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Abstract

We introduce LANGBRIDGE, a zero-shot ap-001
proach to adapt language models for multilin-002
gual reasoning tasks without multilingual super-003
vision. LANGBRIDGE operates by “bridging”004
two models, each specialized in different as-005
pects: (1) one specialized in understanding mul-006
tiple languages (e.g., mT5 encoder) and (2) one007
specialized in reasoning (e.g., Orca 2). LANG-008
BRIDGE connects the two models by introduc-009
ing minimal trainable parameters between them.010
Despite utilizing only English data for training,011
LANGBRIDGE considerably enhances the per-012
formance of language models on low-resource013
languages across mathematical reasoning, cod-014
ing, and logical reasoning. Our analysis sug-015
gests that the efficacy of LANGBRIDGE stems016
from the language-agnostic characteristics of017
multilingual representations. We publicly re-018
lease our code and models.1019

1 Introduction020

Language models (LMs) are known to exhibit in-021

ferior performance in solving reasoning tasks such022

as math or coding in low-resource languages (Shi023

et al., 2022; Qin et al., 2023). This tendency pri-024

marily stems from the fact that LMs are predomi-025

nantly trained on corpora comprised of a few high-026

resource languages (Touvron et al., 2023a,b). This027

results in low-resource languages being represented028

as long-tail knowledge (Lazaridou et al., 2021;029

Kandpal et al., 2023).030

Prior works have mainly approached this prob-031

lem by adapting English-centric LMs to other lan-032

guages through continual training on the target lan-033

guage (Marchisio et al., 2023; Oba et al., 2023;034

Zhu et al., 2023; Kew et al., 2023). However, scal-035

ing this approach to a large number of languages036

is challenging, as it requires targeted training cor-037

pora for each language. This issue is particularly038

pronounced for LMs such as MetaMath (Yu et al.,039
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Figure 1: MGSM accuracy (%) of MetaMath models
and models aligned with mT5-XL encoder (2B) via
LANGBRIDGE (LB). In addition to the average (AVG)
accuracy, we also report the average accuracy of high-
resource languages (HRL) and underrepresented lan-
guages (URL) classified by Shi et al. (2023).

2023) and Orca 2 (Mitra et al., 2023), which have 040

undergone continuous domain-specific adaptation 041

from Llama 2 (Touvron et al., 2023b). These spe- 042

cialized, domain-specific datasets are typically in 043

English, complicating multilingual support for the 044

underlying LM. 045

In this paper, we introduce LANGBRIDGE, a 046

novel approach that adapts LMs to solve multilin- 047

gual reasoning tasks without explicitly training on 048

multilingual data. Inspired from the multimodal lit- 049

erature that integrates two independently pretrained 050

modalities (Alayrac et al., 2022; Li et al., 2023a; 051

Merullo et al., 2023; Liu et al., 2023b; Bavishi 052

et al., 2023), we leverage the encoder from mT5 053

(Xue et al., 2021) and introduce a small number of 054

trainable parameters between the encoder and the 055

target LM. Most importantly, our approach does 056

not require multilingual supervision and solely re- 057

lies on English data while generalizing to multiple 058

languages during test time, resembling zero-shot 059

cross-lingual transfer (Pires et al., 2019; Conneau 060

et al., 2020; Xue et al., 2021; Li and Murray, 2023). 061
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We demonstrate the effectiveness of LANG-062

BRIDGE by applying our method to LMs spe-063

cialized in mathematical reasoning, coding, and064

logical reasoning. Our empirical results show065

LANGBRIDGE substantially enhances the multi-066

lingual reasoning performance of LMs. Notably,067

LANGBRIDGE applied to MetaMath-13B leverag-068

ing mT5-XL encoder (2.2B) boosts the average ac-069

curacy on MGSM (Shi et al., 2023) from 40.5% to070

53.5%, matching the performance of PaLM-540B071

(Chowdhery et al., 2023), which stands at 51.3%.072

We hypothesize that the effectiveness of LANG-073

BRIDGE is anchored in the language-agnostic char-074

acteristics of multilingual representations (Pires075

et al., 2019; Libovický et al., 2020). By mapping076

these representations to the LMs’ input space, we077

conjecture that the LM is able to grasp the seman-078

tics of these representations. As the representations079

are language-neutral, the comprehension makes the080

specific language of the input inconsequential. Our081

empirical analysis of LANGBRIDGE, using prin-082

cipal component analysis (PCA) and qualitative083

methods, supports this hypothesis.084

2 Related Work085

2.1 English-centric Language Models086

Previous works have enhanced the reasoning ca-087

pabilities of LMs in mathematical reasoning, code088

generation, and logical reasoning (Mukherjee et al.,089

2023; Azerbayev et al., 2023; Yu et al., 2023; Roz-090

ière et al., 2023; Mitra et al., 2023). However, the091

majority of these LMs are derived from English-092

centric LMs (Touvron et al., 2023a,b) and adapted093

with English domain-specific datasets. As a re-094

sult, these LMs inherit limited proficiency in low-095

resource languages, which results in a significant096

performance discrepancy between high-resource097

and low-resource languages. The motivation of our098

proposed method, LANGBRIDGE, is to narrow this099

gap.100

2.2 Zero-shot Cross-lingual Transfer101

Multilingual models demonstrate remarkable zero-102

shot cross-lingual transfer capability, enabling103

them to perform tasks in languages different from104

the ones used during their finetuning stage (Con-105

neau et al., 2020; Xue et al., 2021; Li and Mur-106

ray, 2023). This feature significantly aids the low-107

resource language community, allowing multilin-108

gual models to handle tasks across a wide range of109

languages after being finetuned on high-resource110

languages. Our method, which leverages multilin- 111

gual models, exhibits a similar ability, as it can 112

enhance the reasoning capabilities of LMs across 113

multiple languages while solely relying on English 114

data during adaptation. 115

2.3 Aligning Pretrained Representations 116

The concept of combining independently pre- 117

trained representations has been widely explored in 118

the realm of cross-modal alignment (Alayrac et al., 119

2022; Li et al., 2023a; Merullo et al., 2023; Liu 120

et al., 2023b; Bavishi et al., 2023). These works 121

focus on aligning visual encoder models with LMs 122

to facilitate the visual comprehension abilities of 123

LMs. In a concurrent work, Bansal et al. (2024) 124

align two large language models to augment each 125

other’s capabilities. One of their experiments show- 126

cases that aligning a multilingual LM with another 127

LM can lead to improved performance in multi- 128

lingual tasks. However, in contrast to our method, 129

their approach employs multilingual supervision 130

for aligning. 131

3 LANGBRIDGE 132

3.1 Hypothesis 133

Previous works show that representations of multi- 134

lingual encoder models are moderately language- 135

agnostic (or language-neutral) out-of-the-box, fa- 136

cilitating zero-shot cross-lingual transfer (Pires 137

et al., 2019; Libovický et al., 2020). Based on this 138

premise, we hypothesize that by aligning a multi- 139

lingual encoder model to the space of an LM, the 140

LM will be able to understand the semantics of the 141

languages supported by the multilingual encoder 142

without training on a large set of languages. 143

To test this hypothesis, we align multilingual en- 144

coder models with LMs using only English corpora 145

(Left of Figure 2). Then, we evaluate the aligned 146

models using non-English inputs to determine if the 147

LMs exhibit enhanced capabilities in multilingual 148

reasoning tasks (Right of Figure 2). 149

3.2 Model Architecture 150

Building on the findings of previous works, where 151

effective cross-modal understanding has been 152

achieved by mapping representations from non- 153

linguistic modalities to the soft prompts (Lester 154

et al., 2021) of LMs (Merullo et al., 2023; Liu et al., 155

2023b; Bavishi et al., 2023), LANGBRIDGE maps 156

the final hidden states of multilingual encoders to 157

the soft prompts of LMs to attain multilingual un- 158
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Figure 2: Overview of LANGBRIDGE. Left: A multilingual encoder with an added linear layer is aligned with the
target language model using English data. We keep the language model frozen, whereas the linear layer is trainable.
The multilingual encoder is trainable when adapting pretrained LMs and frozen when adapting finetuned LMs.
Right: In test time, a LANGBRIDGE model can effectively solve multilingual reasoning tasks.

derstanding of the target LM. Following the studies159

above, we adopt the setting of using a single lin-160

ear layer as the mapping function and append one161

trainable token to the end of the soft prompt as an162

[EOS] (end of sequence) token. Therefore, given163

the input token (padded if necessary) of the encoder164

Xenc, the derived soft prompt Henc is equivalent165

in sequence length to Xenc + 1, and has the same166

dimensionality as the hidden state of the language167

model. Any tokens in Henc that originate from168

padding tokens of Xenc are masked for the lan-169

guage model. We ablate the effect of using more170

complex architectures in Appendix D.171

Language modeling objective of LANGBRIDGE172

resembles that of the “prefix LM” explored by Raf-173

fel et al. (2020), as it is conditioned on the prefix174

text given to the encoder. Formally, the language175

modeling likelihood of target token Xlm is denoted176

as:177

p(Xlm|Xenc) =

L∏
i

p(xi|Xenc, x<i) (1)178

where L is the sequence length of Xlm, and xi is179

the ith token of Xlm.180

4 Main Experiments181

4.1 Overview182

We select three task categories for our main ex-183

periments: (1) mathematical reasoning, (2) code184

completion, and (3) logical reasoning. We addi-185

tionally evaluate commonsense reasoning in Ap-186

pendix A. For each task category, we apply LANG-187

BRIDGE to LMs specialized in reasoning derived188

from Llama 2 (Touvron et al., 2023b), such as Meta-189

Math or Orca 2.2 We evaluate the models on ex-190

isting multilingual benchmarks (e.g., MGSM) or191

2We test LANGBRIDGE on general-domain LMs (Llama 2
and Mistral 7B (Jiang et al., 2023)) in Appendix C.

translated English benchmarks (e.g., Bengali trans- 192

lation of Big Bench Hard (Suzgun et al., 2023)). 193

As the evaluation tasks necessitate both multilin- 194

gual understanding abilities and advanced reason- 195

ing capabilities, this complexity poses a signifi- 196

cant challenge for general multilingual LMs and 197

English-centric LMs specialized in reasoning. On 198

the contrary, models aligned with LANGBRIDGE 199

could take advantage of both. 200

Since Touvron et al. (2023b) discloses the 201

language distribution of the pretraining data of 202

Llama 2, this enables us to identify which lan- 203

guages are underrepresented in LMs initialized 204

from Llama 2 weights. Throughout the paper, we 205

classify a language as underrepresented if it com- 206

prises less than 0.1% of Llama 2’s pretraining data. 207

In all of our experiments, we use the encoders 208

of mT5 (Xue et al., 2021) as the multilingual en- 209

coders due to their availability across a wide range 210

of parameters,3 and their support for longer input 211

sequences compared to other multilingual encoder 212

models.4 Specifically, we use the “LM adaptated” 213

checkpoints from Vu et al. (2022). We align target 214

LMs of 7B parameters with mT5-XL encoder to 215

adapt 9B-sized models and 13B-sized LMs with 216

mT5-XL encoder and mT5-XXL encoder to obtain 217

15B and 20B models, respectively. We ablate the 218

effect of the encoder parameter size and encoder 219

model type in Appendix D. 220

We use the original continual training data of 221

the LM for LANGBRIDGE when accessible (e.g., 222

MetaMathQA for MetaMath). If unavailable, we 223

opt for the closest publicly accessible dataset (e.g., 224

OpenOrca (Lian et al., 2023) for Orca 2). In all 225

3270M (Small), 470M (Base), 820M (Large), 2.2B (XL)
and 6.7B (XXL).

4mT5 was trained on input size of 1024 tokens, but can take
longer sequences due to its use of relative position embeddings
(Shaw et al., 2018).
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our experiments, we restrict the size of the train-226

ing dataset to 200,000 instances. However, our227

ablation on the effect of the training dataset size228

in Appendix D suggests LANGBRIDGE in prac-229

tice may require much less data. We maintain the230

language model frozen throughout the alignment231

process to ensure efficiency. We also freeze the232

encoder (except the embedding layer) for aligning233

finetuned LMs, whereas for pretrained LMs, we234

keep the encoder trainable.5 We provide further235

explanation and ablate the effect of freezing in Ap-236

pendix D. We align the models by training on the237

prefix LM objective described in Section 3.2. In our238

preliminary experiments, we find that training on239

various lengths of Xenc is necessary to ensure ro-240

bustness on inference time, as the language model241

is exposed to diverse lengths of Henc.242

4.2 Mathematical Reasoning243

4.2.1 Experimental Setup244

Evaluation Datasets MGSM (Shi et al., 2023)245

comprises grade school math word problems in 11246

typologically diverse languages, human translated247

from a sample of GSM8K (Cobbe et al., 2021).248

For evaluating pretrained LMs, we adopt the cross-249

lingual transfer chain-of-thought (CoT) reasoning250

(Wei et al., 2022) setting (NATIVE-EXEMPLARS +251

EN-COT) from Shi et al. (2023), where the few-shot252

exemplars are given in the target language, but the253

CoT rationales to solve the exemplars are provided254

in English. For finetuned LMs, we evaluate in zero-255

shot6 setting. Additional evaluation on MSVAMP256

(Chen et al., 2023) is available in Appendix B.257

Language Models Llemma (Azerbayev et al.,258

2023) is an LM for mathematics, continually pre-259

trained from Code Llama (Rozière et al., 2023) on260

Proof-Pile-2, a mixture of scientific papers, web261

data containing mathematics, and mathematical262

code. MetaMath (Yu et al., 2023) was finetuned263

from Llama 2 (Touvron et al., 2023b) on Meta-264

MathQA, a mathematical dataset based on GSM8K265

and MATH (Hendrycks et al., 2021b). As both266

Proof-Pile-2 and MetaMathQA are publicly avail-267

able, we apply LANGBRIDGE using samples of268

their respective training datasets.269

Baselines Llama 2 (Touvron et al., 2023b) is an270

English-centric LM in which 89.7% of the pretrain-271

5We define finetuned LMs as LMs trained on labeled cor-
pora and pretrained LMs as LMs trained on unlabeled corpora.

6Here, the term zero-shot refers to the lack of few-shot
examples.

ing data consists of English but has shown consid- 272

erable performance on non-English languages (Lai 273

et al., 2023). mT57 (Xue et al., 2021), XGLM 274

(Lin et al., 2022), and BLOOM (Scao et al., 2022) 275

are multilingual LMs. MathOctopus (Chen et al., 276

2023) is an LM for multilingual mathematical rea- 277

soning. It was initialized from Llama 2 and fine- 278

tuned on translations of the GSM8K dataset across 279

ten languages.8 We use their best-performing 280

checkpoints, xRFT-MathOctopusP , which were 281

further enhanced by data augmentation through 282

rejection sampling (Yuan et al., 2023). We also 283

report the performance of BLOOM models further 284

trained on the training sets of LANGBRIDGE mod- 285

els, BLOOM-Proof-Pile-2 (PP2) and BLOOM- 286

MetaMath (MM). This is done to confirm that the 287

capabilities of LANGBRIDGE models are derived 288

from the LMs’ inherent strength rather than solely 289

from the training set utilized. We additionally re- 290

port the performance of PaLM (Chowdhery et al., 291

2023) measured by Shi et al. (2023). Similar to 292

Llama 2, PaLM was pretrained on English-heavy 293

corpora. 294

4.2.2 Results 295

Table 1 shows the evaluation results of baselines 296

and LANGBRIDGE models on MGSM. We high- 297

light five main observations. (1) Llama 2, Llemma, 298

and MetaMath exhibit critical performance degra- 299

dation across languages that are underrepresented 300

in the training data of Llama 2. (2) Despite this, 301

multilingual LMs underperform Llama 2, even in 302

the context of underrepresented languages.9 This 303

disparity underscores the robust mathematical rea- 304

soning capabilities inherent in Llama 2 and ab- 305

sent in multilingual LMs. (3) LANGBRIDGE en- 306

hances the multilingual performance of Llemma 307

and MetaMath, especially in underrepresented lan- 308

guages. Most notably, LANGBRIDGE is able to 309

bring Llemma and MetaMath performance on Tel- 310

ugu (TE) from zero or near zero to a range compara- 311

ble to other languages. (4) Mathematical reasoning 312

capabilities of LANGBRIDGE models come from 313

their original LMs, not their training data. This 314

is evident from BLOOM-7.1B-PP2 and BLOOM- 315

7.1B-MM underperforming Llemma-LB-9B and 316

MetaMath-LB-9B, respectively, by a large margin. 317

7We use the language model checkpoint from Vu et al.
(2022).

8The ten languages overlap with the 11 languages included
in MGSM, except Telugu.

9Note BLOOM models were not trained in German, Rus-
sian, Japanese, and Thai.
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AVG HRL URL EN DE FR ES RU ZH JA TH SW BN TE

Lang. Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

FEW-SHOT CROSS-LINGUAL COT

Llama 2-7B 9.1 12.1 3.9 15.2 11.6 13.2 11.2 11.6 11.2 10.8 7.2 5.2 3.2 0.0
XGLM-7.5B 1.5 1.6 1.2 0.4 1.6 1.2 1.6 2.0 2.8 1.6 2.0 0.4 1.2 1.2
mT5-XXL (13B) 2.9 3.5 2.0 3.6 2.4 4.0 3.6 2.8 3.6 4.4 2.8 1.2 3.2 0.8
BLOOM-7.1B 2.4 2.6 2.0 3.6 1.2 3.6 2.4 2.0 3.2 2.0 0.0 2.4 2.8 2.8
BLOOM-7.1B-PP2 2.3 2.5 1.9 4.8 1.2 2.0 2.0 1.6 4.0 1.6 0.8 2.8 2.0 2.0
PaLM-540B 51.3 52.3 46.8 62.4 53.6 51.2 58.0 55.6 46.0 49.6 49.6 44.4 46.4 46.8

Llemma-7B 21.6 29.9 7.2 44.8 27.2 33.2 29.2 26.0 26.4 22.4 14.0 8.4 6.4 0.0
Llemma-LB-9B 20.4 22.5 16.7 34.8 23.6 26.8 22.4 18.8 16.0 15.2 20.8 17.6 12.4 16.0

Llemma-34B 35.6 46.3 16.7 58.0 48.0 46.8 48.0 47.2 36.8 39.6 28.4 27.2 11.2 0.0

ZERO-SHOT COT

MathOctopus-7B 37.1 42.7 27.2 51.6 40.0 38.4 47.2 42.4 44.0 35.6 39.2 31.6 37.2 0.8
MathOctopus-13B 42.9 48.6 32.9 50.8 49.2 50.4 52.8 47.2 52.4 37.2 44.4 40.4 46.4 0.4
BLOOM-7.1B-MM 16.7 21.7 7.8 41.2 19.6 24.4 26.8 9.6 21.2 9.2 0.8 15.6 6.8 8.0

MetaMath-7B 34.4 51.8 3.9 64.8 57.6 55.6 56.4 50.4 42.4 35.6 4.0 6.4 4.4 0.8
MetaMath-LB-9B 48.8 52.3 42.8 63.2 50.8 52.4 58.0 56.4 45.2 40.0 50.4 43.2 42.8 34.8

MetaMath-13B 40.5 60.3 6.0 70.4 64.4 65.2 63.6 60.0 50.8 47.6 4.8 11.6 6.8 0.8
MetaMath-LB-15B 53.5 58.0 45.2 67.6 63.6 61.6 63.2 60.0 48.0 42.0 52.8 41.6 50.0 36.4
MetaMath-LB-20B 55.8 58.7 50.7 66.4 64.0 64.0 60.4 58.8 52.4 45.2 53.6 49.2 52.8 47.2

Table 1: Accuracy (%) on MGSM. Alongside average (AVG) accuracy, we also report average accuracy of high-
resource languages (HRL) and underrepresented languages (URL) classified by Shi et al. (2023). We include the
language distribution of Llama 2 for reference. For pretrained models (Top), we prompt with 8-shot cross-lingual
chain-of-thought (CoT) reasoning exemplars, except for PaLM-540B, for which we reference the 6-shot cross-lingual
CoT performance reported by Shi et al. (2023). For finetuned models (Bottom), we evaluate zero-shot. The PP2
and MM suffixes denote models trained on Proof-Pile-2 and MetaMath, respectively. We compare LANGBRIDGE
models (LB) to their original checkpoints and highlight the best-performing numbers in bold.

(5) Surprisingly, despite only being trained on En-318

glish reasoning data, our MetaMath-LB models are319

competitive against MathOctopus models, which320

were finetuned on translations of GSM8K on ten321

out of 11 languages supported by MGSM. The per-322

formance gap between the two models on Telugu323

(TE), an unseen language by MathOctopus, spot-324

lights the benefit of zero-shot multilingual adap-325

tation of LANGBRIDGE. Continual training with326

curated target language data cannot generalize to327

unseen languages, whereas LANGBRIDGE models,328

by nature, has the potential to generalize to the329

large scale of languages included in the pretraining330

of mT5.331

Overall, LANGBRIDGE models demonstrate332

competitive performance against baselines. LANG-333

BRIDGE models vastly outperform similar-sized334

multilingual models, establishing LANGBRIDGE335

as a viable approach for developing mathematical336

reasoning models for low-resource languages. We337

provide an example of CoT rationale generated by338

MetaMath-LB in Appendix H.339

4.3 Code Completion 340

4.3.1 Experimental Setup 341

Evaluation Datasets Leveraging the competi- 342

tive translation performance of GPT-4 (OpenAI, 343

2023), as demonstrated in the study by Jiao et al. 344

(2023), we extend HumanEval (Chen et al., 2021), 345

a set of hand-written programming problems, into 346

five underrepresented languages: Swahili, Ben- 347

gali, Punjabi, Telugu, and Urdu. We name the 348

resulting dataset HumanEval-MT. We select the 349

five languages among those with reported MMLU 350

(Hendrycks et al., 2021a) performance in the tech- 351

nical report of GPT-4 while also being included in 352

the pretraining corpora of BLOOM. This choice 353

is made to acquire high-quality translations from 354

GPT-4, and give BLOOM-based baselines an even 355

chance. To guide GPT-4 to only translate the em- 356

bedded natural language instruction of the doc- 357

string while not modifying the code segments, we 358

prompt GPT-4 with two human-annotated exam- 359

ples. Subsequently, the generated translations are 360

executed in a Python interpreter environment to 361

assert the absence of syntax errors. We provide 362
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AVG EN SW BN PA TE UR

Llama 2-7B 4.6 9.8 3.7 3.0 3.0 3.0 4.9
BLOOM-7.1B 4.9 7.3 2.4 5.5 4.3 6.1 3.7
BLOOM-7.1B-StarCoder 4.5 6.7 3.0 4.3 4.3 3.7 4.9

Code Llama-7B 16.9 36.0 14.0 14.6 10.4 9.8 16.5
Code Llama-LB-9B 19.4 31.7 17.1 15.2 18.3 15.2 18.9

Code Llama-13B 19.6 40.2 15.2 17.7 12.2 12.8 19.5
Code Llama-LB-15B 23.6 41.5 20.1 20.1 19.5 19.5 20.7
Code Llama-LB-20B 23.5 36.0 24.4 20.1 20.7 18.9 20.7

Code Llama-34B 22.7 43.9 17.1 23.8 15.9 12.8 22.6

Table 2: Pass@1 scores on HumanEval and HumanEval-MT. The models were evaluated on zero-shot code
completion using greedy decoding. We compare LANGBRIDGE (LB) models to their original checkpoints and
highlight the best-performing numbers in bold.

translation quality estimation of HumanEval-MT363

in Appendix E.364

The examples within the HumanEval dataset of-365

ten feature self-explanatory function names, which366

raises the possibility that LMs could potentially367

complete the associated code segments successfully368

without fully comprehending the natural language369

comments embedded within them. Consequently,370

we evaluate the models on anonymized versions371

of each language set, wherein the target function372

names of the code segments are uniformly altered373

to “func”. An example of an anyonymized prompt374

and evaluation result on the non-anonymized ver-375

sion is available in Appendix F.376

Language Models Code Llama (Rozière et al.,377

2023) is a family of models initialized from378

Llama 2 model weights and pretrained on a code-379

heavy dataset. In our experiments, we use Code380

Llama-Python models, which were further pre-381

trained on a Python-heavy dataset. Since the382

datasets used to pretrain the Code Llama mod-383

els are not publicly available, we sample from the384

Python subset of StarCoder data (Li et al., 2023b)385

as the training dataset for LANGBRIDGE.386

Baselines We use Llama 2 and BLOOM models387

as the baselines. Unlike other open multilingual388

models, the pretraining corpora of BLOOM con-389

tain code data with a 10.8% ratio (Laurençon et al.,390

2022). Additionally, we report the performance391

of BLOOM-StarCoder, a BLOOM model contin-392

ually pretrained on the sample of StarCoder data393

used to train LANGBRIDGE models.394

4.3.2 Results395

Table 2 presents the Pass@1 scores on HumanEval396

and HumanEval-MT. Code Llama-LB models397

show consistent improvements over Code Llama 398

across all underrepresented languages. More- 399

over, LANGBRIDGE models could match their 400

larger baselines on the average scores, with the 9B 401

model slightly underperforming Code Llama-13B 402

by 0.2%, while 15B and 20B models surpassing 403

Code Llama-34B. BLOOM trained on StarCoder 404

data did not demonstrate noticeable improvements, 405

re-emphasizing that the strengths of LANGBRIDGE 406

models predominantly stem from the capabilities 407

of original LMs. 408

4.4 Logical Reasoning 409

4.4.1 Experimental Setup 410

Evaluation Datasets We assess logical reason- 411

ing capabilities with Big-Bench Hard (BBH) (Suz- 412

gun et al., 2023), a collection of challenging sub- 413

tasks where the application of chain-of-thought 414

(CoT) reasoning has the potential to enhance per- 415

formance substantially. From the 23 subtasks of 416

BBH, we restrict the evaluation tasks to 14 subtasks 417

that maintain relevancy even in another language.10 418

We translate the selected subtasks to Bengali using 419

GPT-4 to construct BBH-BN. We prompt GPT- 420

4 with three human-translated examples for each 421

subtask. Two native Bengali speakers iteratively cu- 422

rated the examples based on the translation quality 423

of GPT-4 as feedback. 424

Language Models Orca 2 (Mitra et al., 2023) 425

was finetuned on Llama 2 with a collection of 426

datasets augmented with reasoning traces of GPT- 427

4 as well as fully synthetic datasets created with 428

GPT-4. Orca 2 effectively improved the reason- 429

ing abilities of smaller LMs on complex tasks de- 430

manding advanced reasoning in zero-shot settings. 431

10List of selected subtasks is available in Appendix F.
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EN BN

BLOOM-7B-OpenOrca 35.8 31.2

Orca 2-7B 53.9 36.7
Orca 2-LB-9B 46.9 41.8

Orca 2-13B 57.9 41.7
Orca 2-LB-15B 55.2 45.4
Orca 2-LB-20B 53.1 45.4

Table 3: Accuracy (%) on BBH (English) and BBH-
BN (Bengali). We report the average accuracy across
selected 14 subtasks. We compare LANGBRIDGE (LB)
models to their original checkpoints and highlight the
best-performing numbers in bold.

As the training dataset of Orca 2 is not publicly432

available, we sample the training data for LANG-433

BRIDGE from OpenOrca dataset (Lian et al., 2023).434

OpenOrca follows the data distribution of the first435

iteration of Orca (Mukherjee et al., 2023). We em-436

ploy CLD311 to filter any non-English data that437

mainly derives from translation datasets to ensure438

the zero-shot setting of our experiments. Exam-439

ples were included if their input text had a 99% or440

greater probability of being English, while their tar-441

get text also had a 95% or greater chance of being442

English. A slightly lower threshold was adopted443

for the target text to not falsely filter single-word444

responses, which CLD3 exhibits lower confidence.445

Baselines In our evaluation of BBH, we assess446

whether Orca 2-LB models could acquire multilin-447

gual comprehension while retaining the zero-shot448

CoT capabilities of Orca 2. However, from our449

limited testing, we found that no existing open450

multilingual LMs could generate CoT reliably in a451

zero-shot setting. Consequently, they were not in-452

cluded as baselines. We do report the performance453

of BLOOM-OpenOrca, a BLOOM model further454

trained on the same training set as Orca 2-LB.455

4.4.2 Results456

Table 3 shows the average accuracy across the sub-457

tasks for BBH and BBH-BN. Notably, the Orca458

2-LB-9B model shows considerable improvement459

in BBH-BN, surpassing the larger Orca 2-13B460

model. However, the Orca 2-LB-9B model has461

a discernible decline in performance in BBH En-462

glish compared to Orca 2-7B. Nonetheless, the per-463

formance decrease in English is substantially miti-464

gated in the larger-scale models. Another notewor-465

11github.com/google/cld3
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Figure 3: First two principal components of pooled
representations obtained with FLORES. Note that the
scales of the two subplots differ.

thy observation is that the Orca 2-LB-20B model 466

does not surpass the performance of the Orca 2-LB- 467

15B model in either BBH or BBH-BN. In Appendix 468

D, we analyze the impact of the encoder size on 469

performance. Additionally, we present the evalua- 470

tion results of individual subtasks in Appendix F 471

and examples of generated CoT rationale in Ap- 472

pendix H. 473

5 Analysis of LANGBRIDGE 474

Based on the empirical evidence presented in the 475

previous sections, we assert that LANGBRIDGE 476

effectively enhances LMs’ capability to address 477

multilingual tasks without multilingual training, 478

especially for low-resource languages. This section 479

presents two fundamental observations that further 480

reinforce the hypothesis outlined in Section 3. 481

The hypothesis primarily attributes the feasibil- 482

ity of LANGBRIDGE to the sufficiently language- 483

agnostic representations of multilingual encoders. 484

If the conjecture holds, given a LANGBRIDGE 485

model, the LM’s output representation of the soft 486

prompt Henc should also exhibit language-agnostic 487

characteristics. It stands to reason that the LM 488

would not arbitrarily introduce additional language- 489

specific features to a language-neutral input. 490

Figure 3 shows the first two principal compo- 491

nents of pooled representations obtained with 300 492

samples of FLORES (Goyal et al., 2022; Costa- 493

jussà et al., 2022), a parallel corpora. For Orca 494

2, high-resource languages, English (EN), Span- 495

7
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ish (ES), and German (DE), are mapped closely496

together. Underrepresented languages, Telugu (TE)497

and Swahili (SW), exhibit a more distant mapping498

in the representation space, forming three clus-499

ters.12 Conversely, Orca 2-LANGBRIDGE repre-500

sentations are mapped into a single cluster, indi-501

cating that the representations of Henc maintain a502

relatively language-neutral status.503

Figure 4 illustrates an example of “acciden-504

tal translation” (Xue et al., 2021) by the Orca 2-505

LANGBRIDGE-15B model. Despite being given506

the options in Bengali, the LANGBRIDGE model507

perceives the options as Chinese and recites them508

in Chinese. With Bengali as input, accidental trans-509

lation in a third language other than English or510

Bengali suggests that multiple languages may have511

similar representations in Henc (Li and Murray,512

2023). Nonetheless, accidental translations in lan-513

guages other than English are uncommon for Orca514

2-LANGBRIDGE models. We conduct a qualita-515

tive analysis on the CoTs generated by Orca 2-516

LANGBRIDGE-15B for BBH-BN SNARKS subtask,517

which we find is the combination with the most fre-518

quent accidental translations. Out of 178 CoT ra-519

tionales generated, only eight examples contained520

accidental translations in Chinese, Danish, Hindi,521

Japanese, Marathi, and Turkish, with one or two ex-522

amples per language. Additionally, seven examples523

had Bengali in their CoT rationales. The relatively524

high frequency of Bengali indicates that Henc does525

not exhibit a perfectly language-agnostic behavior,526

and for some examples, the LM could discern the527

input language as Bengali. This is not ideal, as it528

suggests that the LM had to comprehend the in-529

put in Bengali, a language in which the LM lacks530

proficiency. We believe that LANGBRIDGE per-531

formance can be further enhanced by relieving the532

zero-shot constraint and adapting the mT5 encoder533

to have enhanced language-neutrality (Reimers and534

Gurevych, 2020; Feng et al., 2022) prior to align-535

ment with the LM. However, we leave this explo-536

ration for future study.537

6 Conclusion538

In this paper, we propose LANGBRIDGE, a sim-539

ple yet effective method of extending the capabili-540

ties of LMs to solve multilingual reasoning tasks541

without using multilingual supervision. We show542

that LANGBRIDGE is surprisingly effective for en-543

12Note that Flores Swahili is in Latin script, the same as the
three high-resource languages.

Model Input

[⋯]
�কান ব�ব��ট ব��া�ক? (Which statement is sarcastic?)

Options:
(A) �যেহত�  কেপ �ােরট িনয়�ণ মােন �ত� ভাষণ,
এ�ট �কৃতপে� গণতে�র জন� এক�ট বড় জয়
(Since corporate restriction equals free speech
 this is actually a big win for democracy)
(B) �যেহত�  কেপ �ােরট মািন মােন �ত� ভাষণ,
এ�ট �কৃতপে� গণতে�র জন� এক�ট বড় জয়
(Since corporate money equals free speech
this is actually a big win for democracy)

Model Output

[⋯]
Step 2: Analyze the given options.
(A) 因为企业主控制意味着独立演讲，
这实际上是民主的一个巨大胜利
(B) 因为企业主钱意味着独立演讲，
这实际上是民主的一个巨大胜利

Step 3: Translate the options to English.
(A) Since corporate control means independent speech,
this is actually a huge victory for democracy
(B) Since corporate money means independent speech,
this is actually a huge victory for democracy
[⋯]
Final answer: (B) 因为企业主钱意味着独立演讲，
这实际上是民主的一个巨大胜利

"Accidental
Translations"

Figure 4: Example of accidental translation of an Orca 2-
LANGBRIDGE model prompted with the SNARK subset
of BBH-BN. Portions of the input prompt and several ra-
tional steps in the output are truncated for brevity. Trans-
lations are provided in (blue with parenthesis) wherever
required.

hancing multilingual reasoning capabilities for low- 544

resource languages. Additionally, we offer analy- 545

sis explaining the efficacy of LANGBRIDGE and 546

attribute it to the language-agnostic nature of mul- 547

tilingual representations. We hope our findings 548

benefit the low-resource language users and spur 549

further research advancing the development of LMs 550

inclusive of the entire global community. 551

Limitations 552

As LANGBRIDGE solely utilizes English data for 553

training, LANGBRIDGE models may not be pro- 554

ficient in generating text in languages other than 555

English. Although LANGBRIDGE successfully nar- 556

rows the performance gap between high-resource 557

and low-resource languages, a noticeable perfor- 558

mance gap remains. Also, while multilingual rep- 559

resentations are known to have language-agnostic 560

characteristics to some degree, our analysis and 561
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previous works suggest that there is room for im-562

provements (Libovický et al., 2020; Feng et al.,563

2022). While LANGBRIDGE has the potential to564

generalize to all languages supported by the multi-565

lingual encoder, the extent to which LANGBRIDGE566

enhances the reasoning capability of a specific lan-567

guage depends on two key factors: (1) The original568

proficiency of the LM in that particular language.569

(2) The proficiency of the encoder model in that570

particular language.571

Ethical Considerations572

While we share LANGBRIDGE models for open ac-573

cess, their terms for use or license adhere to those574

of the original LMs. The training datasets utilized575

in our research is primarily sourced from academic576

materials. As a result, we assess that the datasets577

likely contain a relatively fewer examples featuring578

offensive or personal information. Nevertheless, it579

is important to acknowledge that such content may580

be still present within the dataset. All annotators in-581

volved in this project received compensation higher582

than the minimum wage. Our work has been re-583

viewed and received approval from the Institutional584

Review Board (IRB) at our institution.585
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A Commonsense Reasoning963

Table 9 shows the evaluation results of Orca 2 and964

Orca 2-LANGBRIDGE models on COPA (Roem-965

mele et al., 2011) and XCOPA (Ponti et al., 2020),966

commonsense reasoning datasets. COPA is avail-967

able in English, while XCOPA extends COPA to968

11 languages. We do not include multilingual LMs969

as baselines, as COPA was included in the train-970

ing set of Orca 2, making it challenging to draw971

meaningful comparisons.972

Despite reaching near-perfect accuracy for973

COPA, Orca 2 models’ performance drops closer974

to random chance (50%) on some of the under-975

represented languages of XCOPA. LANGBRIDGE976

successfully decreases this performance degrada-977

tion, except for Quechua (QU). The discrepancy is978

likely due to Quechua not being included in the 101979

languages covered by mT5. This observation reem-980

phasizes that the large-scale linguistic proficiency981

of LANGBRIDGE models is primarily derived from982

mT5.983

B MSVAMP984

MSVAMP (Chen et al., 2023) is a multilingual985

grade school level math word problem dataset trans-986

lated from SVAMP (Patel et al., 2021) to 10 lan-987

guages. We only evaluate MSVAMP in a zero-shot988

setting, as no CoT rationale examples are provided989

with the dataset.990

Table 10 presents the evaluation results on991

MSVAMP. MetaMath and MathOctopus were not992

trained on SVAMP or MSVAMP, so MSVAMP can993

be seen as an out-of-domain test set to evaluate994

domain generalization (Chen et al., 2023). Perfor-995

mance of LANGBRIDGE-MetaMath models indi-996

cates our models can generalize to out-of-domain997

test sets successfully.998

C General-domain Language Models999

Table 11 probes the effect of LANGBRIDGE on1000

general-domain English-centric LMs, Llama 2 and1001

Mistral 7B (Jiang et al., 2023), using MGSM.1002

Consistent with the findings on specialized LMs,1003

LANGBRIDGE enhances the performance of low-1004

resource languages. As training corpora for Llama1005

2 and Mistral 7B are unavailable, we use a sample1006

of the SlimPajama dataset (Soboleva et al., 2023)1007

as the training set.1008

D Ablations 1009

D.1 Freezing/Unfreezing 1010

Target LM
Trainable

AVG Score
Enc LM

MGSM

Llama 2-7B 9.6
! 11.3

Llemma-7B 14.4
! 20.4

MetaMath-7B 48.8
! 43.9

HUMANEVAL + HUMANEVAL-MT

Code Llama-7B 15.3
! 19.4

XCOPA

Orca-7B
76.6

! 71.1
! 74.0

Orca-13B 77.3
! 65.1

Table 4: Ablations on the effect of freezing the en-
coder and the language model during aligning of LANG-
BRIDGE. !denotes the module is trainable (not frozen)
during aligning.

We strictly keep the embedding layers of mT5 1011

trainable throughout our experiments as we extend 1012

the vocabulary and the embedding layer to incorpo- 1013

rate whitespace characters. mT5 tokenizers do not 1014

have whitespace characters in their vocabularies, 1015

and their default behavior is to truncate any consec- 1016

utive whitespaces to a single space. However, this 1017

could negatively affect understanding code or fol- 1018

lowing instructions considering the frequent use of 1019

whitespaces as delimiters (\n, \t, and “four spaces”). 1020

Therefore, even when we freeze the encoder, we 1021

leave the embedding layer trainable for the added 1022

whitespace vocabulary. 1023

Table 4 presents the ablation study on the im- 1024

pact of parameter freezing during the alignment 1025

process. We apply LANGBRIDGE with mT5-XL 1026

(2B) encoder on multiple LMs while varying the 1027

trainable modules. Notably, freezing the encoder 1028

appears beneficial when adapting finetuned LMs 1029

(MetaMath and Orca), whereas it negatively af- 1030

fects pretrained models (Llama, Llemma, and Code 1031

Llama). We speculate this divergence stems from 1032

differing entropy levels in the datasets: unlabeled 1033

corpora typically exhibit higher entropy than rel- 1034

13



atively well-formatted finetuning datasets. Con-1035

sequently, we conjecture that for unlabeled data,1036

keeping the encoder trainable enables the model1037

to acclimate to the training data better. Nonethe-1038

less, we leave a thorough investigation for future1039

research. Conversely, training the LM during the1040

alignment phase does not improve performance.1041

We hypothesize this is due to the training datasets1042

being strictly in-domain of the LMs. As such, the1043

models may not be learning additional information1044

from the data.1045

D.2 Encoder Size1046
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Orca 2-7B

Figure 5: XCOPA accuracy (%) of Orca 2-7B models
adapted with LANGBRIDGE using five different sizes of
mT5 encoder. The dotted line shows the performance
of base Orca 2-7B.

Figure 5 shows the effect of encoder size on1047

LANGBRIDGE when applied to Orca 2-7B, mea-1048

sured with XCOPA. We test five different sizes of1049

mT5 encoder: 270M (Small), 470M (Base), 820M1050

(Large), 2.2B (XL) and 6.7B (XXL). We observe1051

that LANGBRIDGE with the two smaller-sized en-1052

coders underperforms the base Orca 2-7B. Nonethe-1053

less, performance increases rapidly as the encoder1054

size scales from 270M to 2.2B and saturates in the1055

2.2B to 6.7B range. These results, coupled with the1056

main experiments of Section 4, highlight that scal-1057

ing the encoder size past a certain point provides1058

diminishing returns.1059

D.3 Training Set Size1060

While we fixed the training set size to 200,000 in1061

our main experiments, Figure 6 shows that XCOPA1062

performance peaks on 120,000 training examples,1063

which is 60% of our experiment setting. This sug-1064

gests that in practice, LANGBRIDGE can be applied1065

more efficiently.1066
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Figure 6: XCOPA accuracy (%) of Orca 2-7B models
adapted with LANGBRIDGE using five different sizes of
training datasets.

D.4 Different Architectures 1067

XCOPA (Acc. %)

Linear 76.6
MLP 72.7
Resampler 49.7

Table 5: Ablations of different LANGBRIDGE architec-
tures using Orca 2-7B and mT5-XL encoder.

Table 5 shows the ablations of different LANG- 1068

BRIDGE architectures. Throughout the main ex- 1069

periment, we adopt a single linear layer to connect 1070

the encoder and the language model. We ablate the 1071

effect of using an MLP layer following the second 1072

iteration of LLaVa (Liu et al., 2023a), and a “re- 1073

sampler” module that adopts the architecture of per- 1074

ceiver resampler employed by Flamingo (Alayrac 1075

et al., 2022). In contrast to the finding of Liu et al. 1076

(2023a), we find that using an MLP layer instead 1077

of a linear layer decreases the performance slightly. 1078

Using a resampler module results in random per- 1079

formance. 1080

D.5 Different Encoder Models 1081

XCOPA (Acc. %)

umT5-XL 49.7
umT5-XL (F) 49.2
XGLM-1.7B 51.5
XGLM-1.7B (F) 49.7

Table 6: Ablations of different encoder models for
LANGBRIDGE tested on Orca 2-7B model. (F) denotes
that the encoder was frozen during alignment.
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Table 6 presents the results of using different en-1082

coder models. We test out umT5 (Chung et al.,1083

2023), which improves upon mT5 to include a1084

higher proportion of low-resource languages during1085

pretraining. As umT5 does not have “LM adapted”1086

checkpoints, unlike mT5, we use the original check-1087

points. However, we find using umT5 results in1088

random performance. Since umT5 has a nearly1089

identical architecture to mT5, except that it has1090

relative position bias for every Transformer layer1091

(Vaswani et al., 2017) in contrast to the very first,1092

we speculate that using the encoder of a non-LM1093

Seq2Seq model resulted in failed alignment. We1094

also test XGLM (Lin et al., 2022), a decoder LM,1095

as an encoder, in which we also observe similar1096

results. In both cases, freezing the encoder made1097

no difference. We leave further investigation for1098

future research.1099

E Quality Estimation of HumanEval-MT1100

EN ⟲SW ⟲BN ⟲PA ⟲TE ⟲UR

CL-7B 36.0 35.4 35.4 36.6 36.6 37.8
CL-34B 43.9 36.6 46.3 42.1 42.1 45.7

BLEU - 88.3 90.5 93.4 90.5 96.1
crhF - 89.9 93.1 94.6 93.1 96.5

Table 7: Quality estimation of HumanEval-MT us-
ing backtranslations. CL prefix denotes Code Llama
Pass@1 score.

Table 7 presents the quality estimation for1101

HumanEval-MT using backtranslation (Agrawal1102

et al., 2022; Zhuo et al., 2023). We translate1103

HumanEval-MT back to English and measure Code1104

Llama Pass@1 scores. As explained in Section 4.3,1105

we anonymize all function names. In addition, we1106

report automatic evaluation metrics, BLEU (Pap-1107

ineni et al., 2002) and chrF (Popović, 2015), against1108

the original HumanEval. We use the docstrings1109

only for calculating the metrics.1110

Overall, Code Llama’s performance on the1111

backtranslations matches the original HumanEval1112

benchmark, with the exception of Code Llama-1113

34B’s performance on Swahili backtranslation. As1114

Code Llama-7B achieves comparable results on1115

the Swahili backtranslation, this suggests that for1116

Swahili, GPT-4 may struggle with accurately trans-1117

lating complex examples that only larger models1118

can solve. Lower automatic evaluation scores in1119

Swahili further support the idea.1120

def greatest_common_divisor(a: int, b: int) -> int:
""" Rudi kipengele kikubwa zaidi cha pamoja cha
integers mbili a na b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5
"""

def func(a: int, b: int) -> int:
""" Rudi kipengele kikubwa zaidi cha pamoja cha
integers mbili a na b
>>> func(3, 5)
1
>>> func(25, 15)
5
"""

Table 8: Comparison between original (Top) and
anonymized (Bottom) prompts of HumanEval-MT
Swahili.

F Additional Evaluation Results 1121

F.1 BBH 1122

Table 12 and 13 showcase the complete results 1123

for the 14 subtasks of BBH and BBH-BN. The 1124

selected subtasks are: CAUSAL JUDGEMENT, 1125

DATE UNDERSTANDING, DISAMBIGUATION QA, 1126

FORMAL FALLACIES, LOGICAL DEDUCTION 1127

(3, 5 AND 7), NAVIGATE, PENGUINS IN A TA- 1128

BLE, REASONING ABOUT COLORED OBJECTS, 1129

SNARKS, SPORTS UNDERSTANDING, TEMPORAL 1130

SEQUENCES, AND WEB OF LIES. 1131

Orca 2-LB models show noticeable performance 1132

degradation in DATE UNDERSTANDING. From our 1133

qualitative analysis of the CoT, we observe that 1134

Orca 2-LB models frequently falsely assume an ar- 1135

bitrary date as the current date at the beginning of 1136

CoT (Figure 9), whereas the original Orca 2 mod- 1137

els do not exhibit this behavior. Our exploration 1138

of the OpenOrca datasets reveals that examples of- 1139

ten require the model to assume a specific current 1140

date. For example, an input text is given as “The 1141

current senate majority leader in the US is Chuck 1142

Schumer. Options: - yes - no”, and the target text 1143

contains “...Today’s date is October 12, 2021...”. 1144

As we do not have access to Orca 2’s original train- 1145

ing dataset, a thorough ablation on the effect of 1146

such examples is challenging. Nevertheless, we 1147

speculate this problematic emergent behavior in 1148

Orca 2-LB models is partially due to the distribu- 1149

tion shift of the training data from the original Orca 1150

2 dataset to the OpenOrca dataset. 1151

F.2 HumanEval 1152

Table 8 compares the original and anonymized 1153

prompts of HumanEval-MT. Top can be solved 1154

without comprehending Swahili whereas Bottom 1155
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is not. Table 14 presents the evaluation results1156

on the non-anonymized version of HumanEval and1157

HumanEval-MT. Compared to LANGBRIDGE mod-1158

els, Code Llama models show a sharper decline in1159

performance when evaluated on the anonymized1160

version, suggesting that they are less capable of1161

comprehending natural text in another language.1162

G Experimental Details1163

We use a maximum input length of 1,024 and a1164

maximum target length of 128 for training. How-1165

ever, as mentioned in Section 3, we vary the input1166

length for every example within the 1,024 window1167

to expose the LM to diverse lengths of soft prompts.1168

Leveraging AdamW (Loshchilov and Hutter, 2019),1169

we use a learning rate of 6e−4 for the linear layer1170

and 2e−5 for the encoder. We do not use any learn-1171

ing rate scheduling. We use an effective batch size1172

of 128. On a machine with 4 A100 80GB GPUs,1173

the training takes under four hours for 9B mod-1174

els with the encoder frozen and under five hours1175

with their encoder trainable. The maximum train-1176

ing time in our main experiments is ten hours for1177

20B models with encoder trainable. For further1178

training BLOOM baselines, we keep all the hy-1179

perparameters the same as LANGBRIDGE models1180

with two exceptions: (1) Learning rate, in which1181

we used a uniform value of 2e−5 across the en-1182

tire model. (2) Sequence length, which was set to1183

1,152 (1, 024 + 128). For evaluations, we leverage1184

LM Evaluation Harness (version 0.3.0) (Gao et al.,1185

2023) and Bigcode Evaluation Harness (version1186

0.1.0) (Ben Allal et al., 2022) packages and report1187

single run results with fixed seed.1188

For constructing HumanEval-MT and BBH-BN,1189

we prompt GPT-4 with human-translated examples.1190

The two examples used for HumanEval-MT were1191

translated to Korean by a native Korean author.1192

GPT-4 was then prompted to translate HumanEval1193

to the target languages with the examples as ref-1194

erence. Note that the examples were provided to1195

guide GPT-4 to keep the format of the data intact1196

and only translate the natural language, not neces-1197

sarily to enhance the translation quality itself. For1198

BBH-BN, we hire two Bengali undergraduate stu-1199

dents to translate three examples for each subtasks.1200

The annotators were instructed to curate the exam-1201

ples and instructions until the GPT-4 translations1202

were fluent and there were no unwanted artifacts in1203

the output.1204

H CoT Examples 1205

In this section, we provide three examples of CoT 1206

generated by LANGBRIDGE models. Figure 7 1207

is from the MetaMath-LANGBRIDGE-15B model 1208

prompted with an example from MGSM Telugu. 1209

Figure 8 and 9 are from Orca 2-LANGBRIDGE- 1210

15B model prompted with examples from BBH- 1211

BN CAUSAL JUDGEMENT and BBH-BN DATE 1212

UNDERSTANDING. We select these two subtasks 1213

from BBH-BN as LANGBRIDGE substantially in- 1214

creased the performance of Orca 2-13B for the 1215

former (+13.4%) but caused a considerable de- 1216

crease for the latter (−6.4%). We show a success 1217

case for the former and a failure case for the other. 1218

In Section F, we provide an explanation for the 1219

performance decrease in BBH-BN DATE UNDER- 1220

STANDING. 1221
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COPA AVG HRL URL ZH IT VI ID ET HT QU SW TA TH TR

Lang. Freq. (Llama 2, %) 89.7 - - - 0.13 0.11 0.08 0.03 LESS THAN 0.005

Orca 2-7B 98.0 67.3 86.4 63.0 85.6 87.2 83.4 82.4 54.4 52.2 49.8 54.2 58.0 62.0 71.0
Orca 2-LB-9B 90.0 76.6 83.4 75.1 85.4 81.4 79.8 84.6 78.2 74.4 50.8 74.4 78.0 78.4 77.6

Orca 2-13B 99.0 73.7 93.1 69.4 92.4 93.8 87.0 86.8 66.4 61.0 49.8 65.8 63.8 67.6 76.4
Orca 2-LB-15B 92.0 77.3 84.5 75.7 85.2 83.8 83.4 83.8 80.6 74.8 50.4 72.2 77.2 79.8 79.2
Orca 2-LB-20B 92.0 79.8 86.3 78.4 86.2 86.4 83.6 85.4 82.8 76.4 54.2 77.8 82.8 79.8 82.4

Table 9: Accuracy (%) on COPA and XCOPA. For XCOPA, we report the average accuracy across 11 languages.
We compare LANGBRIDGE (LB) models to their original checkpoints and highlight the best-performing numbers in
bold.

AVG HRL URL EN DE FR ES RU ZH JA TH SW BN

Lang. Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

MathOctopus-7B 39.2 41.5 34.0 39.8 42.4 44.0 43.3 41.6 40.4 38.7 35.1 29.7 37.2
MathOctopus-13B 45.1 47.2 40.0 44.8 46.7 50.6 49.9 47.6 47.1 43.9 40.0 36.3 43.6
BLOOM-7.1B-MM 24.9 29.5 14.1 40.7 28.8 33.8 32.0 27.7 27.7 15.7 3.0 21.2 18.0

MetaMath-7B 47.8 61.1 16.9 66.3 63.5 64.1 64.9 60.3 55.0 53.4 19.5 16.8 14.4
MetaMath-LB-9B 52.0 54.9 45.1 60.6 58.1 57.0 56.9 55.8 50.4 45.5 46.3 42.1 46.8

MetaMath-13B 50.6 65.1 16.8 69.2 67.3 66.1 66.9 66.9 58.0 61.4 18.6 14.4 17.3
MetaMath-LB-15B 57.0 60.4 49.1 64.1 61.9 65.9 64.8 61.0 55.0 50.1 51.3 42.1 54.0
MetaMath-LB-20B 57.9 60.4 51.8 65.3 63.0 62.5 62.7 60.9 55.4 53.3 52.3 47.1 56.0

Table 10: Accuracy (%) on MSVAMP. MM suffix denotes the model was finetuned on MetaMath. We compare
LANGBRIDGE (LB) models to their original checkpoints and highlight the best-performing numbers in bold.

AVG HRL URL EN DE FR ES RU ZH JA TH SW BN TE

Lang. Freq. (Llama 2, %) - - - 89.7 0.17 0.16 0.13 0.13 0.13 0.10 LESS THAN 0.005

Llama 2-7B 9.1 12.1 3.9 15.2 11.6 13.2 11.2 11.6 11.2 10.8 7.2 5.2 3.2 0.0
Llama-LB-9B 11.3 12.2 9.7 16.8 12.4 12.8 13.6 9.2 10.0 10.8 13.6 9.2 7.6 8.4

Mistral-7B 28.5 34.4 12.8 43.6 34.4 35.2 39.6 32.8 28.8 26.4 20.4 7.6 16.0 7.2
Mistral-LB-9B 26.1 27.9 20.7 32.4 29.6 30.8 29.6 28.8 25.2 18.8 24.4 18.8 22.4 17.2

Table 11: Accuracy (%) on MGSM of general-domain LMs. We compare LANGBRIDGE models (LB) to their
original checkpoints and highlight the best-performing numbers in bold.

CAUSAL DATE DISAM. FORMAL LOGIC. 3 LOGIC. 5 LOGIC. 7

EN BN EN BN EN BN EN BN EN BN EN BN EN BN

BLOOM-7B-OpenOrca 49.7 4.8 32.8 48.7 48.4 31.2 43.2 35.2 36.0 12.4 24.8 55.2 20.0 23.6

Orca 2-7B 62.0 47.1 52.4 42.0 62.8 42.4 60.0 50.4 60.0 37.2 43.2 25.6 39.6 20.8
Orca 2-LB-9B 57.2 52.9 26.8 24.4 64.0 46.8 55.2 57.2 52.4 42.0 36.0 30.0 38.8 28.8

Orca 2-13B 56.1 46.5 64.0 50.0 66.8 52.0 52.0 52.0 68.4 45.2 46.8 35.6 49.2 31.2
Orca 2-LB-15B 57.2 59.9 44.8 43.6 56.0 46.8 55.6 48.0 66.8 56.4 47.2 33.2 44.4 34.4
Orca 2-LB-20B 64.7 58.3 34.4 35.2 59.2 56.0 52.0 54.8 62.4 46.8 44.8 38.0 45.2 32.0

Table 12: Full results on BBH and BBH-BN (Part 1 of 2).
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NAVI. PENGUINS REASON. SNARKS SPORTS TEMPO. WEB

EN BN EN BN EN BN EN BN EN BN EN BN EN BN

BLOOM-7B-OpenOrca 41.6 34.4 27.4 44.0 25.2 22.6 41.8 20.8 49.6 41.2 6.8 50.4 53.2 12.0

Orca 2-7B 58.8 46.4 57.5 24.0 47.2 25.6 67.8 42.9 68.0 51.6 20.4 13.6 54.4 43.6
Orca 2-LB-9B 48.8 50.4 44.5 39.7 41.6 33.6 56.5 53.7 66.4 53.2 17.6 17.2 50.8 54.8

Orca 2-13B 53.2 49.2 59.6 30.1 61.6 26.4 65.5 48.0 76.4 49.2 39.6 22.8 52.0 45.2
Orca 2-LB-15B 58.4 62.0 56.8 43.2 60.0 32.8 60.5 50.8 73.6 52.4 34.0 20.0 57.6 52.0
Orca 2-LB-20B 60.0 51.2 50.7 39.0 59.6 37.2 62.1 54.8 72.0 53.6 24.0 19.2 52.8 59.2

Table 13: Full results on BBH and BBH-BN (Part 2 of 2).

AVG EN SW BN PA TE UR

An. An. An. An. An. An. An.

Llama2-7B 10.2 4.6 11.0 9.8 11.6 3.7 11.0 3.0 7.9 3.0 8.5 3.0 11.0 4.9
BLOOM-7.1B 6.7 4.9 8.5 7.3 6.1 2.4 6.1 5.5 6.7 4.3 6.7 6.1 6.1 3.7
BLOOM-7.1B-SC 8.4 4.5 11.0 6.7 9.8 3.0 7.9 4.3 6.7 4.3 7.9 3.7 7.3 4.9

Code Llama-7B 23.0 13.0 36.0 36.0 21.3 14.0 21.3 14.6 17.7 10.4 16.5 9.8 25.0 16.5
LB-Code Llama-9B 24.9 19.4 34.2 31.7 27.4 17.1 23.2 15.2 23.2 18.3 19.5 15.2 22.0 18.9

Code Llama-13B 26.0 19.6 42.7 40.2 24.4 15.2 26.2 17.7 17.7 12.2 17.7 12.8 27.4 19.5
LB-Code Llama-15B 26.3 23.6 36.6 41.5 22.6 20.1 23.8 20.1 26.8 19.5 23.8 19.5 24.4 20.7
LB-Code Llama-20B 26.2 23.5 35.4 36.0 25.6 24.4 22.6 20.1 25.6 20.7 20.7 18.9 27.4 20.7

Code Llama-34B 29.7 22.7 46.3 43.9 28.7 17.1 32.2 23.8 22.0 15.9 19.5 12.8 29.3 22.6

Table 14: HumanEval-MT Pass@1 performance. An. denotes the anonymized version.

Kristin invited 16 friends, so she needs 16 x 0.75 = 12 gift bags.

Each gift bag costs $2, so she will spend 12 x $2 = $24 on gift bags.

#### 24

The answer is: 24 ✅

�పశ� : �� �త �వ�� �-ష��� ఉప��ం� ఒక �ంత ����� �. అత�� �ప� ��ర��త� ఒక

���  ఉం�. �ప� ష��� �ంత� ఒక �ప�� క�న �� � ఉం�. �ప� వరస �� ��న�  సంవత� ���

���న ��ర��తల �� � ల� త�� ���. అత� సంవత� ��� ������ ��ర��త� �ళ��,

అత� 23 సంవత� �ల వయ��  �ం� ��ర��త� ����� �, అత� వయ��  ఇ�� � 34.

అత�� �త�ం ఎ��  �� �� �� � � ఉ�� �?

(Question: Christina is planning a birthday party and needs .75 gift bags per invited guest, because
1/4 of attendees don't show up. She invited 16 friends. Gift bags are $2 each. How much will she
spend?)

Model Input

Model Output

Figure 7: Example of zero-shot CoT generated by MetaMath-LANGBRIDGE-15B when prompted with an example
from MGSM Telugu. For brevity, any instructional prompts are truncated. Translation of the input is provided in
(blue with parenthesis).
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Step 1: Understand the context of the question.

The question is asking whether Jo intentionally took the special commemorative

cup along with the mega-sized smoothie.

Step 2: Analyze the information provided.

Jo was overly excited and wanted the largest possible beverage. The cashier

offered a special commemorative cup for purchasing the mega-sized smoothie. Jo

did not express any concern about the cup and only wanted the largest smoothie.

Step 3: Determine the answer based on the information.

Since Jo did not express any concern about the cup and only wanted the largest

smoothie, it can be inferred that Jo did not intentionally take the special

commemorative cup.

Step 4: Choose the appropriate answer from the options.

The appropriate answer is (B) no. 

Model Output

✅

িকভােব একজন সাধারণ ব��� কায �কারণ স�েক� িন�িলিখত �িত�ট �ে�র উ�র �দেবন?
�জা খুব অিতশীত অনুভব করিছল, �স �ানীয় �ুিথ �দাকােন �িগত হেয় সব �ািধক আকােরর পানীয় িকনেত
�গল। অড�ার �দওয়ার আেগ, ক�ািশয়ার তােক বলেলন �য যিদ �স এক�ট �মগা-সাইজড �ুিথ িকেন তাহেল
�স এ�ট এক�ট িবেশষ �ারকীয় কােপ পােব। �জা জবাব িদেলন, 'আিম �ারকীয় কাপ এর ব�াপারটা িনেয়
যেতা িচ�া করিছ না, আিম �ধু আপনােদর সােথ থাকা সবেচেয় বড় �ুিথ চাই।' আশনু�পভােব, �জা
�ারক কােপ �মগা-সাইজড �ুিথ �পল। �জা িক ই�াকৃতভােব �ারক কাপ িনল?
(How would a typical person answer each of the following questions about causation?
Joe was feeling quite dehydrated, so he stopped by the local smoothie shop to buy the largest sized
drink available. Before ordering, the cashier told him that if he bought a Mega-Sized Smoothie he
would get it in a special commemorative cup. Joe replied, 'I don't care about a commemorative cup, I
just want the biggest smoothie you have.' Sure enough, Joe received the Mega-Sized Smoothie in a
commemorative cup. Did Joe intentionally obtain the commemorative cup?)
Options:

(A) হ�া ঁ(Yes)
(B) না (No)

Model Input

Figure 8: Example of zero-shot CoT generated by Orca 2-LANGBRIDGE-15B when prompted with an example
from BBH-BN CAUSAL JUDGEMENT. For brevity, any instructional prompts are truncated. Translation of the input
is provided in (blue with parenthesis).
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Step 1: Identify the current date.

The current date is 7/9/2021.

Step 2: Determine the date one week before the current date.

To find the date one week before the current date, we need to subtract 7 days

from the current date.

Step 3: Calculate the date one week before the current date.\n7/9/2021 - 7 days

= 7/2/2021

[⋯]
Step 11: Match the calculated date with the given options.

The calculated date matches option (A) 05/18/2021.

Final answer: (A) 05/18/2021 ❌

Model Output

Model Input

আজ 9/7। �জন NFL 2003 �দখেছ। MM/DD/YYYY-�ত আজ �থেক এক স�াহ আেগর তািরখ কী?
(Today is 9/7. Jane is watching NFL 2003. What is the date one week ago from today in MM/DD/YYYY?)
Options:

(A) 09/05/2003 (B) 08/30/2003 (C) 08/31/2074 (D) 08/31/2003 (E) 06/30/2004

Figure 9: Example of zero-shot CoT generated by Orca 2-LANGBRIDGE-15B when prompted with an example
from BBH-BN DATE UNDERSTANDING. For brevity, any instructional prompts are truncated. Translation of the
input is provided in (blue with parenthesis).
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