
How does the brain combine generative models and direct

discriminative computations in high-level vision?

Scientific question

Figure 1: Two contrasting visions of vision. Separate traditions rooted in
an empiricist and a rationalist conception, respectively, have envisioned the com-
putations underlying visual perception as either a largely bottom-up, feedforward
process of extracting behaviorally relevant information or as an inference process
that interrogates the sensory evidence in light of a generative model that captures
prior knowledge about the processes in the world that give rise to the sensory data.
Several theoretically independent dimensions (double arrows) are conflated when
considering the two perspectives as a dichotomy. The goal of this GAC is to dis-
entangle the dimensions and clarify how they relate to each other, to understand
how the favoured algorithm depends on the visual task, and to develop experiments
that will help us understand how the primate brain combines elements of both
conceptions.

Our question is how the pri-
mate brain combines gener-
ative models and direct dis-
criminative computations in
high-level vision. Both ap-
proaches aim at inferring be-
haviorally relevant latent vari-
ables y from visual data x. In
a probabilistic setting, the in-
ference of the posterior p(y|x)
is known as discriminative in-
ference. The two approaches
differ in how discriminative
inference is implemented. In
the generative approach, a
model of the joint distribu-
tion p(y,x) of the latent vari-
ables and the visual input is
employed. This model cap-
tures information about the
processes in the world that
give rise to the sensory data.
Approximate inference algo-
rithms are then used to infer
the posterior over the latents given an image by estimating p(y|x) = p(y,x)/p(x). In the direct discrimi-
native approach, a direct mapping from the sensory data to the posterior over the latents p(y|x) is learned
without the use of an explicit generative model. The generative approach enables unsupervised learning
of the structure of the world and promises better generalization to novel situations (statistical efficiency).
Direct discriminative computations promise faster inferences (computational efficiency) that are accurate for
new samples from the distribution experienced in training. In practice, inference of the full posterior may
not be realistic and the visual system may settle for point estimates in certain cases.

Background

Two contrasting conceptions have driven research on biological vision as well as the engineering of machine
vision. The first emphasizes bottom-up signal flow, describing vision as a largely feedforward process that
filters and transforms the visual information, so as to remove irrelevant variation and represent behaviorally
relevant information in a format suitable for downstream functions of cognition and behavioral control. In
this empiricist conception, vision is driven by the sensory data and perception is direct [1] in the sense
that the processing proceeds from the data to the latent variables of interest. The alternative conception
is that of vision as an inference process [2], where the sensory evidence is evaluated in the context of a
generative model that captures prior knowledge about the world (ideally probabilistically). In this rationalist
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conception, vision appears as an interrogation of the sensory evidence in a process often thought to involve
top-down predictions of sensory data data serving to evaluate the likelihood of alternative hypotheses [3,
4]. The two perspectives are opposite in many respects and have deep roots in different philosophical
traditions (empiricism, rationalism). Recent decades have brought major advances with both approaches in
computer science and statistics, which have emphasized, respectively, computational and statistical efficiency.
Biological brains appear, mysteriously, to combine the advantages of the two modes of visual inference,
achieving both rapid recognition and robust inferences on the basis of limited and novel sensory data. Could
it be that our intellectual heritage unduly polarizes our intuitions about the algorithm of vision, holding us
hostage in a false dichotomy?

Challenge or controversy

Both approaches have a long history and have achieved substantial successes in both computer vision [5, 6]
and the computational neuroscience of vision [4, 7]. The generative approach is consistent with the notion
that the primate brain performs mental simulations of processes in the world (at some level of abstract
representation) [2, 8, 9]. The discriminative approach is thought to involve feedforward computations in a
hierarchy of representations, as implemented in deep neural networks [10, 11]. It seems clear that the brain
leverages the advantages of both modes of visual computation, and researchers have begun to combine these
modes of inference in computational models [12–15]. The controversy therefore is not binary (Does vision
rely on an inference process that inverts a generative model or on direct discriminative computations?), but
rather concerns how primate vision combines elements of both approaches in the context of particular visual
tasks.

A hodgepodge of related concepts from different fields (cognitive science, artificial intelligence, neuroscience,
statistics), whose precise definition and interrelationships remain murky, currently hampers progress toward
a nuanced perspective on how the primate brain may elegantly combine these modes of inference. The lack
of a clearly defined shared language and a unifying theoretical framework may perpetuate a false dichotomy,
suggesting that the algorithm of primate high-level vision is either purely generative (model-based) or direct
discriminative (model-free), and keeping researchers polarized in contrasting intuitions.

Competing hypotheses and proposed approach for resolution

In this GAC, we aim to make theoretical and empirical progress toward a deeper understanding of how the
primate brain combines elements of both conceptions or achieves an algorithmic synthesis in which the two
modes appear as extreme special cases. Theoretically, we aim to clarify the concepts and their relationships
and to consider how different algorithmic solutions may be favourable for different tasks under particular
resource constraints. Empirically, we aim to agree on experimental plans that enable us to localize the
algorithm employed by a subject in the multidimensional space of algorithmic solutions.

Survey: We will gauge the GAC team members’ and the CCN community’s perspectives by administering
a survey in which participants judge a collection of 20 to 40 propositions about model-based and model-free
visual inference. We will administer the survey in the context of the GAC workshop, so as to identify the
most contentious particular issues at the outset. We will repeat the survey in the middle and at the end of
the GAC project, so as to track the evolution of perspectives among the GAC team members and the CCN
community.

Goal 1: Conceptual clarification. The first theoretical goal of this GAC is to overcome the false di-
chotomy and to disentangle the different dimensions often conflated when considering model-based and
model-free vision (including at least the following and possibly additional dimensions: discriminative / gen-
erative, mental simulation / reverse association, feedforward / recurrent; Fig. 1). The GAC will develop a
common language that clarifies the distinctions and relationships among the relevant concepts from cognitive
science, neuroscience, statistics, and machine learning. We will begin with the assumption that the ideal-
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ized extremes of model-based and model-free vision are diametrically opposed corners of a multidimensional
hypercube of algorithmic solutions to visual inference problems. We will then clarify to what extent the
dimensions are independent or related, which combinations have precedents in the modeling literature, and
which, if any, are theoretically impossible or nonsensical.

Goal 2: Predictions from a resource-rational perspective. The rationalist perspective motivates the
generative approach to visual inference, which makes optimal use of limited data, but has long been under-
stood to be unrealistic given constraints on computational resources [16]. We will consider the question of
generative and discriminative visual computations from a resource-rational perspective [17–21]. The specific
combination of generative and discriminative computations that an agent uses in the context of a particular
task may depend on the agent’s statistical and computational constraints. Statistical constraints are imposed
by the amounts of evidence accessible to the agent for perceptual inference and learning. Computational
constraints include limits on the time and energy for computation and on the computing components that
fit into the skull. In addition, task properties (e.g., the complexity of the input-output relationship or the
temporal requirements) may make a task more amenable to generative inference or direct discriminative
computations. We plan to develop a resource-rational theoretical framework, in which the combination of
generative and discriminative computations arises as a consequence of task demands and resource constraints
on inference.

Goal 3: Critical experiments for high-level vision. The question of how to combine model-based
and model-free modes of inference arises in several contexts, notably in the context of reinforcement learn-
ing. This GAC focuses on high-level vision. The co-organizers have complementary expertise (e.g., object
recognition, face perception, dynamic object-vision, physical scene understanding, visual memory, in human
and nonhuman primates). We will design experiments that identify where in the multidimensional space of
algorithms primate high-level visual inference falls in a particular task. The resource-rational perspective
(Goal 2) predicts that the algorithm will depend on the computational and statistical efficiency demands.
Tasks that are typically employed in a particular sub-domain of high-level vision (e.g., in object recognition
or scene understanding) may lend themselves to a particular combination of model-free and model-based
computations, possibly slanting the consensus in that sub-domain towards one or the other. In the spirit of
adversarial collaboration, novel tasks will therefore aim to challenge this consensus. These tasks will then
be used in experiments in the participating labs while acquiring both neural and behavioral data. We aim
to present preliminary results of these investigations and discuss their implications for the resource-rational
perspective at CCN 2022.

Concrete outcomes

(1) A common language that clarifies and relates relevant concepts from cognitive science, neuroscience,
statistics, and machine learning, and defines the dimensions that span the hypothesis space of algorithms.
(2) A resource-rational perspective on the use of generative inference and direct discriminative computations
for high-level vision.
(3) A set of critical experiments for high-level vision that will be pursued in the extended group of this GAC.
Preliminary results will be presented at CCN 2022.

Benefit to the community

The proposed GAC brings several benefits to the CCN community. First, the conceptual clarification and
negotiation of a common language will facilitate scientific communication and foster collaboration among
the cognitive, computational, and neuroscience subcommunities. Second, the resource-rational unifying
theoretical perspective on generative and discriminative computations in high-level vision will stimulate new
research within and beyond the field of high-level vision over the next 5-10 years. Finally, the GAC addresses
a fundamental question of primate visual perception. The theoretical and empirical results will have broad
implications for other systems of the primate brain and for AI engineering.
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Core group

The organizers, though individually polarized, span a range of perspectives and are committed to make
progress toward a clearer theoretical articulation of the challenge and a balanced empirical assessment. This
GAC aims for a larger number of perspectives, so as to be able to negotiate a shared language that avoids
conflation of separate concepts and has the potential to become widely accepted. One goal of the kickoff
event is to include a number of additional, particularly postdoctoral, researchers, and to assign core and
senior advisor roles to all members. The members initial roles are to articulate their unique perspective on
the role of generative models and discriminative inference in high-level vision.

• James J. DiCarlo has been a major proponent of the feedforward discriminative approach to explain-
ing core object recognition, and his lab has recently explored the power of recurrent computations.
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• Ralf Haefner is a proponent of trying to understand visual processing as probabilistic inference on a
generative model with neural sampling as the brain’s approximate inference algorithm.

• Leyla Isik has a strong background modeling visual computations, including the recognition of dy-
namic actions, with feedforward neural networks.

• Talia Konkle has studied the spatial organization of the human ventral stream and used both discri-
minitive models and contrastive unsupervised models to account for high-level visual representations.

• Nikolaus Kriegeskorte has used feedforward and recurrent neural networks with discriminative train-
ing with the goal to engage, from the bottom up, the generative elements of the inference process.

• Benjamin Peters uses recurrent neural networks to understand the contributions of direct discrimi-
native and generative inference in human dynamic object vision.

• Nicole Rust has a strong background investigating the primate ventral stream from a discriminative
perspective with a recent focus on the influence of memories of past experiences.

• Kim Stachenfeld has a background studying learned representations that support efficient model-free
and model-based reasoning.

• Josh Tenenbaum has been a major proponent of the model-based inference approach in explaining
human dynamic object vision and physical reasoning.

• Doris Tsao is a leading expert in primate face perception, studying both generative and discriminative
algorithms as models of primate face perception.

• Ilker Yildirim has a strong background in using generative models as models for human perception
and has recently combined generative models with efficient discriminative inference.

Statement of commitment

We commit to to the GAC process, including:

• Incorporating feedback from the community and potentially welcoming new CCN community members
to the GAC based on their written commentary to the GAC proposal

• Running an online kickoff workshop for CCN2021, inclusive of both founding core GAC members and
those new members who joined through the community feedback process

• Writing the position paper to be submitted early 2022 to a curated special issue of NBDT, to be
accompanied by commentary pieces authored by attendees of the CCN2021 kickoff workshop

• Attending and presenting progress at the following CCN2022

Signed:

James J. DiCarlo, Ralf Haefner, Leyla Isik, Talia Konkle, Nikolaus Kriegeskorte, Benjamin Peters, Nicole
Rust, Kim Stachenfeld, Josh Tenenbaum, Doris Tsao, Ilker Yildirim
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