive representation learning. We consider631

BART instead of other popular models such as T5632

because T5 uses fill-in-the-blank task while BART633

uses denoising-autoencoding, which is by nature634

closer to salient span recovery and salient span635

prediction.636

We note that our approach involves large-scale637

unlabeled data, which may introduce additional638

bias. As our approach can be easily integrated639

into BART-based keyphrase generation services,640

we encourage the potential users to monitor for the641

potential biases closely and apply corresponding642

bias-mitigation measures when necessary.643

Computational Budget All experiments are run644

on a local GPU server. On average, the interme-645

Method Present Absent
F1@5 F1@M F1@5 F1@M

Transformer 15.73 24.55 8.04 10.86
BART 23.39 33.15 11.72 15.22

BART+TI 25.26 35.66 13.05 16.92
BART+TG 29.31 41.00 14.16 18.79
BART+SSP 20.13 30.34 10.20 11.93
BART+SSR 24.13 34.11 12.83 16.75

Table 6: Keyphrase generation performance on KPTi-
mes. The models are fine-tuned on an 10k document
low resource subset. We repeat each experiment using
three different splits and report the average scores.

diate pre-training stage takes 20 to 30 GPU hours 646

on a dataset of size similar to KP20k, and the final 647

tine-tuning stage takes less than 1 GPU hour on 648

a dataset with less than 20,000 examples. We ac- 649

knowledge that the large-scale representation learn- 650

ing may lead to additional energy cost and emis- 651

sions. However, our approach justifies the cost 652

by (1) having better performance in solving the 653

challenge low resource problem and (2) allowing 654

the resulting domain-specific representation to be 655

reused for fine-tuning on different low resource 656

datasets. 657

Artifact and Licensing The KP20k dataset and 658

the Fairseq library we use are MIT licensed, and 659

the KPTimes dataset is Apache 2.0 licensed. While 660

commercial use is allowed for these artifacts, we 661

only use them for research. We will make our code 662

and models publicly available after the anonymity 663

period. In addition, we will not re-distribute the 664

datasets. Instead, we will refer to their original 665

hosts. 666

Data Anonymizing We use the KP20k and KP- 667

Times datasets distributed by their original hosts. 668

We did not systematically examine for the sensi- 669

tive information because similar inspections have 670

been done by previous work and by the original 671

authors of the dataset. We have verified that our 672

pre-processing methods do not introduce external 673

biases or sensitive information. 674
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Title: polynomial algorithms for partitioning problems on graphs with fixed clique width ( extended abstract ) .
Abstract: we consider three graph partitioning problems , both from the vertices and the edges point of view . these problems
are dominating set , list q coloring with costs ( fixed number of colors q ) and coloring with non fixed number of colors
. they are all known to be np hard in general . we show that all these problems ( except edge coloring ) can be solved in
polynomial time on graphs with clique width bounded by some constant k , if the k expression of the input graph is also given .
in particular , we present the first polynomial algorithms ( on these classes ) for chromatic number , edge dominating set and
list q coloring with costs ( fixed number of colors q , both vertex and edge versions ) . since these classes of graphs include
classes like p [digit] sparse graphs , distance hereditary graphs and graphs with bounded treewidth , our algorithms also apply
to these graphs .
Ground Truth: edge coloring ; dominating set ; clique width ; polynomial algorithms ; coloring ; edge dominating set
BART+TG: polynomialism ; tech industry ; computers and the internet ; computer and video games
BART+TI: tech industry ; polynomials ; graph ; computer security ; computers and the internet
BART+SSP: polynomial time ; vertex ; clique ; coloring ; nyc ; trees
BART+SSR: dominating set ; clique width ; polynomial algorithms ; list q coloring ; edge dominating set ; vertex
Title: extending record typing to type parametric modules with sharing .
Abstract: we extend term unification techniques used to type extensible records in order to solve the two main typing problems
for modules in standard ml matching and sharing . we obtain a type system for modules based only on well known unification
problems , modulo some equational theories we define . our formalization is simple and has the elegance of polymorphic type
disciplines based on unification . it can be seen as a synthesis of previous work on module and record typing .
Ground Truth: ml ; parametric ; module ; extensibility ; matching ; order ; type system ; sharing ; synthesis ; records ;
unification ; theory ; standardization ; formalism ; polymorphic
BART+TG: data storage ; computer security ; computers and the internet ; typing ( sports )
BART+TI: lambda lambi ; curry gilbert ; curry curry ; curry howard ; curry ; curry raster ; lambda phillips ; curry jack
BART+SSP: language and languages ; instant replay ( sports ; software ; computer security ; instant messaging ; unification
BART+SSR: ml ; module ; unification ; haskell ; type system ; inheritance and estate tax
Title: localization and regularization behavior of mixed finite elements for 2d structural problems with damaging material .
Abstract: a class of lagrangian mixed finite elements is presented for applications to 2d structural problems based on a
damage constitutive model . attention is focused on localization and regularization issues as compared with the correspondent
behavior of lagrangian displacement based elements . a non local regularization procedure of integral type is adopted . a
predictorcorrector technique is used to solve the evolution problem of the damage variable . the proposed elements show
superior performances for typical structural applications .
Ground Truth: localization ; hybrid formulations ; mixed finite elements ; damage ; regularization ; plasticity
BART+TG: science and technology ; nikkei technology ; engineering ; engineering and engineers
BART+TI: science and technology ; federal element ; lagrangian - displacement - brick and tile ; engineering ; buildings
BART+SSP: localization ; science and technology ; lagrangian element ; engineering ; engineering and engineers ; element
BART+SSR: localization ; elastoplasticity ; engineering ; mixed finite elements ; damage
Title: nature inspired techniques for conformance testing of object oriented software .
Abstract: soft computing offers a plethora of techniques for dealing with hard optimization problems . in particular , nature
based techniques have been shown to be very efficient in optimization applications . the present paper investigates the
suitability of various nature inspired meta heuristics ( genetic algorithms , evolutionary programming and ant colony systems )
to the problem of software testing . the present study is part of the nature inspired techniques for object oriented testing (
nitot ) environment . it aims at addressing the problem of conformance testing of object oriented software to its specification
expressed in terms of finite state machines . detailed description , adaptation and evaluation of the various nature inspired
meta heuristics are discussed showing their potential in this context of conformance testing .
Ground Truth: evolutionary programming ; ant colony systems ; genetic algorithms ; testing data generation ; conformance
testing
BART+TG: tech industry ; software ; nature inspired techniques for object oriented testing ; computers and the internet
BART+TI: science and technology ; nature inspired techniques for object oriented testing ( nitot ; software ; computers and
the internet ; tests and testing
BART+SSP: nature ; tests and testing ; object oriented ( theory and philosophy ; software
BART+SSR: evolutionary programming ; nature ; ant colony systems ; con protocol ; genetic algorithms ; software ; object
oriented software
Title: compressible distributions for high dimensional statistics .
Abstract: we develop a principled way of identifying probability distributions whose independent and identically distributed
realizations are compressible , i.e. , can be well approximated as sparse . we focus on gaussian compressed sensing , an
example of underdetermined linear regression , where compressibility is known to ensure the success of estimators exploiting
sparse regularization . we prove that many distributions revolving around maximum a posteriori ( map ) interpretation of
sparse regularized estimators are in fact incompressible , in the limit of large problem sizes . we especially highlight the
laplace distribution and regularized estimators such as the lasso and basis pursuit denoising . we rigorously disprove the myth
that the success of minimization for compressed sensing image reconstruction is a simple corollary of a laplace model of
images combined with bayesian map estimation , and show that in fact quite the reverse is true .
Ground Truth: linear inverse problems ; statistical regression ; maximum a posteriori estimator ; order statistics ; lasso ;
basis pursuit ; instance optimality ; sparsity ; compressible distribution ; compressed sensing ; high dimensional statistics
BART+TG: lasso lasso ; basis pursuit denos ; pursuit denoising ; gaussian compressed sensing ; statistics
BART+TI: lasso ; sparsity ; spurs ; statistics ; spanish language
BART+SSP: space ; gaussian ; bayesian photography ; distribution ; john j p chase & co ; photography ; lasso john c
BART+SSR: denocings ; lasso ; basis pursuit ; sparsity ; data mining , big data ; gaussian compressed sensing ; statistics ;
compressible distribution ; denoising

Figure 3: Example zero-shot transfer outputs on the scentific benchmarks. Correct keyphrases are colored in blue.
"TI" = Text Infilling; "TG" = Title Generation; "SSP" = Salient Span Prediction; "SSR" = Salient Span Recovery.
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Title: bounded skew clock and steiner routing under elmore delay .
Abstract: we study the minimum cost bounded skew routing tree problem under the elmore delay model . we present two
approaches to construct bounded skew routing trees ( i ) the boundary merging and embedding ( bme ) method which utilizes
merging points that are restricted to the boundaries of merging regions , and ( ii ) the interior merging and embedding ( ime
) algorithm which employs a sampling strategy and dynamic programming to consider merging points that are interior to ,
rather than on the boundary of , the merging regions . our new algorithms allow accurate control of elmore delay skew , and
show the utility of merging points inside merging regions .
Ground Truth: pathlength delay ; bounded skew ; elmore delay ; vlsi ; routing trees ; global routing ; zero skew ; clock
routing
BART+TG: bounded skew clock ; boundary merging and embedding ; boundary algorithms ; elmore delay ; boundary
matching ; steiner routing
BART+TI: dynamic programming ; boundary merging ; sampling ; routing ; model ; routing tree ; embedding ; control ;
clock skew ; region ; tree ; clock ; skew ; rier delay
BART+SSP: dynamic programming ; clock skew ; steiner tree ; bounded skew ; elmore delay ; clock
BART+SSR: dynamic programming ; boundary merging and embedding ; accuracy ; routing tree ; control ; bounded skew ;
elmore delay ; dynamic program ; ampling strategy ; clock routing
Title: rsa oaep is secure under the rsa assumption .
Abstract: recently victor shoup noted that there is a gap in the widely believed security result of oaep against adaptive chosen
ciphertext attacks . moreover , he showed that , presumably , oaep can not be proven secure from the one wayness of the
underlying trapdoor permutation . this paper establishes another result on the security of oaep . it proves that oaep offers
semantic security against adaptive chosen ciphertext attacks , in the random oracle model , under the partial domain one
wayness of the underlying permutation . therefore , this uses a formally stronger assumption . nevertheless , since partial
domain one wayness of the rsa function is equivalent to its ( full domain ) <unk> , it follows that the security of rsa oaep can
actually be proven under the sole rsa assumption , although the reduction is not tight .
Ground Truth: oaep ; public key encryption ; rsa ; provable security
BART+TG: random oracle model ; one wayness ; rsa function ; onewayness ; chosen ciphertext attacks ; rsas ; security
BART+TI: random oracle model ; chosen ciphertext attack ; sa assumption ; partial domain one wayness ; one way security
BART+SSP: random oracle model ; semantic security ; chosen ciphertext ; rsa ; partial domain one wayness
BART+SSR: random oracle model ; one wayness ; chosen ciphertext attacks ; rsa ; provable security
Title: modularity in technology and organization .
Abstract: literature on property rights to create the outlines of a modularity theory of the firm . such a theory will look at
firms , and other organizations , in terms of the partitioning of rights understood as protected spheres of authority among
cooperating parties . it will assert that organizations reflect nonmodular structures , that is , structures in which decision rights
, rights of alienation , and residual claims to income do not all reside in the same hands
Ground Truth: organization ; property rights ; nonmodular structures ; technology ; authority ; cooperating parties ;
transaction costs ; partitioning of rights ; decision rights ; rights of alienation ; modularity
BART+TG: property property rights and property rights ; property rights ; property ; modularity
BART+TI: property rights ; income ; property property rights ; alienation ; partitioning ; alienation and residual claims ;
modularity
BART+SSP: intellectual capital ; intellectual ownership ; spheres ; intellectual structure ; intellectual hierarchy ; intellectual
property ; modularity ; intellectual organization ; technology ; protection ; intellectual assets ; intellectual asset ; intellectual
equity ; intellectual properties ; organization ; property rights ; organizational structures ; intellectual rights ; intellectual space
BART+SSR: organization ; property rights ; partition ; political ; hierarchic ; ownership ; technology ; authority ; informal ;
structure ; property ; firm ; property property ; modularity
Title: modelling user acceptance of building management systems .
Abstract: a questionnaire survey . these systems are crucial for optimising building performance and yet it has been widely
reported that users are not making full use of their systems ’ facilities . established models of technology acceptance have
been employed in this research , and the positive influence of user perceptions of ease of use and compatibility has been
demonstrated . previous research has indicated differing levels of importance of perceived ease of use relative to other factors .
here , perceived ease of use is shown generally to be more important , though the balance between this and compatibility is
moderated by the user perceptions of voluntariness
Ground Truth: information systems ; questionnaire survey ; compatibility ; innovation characteristics ; technology acceptance
model ; voluntariness ; user perceptions ; ease of use ; user acceptance modelling ; building management systems
BART+TG: user acceptance ; building management systems ; modelling ; building performance ; building behaviour
BART+TI: technology compatibility ; voluntariness ; technology use ; technology acceptance ; building management systems
; building performance
BART+SSP: user perceptions of ease of use ; compatibility ; technology acceptance ; building management systems ;
modelling
BART+SSR: questionnaire survey ; compatibility ; technology acceptance model ; usability ; building management systems ;
modelling

Figure 4: Example outputs from low resource models on the scentific benchmarks. Correct keyphrases are colored
in blue. "TI" = Text Infilling; "TG" = Title Generation; "SSP" = Salient Span Prediction; "SSR" = Salient Span
Recovery.
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