
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLARE: SCALABLE CLASS-INCREMENTAL CONTIN-
UAL LEARNING VIA A SPARSITY-BASED FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The primary challenge in continual learning is navigating the plasticity-stability
dilemma to balance the acquisition of new knowledge with the retention of old.
While leveraging pretrained models has significantly advanced continual learn-
ing, existing methods exhibit a scalability bottleneck on long task sequences,
suffering from performance degradation due to parameter interference and loss
of plasticity. In this work, inspired by evidence that sparse fine-tuning achieves
performance comparable to full fine-tuning, we introduce a novel sparsity-driven
continual learning framework. Our continual learning method termed CLARE
operates in two stages: it first identifies a sparse, task-critical parameter mask
via a sparsity-inducing objective, then performs mask-constrained fine-tuning.
In addition, to further reduce interference, we incorporate a gradual forgetting
mechanism that resets a tiny fraction of previously accumulated parameters after
learning each new task. Furthermore, to address the lack of benchmark datasets
for long-sequence continual learning, we curate ImageNet-CIL-1K, a challenging
long-sequence dataset with 1,069,563 images and 1,000 classes. Extensive ex-
periments demonstrate the scalability of CLARE. On ImageNet-CIL-1K with 100
tasks, CLARE outperforms strong baselines such as APER and MagMax by 4-6%
in overall test accuracy, and leads EASE by over 10%, establishing a new state of
the art for long-sequence continual learning.

1 INTRODUCTION

The core challenge of continual learning (CL) and class incremental learning (CIL) lies in achiev-
ing a balance between the capacity to learn new diverse tasks (learning plasticity) and the abil-
ity to retain previously learned knowledge without catastrophic forgetting (memory stability).
Traditional CIL methods can often be categorized into three main paradigms: regularization-
based methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017), replay-based methods (Lopez-
Paz & Ranzato, 2017), and optimization-based methods (Farajtabar et al., 2020). Recent
advancements leverage strong pretrained models (PTM) to further improve performance in-
stead of training models from scratch, as pretrained models encapsulate rich prior knowledge.
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Figure 1: Overall accuracy of contin-
ual learning methods on ImageNet-R
split into varying numbers of tasks.

In particular, building adapter-based (Zhou et al., 2024;
Yu et al., 2024a; Gao et al., 2025) or model merging
based (Marczak et al., 2024; Gao et al., 2025) continual
learning models on top of a pretrained backbone represents
two prominent directions.

Although recent PTM-based CIL methods have shown
promising performance on short task sequences (e.g., 10
tasks), scaling these methods to longer task sequences typ-
ically means substantial performance sacrifice. To verify
this, we present a pilot study on up to 100 tasks based
on the ImageNet-R dataset (Hendrycks et al., 2021a) of
four representative continual learning baselines, including
APER (Zhou et al., 2025), EASE (Zhou et al., 2024), L2P
(Wang et al., 2022b), and MagMax (Marczak et al., 2024).
The results in Figure 1 shows that existing methods lag behind CLIP zero-shot (Radford et al., 2021),
a gap that widens with the number of tasks. This decline stems primarily from an imbalance between
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Figure 2: Sparse parameter update analysis. Left: Long-tail distribution of parameter update mag-
nitudes shows most parameters experience tiny updates (< 0.01), while only 8.5K parameters have
updates ≥ 0.05. Right: Sparse parameter updates achieve performance close to full fine-tuning on
ImageNet-R using ImageNet-1K pretrained ViT-B/16.

interference and plasticity. As the task sequence lengthens, effective new task learning causes catas-
trophic forgetting of earlier knowledge as new updates overwrite or conflict with parameters crucial
for previous tasks. However, effective earlier knowledge preservation restricts a model’s capacity to
integrate new information, resulting in progressively poorer performance on new tasks.

In this paper, we hypothesize that strategically learning a small number of parameters for each task
can already maintain sufficient plasticity while dramatically reducing the likelihood of destructive
interference across tasks. This hypothesis is supported by existing literature on learning sparse
neural networks (Wen et al., 2016; Louizos et al., 2018; Ma et al., 2019) as well as empirical ev-
idence showing that the magnitude of parameter updates during fine-tuning follows a long-tailed
distribution (Figure 2 (left)), with substantial updates being confined to a tiny subset of parame-
ters. More importantly, it is only necessary to update a small proportion of the model parameters
to achieve competitive task-specific performance, as illustrated in Figure 2 (right). On the basis of
this insight, we propose a sparsity-driven continual learning framework that learns a sparse subset
of parameters for each task, enabling effective scaling to extended sequences while balancing the
plasticity-stability trade-off in continual learning models.

Our sparsity-driven framework manages parameter allocation across task sequences through a two-
stage learning process. Starting from a pretrained base model, we first identify task-critical param-
eters by optimizing a sparsity-inducing objective, which produces a binary mask identifying the
most relevant parameters for the task. We then perform mask-constrained fine-tuning, updating only
these relevant parameters while keeping the remainder frozen. This enables the model to achieve
promising performance by updating only a sparse subset of the total parameters, thereby facilitating
targeted knowledge acquisition with minimal interference and preserved plasticity. In practice, the
parameters learned for new tasks are incrementally fused into the base model via simple accumula-
tion for computational efficiency. To further mitigate interference arising from repeated parameter
use, that is, the same parameter may be updated across multiple tasks, we introduce a gradual forget-
ting mechanism. This mechanism randomly resets a tiny portion of the accumulated updates to zero
when parameter reuse exceeds a predefined saturation threshold, effectively reducing interference
and enhancing stability during continual learning.

In terms of performance evaluation, existing continual learning benchmark datasets suffer from a
limited number of classes. For instance, CIFAR-100 is a foundation dataset for the field but presents
a deficiency for long task sequences due to its class count (100 classes). Dividing CIFAR-100 into
100 tasks results in single-class learning episodes that do not possess the complexity of realistic
continual learning tasks. To fill this critical gap in evaluation protocols, we introduce ImageNet-
CIL-1K, a challenging long-sequence benchmark dataset comprising 1,000 classes curated from
ImageNet-21K, with 1069 images per class on average. This dataset is a comprehensive testbed for
long-sequence continual learning methods.

We evaluate the performance of CLARE through extensive experiments. The results demonstrate
that our method achieves significant improvements over strong continual learning baselines when
using a similar number of trainable parameters. Specifically, on our ImageNet-CIL-1K dataset with
100 tasks and 10 classes per task, our method achieves remarkable gains of over 6% and 4% in aver-
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age test accuracy over MagMax (Marczak et al., 2024) and APER (Zhou et al., 2025), respectively.
Compared to the recently proposed MoAL (Gao et al., 2025), CLARE improves average test accu-
racy by over 10%. We also perform evaluations on shorter task sequences from the ImageNet-CIL-
1K dataset, including 50 and 75 tasks. The results consistently surpass previous CIL methods by a
large margin. The above findings indicate that our method can effectively perform long-sequence
continual learning.

To further explore the generalizability of CLARE, we also perform extensive evaluations on standard
CIL datasets, including CIFAR-100, ImageNet-R, ImageNet-A, and OmniBenchmark, using the
same evaluation protocols as in previous work. Our method maintains superior performance with
respect to the existing baselines. For example, compared to APER (Zhou et al., 2025), our method
improves the average test accuracy across the four benchmarks by 6.5%.

2 METHOD

Problem Definition. Consider a neural network Fϕ : X → Y parameterized by {θ, ϕ}, where
θ represents the backbone parameters and ϕ denotes the classifier parameters. The backbone is
initialized from pretrained weights θbase and fine-tuned on a sequence of T tasks while the classifier
is trained from scratch. At step k ∈ {1, . . . , T}, the model receives dataset Sk = {(xi, yi)}nk

i=1

where xi ∈ Rd and yi ∈ Ck with |Ck| = mk classes, and learn task k by incrementally updating
the backbone and classifier parameters using Sk. This paper focuses on class incremental learning
(CIL), where the class spaces are disjoint: Ci∩Cj = ∅ for i ̸= j. Under the exemplar-free constraint,
the previous data {S1, . . . ,Sk−1} becomes inaccessible when learning the task k. The model must
generalize to the cumulative label space C(k)

(
=

⋃k
i=1 Ci

)
containing

∑k
i=1 mi total classes.

We are particularly interested in the long task sequence regime where T is relatively large (e.g.,
T > 20), since this is an unexplored problem in previous works. In this context, catastrophic
forgetting is exacerbated, and there exist new challenges related to model capacity and parameter
interference that are insignificant in shorter sequences.

2.1 TWO-STAGE SPARSITY-DRIVEN LEARNING

To ensure the simplicity and efficiency of the proposed method during inference (Ke et al., 2024;
Marczak et al., 2024), we start with a simple model merging paradigm. Specifically, a base backbone
model θbase is individually fine-tuned on every task in a sequence to obtain task-specific models
{θk}Tk=1, which are subsequently merged to obtain the model for the entire sequence. For incoming
task k with dataset Sk, we define the parameter update as

∆θk = θk − θbase, (1)

where ∆θk encodes task-specific knowledge. The final model is obtained by adding ∆θk for all
learned tasks:

θmerged = θbase +∆θaccu, where ∆θaccu =

T∑
k=1

∆θk. (2)

This learning algorithm is general and can be coupled with existing classifiers for prediction, such
as prototype-based approaches (Zhou et al., 2025). In this model merging paradigm, parameter in-
terference occurs when parameter updates of different tasks correlate with each other. Parameter in-
terference disrupts the ability of θmerged to maintain task-specific knowledge, leading to catastrophic
forgetting as knowledge of old tasks is damaged. Given a long sequence of tasks, the probability
of parameter interference increases rapidly, because each task k could conflict or correlate with the
remaining T − 1 tasks. Meanwhile, it is crucial to ensure sufficient model plasticity to adequately
grasp new tasks. Thus achieving a balance between parameter interference and model plasticity is
the key for long sequence CIL.

To tackle this challenge, we propose to explicitly learn a small subset of parameters that are most
relevant for each task, yielding sparse and representative parameter updates. This mitigates pa-
rameter interference in θmerged while maintaining adequate model plasticity. Specifically, the sparse
subset of most relevant parameters is discovered via including an L1 regularization term, which fa-
cilitates sparse signal recovery (Donoho & Stark, 1989; Donoho & Logan, 1992), in addition to the
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cross-entropy term in the training loss. Since optimizing such a joint objective could lead to subopti-
mal classification performance, we introduce a two-stage fine-tuning procedure that separates mask
discovery from task learning.

Stage 1: Sparse Mask Discovery We first learn which parameters are most relevant for task k by
minimizing

Lmask = E(x,y)∼Sk

[
ℓ(f(x; θ̃k), y)

]
︸ ︷︷ ︸

Cross-entropy loss

+λ∥θ̃k − θbase∥1, (3)

where θ̃k is the unknown and λ is a hyperparameter that balances the two terms in the above loss.
The L1 regularization encourages sparsity in ∆θ̃k(= θ̃k − θbase), naturally identifying the most
relevant parameters for task k. Once the above loss minimization is complete, we compute a sparse
binary mask Mk ∈ {0, 1}|θ| with a sparsity ratio ρ denoting the percentage of zero entries in Mk.
Specifically, we calculate the ρ percentile of all |∆θ̃k| values as a threshold to generate the sparse
mask Mk. In our experiments, ρ is set to 85-96%.

Stage 2: Mask-Constrained Task Learning Using the discovered mask Mk, we perform standard
fine-tuning with cross-entropy loss only:

θk = argmin
θ̃k

E(x,y)∼Sk

[
ℓ(f(x; θ̃k), y)

]
s.t. grad[θ̃(i)k ] = 0 if M (i)

k = 0, (4)

where only the sparse subset of parameters chosen by the mask Mk receives gradient updates.

This two-stage process isolates mask learning from task learning, eliminating potential interference
between the cross-entropy and L1 regularization terms in the joint objective (Eq. 3). And the second
stage focuses solely on task learning (Eq. 4), thus improving model plasticity. Note that Stage 2
incurs little computational overhead by only updating a sparse subset of model parameters. Com-
parison of training time is provided in the Appendix A.3.

Noise-Enhanced Robustness To further enhance robustness against parameter interference during
model merging, we inject Gaussian noise during the forward pass of Stage 2 training:

θ̃f
(i)

k =

{
θ
(i)
base +N (0, σ2), if M (i)

k = 0 (frozen),
θ̃
(i)
k , if M (i)

k = 1 (active),
(5)

where θ̃f
(i)

k stands for the parameter values used during the forward pass. This noise is applied to
frozen parameters only during forward propagation, simulating the sum of ∆θk for all other tasks in
Eq. 2. Such noise adaptation improves the model’s resilience to interference without affecting active
parameter learning.

2.2 GRADUAL FORGETTING

Our sparsity-driven learning via masking encourages a minimum number of parameter updates dur-
ing task learning. Nevertheless, a subset of parameters is inevitably updated by multiple tasks,
creating interference hotspots that can degrade performance over a long sequence. For a large num-
ber of tasks (T ), the expected parameter usage may exceed the total number of parameters (i.e,
(1− ρ)T > 100%), giving rise to each parameter on average being updated multiple times and thus
causing parameter interference. To this end, we introduce a gradual random forgetting mechanism
because learning new tasks without forgetting cannot deliver optimal performance any more once
the model capacity has been reached. In our mechanism, we randomly set the parameters in θaccu to
zero with a probability of 1/F , where F is a hyperparameter that represents the saturation point, ev-
ery time a new ∆θk (k > F ) is learned and added to existing θaccu. This mechanism ensures that the
average number of times each parameter is reused ceases to increase and is maintained at (1− ρ)F .
The random forgetting mask F is applied as ∆θacc ← F ⊙∆θacc, where F ∼ Bernoulli(1− 1/F ).
This process is consistent with the Ebbinghaus forgetting curve, where the fraction of memory that
can be retained over time follows an exponential decay curve (Ebbinghaus, 1964).

2.3 INFERENCE

Our sparsity-driven learning framework yields merged backbone parameters θmerge alongside a
collection of task-specific classifiers. Since the task identity, which is required to select the correct
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classifier, is unknown at inference time, we employ a Mixture-of-Experts (MoE) classifier equipped
with an automatic routing mechanism to predict the task identity and direct the input to the selected
expert. To enhance robustness against routing errors, we construct our router using an ensemble
strategy following (Yu et al., 2024a; Gao et al., 2025). Details can be found in the Appendix A.1.

2.4 DISCUSSIONS

There exist important differences between our two-stage sparsity-driven task learning and tradi-
tional regularization-based or sparse continual learning methods (Kirkpatrick et al., 2017; Zenke
et al., 2017; Aljundi et al., 2018; Wang et al., 2022a). First, the learning processes are different. Our
method separates mask learning from task learning and achieves optimal task learning over a sparse
mask, while traditional methods attempt to learn new tasks and preserve previous knowledge simul-
taneously, resulting in suboptimal solutions for both objectives. Second, parameter selection criteria
are different. Traditional methods use static, instantaneous heuristics like parameter magnitude or
single-time gradient scores. In contrast, our sparse mask selects parameters by their accumulated
updates during Stage-1 training, capturing their full contribution to learning.

3 BENCHMARK DATASETS AND ARCHITECTURES

3.1 NEW BENCHMARK DATASET IMAGENET-CIL-1K

Dataset Construction. Dividing existing class incremental learning (CIL) benchmark datasets,
such as CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-R (Hendrycks et al., 2021a), into long
sequences of tasks would result in trivial or oversimplified tasks due to their limited total number
of classes. For instance, dividing CIFAR-100 and ImageNet-R into 100 tasks yields only 1 and 2
classes per task, respectively. To this end, we construct ImageNet-CIL-1K, a challenging benchmark
dataset for long-sequence continual learning that maintains task difficulty even when partitioned into
many tasks. ImageNet-CIL-1K is derived from ImageNet-21K-P (Ridnik et al., 2021), a subset of
ImageNet-21K (Deng et al., 2009) with 12,358,688 images from 11,221 classes after the exclusion
of classes with fewer than 500 images. We exclude all classes present in ImageNet-1K from this
subset to avoid data leakage when models pretrained on ImageNet-1K are used. We further re-
move images corresponding to non-leaf nodes in the WordNet hierarchy (Miller, 1995) to prevent
taxonomic overlaps (e.g., eliminating co-occurrence of general and specific categories such as ”an-
imal” and ”dog”). Finally, we randomly sample 1,000 classes from the remaining pool to construct
ImageNet-CIL-1K. 50 images are randomly selected from every class in ImageNet-CIL-1K to form
the validation set, while all remaining images are allocated to the training set. All images are resized
to 224x224 pixels to reduce storage space. The resulting benchmark dataset comprises 1,000 classes,
with 1,069,563 training images and 50,000 validation images, enabling comprehensive evaluations
of continual learning methods on long task sequences.

Task Configuration. To allow for performance comparison across a range of task sequence lengths,
we evaluate on sequences of 50, 75, and 100 tasks, where each task contains 10 classes. In accor-
dance with (Rebuffi et al., 2017) and standard protocols, classes are first arranged in a randomized
order (seed 1993) and subsequently partitioned into tasks for class-incremental learning. We employ
exemplar-free learning, which does not allow access to data from previously learned tasks. The per-
formance metric is the overall test accuracy over all classes encountered once a complete sequence
of tasks has been learned.

3.2 STANDARD BENCHMARK DATASETS

To demonstrate the generalizability of our method beyond long task sequence scenarios, we evaluate
on standard continual learning benchmark datasets following established protocols. We conduct 10-
task class-incremental learning experiments on four widely used datasets: CIFAR-100 (Krizhevsky
et al., 2009), ImageNet-R (Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al., 2021b), and
OmniBenchmark (Zhang et al., 2022). In these experiments, we employ the original ImageNet-21K
pretrained ViT-B/16 (Dosovitskiy et al., 2020) as the backbone and perform full model fine-tuning.
This configuration is meant to validate that our sparsity-driven learning framework maintains com-
petitive performance in conventional settings beyond long task sequence scenarios. Following (Re-
buffi et al., 2017), we shuffle the class order using a random seed of 1993 for all methods.
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3.3 BENCHMARK ARCHITECTURES

We adopt two different architectural configurations corresponding to two experimental settings.

Config. #1. For standard continual learning benchmark datasets (e.g., 10 tasks), we use a standard
ViT architecture following previous work (Zhou et al., 2024).

Config. #2. For long task sequences (e.g., 100 tasks), we propose an enhanced variant of ViT: start-
ing from a pretrained backbone with U layers in total, we simply increase the number of channels in
the final L layers. Our technical motivation is straightforward. It is widely observed that early layers
in deep networks capture low-level features (e.g., edges and textures), which are general and trans-
ferable across tasks. In contrast, deeper layers encode high-level semantic information that tends
to be more task-specific. In continual learning with long task sequences, accommodating diverse
high-level representations becomes critical. Hence, expanding deeper layers enhances the model’s
capacity for channel mixing and high-level semantic understanding, thus mitigating parameter inter-
ference during continual learning. Note that while more advanced architectural modifications exist,
designing a powerful neural architecture is not the main focus of our work. Instead, we adopt a
simple yet effective modification solely to establish a minimal and reproducible testbed for studying
long-sequence continual learning.

Note that the above architectural enhancement resonates with existing understandings of nervous
system development. The human brain develops low-level sensory processing circuits (e.g., in the
visual cortex) rapidly during early critical periods, after which these circuits become relatively sta-
bilized (Stiles & Jernigan, 2010). In contrast, higher-order association areas in the brain remain
plastic for a longer period, exhibiting ongoing connectivity reorganization and increasing process-
ing capacity (Stiles & Jernigan, 2010), paralleling our augmented final L layers.

4 EXPERIMENTS

We conduct comprehensive experiments to validate our sparsity-driven continual learning frame-
work across two settings: (1) long task sequence scenarios with up to 100 tasks using our new
ImageNet-CIL-1K benchmark, and (2) standard 10-task evaluations on established datasets. We
further provide ablation studies analyzing each component’s contribution to overall performance.

4.1 BASELINE METHODS

Continual Learning Baselines. For our long task sequence evaluation, we compare against re-
cent state-of-the-art methods spanning different paradigms: prompt-based approaches (L2P (Wang
et al., 2022b)), prototype-based methods (APER (Zhou et al., 2025)), adapter-based methods
(EASE (Zhou et al., 2024), MoAL (Gao et al., 2025), SEMA (Wang et al., 2025)), model merg-
ing methods (MagMax (Marczak et al., 2024), Random Masking (Ke et al., 2024; Yu et al., 2024b),
MoAL (Gao et al., 2025)), and a state-of-the-art subnetwork method (PGM (Wan & Yang, 2025)).
We also include classical continual learning methods (LwF (Li & Hoiem, 2017), iCaRL (Rebuffi
et al., 2017)) to illustrate the challenges of long sequences for traditional approaches.

Reference Baselines. To establish performance bounds, we include several reference methods:
sequential fine-tuning (lower bound), linear probing (feature quality assessment), joint fine-tuning
(upper bound), and CLIP zero-shot (Radford et al., 2021) (task-agnostic baseline). All trainable
baselines utilize our enhanced backbone architecture to ensure fair comparisons.

4.2 IMPLEMENTATION DETAILS

We evaluate our framework on multiple benchmarks using two backbone configurations: an
ImageNet-21K pretrained ViT-B/16 (Config #1 in Section 3.3) for standard benchmarks (CIFAR-
100, ImageNet-R, etc.), following the protocol of prior work (Zhou et al., 2024; Gao et al., 2025),
and an enhanced ViT-B/16 backbone for our novel ImageNet-CIL-1K benchmark (Config #2 in
Section 3.3), where the final layers are expanded and pretrained on ImageNet-1K. This enhanced
configuration is also benchmarked from CLIP (Radford et al., 2021) initialization. Key hyperparam-
eters, including the sparsity ratio ρ ∈ [4, 15] and saturation point F , were set based on the estimated
parameter requirements per task and their reuse frequency; comprehensive implementation details
are deferred to the Appendix A.1.
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Table 1: Comparison of different methods on ImageNet-CIL-1K. The columns under ”# Tasks”
represent the average test set accuracy of all learned classes after learning 100, 75, and 50 tasks,
respectively, with each task having 10 classes. All models have been adjusted to have comparable
number of trainable parameters.

Method # Trainable # Tasks

Params (M) 100 75 50

Joint Finetune 195 73.7 - -
Linear Probing 1 52.1 55.0 58.2

iCaRL (CVPR 2017) 195 36.7 42.8 46.1
LwF (TPAMI 2018) 195 27.6 29.7 33.6
Sequential Finetune 195 8.7 9.3 9.8

Random Masking (Arxiv 2024) 195 28.1 34.7 44.3
L2P (CVPR 2022) - 39.7 47.3 52.1
EASE (CVPR 2024) 194 44.8 52.3 57.8
Subnetwork-PGM (ICML 2025) 193 36.5 40.6 44.8
MoAL (CVPR 2025) 196 52.9 56.7 62.0
APER (IJCV 2025) 196 55.3 58.1 60.3
MagMax (ECCV 2024) 194 53.1 56.9 59.2
Ours 195 59.4 62.0 65.9

4.3 LONG TASK SEQUENCE CIL RESULTS

Performance Comparison and Analysis. As shown in Table 1, our method consistently outper-
forms all baselines across task sequence lengths ranging from 50 to 100. On 50 tasks, our method
achieves a significant improvement of 3.9% over the strongest baseline. This performance advan-
tage is maintained as the task sequence scales, with improvements of 5.3% and 5.1% over MoAL
and MagMax on 75 tasks, respectively. Finally, on the challenging 100-task sequence, our method
surpasses MagMax, APER, and MoAL by 6.3%, 4.1%, and 6.5% in accuracy, respectively. These
results show that our method achieves optimal plasticity-stability trade-off by maintaining superior
performance across various task lengths, setting a new baseline for long-sequence CIL.

Table 2: Performance comparison using CLIP pretrained backbone
model. The rightmost columns show performance on long task se-
quences with varying numbers of incremental tasks.

ImageNet-CIL-1K (# Tasks)

Method CIFAR100 ImageNet-R 100 75 50

CLIP Zero-shot ViT-B/16 (86M) 68.7 77.1 61.7 60.7 61.9
CLIP Zero-shot ViT-L/14 (307M) 72.9 79.7 64.7 67.4 69.0

APER (IJCV 2025) 86.5 74.6 59.1 63.9 67.3
MoAL (CVPR 2025) 90.7 79.8 57.5 62.2 69.7
SEMA (CVPR 2025) 90.1 78.3 56.1 61.5 68.2
Ours 91.0 80.3 64.9 69.1 73.9

Evaluation with CLIP-
pretrained Backbone.
To assess the generaliz-
ability of our approach
across different pretraining
paradigms, we compare
it against CLIP using the
enhanced CLIP-pretrained
ViT-B/16 backbone (Con-
fig #2, Section 3.3). As
summarized in Table 2, our
method exhibits consistent
improvements over both continual learning and CLIP zero-shot baselines.

Notably, while APER, MoAL, and SEMA perform competitively or better than CLIP zero-shot
ViT-B/16 (86M) on CIFAR100 (10 tasks), ImageNet-R (10 tasks), and medium sequences (50–75
tasks, ImageNet-CIL-1K), they fall short on the 100-task benchmark. In contrast, despite using a
backbone with only 256M parameters, our method surpasses CLIP zero-shot ViT-L/14 (307M) in
all task lengths, with a significant improvement of 4.9% and 1.7% on 50 and 75 tasks, respectively.
These findings underscore the capacity of our method to harness powerful pretrained models.

4.4 STANDARD BENCHMARK EVALUATION

We evaluate our method on established 10-task class-incremental benchmarks (CIFAR-100,
ImageNet-R, ImageNet-A, OmniBenchmark) using a vanilla ViT-B/16 pretrained on ImageNet-
21K to demonstrate its competitiveness in conventional settings. Table 3 shows that our method
achieves state-of-the-art or competitive performance across all datasets: CIFAR-100 (90.7%,
best performance), ImageNet-R (79.6%, best performance, +0.3% over MoAL), OmniBench-
mark (78.7%, best performance), and ImageNet-A (64.0%, comparable to MoAL’s 64.1%).
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Table 3: Comparison of test accuracy on standard benchmark
datasets each split into 10 tasks using ImageNet-21k pretrained
ViT-B/16 backbone.

Method CIFAR100 ImageNet-R ImageNet-A OmniBenchmark

Sequential Finetune 82.1 68.6 40.6 62.4
LwF (TPAMI 2018) 77.6 69.6 40.2 64.6
L2P (CVPR 2022) 84.5 73.7 45.5 63.8
EASE (CVPR 2024) 87.3 69.2 76.0 74.4
APER (IJCV 2025) 85.8 72.1 55.7 73.3
MoAL (CVPR 2025) 90.5 79.3 64.1 78.6
Ours 90.7 79.6 64.0 78.7

Importantly, our method
demonstrates superior per-
formance across both short
and long task sequences:
it significantly outperforms
MoAL (the strongest baseline
on short sequences) by 6.5%
on 100 tasks (Table 1) and also
substantially surpasses APER
(the strongest baseline on long
sequences) by 8.3% on 10-task
ImageNet-A (Table 3). This
dual competence across both standard and long task sequences validates the general applicability of
our sparsity-driven framework, establishing it as a unified solution for diverse CIL scenarios.

4.5 ABLATION STUDIES Table 4: Ablation study on sparsity constraints and
training strategies. All variants use 195M trainable pa-
rameters and are evaluated after 100 tasks. The full
framework uses a learned sparse mask with a two-stage
training process.

Variant Accuracy (%) Difference (%)

Full Framework (Ours) 59.4 -

Random Mask for Stage 2 47.5 -11.9
No Regularization (Stage 1 Only) 36.9 -22.5
L1 Regularization (Stage 1 Only) 41.3 -18.1
No Regularization (2 Stage) 51.7 -7.7
L2 Regularization (2 Stage) 34.7 -24.7

w/o Gaussian Noise 58.0 -1.4
Gaussian Noise σ = 0.005 56.8 -2.6
Gaussian Noise σ = 0.0001 59.1 -0.3
Gaussian Noise σ = 0.0005 (Default) 59.4 -

We conduct ablation studies to validate
all components of our sparsity-driven
learning framework. All experiments
are performed on 100-task sequences us-
ing our ImageNet-CIL-1K dataset and
expanded ViT-B/16. Ablations on the
impact of random forgetting and ar-
chitecture setting are given in the Ap-
pendix A.2.

Sparsity Mechanism Analysis. Ta-
ble 4 show the critical role of both
learned sparsity and the two-stage mask-
task learning separation. Replacing our
learned masks with random masks of
equivalent sparsity causes an 11.9% performance drop (59.4% to 47.5%), confirming the impor-
tance of strategic parameter selection. The necessity of sparsity during task learning is evident when
removing it entirely (No Regularization stage 1 only): accuracy plummets 22.5% to 36.9%, showing
severe parametric interference without sparsity constraint.
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Insufficient sparsity
leads to interference

Optimal balance:
95% sparsity

Excessive sparsity
limits plasticity

Performance curve
Optimal: 59.4% at 95% sparsity
Optimal sparsity range

Figure 3: Impact of sparsity ratio on test accuracy af-
ter 100 tasks. Optimal accuracy (59.4%) occurs at 95%
sparsity, with sub-optimal results at both lower and higher
sparsity levels. The green zone denote the optimal range
balancing interference reduction and learning plasticity.

One-stage fine-tuning based on both L1

regularization and cross-entropy loss
proves even less effective (41.3%, -
18.1%), validating our decoupled mask
discovery and task learning strategy. L2
regularization instead of L1 performs
similarly poorly (34.7%, -24.7%), in-
dicating that weight magnitude control
cannot substitute for explicit sparsity
enforcement.

Gaussian noise injection provides mod-
erate but consistent improvements, with
an optimal standard deviation of σ =
0.0005. Removing noise causes 1.4%
performance loss, confirming its role in
interference mitigation.

Figure 3 reveals that 95% sparsity op-
timally balances interference reduction
with learning plasticity, with performance degrading at both extremes. Insufficient sparsity leads to
severe interference, whereas excessive sparsity leads to limited learning plasticity.
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5 RELATED WORK

Continual Learning Traditional continual learning methods address catastrophic forgetting
through regularization constraints (Kirkpatrick et al., 2017; Li & Hoiem, 2017), rehearsal strate-
gies that retain exemplars of previous tasks (Rebuffi et al., 2017), or sparse dynamic parameter
allocation techniques inspired from model pruning and sparse learning (Mallya & Lazebnik, 2018;
Wang et al., 2022a; Yildirim et al., 2024; Wan & Yang, 2025). The advent of large-scale pretrained
models has catalyzed a paradigm shift toward pretrained model (PTM)-based continual learning,
which leverages backbone representations and employs adapters (Zhou et al., 2024; Yu et al., 2024a;
Wang et al., 2025; Zhou et al., 2025; Gao et al., 2025), prompts (Wang et al., 2022b; Smith et al.,
2023), or model merging strategies (Marczak et al., 2024; Ke et al., 2024).

Adapter-based methods can be categorized into router-based methods, which maintain task-specific
adapters and employ routing mechanisms for adapter selection during inference, and prototype-
based methods, which project prototype features from previous tasks into new feature spaces. How-
ever, both categories exhibit a scalability bottleneck: router-based methods suffer from increasing
routing errors as task sequence lengths grow, while prototype-based methods accumulate projection
errors across extended sequences, leading to performance degradation. In contrast, model merging
methods bypass these architectural constraints by directly integrating task-specific knowledge into
a unified model without requiring complex routing or projection mechanisms. Our work extends
PTM-based continual learning to long task sequence scenarios, a critical yet underexplored domain.

Model Merging Model merging methods seek to combine multiple specialized models, often by
transferring parameter updates from task-specific models to a shared base model (Yu et al., 2024b;
Marczak et al., 2024; Ke et al., 2024; Gao et al., 2025). To mitigate interference among tasks, re-
cent methods apply post-hoc sparsity to these parameter updates. DARE (Yu et al., 2024b) and its
concurrent application to continual learning (Ke et al., 2024) randomly prune a large fraction of
updates. In contrast, MagMax (Marczak et al., 2024) only retains the update with the largest mag-
nitude for each parameter, mitigating interference but leading to insufficient plasticity. Meanwhile,
MoAL (Gao et al., 2025) does not consider parameter interference and merges multiple task-specific
adapters into a shared one using an experiential moving average of their parameters.

The common thread in these works is the application of a predefined sparsity pattern (random or
magnitude-based) after task-specific training. Our work departs from this approach by explicitly
learning sparse masks as an integral part of the training process. This allows our framework to
proactively discover a sparse set of most relevant parameters for each task prior to training and
prepare each task-specific model against interference during training.

6 LIMITATIONS

To the best of our knowledge, this is the first piece of work that scales continual learning up to
100 non-trivial vision tasks. While we recognize that exploring even longer task sequences is of
significant interest for real-world applications, such extensive evaluation reaches beyond the scope
of this study due to computing resource limitations. However, given the simplicity and promising
performance of our method on 100 tasks, we believe that our method can serve as a capable base-
line in continual learning under long-sequence settings. We hope that further work can explore the
potential of our method for longer task sequences. Possible future improvements include further mit-
igating parameter interference to reduce catastrophic forgetting and scaling the number of trainable
parameters proportionally with the number of tasks to dynamically enhance model capacity.

7 CONCLUSION

In this paper, we have tackled the formidable problem of long-sequence continual learning by ad-
dressing the core issue of balancing catastrophic forgetting and learning plasticity via a sparsity-
driven learning framework. Our approach, validated on a new challenging benchmark dataset of
100 tasks, significantly advances the state of the art. We believe this work is a significant step
towards scalable continual learning systems.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training Details. All experiments use PyTorch on NVIDIA H800 GPUs. For experiments on
our ImageNet-CIL-1K benchmark dataset (Config #2 in Section 3.3), we expand the final L =
3 layers in ViT-B/16 from 768 to 2304 dimensions with SiLU gating. Our enhanced ViT-B/16
backbone is pretrained on ImageNet-1K following standard hyperparameters set in (Liu et al., 2021)
before being fine-tuned on continual learning tasks. While standard continual learning practices
typically employ ImageNet-21K pretrained models (Zhou et al., 2024; 2025; Gao et al., 2025), we
deliberately choose ImageNet-1K pretrained ViT-B/16 (Touvron et al., 2021) to ensure completely
disjoint data distributions between pretraining and our benchmark dataset derived from ImageNet-
21K. This prevents potential data leakage, providing a more rigorous evaluation of continual learning
capabilities. Our two-stage fine-tuning employs Stage 1 mask discovery with L1 regularization
(λ = 8 × 10−5, learning rate 2 × 10−4) followed by Stage 2 mask-constrained fine-tuning with
cross-entropy loss (80 epochs, learning rate 3−4). We enforce 95% sparsity (ρ = 95%) through
percentile thresholding, and apply gradual random forgetting after F = 60 tasks with forgetting rate
1/F = 1.67% to the accumulated parameter updates. Gaussian noise (σ = 0.0005) is injected into
the frozen parameters during Stage 2 forward passes. Training uses AdamW optimizer with cosine
scheduling, weight decay set to 10−2, total batch size set to 512, and standard ImageNet training
augmentations (Liu et al., 2021). The sparsity ratio ρ and the saturation point F are set according
to the estimated average number of parameters required for each task and the estimated number of
times a parameter can be reused, respectively.
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We also benchmark our approach on ImageNet-CIL-1K with CLIP (Radford et al., 2021) (Config
#2 in Section 3.3). For a fair comparison, we initialize our model using a CLIP-pretrained ViT-
B/16 backbone and apply the architectural enhancement introduced in Section 3.3. Since the newly
appended parameters have not been pretrained, we freeze all pretrained layers and only train the
expanded layers on ImageNet-1K to obtain a stable starting point. This fine-tuning step uses the
standard ImageNet-1K training setting (Liu et al., 2021). For continual learning, we mostly use the
same hyperparameters in the above ImageNet-1K pretrained setting and made the following changes
to achieve stronger performance: λ = 2×10−4, 200 training epochs with a learning rate of 9×10−5,
σ = 0.0003, F = 100, and leveraged SuMix (Qin et al., 2024) as an additional data augmentation.

For a fair evaluation on the standard continual learning benchmark datasets (CIFAR100, ImageNet-
R, ImageNet-A, OmniBenchmark) using Config #1 in Section 3.3, we adopt an ImageNet-21K
pretrained ViT-B/16 backbone following (Zhou et al., 2024; Gao et al., 2025). The training hy-
perparameters and setting follow (Gao et al., 2025) and the hyperparameters for our sparsity-driven
learning framework are λ = 7× 10−5, ρ = 85%, σ = 0.0006, and F = 10 (no forgetting).

Ensemble Output. Our merged backbone model is integrated with a multi-component ensemble
for final prediction, combining three existing techniques to address inference-time task identifica-
tion in long-sequence continual learning. Specifically, we employ: (1) a mixture-of-experts (MoE)
approach from (Yu et al., 2024a) that maintains T separate classification heads corresponding to the
learned tasks, where each head ht is trained using our sparse parameter updates while others remain
frozen to ensure task-specific specialization, (2) autoencoder-based task identification following (Yu
et al., 2024a) that computes reconstruction scores from task-specific autoencoders to identify the
most likely source task during inference, with final task selection based on the average between
autoencoder reconstruction scores and top-2 MoE predictions for robust routing, and (3) a separate
classification head from MoAL (Gao et al., 2025) that maintains class prototypes. The final pre-
diction averages outputs from the selected MoE classification head and prototype-based prediction.
Ablation studies in Section 4.5 illustrate the individual contribution of each ensemble component.
Note that this ensemble is not part of our main contributions in this paper, but an integral part of our
overall continual learning pipeline.

A.2 ADDITIONAL ABLATION STUDIES

Table 5: Comparison between independent and sequential fine-tuning in our sparsity-driven learning
framework.

Method Accuracy

Independent fine-tune (Ours) 59.4
Sequential fine-tune with sparse mask 50.9

Impact of Independent Fine-tuning. In our sparse learning framework, we fine-tune the base
model for each task independently using the two stage framework introduced in Section 2.1. In
Table 5, we observe that sequential fine-tuning, where the base model is the accumulated θaccu
in Equation 2 instead of θbase, lead to sub-optimal results. This can be attributed to the fact that
the model fine-tuned on the last task is equivalent to the final merged model, leading to biased
performance towards tasks learned later on and substantial interference with previous learned tasks,
resulting in catastrophic forgetting.

Random Forgetting Impact. Fig 4 illustrate the impact of the selection of saturation point F (also
can be thought of as the forgetting rate) in our forgetting mechanism. The optimal 1.67% forget-
ting rate prevents interference accumulation while preserving essential knowledge. No forgetting
(F = 100, 0% forgetting rate) causes performance degradation due to unchecked parameter con-
flicts, while excessive forgetting (2.0% or more) leads to knowledge loss, confirming the principled
calculation of our forgetting rate.

Parameter Efficiency Analysis. Our enhanced ViT-B/16 backbone increases the number of train-
able parameters to 195M. Here, we investigate the performance of our approach and representative
continual learning baselines when modifying the number of trainable parameters. Table 6 reveals
superior parameter utilization compared to existing methods. Scaling from 50M to 195M trainable

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0% 1% 1.67% 2%
Inverse of Saturation Point 1/F (%)

55

56

57

58

59

60

61

Fin
al

 A
cc

ur
ac

y 
Af

te
r 1

00
 Ta

sk
s (

%
)

Optimal: 59.4% at 1.67%

Figure 4: Effect of random forgetting ratio on test accuracy after 100 tasks. No forgetting (0%)
causes parameter interference, while excessive forgetting (2%) leads to knowledge loss.

Table 6: Performance comparison with a varying number of trainable parameters.

# Trainable Params (M)

Method 50 100 195

Random masking 26.3 27.9 28.1
MoAL 51.6 52.1 52.9
MagMax 50.9 52.3 53.1
Ours 54.0 56.7 59.4

parameters by changing the number of channels in either our backbone or the adapter, our method
improves 5.4% while competing methods show minimal gains: Random Masking (+1.8%), MoAL
(+1.3%), and MagMax (+2.2%). This demonstrates that our sparsity-driven framework effectively
leverages additional parameter capacity while maintaining interference control.

Architectural Component Contributions. Our enhanced ViT-B/16 has 195M trainable parameters
in the last L (empirically set to 3) layers of the network by setting the channel size to 2304. Ad-
ditionally, we introduce a gating mechanism into the augmented final L layers to enable dynamic
selection of relevant information during continual learning. Mathematically, given an input X, the
gating mechanism is defined as SiLU (WX)⊙ SiLU (X), where W is the weight matrix.

Table 7 validates our architectural modifications for long-sequence continual learning through fair
comparison that maintains the same number of trainable parameters (195M) for all variants. The
choice of fine-tuning depth is important: two layers provide insufficient plasticity (-7.6% to 51.8%),
while four layers introduce excessive interference (-4.2% to 55.2%). Our three-layer configuration
achieves the optimal plasticity-stability balance. Full model fine-tuning without freezing any lay-
ers substantially degrades performance (-5.3% to 54.1%), confirming that selective layer adaptation
prevents interference with general low-level representations. Removing the SiLU gating mecha-
nism reduces performance by 1.8% (57.6%), demonstrating its importance for dynamic parameter
weighting.

Table 7: Ablation study on architectural enhancements. All variants use 195M trainable parameters.

Method Variant Accuracy

Ours 59.4

Last 2 Layers Fine-tuned 51.8
Last 4 Layers Fine-tuned 55.2
Full Model Fine-tuning 54.1
w/o Gating Mechanism 57.6
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Ensemble Component Analysis. Table 8 reveals the synergistic effects of our output ensemble
combining MoE, autoencoder, and MoAL components. Individual components show substantial
performance gaps when used in isolation: 57.8% (MoAL alone), 56.1% (MoE alone), and 57.0%
(autoencoder alone). However, we find that even when these individual components are used in
isolation, our method still outperforms other CIL methods. The complete ensemble achieves 59.4%,
confirming that the complementary strengths of individual components contribute to optimal long
task sequence performance through diverse representation and prediction strategies.

Table 8: Ablation study on classifier components. Removing any component reduces performance,
and individual components alone are substantially weaker than their integration.

Method Variant Accuracy

Full Framework (Ours) 59.4

w/o Autoencoder 58.5
w/o MOE 58.7
w/o MoAL 58.3

MoAL Alone 57.8
MOE Alone 56.1
Autoencoder Alone 57.0

Table 9: Comparison of training speed between model merging methods

Method Training time

MoAL 16.25 minutes
MagMax 12.17 minutes
Random Masking 12.03 minutes
Ours 15.61 minutes

A.3 COMPARISON OF TRAINING SPEED

Since our method takes the model merging approach, we compare the training time with model
merging baselines. Despite our two-stage sparse learning framework, our optimized implementation
has a reasonable computational cost compared to recent model merging methods when training on
the ImageNet-CIL-1K benchmark dataset. In particular, Stage 1 is only required to learn the sparse
mask so we can reduce the number of training epochs. Since Stage 2 only optimizes a sparse subset
of parameters, its training time is approximately 30% that of Stage 1. Therefore, the overall training
complexity is comparable to existing model merging methods. Note that Random Masking and
MagMax have similar steps in the training procedure so their training times are approximately the
same.

A.4 SPARSITY-DRIVEN CONTINUAL LEARNING ALGORITHM

The pseudo code for our two-stage sparsity-driven learning framework is given in Algorithm 1.

A.5 NEW BENCHMARK DATASET IMAGENET-CIL-1K

This section details the composition and key statistics of the proposed ImageNet-CIL-1K bench-
mark. The dataset comprises 1,000 classes, with a near-uniform distribution of images per class. As
illustrated in Figure 5, the number of images per class has a mean of 1069.6 and a median of 1098.5,
indicating a balanced and robust dataset suitable for large-scale continual learning evaluation.

A complete listing of all 1,000 class names is provided for reference.
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Algorithm 1 Sparsity-Driven Continual Learning Algorithm

Require: pretrained base model θbase, task sequence {Sk}Tk=1, sparsity ratio ρ, noise variance σ2,
saturation point F

Ensure: Final merged model θmerged
1: Initialize ∆θacc ← 0
2: for each task k ∈ {1, . . . , T} do
3: Initialize ∆θk ← 0 ▷ Stage 1: Mask Learning
4: Minimize Lmask = E(x,y)∼Sk

[ℓ(f(x; θbase +∆θk), y)] + λ∥∆θk∥1 via gradient descent

5: M
(i)
k ←

{
1 if |∆θ

(i)
k | ≥ ρ percentile of all ∆θk

0 otherwise

6: Set require grad = (M
(i)
k == 1) for all i

7: Initialize ∆θk ← 0 ▷ Stage 2: Fine-tuning
8: while not converged do
9: Sample noise ϵ(i) ∼ N (0, σ2) for positions where M

(i)
k = 0

10: Set ϵ(i) = 0 for positions where M
(i)
k = 1

11: Gradient descent step for minθk E(x,y)∼Sk
[ℓ(f(x; θbase + ϵ+∆θk), y)]

12: ▷ Cross-entropy only
13: end while
14: if k > F then ▷ Gradual random forgetting
15: Generate random binary mask F with forgetting rate 1/F
16: Apply forgetting: ∆θacc ← F ⊙∆θacc
17: end if
18: ∆θacc ← ∆θacc +∆θk ▷ Add current task update
19: end for
20: θmerged ← θbase +∆θacc ▷ Final merge return θmerged
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Figure 5: Histogram of image count per class in the proposed ImageNet-CIL-1K benchmark dataset.
The distribution shows a high concentration around the mean (1069.6, denoted by the red line;
orange region denote the inter-quartile range), confirming a balanced allocation of samples across
classes.
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A.6 ETHICS STATEMENT

This work presents an advancement in continual learning algorithms. We use standard, publicly
available datasets for training and evaluation. Our research does not raise any ethical issues, as it
is not directed towards any specific application domain that could be deemed harmful (e.g., surveil-
lance, misinformation).

A.7 REPRODUCIBILITY STATEMENT

Although the code is not provided together with this paper submission, we are committed to mak-
ing the source code publicly available once the paper receives a final decision. Comprehensive
implementation details and the pseudo code for our sparse learning framework are provided to aid
reproducibility.

A.8 USE OF LLM.

Deepseek-r1 (Guo et al., 2025) and Gemini 2.5 pro (Comanici et al., 2025) have been used solely to
check for grammatical errors, polish the wording, and drawing figures with Python.
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• piaffe

• rock climbing

• acrobatics

• broad jump

• bathe

• dip

• fight

• spar

• archery

• Greco-Roman
wrestling

• rollerblading

• speed skating

• bullfighting

• ducking

• surf casting

• ice hockey

• professional
golf

• shuffleboard

• professional
football

• touch football

• rugby

• professional
baseball

• no-hit game

• two-hitter

• lacrosse

• professional
tennis

• doubles

• team sport

• feeder

• sire

• herpes simplex
1

• paramecium

• eukaryote

• striped killifish

• guppy

• soldierfish

• gastrula

• porbeagle

• great white
shark

• sand tiger

• blacktip shark

• dusky shark

• smoothhound

• shovelhead

• dickeybird

• cassowary

• emu

• hedge sparrow

• meadow pipit

• brambling

• pine siskin

• house finch

• bullfinch

• dark-eyed
junco

• white-crowned
sparrow

• chipping spar-
row

• evening gros-
beak

• cardinal

• baya

• scrubbird

• phoebe

• cock of the
rock

• ovenbird

• pitta

• spotted fly-
catcher

• ring ouzel

• wood thrush

• whinchat

• wheatear

• robin

• goldcrest

• blackcap

• greater
whitethroat

• lesser
whitethroat

• sedge warbler

• parula warbler

• Audubon’s
warbler

• myrtle warbler

• blackpoll

• raven

• blue jay

• Clark’s
nutcracker

• butcherbird

• house wren

• long-billed
marsh wren

• red-breasted
nuthatch

• white-breasted
nuthatch

• blue tit

• tree swallow

• satin bowerbird

• Bohemian
waxwing

• Cooper’s hawk

• marsh harrier

• sparrow hawk

• bald eagle

• griffon vulture

• Egyptian vul-
ture

• black vulture

• black vulture

• great grey owl

• tawny owl

• screech owl

• spotted owl

• Old World
scops owl

• European fire
salamander

• spotted sala-
mander

• common newt

• red eft

• spotted sala-
mander

• axolotl

• hellbender

• wood-frog

• green frog

• tailed frog

• American toad

• obstetrical toad

• canyon
treefrog

• green turtle

• Atlantic ridley

• common snap-
ping turtle

• diamondback
terrapin

• red-bellied ter-
rapin

• painted turtle

• tuatara

• banded gecko

• common
iguana

• marine iguana

• side-blotched
lizard

• tree lizard

• Texas horned
lizard

• western skink

• agama

• frilled lizard

• mountain devil

• green lizard

• Komodo
dragon

• African
crocodile

• Chinese alliga-
tor

• gavial

• triceratops

• smooth green
snake

• green snake

• corn snake

• gopher snake

• pine snake

• milk snake

• common garter
snake

• ribbon snake

• water moccasin

• vine snake

• boa constrictor

• anaconda

• carpet snake

• copperhead

• hamadryad

• green mamba

• taipan

• sea snake

• horned viper
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• Mojave rat-
tlesnake

• massasauga

• ground rattler

• fer-de-lance

• harvestman

• orb-weaving
spider

• black and gold
garden spider

• garden spider

• cockerel

• brood hen

• pullet

• Orpington

• European black
grouse

• capercaillie

• spruce grouse

• greater prairie
chicken

• ring-necked
pheasant

• hoatzin

• rock dove

• band-tailed pi-
geon

• Streptopelia
turtur

• mourning dove

• roller

• popinjay

• poll

• kea

• sulphur-crested
cockatoo

• budgerigar

• European
cuckoo

• belted king-
fisher

• Euopean
hoopoe

• European swift

• frogmouth

• green wood-
pecker

• yellow-shafted
flicker

• red-shafted
flicker

• barbet

• toucanet

• quack-quack

• diving duck

• mallard

• black duck

• bufflehead

• mandarin duck

• eider

• American mer-
ganser

• red-breasted
merganser

• Chinese goose

• honker

• coscoroba

• cob

• pen

• mute swan

• trumpeter

• tusker

• echidna

• opossum rat

• giant kangaroo

• rock wallaby

• tree wallaby

• numbat

• calf

• doe

• sea fan

• mushroom
coral

• woodborer

• common
limpet

• Hermissenda
crassicornis

• tiger cowrie

• seashell

• ark shell

• chambered
nautilus

• blue crab

• fiddler crab

• American lob-
ster

• spiny lobster

• daphnia

• sacred ibis

• common
spoonbill

• snowy egret

• black-crowned
night heron

• yellow-
crowned night
heron

• crested cariama

• Florida
gallinule

• European
gallinule

• American
gallinule

• Old World coot

• killdeer

• dotterel

• lapwing

• ruddy turn-
stone

• surfbird

• red-backed
sandpiper

• redshank

• lesser yel-
lowlegs

• curlew sand-
piper

• sanderling

• upland sand-
piper

• American
woodcock

• great snipe

• European
curlew

• black-necked
stilt

• black-winged
stilt

• pratincole

• black-backed
gull

• laughing gull

• sea swallow

• skimmer

• great skua

• razorbill

• pigeon guille-
mot

• thick-billed
murre

• Atlantic puffin

• white pelican

• solan

• water turkey

• Adelie

• king penguin

• rock hopper

• fulmar

• common dol-
phin

• killer whale

• manatee

• crabeater seal

• harp seal

• Chihuahua

• Maltese dog

• Shih-Tzu

• bluetick

• Italian grey-
hound

• Ibizan hound

• Norwegian
elkhound

• Border terrier

• Irish terrier

• Norwich terrier

• wire-haired fox
terrier

• Lakeland ter-
rier

• Airedale

• Boston bull

• miniature
schnauzer

• giant schnauzer

• golden re-
triever

• Labrador re-
triever

• vizsla

• English setter

• clumber

• Old English
sheepdog

• Shetland
sheepdog

• German shep-
herd
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• miniature pin-
scher

• Greater Swiss
Mountain dog

• Bernese moun-
tain dog

• bull mastiff

• affenpinscher

• pug

• Pomeranian

• keeshond

• Cardigan

• standard poo-
dle

• dingo

• kit fox

• kitty

• alley cat

• kitten

• Angora

• Egyptian cat

• cougar

• jungle cat

• bobcat

• jaguar

• cheetah

• sloth bear

• prey

• big game

• tiger beetle

• flea beetle

• Colorado
potato beetle

• scarab

• green June bee-
tle

• rhinoceros bee-
tle

• rove beetle

• common louse

• wiggler

• yellow-fever
mosquito

• Africanized
bee

• black bee

• bumblebee

• cicada killer

• fire ant

• oriental cock-
roach

• giant water bug

• wheel bug

• stonefly

• doodlebug

• painted beauty

• red admiral

• viceroy

• purple emperor

• peacock

• sulphur butter-
fly

• tea tortrix

• tussock cater-
pillar

• fall armyworm

• death’s-head
moth

• luna moth

• forest tent
caterpillar

• corn earworm

• cabbageworm

• edible sea
urchin

• European rab-
bit

• European hare

• polar hare

• antelope squir-
rel

• eastern chip-
munk

• chipmunk

• groundhog

• guinea pig

• chinchilla

• rock hyrax

• filly

• broodmare

• American sad-
dle horse

• Arabian

• Lippizan

• bucking bronco

• buckskin

• cayuse

• plow horse

• Exmoor

• carthorse

• farm horse

• palomino

• burro

• common zebra

• Indian
rhinoceros

• white
rhinoceros

• collared pec-
cary

• dogie

• yak

• Jersey

• gaur

• ewe

• ram

• lambkin

• Hampshire

• merino

• billy

• bezoar goat

• ibex

• gnu

• sassaby

• Thomson’s
gazelle

• bongo

• nyala

• bushbuck

• steenbok

• common eland

• gemsbok

• pronghorn

• Japanese deer

• fallow deer

• Arabian camel

• guanaco

• two-toed sloth

• ant bear

• pangolin

• world

• Homo sapiens
sapiens

• silverback

• gibbon

• howler monkey

• African ele-
phant

• coati
• giant panda
• game fish
• blue catfish
• pollack
• allice shad
• landlocked

salmon
• chinook
• coho
• goosefish
• frogfish
• perch
• European

perch
• northern pike
• pumpkinseed
• flame fish
• crevalle jack
• cardinal tetra
• porkfish
• red drum
• mulloway
• white croaker
• spotted weak-

fish
• parrotfish
• skipjack
• bonito
• blue marlin
• bowfin
• paddlefish
• gar
• stonefish
• queen trigger-

fish
• balloonfish
• abacus
• A battery
• Abbe con-

denser
• abbey
• accelerator
• acropolis
• adapter
• afterburner
• air conditioner
• aircraft engine
• air horn
• air terminal
• alehouse
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• altar

• altazimuth

• alternator

• amphitheater

• amphora

• analyzer

• anastigmat

• anchor chain

• AND circuit

• anklet

• antiperspirant

• ao dai

• aperture

• aquaplane

• argyle

• armoire

• arterial road

• ashtray

• assembly

• assembly hall

• athletic sock

• atrium

• attache case

• audio CD

• autobahn

• autofocus

• automobile en-
gine

• autoradiograph

• autostrada

• awning

• axle bar

• baby grand

• baby shoe

• back brace

• back porch

• backsword

• backup system

• balloon sail

• ballot box

• baluster

• bandbox

• bandoneon

• bangle

• banner

• baptismal font

• barbershop

• bareboat

• baritone

• basilica

• basinet

• bass clarinet

• bass drum

• bass guitar

• bassinet

• bath salts

• batik

• batting glove

• batting helmet

• beach towel

• beacon

• beanbag

• beaver

• Bedford cord

• bed jacket

• bedsitting
room

• bedstead

• beer barrel

• beer glass

• beer hall

• belfry

• belt buckle

• bench press

• besom

• bib

• bicycle chain

• bicycle rack

• bicycle seat

• bier

• billboard

• binder

• binnacle

• biplane

• birdbath

• birdcage

• blackwash

• blender

• blue

• boat hook

• boathouse

• bobby pin

• bobsled

• bodice

• bookcase

• bookend

• boot

• bootlace

• Boston rocker

• bottle

• bowling alley

• bowling shoe

• bracer

• brake drum

• brake lining

• brake pad

• brake shoe

• brasserie

• bread-bin

• breakfast area

• breathalyzer

• broad arrow

• brochette

• buckram

• buckskins

• buffer

• bugle

• bullpen

• bulwark

• bungalow

• bunk bed

• bunker

• bunsen burner

• burqa

• bushel basket

• bustle

• butterfly valve

• cabinetwork

• cafeteria tray

• caftan

• caldron

• camisole

• campanile

• canopic jar

• canopy

• canteen

• canteen

• cantilever
bridge

• cantle

• car

• caravansary
• car bomb
• cardroom
• carpenter’s kit
• carpet sweeper
• carryall
• carrycot
• carving knife
• case knife
• cash machine
• Cassegrainian

telescope
• cassette

recorder
• catamaran
• cat box
• cathedral
• CD drive
• CD-R
• censer
• cereal box
• chafing dish
• chain
• chainlink fence
• chain store
• chair
• chalice
• chancel
• chancellery
• chateau
• chatelaine
• checkout
• cheekpiece
• chemise
• chemise
• chest protector
• chiffon
• chiffonier
• chin rest
• chukka
• churn
• cigar box
• cigarette butt
• circle
• circuit breaker
• city hall
• cleats
• cleaver
• clerestory
• climbing frame
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• clinical ther-
mometer

• clipper

• clock tower

• cloisonne

• cloister

• clothesbrush

• clothes tree

• coat button

• cockhorse

• cockleshell

• cockpit

• cocktail lounge

• cocktail shaker

• cocotte

• coffee can

• coif

• collar

• collet

• Colt

• columbarium

• combination
lock

• command
module

• compact-disk
burner

• compound mi-
croscope

• compression
bandage

• concert grand

• concert hall

• concrete mixer

• console table

• contact

• container ship

• control tower

• cooler

• corbel

• cords

• cork

• corner

• cornice

• country store

• courthouse

• covered bridge

• coverlet

• cowbell

• crampon

• crazy quilt

• cricket bat

• croquet mallet

• crucifix

• cupola

• curbstone

• dacha

• dairy

• dais

• dashiki

• data system

• davenport

• day school

• deck chair

• deep-freeze

• denim

• department
store

• derrick

• desktop com-
puter

• dessert spoon

• detached house

• dhow

• dialog box

• diaper

• digital clock

• digital sub-
scriber line

• dining-room
furniture

• DIP switch

• disk brake

• dispensary

• Dixie cup

• donkey jacket

• door

• doorplate

• dormer

• dovecote

• Dragunov

• drawer

• drawing room

• drawknife

• dredger

• dress hat

• dressing case

• dress suit

• driver

• dropper

• drum printer

• dry fly

• dry wall

• duckpin

• duffel

• dump truck

• dustcloth

• dustpan

• Eames chair

• earmuff

• easel

• eaves

• eggbeater

• eight ball

• elbow pad

• electric

• electrical cable

• electric loco-
motive

• electric type-
writer

• electronic fetal
monitor

• embassy

• encaustic

• English saddle

• ensign

• erecting prism

• espadrille

• etagere

• ethernet

• evening bag

• eyeliner

• face guard

• face powder

• fairy light

• false face

• fan blade

• fancy dress

• fan vaulting

• felucca

• fez

• field artillery

• field hockey
ball

• field house

• fifth wheel

• figure skate

• finger

• finger paint

• fire bell

• fire screen

• firing chamber

• first class

• fixer-upper

• flagpole

• flintlock

• flip-flop

• float

• floatplane

• floor lamp

• florist

• floss

• flying buttress

• fob

• food court

• foredeck

• foremast

• foulard

• four-poster

• franking ma-
chine

• freewheel

• freight liner

• French horn

• Frisbee

• front projector

• fruit machine

• gabardine

• gaff topsail

• gag

• gaiter

• gambrel

• Garand rifle

• garter belt

• garter stitch

• gas gun

• gas holder

• gas oven

• gateleg table
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
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• gharry

• ghat

• gift shop

• gift wrapping

• gig

• glebe house

• Global Posi-
tioning System

• gnomon

• goalpost

• golf bag

• golf glove

• golliwog

• gouge

• gown

• grab bag

• graduated
cylinder

• grandfather
clock

• grape arbor

• grater

• gravestone

• grey

• griddle

• grinder

• Guarnerius

• guided missile
frigate

• gusset

• hair spray

• half binding

• hand glass

• hand lotion

• hand luggage

• hard hat

• harness

• harp

• hatpin

• hay bale

• headboard

• head gasket

• headpiece

• headset

• headstall

• hearse

• heat lamp

• hemostat

• hemstitch

• hideaway

• highchair

• hippodrome

• hockey stick

• home plate

• hone

• honeycomb

• horseshoe

• horseshoe

• hose

• hot tub

• hot-water bot-
tle

• houseboat

• hula-hoop

• ice ax

• iced-tea spoon

• ice tongs

• igloo

• inclinometer

• incubator

• integrated cir-
cuit

• internal drive

• irons

• irrigation ditch

• jack-in-the-box

• jigsaw puzzle

• joystick

• jungle gym

• junk

• junk shop

• kachina

• kayak

• ketch

• khadi

• kilt

• kirtle

• kitchen table

• knee-high

• knitting ma-
chine

• knocker

• ladder-back

• ladder truck

• lag screw

• lame

• lancet window

• land line

• laser

• laser-guided
bomb

• laser printer

• lawn chair

• lawn furniture

• leading rein

• leatherette

• lever lock

• lifeboat

• light pen

• Link trainer

• local

• lock

• log cabin

• long johns

• long sleeve

• loving cup

• LP

• luxury liner

• lyceum

• macrame

• magnum

• maillot

• mallet

• manhole

• manor

• manse

• marina

• masher

• mattress cover

• measuring cup

• meat grinder

• megaphone

• menhir

• microprocessor

• microtome

• microwave

• midiron

• miller

• minicar

• ministry

• minivan

• miter joint

• monkey-
wrench

• monocle

• Moorish arch

• mortar

• mosaic

• motor scooter

• mountain bike

• mountain tent

• mouse

• mouthpiece

• mouthpiece

• mouthpiece

• movement

• mufti

• mule

• muzzle

• nailbrush

• nail polish

• narrow wale

• national monu-
ment

• neck brace

• needlenose pli-
ers

• negative

• newspaper

• newsroom

• nipple

• nude

• nylons
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