Under review as a conference paper at ICLR 2026

CLARE: SCALABLE CLASS-INCREMENTAL CONTIN-
UAL LEARNING VIA A SPARSITY-BASED FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The primary challenge in continual learning is navigating the plasticity-stability
dilemma to balance the acquisition of new knowledge with the retention of old.
While leveraging pretrained models has significantly advanced continual learn-
ing, existing methods exhibit a scalability bottleneck on long task sequences,
suffering from performance degradation due to parameter interference and loss
of plasticity. In this work, inspired by evidence that sparse fine-tuning achieves
performance comparable to full fine-tuning, we introduce a novel sparsity-driven
continual learning framework. Our continual learning method termed CLARE
operates in two stages: it first identifies a sparse, task-critical parameter mask
via a sparsity-inducing objective, then performs mask-constrained fine-tuning.
In addition, to further reduce interference, we incorporate a gradual forgetting
mechanism that resets a tiny fraction of previously accumulated parameters after
learning each new task. Furthermore, to address the lack of benchmark datasets
for long-sequence continual learning, we curate ImageNet-CIL-1K, a challenging
long-sequence dataset with 1,069,563 images and 1,000 classes. Extensive ex-
periments demonstrate the scalability of CLARE. On ImageNet-CIL-1K with 100
tasks, CLARE outperforms strong baselines such as APER and MagMax by 4-6%
in overall test accuracy, and leads EASE by over 10%, establishing a new state of
the art for long-sequence continual learning.

1 INTRODUCTION

The core challenge of continual learning (CL) and class incremental learning (CIL) lies in achiev-
ing a balance between the capacity to learn new diverse tasks (learning plasticity) and the abil-
ity to retain previously learned knowledge without catastrophic forgetting (memory stability).
Traditional CIL methods can often be categorized into three main paradigms: regularization-
based methods (Kirkpatrick et al.l [2017; |[Li & Hoiem| 2017), replay-based methods (Lopez-
Paz & Ranzato, 2017), and optimization-based methods (Farajtabar et al.l [2020). Recent
advancements leverage strong pretrained models (PTM) to further improve performance in-
stead of training models from scratch, as pretrained models encapsulate rich prior knowledge.
In particular, building adapter-based (Zhou et al., 2024;

Yu et al., 2024a; |Gao et all 2025) or model merging .,
based (Marczak et al.| [2024; |Gao et al., |2025) continual g e e e
learning models on top of a pretrained backbone represents
two prominent directions.

Although recent PTM-based CIL methods have shown
promising performance on short task sequences (e.g., 10 =*] = &
tasks), scaling these methods to longer task sequences typ-  **] == waguex
ically means substantial performance sacrifice. To verify e — -
this, we present a pilot study on up to 100 tasks based Number of Tasks )
on the ImageNet-R dataset (Hendrycks et al 202Ta) of Figure 1:. Overall accuracy of contin-
four representative continual learning baselines, including U@l learning methods on ImageNet-R
APER (Zhou et al} 2025), EASE (Zhou et al} 2024), L2p split into varying numbers of tasks.
(Wang et al.| 2022b)), and MagMax (Marczak et al.| 2024).

The results in Figure[T|shows that existing methods lag behind CLIP zero-shot (Radford et al., 2021),
a gap that widens with the number of tasks. This decline stems primarily from an imbalance between
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Figure 2: Sparse parameter update analysis. Left: Long-tail distribution of parameter update mag-
nitudes shows most parameters experience tiny updates (< 0.01), while only 8.5K parameters have
updates > 0.05. Right: Sparse parameter updates achieve performance close to full fine-tuning on
ImageNet-R using ImageNet-1K pretrained ViT-B/16.

interference and plasticity. As the task sequence lengthens, effective new task learning causes catas-
trophic forgetting of earlier knowledge as new updates overwrite or conflict with parameters crucial
for previous tasks. However, effective earlier knowledge preservation restricts a model’s capacity to
integrate new information, resulting in progressively poorer performance on new tasks.

In this paper, we hypothesize that strategically learning a small number of parameters for each task
can already maintain sufficient plasticity while dramatically reducing the likelihood of destructive
interference across tasks. This hypothesis is supported by existing literature on learning sparse
neural networks (Wen et al., 2016} [Louizos et al., 2018; [Ma et al.| |2019) as well as empirical ev-
idence showing that the magnitude of parameter updates during fine-tuning follows a long-tailed
distribution (Figure 2] (left)), with substantial updates being confined to a tiny subset of parame-
ters. More importantly, it is only necessary to update a small proportion of the model parameters
to achieve competitive task-specific performance, as illustrated in Figure 2] (right). On the basis of
this insight, we propose a sparsity-driven continual learning framework that learns a sparse subset
of parameters for each task, enabling effective scaling to extended sequences while balancing the
plasticity-stability trade-off in continual learning models.

Our sparsity-driven framework manages parameter allocation across task sequences through a two-
stage learning process. Starting from a pretrained base model, we first identify task-critical param-
eters by optimizing a sparsity-inducing objective, which produces a binary mask identifying the
most relevant parameters for the task. We then perform mask-constrained fine-tuning, updating only
these relevant parameters while keeping the remainder frozen. This enables the model to achieve
promising performance by updating only a sparse subset of the total parameters, thereby facilitating
targeted knowledge acquisition with minimal interference and preserved plasticity. In practice, the
parameters learned for new tasks are incrementally fused into the base model via simple accumula-
tion for computational efficiency. To further mitigate interference arising from repeated parameter
use, that is, the same parameter may be updated across multiple tasks, we introduce a gradual forget-
ting mechanism. This mechanism randomly resets a tiny portion of the accumulated updates to zero
when parameter reuse exceeds a predefined saturation threshold, effectively reducing interference
and enhancing stability during continual learning.

In terms of performance evaluation, existing continual learning benchmark datasets suffer from a
limited number of classes. For instance, CIFAR-100 is a foundation dataset for the field but presents
a deficiency for long task sequences due to its class count (100 classes). Dividing CIFAR-100 into
100 tasks results in single-class learning episodes that do not possess the complexity of realistic
continual learning tasks. To fill this critical gap in evaluation protocols, we introduce ImageNet-
CIL-1K, a challenging long-sequence benchmark dataset comprising 1,000 classes curated from
ImageNet-21K, with 1069 images per class on average. This dataset is a comprehensive testbed for
long-sequence continual learning methods.

We evaluate the performance of CLARE through extensive experiments. The results demonstrate
that our method achieves significant improvements over strong continual learning baselines when
using a similar number of trainable parameters. Specifically, on our ImageNet-CIL-1K dataset with
100 tasks and 10 classes per task, our method achieves remarkable gains of over 6% and 4% in aver-



Under review as a conference paper at ICLR 2026

age test accuracy over MagMax (Marczak et al.,[2024) and APER (Zhou et al., 2025)), respectively.
Compared to the recently proposed MoAL (Gao et al., 2025), CLARE improves average test accu-
racy by over 10%. We also perform evaluations on shorter task sequences from the ImageNet-CIL-
1K dataset, including 50 and 75 tasks. The results consistently surpass previous CIL methods by a
large margin. The above findings indicate that our method can effectively perform long-sequence
continual learning.

To further explore the generalizability of CLARE, we also perform extensive evaluations on standard
CIL datasets, including CIFAR-100, ImageNet-R, ImageNet-A, and OmniBenchmark, using the
same evaluation protocols as in previous work. Our method maintains superior performance with
respect to the existing baselines. For example, compared to APER (Zhou et al., 2025)), our method
improves the average test accuracy across the four benchmarks by 6.5%.

2 METHOD

Problem Definition. Consider a neural network F4 : X' — ) parameterized by {0, ¢}, where
0 represents the backbone parameters and ¢ denotes the classifier parameters. The backbone is
initialized from pretrained weights y,s. and fine-tuned on a sequence of 7" tasks while the classifier
is trained from scratch. Atstep k € {1,...,T}, the model receives dataset S, = {(x;,¥i)},*,
where x; € R¢ and y; € Cy with |Ci| = my classes, and learn task & by incrementally updating
the backbone and classifier parameters using Si. This paper focuses on class incremental learning
(CIL), where the class spaces are disjoint: C; NC; = () for i # j. Under the exemplar-free constraint,
the previous data {S1,...,Sk—1} becomes inaccessible when learning the task k. The model must

generalize to the cumulative label space C(*) (: Ule Ci) containing Zle m; total classes.

We are particularly interested in the long task sequence regime where T is relatively large (e.g.,
T > 20), since this is an unexplored problem in previous works. In this context, catastrophic
forgetting is exacerbated, and there exist new challenges related to model capacity and parameter
interference that are insignificant in shorter sequences.

2.1 TwWO-STAGE SPARSITY-DRIVEN LEARNING

To ensure the simplicity and efficiency of the proposed method during inference (Ke et al., 2024;
Marczak et al., 2024])), we start with a simple model merging paradigm. Specifically, a base backbone
model 6y, is individually fine-tuned on every task in a sequence to obtain task-specific models
{Ok}gzl, which are subsequently merged to obtain the model for the entire sequence. For incoming
task & with dataset Sy, we define the parameter update as

Aok = 0k - ebasey (1)

where A6y, encodes task-specific knowledge. The final model is obtained by adding Afy, for all
learned tasks:

T
emerged = ebase + A9a00u7 where Aeaccu = Z Aek 2
k=1

This learning algorithm is general and can be coupled with existing classifiers for prediction, such
as prototype-based approaches (Zhou et al.l2025). In this model merging paradigm, parameter in-
terference occurs when parameter updates of different tasks correlate with each other. Parameter in-
terference disrupts the ability of Opergeq to maintain task-specific knowledge, leading to catastrophic
forgetting as knowledge of old tasks is damaged. Given a long sequence of tasks, the probability
of parameter interference increases rapidly, because each task & could conflict or correlate with the
remaining 7' — 1 tasks. Meanwhile, it is crucial to ensure sufficient model plasticity to adequately
grasp new tasks. Thus achieving a balance between parameter interference and model plasticity is
the key for long sequence CIL.

To tackle this challenge, we propose to explicitly learn a small subset of parameters that are most
relevant for each task, yielding sparse and representative parameter updates. This mitigates pa-
rameter interference in Opergeq While maintaining adequate model plasticity. Specifically, the sparse
subset of most relevant parameters is discovered via including an L; regularization term, which fa-
cilitates sparse signal recovery (Donoho & Starkl, |1989; |Donoho & Logan, [1992), in addition to the



Under review as a conference paper at ICLR 2026

cross-entropy term in the training loss. Since optimizing such a joint objective could lead to subopti-
mal classification performance, we introduce a two-stage fine-tuning procedure that separates mask
discovery from task learning.

Stage 1: Sparse Mask Discovery We first learn which parameters are most relevant for task k by
minimizing
Lmaske = Egpmse [(0F@301), )| +X10k = el ©)

Cross-entropy loss

where 6}, is the unknown and \ is a hyperparameter that balances the two terms in the above loss.
The L, regularization encourages sparsity in Aék(: 0, — Opase ), naturally identifying the most
relevant parameters for task k. Once the above loss minimization is complete, we compute a sparse
binary mask M, € {0, 1}°! with a sparsity ratio p denoting the percentage of zero entries in Mj,.
Specifically, we calculate the p percentile of all |A§k| values as a threshold to generate the sparse
mask Mj. In our experiments, p is set to 85-96%.

Stage 2: Mask-Constrained Task Learning Using the discovered mask M}, we perform standard
fine-tuning with cross-entropy loss only:

0), = argmin E, ) s, [e( Fla;00), y)} st. gradd”] = 0if M) =0, )
O

where only the sparse subset of parameters chosen by the mask Mj, receives gradient updates.
This two-stage process isolates mask learning from task learning, eliminating potential interference
between the cross-entropy and L, regularization terms in the joint objective (Eq.[3). And the second
stage focuses solely on task learning (Eq. @), thus improving model plasticity. Note that Stage 2
incurs little computational overhead by only updating a sparse subset of model parameters. Com-
parison of training time is provided in the Appendix[A.3]

Noise-Enhanced Robustness To further enhance robustness against parameter interference during
model merging, we inject Gaussian noise during the forward pass of Stage 2 training:
5 _ 91(,1)56 +N(0,0?), if M,gi) = 0 (frozen), 5)
k 6", it MY =1 (active),
where 5,{ v stands for the parameter values used during the forward pass. This noise is applied to
frozen parameters only during forward propagation, simulating the sum of Ay, for all other tasks in
Eq.[2] Such noise adaptation improves the model’s resilience to interference without affecting active
parameter learning.

2.2 GRADUAL FORGETTING

Our sparsity-driven learning via masking encourages a minimum number of parameter updates dur-
ing task learning. Nevertheless, a subset of parameters is inevitably updated by multiple tasks,
creating interference hotspots that can degrade performance over a long sequence. For a large num-
ber of tasks (7'), the expected parameter usage may exceed the total number of parameters (i.e,
(1 —p)T > 100%), giving rise to each parameter on average being updated multiple times and thus
causing parameter interference. To this end, we introduce a gradual random forgetting mechanism
because learning new tasks without forgetting cannot deliver optimal performance any more once
the model capacity has been reached. In our mechanism, we randomly set the parameters in 0,cc,, to
zero with a probability of 1/F, where F' is a hyperparameter that represents the saturation point, ev-
ery time anew Afy, (k > F') is learned and added to existing 6.¢,,. This mechanism ensures that the
average number of times each parameter is reused ceases to increase and is maintained at (1 — p) F.
The random forgetting mask F is applied as Af,.c < F @ Aby, where F ~ Bernoulli(1 — 1/F).
This process is consistent with the Ebbinghaus forgetting curve, where the fraction of memory that
can be retained over time follows an exponential decay curve (Ebbinghaus| [1964)).

2.3 INFERENCE

Our sparsity-driven learning framework yields merged backbone parameters ¢,,.,4c alongside a
collection of task-specific classifiers. Since the task identity, which is required to select the correct
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classifier, is unknown at inference time, we employ a Mixture-of-Experts (MoE) classifier equipped
with an automatic routing mechanism to predict the task identity and direct the input to the selected
expert. To enhance robustness against routing errors, we construct our router using an ensemble
strategy following (Yu et al.,[2024a} |Gao et al., 2025)). Details can be found in the Appendix E}

2.4 DISCUSSIONS

There exist important differences between our two-stage sparsity-driven task learning and tradi-
tional regularization-based or sparse continual learning methods (Kirkpatrick et al., 2017} |[Zenke
et al., 2017; Aljundi et al., 2018; Wang et al.,[2022a)). First, the learning processes are different. Our
method separates mask learning from task learning and achieves optimal task learning over a sparse
mask, while traditional methods attempt to learn new tasks and preserve previous knowledge simul-
taneously, resulting in suboptimal solutions for both objectives. Second, parameter selection criteria
are different. Traditional methods use static, instantaneous heuristics like parameter magnitude or
single-time gradient scores. In contrast, our sparse mask selects parameters by their accumulated
updates during Stage-1 training, capturing their full contribution to learning.

3 BENCHMARK DATASETS AND ARCHITECTURES

3.1 NEW BENCHMARK DATASET IMAGENET-CIL-1K

Dataset Construction. Dividing existing class incremental learning (CIL) benchmark datasets,
such as CIFAR-100 (Krizhevsky et al.,|2009) and ImageNet-R (Hendrycks et al., [2021a)), into long
sequences of tasks would result in trivial or oversimplified tasks due to their limited total number
of classes. For instance, dividing CIFAR-100 and ImageNet-R into 100 tasks yields only 1 and 2
classes per task, respectively. To this end, we construct ImageNet-CIL-1K, a challenging benchmark
dataset for long-sequence continual learning that maintains task difficulty even when partitioned into
many tasks. ImageNet-CIL-1K is derived from ImageNet-21K-P (Ridnik et al., 2021)), a subset of
ImageNet-21K (Deng et al., 2009) with 12,358,688 images from 11,221 classes after the exclusion
of classes with fewer than 500 images. We exclude all classes present in ImageNet-1K from this
subset to avoid data leakage when models pretrained on ImageNet-1K are used. We further re-
move images corresponding to non-leaf nodes in the WordNet hierarchy (Miller, [1995)) to prevent
taxonomic overlaps (e.g., eliminating co-occurrence of general and specific categories such as “an-
imal” and “’dog”). Finally, we randomly sample 1,000 classes from the remaining pool to construct
ImageNet-CIL-1K. 50 images are randomly selected from every class in ImageNet-CIL-1K to form
the validation set, while all remaining images are allocated to the training set. All images are resized
to 224x224 pixels to reduce storage space. The resulting benchmark dataset comprises 1,000 classes,
with 1,069,563 training images and 50,000 validation images, enabling comprehensive evaluations
of continual learning methods on long task sequences.

Task Configuration. To allow for performance comparison across a range of task sequence lengths,
we evaluate on sequences of 50, 75, and 100 tasks, where each task contains 10 classes. In accor-
dance with (Rebuffi et al.,[2017) and standard protocols, classes are first arranged in a randomized
order (seed 1993) and subsequently partitioned into tasks for class-incremental learning. We employ
exemplar-free learning, which does not allow access to data from previously learned tasks. The per-
formance metric is the overall test accuracy over all classes encountered once a complete sequence
of tasks has been learned.

3.2 STANDARD BENCHMARK DATASETS

To demonstrate the generalizability of our method beyond long task sequence scenarios, we evaluate
on standard continual learning benchmark datasets following established protocols. We conduct 10-
task class-incremental learning experiments on four widely used datasets: CIFAR-100 (Krizhevsky
et al., [2009), ImageNet-R (Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al., 2021b), and
OmniBenchmark (Zhang et al.||2022). In these experiments, we employ the original ImageNet-21K
pretrained ViT-B/16 (Dosovitskiy et al.l|2020) as the backbone and perform full model fine-tuning.
This configuration is meant to validate that our sparsity-driven learning framework maintains com-
petitive performance in conventional settings beyond long task sequence scenarios. Following (Re-
buffi et al., 2017), we shuffle the class order using a random seed of 1993 for all methods.
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3.3 BENCHMARK ARCHITECTURES

We adopt two different architectural configurations corresponding to two experimental settings.

Config. #1. For standard continual learning benchmark datasets (e.g., 10 tasks), we use a standard
ViT architecture following previous work (Zhou et al., [2024)).

Config. #2. For long task sequences (e.g., 100 tasks), we propose an enhanced variant of ViT: start-
ing from a pretrained backbone with U layers in total, we simply increase the number of channels in
the final L layers. Our technical motivation is straightforward. It is widely observed that early layers
in deep networks capture low-level features (e.g., edges and textures), which are general and trans-
ferable across tasks. In contrast, deeper layers encode high-level semantic information that tends
to be more task-specific. In continual learning with long task sequences, accommodating diverse
high-level representations becomes critical. Hence, expanding deeper layers enhances the model’s
capacity for channel mixing and high-level semantic understanding, thus mitigating parameter inter-
ference during continual learning. Note that while more advanced architectural modifications exist,
designing a powerful neural architecture is not the main focus of our work. Instead, we adopt a
simple yet effective modification solely to establish a minimal and reproducible testbed for studying
long-sequence continual learning.

Note that the above architectural enhancement resonates with existing understandings of nervous
system development. The human brain develops low-level sensory processing circuits (e.g., in the
visual cortex) rapidly during early critical periods, after which these circuits become relatively sta-
bilized (Stiles & Jerniganl 2010). In contrast, higher-order association areas in the brain remain
plastic for a longer period, exhibiting ongoing connectivity reorganization and increasing process-
ing capacity (Stiles & Jernigan| 2010), paralleling our augmented final L layers.

4 EXPERIMENTS

We conduct comprehensive experiments to validate our sparsity-driven continual learning frame-
work across two settings: (1) long task sequence scenarios with up to 100 tasks using our new
ImageNet-CIL-1K benchmark, and (2) standard 10-task evaluations on established datasets. We
further provide ablation studies analyzing each component’s contribution to overall performance.

4.1 BASELINE METHODS

Continual Learning Baselines. For our long task sequence evaluation, we compare against re-
cent state-of-the-art methods spanning different paradigms: prompt-based approaches (L2P (Wang
et al.l [2022b)), prototype-based methods (APER (Zhou et al., 2025)), adapter-based methods
(EASE (Zhou et al., 2024), MoAL (Gao et al} 2025), SEMA (Wang et al., [2025)), model merg-
ing methods (MagMax (Marczak et al.,|2024), Random Masking (Ke et al., 2024; Yu et al., 2024b),
MoAL (Gao et al., 2025)), and a state-of-the-art subnetwork method (PGM (Wan & Yang, 2025)).
We also include classical continual learning methods (LwF (Li & Hoiem, 2017}, iCaRL (Rebuffi
et al.,[2017)) to illustrate the challenges of long sequences for traditional approaches.

Reference Baselines. To establish performance bounds, we include several reference methods:
sequential fine-tuning (lower bound), linear probing (feature quality assessment), joint fine-tuning
(upper bound), and CLIP zero-shot (Radford et al., [2021) (task-agnostic baseline). All trainable
baselines utilize our enhanced backbone architecture to ensure fair comparisons.

4.2 IMPLEMENTATION DETAILS

We evaluate our framework on multiple benchmarks using two backbone configurations: an
ImageNet-21K pretrained ViT-B/16 (Config #1 in Section [3.3) for standard benchmarks (CIFAR-
100, ImageNet-R, etc.), following the protocol of prior work (Zhou et al., [2024} |Gao et al., |2025)),
and an enhanced ViT-B/16 backbone for our novel ImageNet-CIL-1K benchmark (Config #2 in
Section [3.3)), where the final layers are expanded and pretrained on ImageNet-1K. This enhanced
configuration is also benchmarked from CLIP (Radford et al.,2021)) initialization. Key hyperparam-
eters, including the sparsity ratio p € [4, 15] and saturation point F', were set based on the estimated
parameter requirements per task and their reuse frequency; comprehensive implementation details
are deferred to the Appendix
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Table 1: Comparison of different methods on ImageNet-CIL-1K. The columns under “# Tasks”
represent the average test set accuracy of all learned classes after learning 100, 75, and 50 tasks,
respectively, with each task having 10 classes. All models have been adjusted to have comparable
number of trainable parameters.

Method # Trainable # Tasks
Params (M) 100 75 50

Joint Finetune 195 73.7 - -
Linear Probing 1 52.1 55.0 58.2
iCaRL (CVPR 2017) 195 36.7 42.8 46.1
LwF (TPAMI 2018) 195 27.6 29.7 33.6
Sequential Finetune 195 8.7 9.3 9.8
Random Masking (Arxiv 2024) 195 28.1 34.7 443
L2P (CVPR 2022) - 39.7 473 52.1
EASE (CVPR 2024) 194 44.8 523 57.8
Subnetwork-PGM (ICML 2025) 193 36.5 40.6 44.8
MoAL (CVPR 2025) 196 529 56.7 62.0
APER (IJCV 2025) 196 553 58.1 60.3
MagMax (ECCV 2024) 194 53.1 56.9 59.2
Ours 195 594 62.0 65.9

4.3 LONG TASK SEQUENCE CIL RESULTS

Performance Comparison and Analysis. As shown in Table [T} our method consistently outper-
forms all baselines across task sequence lengths ranging from 50 to 100. On 50 tasks, our method
achieves a significant improvement of 3.9% over the strongest baseline. This performance advan-
tage is maintained as the task sequence scales, with improvements of 5.3% and 5.1% over MoAL
and MagMax on 75 tasks, respectively. Finally, on the challenging 100-task sequence, our method
surpasses MagMax, APER, and MoAL by 6.3%, 4.1%, and 6.5% in accuracy, respectively. These
results show that our method achieves optimal plasticity-stability trade-off by maintaining superior
performance across various task lengths, setting a new baseline for long-sequence CIL.

Evaluation with CLIP-
pretrained Backbone. Table 2: Performance comparison using CLIP pretrained backbone
To assess the generaliz- model. The rightmost columns show performance on long task se-
ability of our approach quences with varying numbers of incremental tasks.

across different pretraining
paradigms, we compare

ImageNet-CIL-1K (# Tasks)

. N . Method CIFAR100 ImageNet-R 100 75 50
it against CLIP using the CLIP Zero-shot ViT-B/16 (86M) 68.7 77.1 617 607 61.9
enhanced CLIP-pretrained CLIP Zero-shot VIT-L/14 (307M) 72.9 79.7 647 674 69.0
ViT-B/16 backbone (Con- APER (JCV 2025) 86.5 74.6 59.1 639 67.3
fig #2, Section B3). As  SuiKcvrm a0 %01 5 %1 els e
Summarized in Table our Ours 91.0 80.3 64.9 69.1 73.9

method exhibits consistent
improvements over both continual learning and CLIP zero-shot baselines.

Notably, while APER, MoAL, and SEMA perform competitively or better than CLIP zero-shot
ViT-B/16 (86M) on CIFAR100 (10 tasks), ImageNet-R (10 tasks), and medium sequences (50-75
tasks, ImageNet-CIL-1K), they fall short on the 100-task benchmark. In contrast, despite using a
backbone with only 256M parameters, our method surpasses CLIP zero-shot ViT-L/14 (307M) in
all task lengths, with a significant improvement of 4.9% and 1.7% on 50 and 75 tasks, respectively.
These findings underscore the capacity of our method to harness powerful pretrained models.

4.4 STANDARD BENCHMARK EVALUATION

We evaluate our method on established 10-task class-incremental benchmarks (CIFAR-100,
ImageNet-R, ImageNet-A, OmniBenchmark) using a vanilla ViT-B/16 pretrained on ImageNet-
21K to demonstrate its competitiveness in conventional settings. Table [3| shows that our method
achieves state-of-the-art or competitive performance across all datasets: CIFAR-100 (90.7%,
best performance), ImageNet-R (79.6%, best performance, +0.3% over MoAL), OmniBench-
mark (78.7%, best performance), and ImageNet-A (64.0%, comparable to MoAL's 64.1%).
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Importantly, = our method Table 3

: Comparison of test accuracy on standard benchmark

demonstrates  superior  per- datasets each split into 10 tasks using ImageNet-21k pretrained
formance across both short ViT-B/16 backbone.

and long task sequences:

it significantly outperforms  Method

CIFAR100 ImageNet-R ImageNet-A OmniBenchmark

MOoAL (the strongest baseline  ~Sequential Finetune 82.1 68.6 40.6 62.4
on short Sequences) by 6.5% LwF (TPAMI 2018) 717.6 69.6 40.2 64.6
L2P (CVPR 2022) 84.5 737 455 63.8

on 100 tasks (Table[T) and also  Eysp cvpR 2004) 87.3 69.2 76.0 74.4
substantially surpasses APER  APER (iCV 2025) 85.8 72.1 55.7 733
. MoAL (CVPR 2025) 90.5 79.3 64.1 78.6

(the strongest baseline on long o — s s U

sequences) by 8.3% on 10-task
ImageNet-A (Table [3). This

dual competence across both standard and long task sequences validates the general applicability of
our sparsity-driven framework, establishing it as a unified solution for diverse CIL scenarios.

4.5 ABLATION STUDIES

We conduct ablation studies to validate
all components of our sparsity-driven
learning framework. All experiments
are performed on 100-task sequences us-
ing our ImageNet-CIL-1K dataset and
expanded ViT-B/16. Ablations on the
impact of random forgetting and ar-
chitecture setting are given in the Ap-

pendix

Sparsity Mechanism Analysis. Ta-
ble E] show the critical role of both
learned sparsity and the two-stage mask-
task learning separation. Replacing our
learned masks with random masks of

Table 4: Ablation study on sparsity constraints and
training strategies. All variants use 195M trainable pa-
rameters and are evaluated after 100 tasks. The full
framework uses a learned sparse mask with a two-stage
training process.

Variant Accuracy (%) Difference (%)
Full Framework (Ours) 59.4 -
Random Mask for Stage 2 47.5 -11.9
No Regularization (Stage 1 Only) 36.9 =225
L1 Regularization (Stage 1 Only) 413 -18.1
No Regularization (2 Stage) 51.7 -1.7
L2 Regularization (2 Stage) 34.7 -24.7
w/o Gaussian Noise 58.0 -1.4
Gaussian Noise o = 0.005 56.8 -2.6
Gaussian Noise o = 0.0001 59.1 -0.3
Gaussian Noise o = 0.0005 (Default) 594 -

equivalent sparsity causes an 11.9% performance drop (59.4% to 47.5%), confirming the impor-
tance of strategic parameter selection. The necessity of sparsity during task learning is evident when
removing it entirely (No Regularization stage 1 only): accuracy plummets 22.5% to 36.9%, showing
severe parametric interference without sparsity constraint.

One-stage fine-tuning based on both L
regularization and cross-entropy loss
proves even less effective (41.3%, -
18.1%), validating our decoupled mask
discovery and task learning strategy. L2
regularization instead of L1 performs
similarly poorly (34.7%, -24.7%), in-
dicating that weight magnitude control
cannot substitute for explicit sparsity
enforcement.

Gaussian noise injection provides mod-
erate but consistent improvements, with
an optimal standard deviation of o =
0.0005. Removing noise causes 1.4%
performance loss, confirming its role in
interference mitigation.

Figure |3| reveals that 95% sparsity op-
timally balances interference reduction

Optimal balance:
95% sparsity

Final Accuracy (%)

0 50 75 90 95 97 98 99
Sparsity Ratio (%)

Figure 3: Impact of sparsity ratio on test accuracy af-
ter 100 tasks. Optimal accuracy (59.4%) occurs at 95%
sparsity, with sub-optimal results at both lower and higher
sparsity levels. The green zone denote the optimal range
balancing interference reduction and learning plasticity.

with learning plasticity, with performance degrading at both extremes. Insufficient sparsity leads to
severe interference, whereas excessive sparsity leads to limited learning plasticity.
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5 RELATED WORK

Continual Learning Traditional continual learning methods address catastrophic forgetting
through regularization constraints (Kirkpatrick et al., [2017; [Li & Hoiem, [2017), rehearsal strate-
gies that retain exemplars of previous tasks (Rebuffi et al., 2017), or sparse dynamic parameter
allocation techniques inspired from model pruning and sparse learning (Mallya & Lazebnik, 2018
Wang et al} 2022a} [Yildirim et al., | 2024; Wan & Yang]| 2025). The advent of large-scale pretrained
models has catalyzed a paradigm shift toward pretrained model (PTM)-based continual learning,
which leverages backbone representations and employs adapters (Zhou et al., 2024} Yu et al.,|2024a;
Wang et al., 2025} [Zhou et al., 2025; |Gao et al., [2025), prompts (Wang et al., 2022bj; Smith et al.,
2023)), or model merging strategies (Marczak et al., [2024; [Ke et al., 2024).

Adapter-based methods can be categorized into router-based methods, which maintain task-specific
adapters and employ routing mechanisms for adapter selection during inference, and prototype-
based methods, which project prototype features from previous tasks into new feature spaces. How-
ever, both categories exhibit a scalability bottleneck: router-based methods suffer from increasing
routing errors as task sequence lengths grow, while prototype-based methods accumulate projection
errors across extended sequences, leading to performance degradation. In contrast, model merging
methods bypass these architectural constraints by directly integrating task-specific knowledge into
a unified model without requiring complex routing or projection mechanisms. Our work extends
PTM-based continual learning to long task sequence scenarios, a critical yet underexplored domain.

Model Merging Model merging methods seek to combine multiple specialized models, often by
transferring parameter updates from task-specific models to a shared base model (Yu et al., [2024b;
Marczak et al., 2024} Ke et al.| 2024; |Gao et al.| 2025). To mitigate interference among tasks, re-
cent methods apply post-hoc sparsity to these parameter updates. DARE (Yu et al., 2024b) and its
concurrent application to continual learning (Ke et al.| 2024)) randomly prune a large fraction of
updates. In contrast, MagMax (Marczak et al.l [2024) only retains the update with the largest mag-
nitude for each parameter, mitigating interference but leading to insufficient plasticity. Meanwhile,
MoAL (Gao et al.,|2025)) does not consider parameter interference and merges multiple task-specific
adapters into a shared one using an experiential moving average of their parameters.

The common thread in these works is the application of a predefined sparsity pattern (random or
magnitude-based) after task-specific training. Our work departs from this approach by explicitly
learning sparse masks as an integral part of the training process. This allows our framework to
proactively discover a sparse set of most relevant parameters for each task prior to training and
prepare each task-specific model against interference during training.

6 LIMITATIONS

To the best of our knowledge, this is the first piece of work that scales continual learning up to
100 non-trivial vision tasks. While we recognize that exploring even longer task sequences is of
significant interest for real-world applications, such extensive evaluation reaches beyond the scope
of this study due to computing resource limitations. However, given the simplicity and promising
performance of our method on 100 tasks, we believe that our method can serve as a capable base-
line in continual learning under long-sequence settings. We hope that further work can explore the
potential of our method for longer task sequences. Possible future improvements include further mit-
igating parameter interference to reduce catastrophic forgetting and scaling the number of trainable
parameters proportionally with the number of tasks to dynamically enhance model capacity.

7 CONCLUSION

In this paper, we have tackled the formidable problem of long-sequence continual learning by ad-
dressing the core issue of balancing catastrophic forgetting and learning plasticity via a sparsity-
driven learning framework. Our approach, validated on a new challenging benchmark dataset of
100 tasks, significantly advances the state of the art. We believe this work is a significant step
towards scalable continual learning systems.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training Details. All experiments use PyTorch on NVIDIA H800 GPUs. For experiments on
our ImageNet-CIL-1K benchmark dataset (Config #2 in Section [3.3), we expand the final L =
3 layers in ViT-B/16 from 768 to 2304 dimensions with SiLU gating. Our enhanced ViT-B/16
backbone is pretrained on ImageNet-1K following standard hyperparameters set in (Liu et al.,[2021)
before being fine-tuned on continual learning tasks. While standard continual learning practices
typically employ ImageNet-21K pretrained models (Zhou et al.| 2024} 2025} |Gao et al., 2025)), we
deliberately choose ImageNet-1K pretrained ViT-B/16 (Touvron et al.| |2021)) to ensure completely
disjoint data distributions between pretraining and our benchmark dataset derived from ImageNet-
21K. This prevents potential data leakage, providing a more rigorous evaluation of continual learning
capabilities. Our two-stage fine-tuning employs Stage 1 mask discovery with L1 regularization
(A = 8 x 1075, learning rate 2 x 10~%) followed by Stage 2 mask-constrained fine-tuning with
cross-entropy loss (80 epochs, learning rate 3=4). We enforce 95% sparsity (p = 95%) through
percentile thresholding, and apply gradual random forgetting after F' = 60 tasks with forgetting rate
1/F = 1.67% to the accumulated parameter updates. Gaussian noise (o = 0.0005) is injected into
the frozen parameters during Stage 2 forward passes. Training uses AdamW optimizer with cosine
scheduling, weight decay set to 102, total batch size set to 512, and standard ImageNet training
augmentations (Liu et al., 2021). The sparsity ratio p and the saturation point F' are set according
to the estimated average number of parameters required for each task and the estimated number of
times a parameter can be reused, respectively.

12
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We also benchmark our approach on ImageNet-CIL-1K with CLIP (Radford et al.| |2021) (Config
#2 in Section [3.3). For a fair comparison, we initialize our model using a CLIP-pretrained ViT-
B/16 backbone and apply the architectural enhancement introduced in Section[3.3] Since the newly
appended parameters have not been pretrained, we freeze all pretrained layers and only train the
expanded layers on ImageNet-1K to obtain a stable starting point. This fine-tuning step uses the
standard ImageNet-1K training setting (Liu et al., [2021). For continual learning, we mostly use the
same hyperparameters in the above ImageNet-1K pretrained setting and made the following changes
to achieve stronger performance: A\ = 2 x 104, 200 training epochs with a learning rate of 9x 1075,
o = 0.0003, F' = 100, and leveraged SuMix (Qin et al.,|2024) as an additional data augmentation.

For a fair evaluation on the standard continual learning benchmark datasets (CIFAR100, ImageNet-
R, ImageNet-A, OmniBenchmark) using Config #1 in Section we adopt an ImageNet-21K
pretrained ViT-B/16 backbone following (Zhou et al., [2024; |Gao et al| 2025)). The training hy-
perparameters and setting follow (Gao et al., |2025)) and the hyperparameters for our sparsity-driven
learning framework are A = 7 x 107°, p = 85%, o = 0.0006, and I’ = 10 (no forgetting).

Ensemble Output. Our merged backbone model is integrated with a multi-component ensemble
for final prediction, combining three existing techniques to address inference-time task identifica-
tion in long-sequence continual learning. Specifically, we employ: (1) a mixture-of-experts (MoE)
approach from (Yu et al.|[2024a) that maintains " separate classification heads corresponding to the
learned tasks, where each head h; is trained using our sparse parameter updates while others remain
frozen to ensure task-specific specialization, (2) autoencoder-based task identification following (Yu
et al.| 2024a) that computes reconstruction scores from task-specific autoencoders to identify the
most likely source task during inference, with final task selection based on the average between
autoencoder reconstruction scores and top-2 MoE predictions for robust routing, and (3) a separate
classification head from MoAL (Gao et al., 2025) that maintains class prototypes. The final pre-
diction averages outputs from the selected MoE classification head and prototype-based prediction.
Ablation studies in Section [4.5]illustrate the individual contribution of each ensemble component.
Note that this ensemble is not part of our main contributions in this paper, but an integral part of our
overall continual learning pipeline.

A.2 ADDITIONAL ABLATION STUDIES

Table 5: Comparison between independent and sequential fine-tuning in our sparsity-driven learning
framework.

Method Accuracy
Independent fine-tune (Ours) 59.4
Sequential fine-tune with sparse mask 50.9

Impact of Independent Fine-tuning. In our sparse learning framework, we fine-tune the base
model for each task independently using the two stage framework introduced in Section In
Table El, we observe that sequential fine-tuning, where the base model is the accumulated 6,
in Equation [2] instead of @45, lead to sub-optimal results. This can be attributed to the fact that
the model fine-tuned on the last task is equivalent to the final merged model, leading to biased
performance towards tasks learned later on and substantial interference with previous learned tasks,
resulting in catastrophic forgetting.

Random Forgetting Impact. Fig {4]illustrate the impact of the selection of saturation point F' (also
can be thought of as the forgetting rate) in our forgetting mechanism. The optimal 1.67% forget-
ting rate prevents interference accumulation while preserving essential knowledge. No forgetting
(F = 100, 0% forgetting rate) causes performance degradation due to unchecked parameter con-
flicts, while excessive forgetting (2.0% or more) leads to knowledge loss, confirming the principled
calculation of our forgetting rate.

Parameter Efficiency Analysis. Our enhanced ViT-B/16 backbone increases the number of train-
able parameters to 195M. Here, we investigate the performance of our approach and representative
continual learning baselines when modifying the number of trainable parameters. Table [6] reveals
superior parameter utilization compared to existing methods. Scaling from SOM to 195M trainable
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Final Accuracy After 100 Tasks (%)
o
&

@ Optimal: 59.4% at 1.67%

1% 1.67% 2%
Inverse of Saturation Point 1/F (%)

Figure 4: Effect of random forgetting ratio on test accuracy after 100 tasks. No forgetting (0%)
causes parameter interference, while excessive forgetting (2%) leads to knowledge loss.

Table 6: Performance comparison with a varying number of trainable parameters.

# Trainable Params (M)

Method 50 100 195
Random masking 263 279 28.1
MoAL 51.6 521 529
MagMax 509 523 53.1
Ours 54.0 56.7 59.4

parameters by changing the number of channels in either our backbone or the adapter, our method
improves 5.4% while competing methods show minimal gains: Random Masking (+1.8%), MoAL
(+1.3%), and MagMax (+2.2%). This demonstrates that our sparsity-driven framework effectively
leverages additional parameter capacity while maintaining interference control.

Architectural Component Contributions. Our enhanced ViT-B/16 has 195M trainable parameters
in the last L (empirically set to 3) layers of the network by setting the channel size to 2304. Ad-
ditionally, we introduce a gating mechanism into the augmented final L layers to enable dynamic
selection of relevant information during continual learning. Mathematically, given an input X, the
gating mechanism is defined as SiLU (W X)) ® SiLU (X)), where W is the weight matrix.

Table [/] validates our architectural modifications for long-sequence continual learning through fair
comparison that maintains the same number of trainable parameters (195M) for all variants. The
choice of fine-tuning depth is important: two layers provide insufficient plasticity (-7.6% to 51.8%),
while four layers introduce excessive interference (-4.2% to 55.2%). Our three-layer configuration
achieves the optimal plasticity-stability balance. Full model fine-tuning without freezing any lay-
ers substantially degrades performance (-5.3% to 54.1%), confirming that selective layer adaptation
prevents interference with general low-level representations. Removing the SiLU gating mecha-
nism reduces performance by 1.8% (57.6%), demonstrating its importance for dynamic parameter
weighting.

Table 7: Ablation study on architectural enhancements. All variants use 195M trainable parameters.

Method Variant Accuracy
Ours 59.4

Last 2 Layers Fine-tuned 51.8
Last 4 Layers Fine-tuned 55.2
Full Model Fine-tuning 54.1
w/o Gating Mechanism 57.6
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Ensemble Component Analysis. Table [8| reveals the synergistic effects of our output ensemble
combining MoE, autoencoder, and MoAL components. Individual components show substantial
performance gaps when used in isolation: 57.8% (MoAL alone), 56.1% (MoE alone), and 57.0%
(autoencoder alone). However, we find that even when these individual components are used in
isolation, our method still outperforms other CIL methods. The complete ensemble achieves 59.4%,
confirming that the complementary strengths of individual components contribute to optimal long
task sequence performance through diverse representation and prediction strategies.

Table 8: Ablation study on classifier components. Removing any component reduces performance,
and individual components alone are substantially weaker than their integration.

Method Variant Accuracy
Full Framework (Ours) 59.4
w/o Autoencoder 58.5
w/o MOE 58.7
w/o MoAL 58.3
MoAL Alone 57.8
MOE Alone 56.1
Autoencoder Alone 57.0

Table 9: Comparison of training speed between model merging methods

Method Training time
MoAL 16.25 minutes
MagMax 12.17 minutes
Random Masking  12.03 minutes
Ours 15.61 minutes

A.3 COMPARISON OF TRAINING SPEED

Since our method takes the model merging approach, we compare the training time with model
merging baselines. Despite our two-stage sparse learning framework, our optimized implementation
has a reasonable computational cost compared to recent model merging methods when training on
the ImageNet-CIL-1K benchmark dataset. In particular, Stage 1 is only required to learn the sparse
mask so we can reduce the number of training epochs. Since Stage 2 only optimizes a sparse subset
of parameters, its training time is approximately 30% that of Stage 1. Therefore, the overall training
complexity is comparable to existing model merging methods. Note that Random Masking and
MagMax have similar steps in the training procedure so their training times are approximately the
same.

A.4 SPARSITY-DRIVEN CONTINUAL LEARNING ALGORITHM

The pseudo code for our two-stage sparsity-driven learning framework is given in Algorithm [I]

A.5 NEW BENCHMARK DATASET IMAGENET-CIL-1K

This section details the composition and key statistics of the proposed ImageNet-CIL-1K bench-
mark. The dataset comprises 1,000 classes, with a near-uniform distribution of images per class. As
illustrated in Figure[3] the number of images per class has a mean of 1069.6 and a median of 1098.5,
indicating a balanced and robust dataset suitable for large-scale continual learning evaluation.

A complete listing of all 1,000 class names is provided for reference.
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Algorithm 1 Sparsity-Driven Continual Learning Algorithm

Require: pretrained base model 6y, task sequence {Sk}{zl, sparsity ratio p, noise variance o2,
saturation point F'
Ensure: Final merged model Operged
1: Initialize Afye. < 0

2: for

eachtask k € {1,...,T} do

3: Initialize Afy, < 0 > Stage 1: Mask Learning
4: Minimize Lmask = E(g,y)~s, [0(f (25 Opase + A0k), y)] + A[|Ab||1 via gradient descent
. w0 1 if |A6,(:)| > p percentile of all Afy,
k 0 otherwise
6: Set require_grad = (M,Ei) ==1) forall4
7: Initialize A6y < 0 > Stage 2: Fine-tuning
8: while not converged do
9: Sample noise () ~ A(0, 02) for positions where M. ,El) =0
10: Set €(®) = 0 for positions where M" = 1
11: Gradient descent step for ming, E; )~s, [0(f(; Opase + € + AOk), y)]
12: > Cross-entropy only
13: end while
14: if £ > F' then > Gradual random forgetting
15: Generate random binary mask F with forgetting rate 1/F'
16: Apply forgetting: Af,cc < F © Abyec
17: end if
18: Abace +— Abyee + Ay, > Add current task update
19: end for
20: Omerged < Opase + Abace > Final merge return 6pergeq
1204
1001
o 804
a
i)
O
S 60
o
Q
S
Z 401
20
0 -
0 500 1000 1500 2000 2500

Number of Training Images per Class

Figure 5: Histogram of image count per class in the proposed ImageNet-CIL-1K benchmark dataset.
The distribution shows a high concentration around the mean (1069.6, denoted by the red line;
orange region denote the inter-quartile range), confirming a balanced allocation of samples across

classes.
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A.6 ETHICS STATEMENT

This work presents an advancement in continual learning algorithms. We use standard, publicly
available datasets for training and evaluation. Our research does not raise any ethical issues, as it
is not directed towards any specific application domain that could be deemed harmful (e.g., surveil-
lance, misinformation).

A.7 REPRODUCIBILITY STATEMENT
Although the code is not provided together with this paper submission, we are committed to mak-
ing the source code publicly available once the paper receives a final decision. Comprehensive

implementation details and the pseudo code for our sparse learning framework are provided to aid
reproducibility.

A.8 USE OF LLM.

Deepseek-r1 (Guo et al.l|2025) and Gemini 2.5 pro (Comanici et al.| 2025) have been used solely to
check for grammatical errors, polish the wording, and drawing figures with Python.
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rock

ovenbird
pitta

spotted fly-
catcher

ring ouzel
wood thrush
whinchat
wheatear
robin
goldcrest
blackcap

greater
whitethroat

lesser
whitethroat

sedge warbler
parula warbler

Audubon’s
warbler

myrtle warbler
blackpoll
raven

blue jay

Clark’s
nutcracker
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butcherbird
house wren

long-billed
marsh wren

red-breasted
nuthatch

white-breasted
nuthatch

blue tit
tree swallow
satin bowerbird

Bohemian
waxwing

Cooper’s hawk
marsh harrier
sparrow hawk
bald eagle
griffon vulture

Egyptian vul-
ture

black vulture
black vulture
great grey owl
tawny owl
screech owl
spotted owl

Old World
scops owl

European fire
salamander

spotted  sala-
mander

common newt
red eft

spotted  sala-
mander

axolotl
hellbender
wood-frog
green frog
tailed frog
American toad
obstetrical toad

canyon
treefrog

green turtle
Atlantic ridley

common snap-
ping turtle

diamondback
terrapin

red-bellied ter-
rapin

painted turtle
tuatara
banded gecko

common
iguana

marine iguana

side-blotched
lizard

tree lizard

Texas horned

lizard

western skink
agama

frilled lizard
mountain devil
green lizard

Komodo
dragon

African
crocodile

Chinese alliga-
tor

gavial
triceratops

smooth green
snake

green snake
corn snake
gopher snake
pine snake
milk snake

common garter
snake

ribbon snake
water moccasin
vine snake
boa constrictor
anaconda
carpet snake
copperhead
hamadryad
green mamba
taipan

sea snake

horned viper
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Mojave rat-
tlesnake

massasauga
ground rattler
fer-de-lance
harvestman

orb-weaving
spider

black and gold
garden spider

garden spider
cockerel
brood hen
pullet
Orpington

European black
grouse

capercaillie
spruce grouse

greater prairie
chicken

ring-necked
pheasant

hoatzin
rock dove

band-tailed pi-
geon

Streptopelia
turtur

mourning dove
roller

popinjay

poll

kea

sulphur-crested
cockatoo

budgerigar

European
cuckoo

belted  king-
fisher

Euopean
hoopoe

European swift
frogmouth

green  wood-
pecker
yellow-shafted
flicker

red-shafted
flicker

barbet
toucanet
quack-quack
diving duck
mallard

black duck
bufflehead
mandarin duck
eider

American mer-
ganser

red-breasted
merganser

Chinese goose
honker
coscoroba

cob

pen

mute swan
trumpeter
tusker
echidna
opossum rat
giant kangaroo
rock wallaby
tree wallaby
numbat

calf

doe

sea fan

mushroom
coral

woodborer

common
limpet

Hermissenda
crassicornis

tiger cowrie
seashell
ark shell

chambered
nautilus

blue crab
fiddler crab

American lob-
ster

spiny lobster
daphnia

sacred ibis

19

common
spoonbill

snowy egret

black-crowned
night heron

yellow-
crowned night
heron

crested cariama

Florida
gallinule

European
gallinule

American
gallinule

Old World coot
killdeer
dotterel
lapwing

ruddy turn-
stone

surfbird

red-backed
sandpiper

redshank

lesser yel-
lowlegs

curlew  sand-
piper
sanderling

upland  sand-
piper
American
woodcock

great snipe

European
curlew

black-necked
stilt

black-winged
stilt

pratincole

black-backed
gull

laughing gull
sea swallow
skimmer
great skua
razorbill

pigeon guille-
mot

thick-billed
murre

Atlantic puffin
white pelican
solan

water turkey
Adelie

king penguin
rock hopper
fulmar
common dol-
phin

killer whale
manatee
crabeater seal
harp seal
Chihuahua
Maltese dog
Shih-Tzu
bluetick

Italian  grey-
hound

Ibizan hound

Norwegian
elkhound

Border terrier
Irish terrier
Norwich terrier

wire-haired fox
terrier

Lakeland ter-
rier

Airedale
Boston bull

miniature
schnauzer

giant schnauzer

golden re-
triever

Labrador re-
triever

vizsla
English setter
clumber

Old  English
sheepdog

Shetland
sheepdog

German shep-
herd
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miniature pin-
scher

Greater Swiss
Mountain dog

Bernese moun-
tain dog

bull mastiff
affenpinscher
pug
Pomeranian
keeshond
Cardigan

standard poo-
dle

dingo

kit fox
kitty

alley cat
kitten
Angora
Egyptian cat
cougar
jungle cat
bobcat
jaguar
cheetah
sloth bear
prey

big game
tiger beetle
flea beetle

Colorado
potato beetle

scarab

green June bee-
tle

rhinoceros bee-
tle

rove beetle
common louse
wiggler

yellow-fever
mosquito

Africanized
bee

black bee
bumblebee
cicada killer

fire ant

oriental cock-
roach

giant water bug
wheel bug
stonefly
doodlebug
painted beauty
red admiral
viceroy

purple emperor
peacock

sulphur butter-
fly

tea tortrix

tussock cater-
pillar

fall armyworm

death’s-head
moth

luna moth

forest tent
caterpillar

corn earworm

cabbageworm
edible sea
urchin

European rab-
bit

European hare
polar hare

antelope squir-
rel

eastern  chip-
munk

chipmunk
groundhog
guinea pig
chinchilla
rock hyrax
filly
broodmare

American sad-
dle horse

Arabian
Lippizan
bucking bronco
buckskin
cayuse

plow horse

Exmoor

20

carthorse

farm horse
palomino
burro

common zebra

Indian
rhinoceros

white
rhinoceros

collared pec-
cary

dogie

yak

Jersey
gaur

ewe

ram
lambkin
Hampshire
merino
billy
bezoar goat
ibex

gnu
sassaby

Thomson’s
gazelle

bongo

nyala
bushbuck
steenbok
common eland
gemsbok
pronghorn
Japanese deer
fallow deer
Arabian camel
guanaco
two-toed sloth
ant bear
pangolin
world

Homo sapiens
sapiens

silverback
gibbon
howler monkey

African  ele-
phant

coati

giant panda
game fish
blue catfish
pollack
allice shad

landlocked
salmon

chinook
coho
goosefish
frogfish
perch

European
perch

northern pike
pumpkinseed
flame fish
crevalle jack
cardinal tetra
porkfish

red drum
mulloway
white croaker

spotted weak-
fish

parrotfish
skipjack
bonito

blue marlin
bowfin
paddlefish
gar
stonefish

queen trigger-
fish

balloonfish
abacus
A battery

Abbe con-
denser

abbey
accelerator
acropolis
adapter
afterburner

air conditioner
aircraft engine
air horn

air terminal

alehouse
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altar
altazimuth
alternator
amphitheater
amphora
analyzer
anastigmat
anchor chain
AND circuit
anklet
antiperspirant
ao dai
aperture
aquaplane
argyle
armoire
arterial road
ashtray
assembly
assembly hall
athletic sock
atrium
attache case
audio CD
autobahn
autofocus
automobile en-
gine
autoradiograph
autostrada
awning

axle bar

baby grand
baby shoe
back brace
back porch
backsword
backup system
balloon sail
ballot box
baluster
bandbox
bandoneon
bangle
banner
baptismal font

barbershop

bareboat
baritone
basilica
basinet

bass clarinet
bass drum
bass guitar
bassinet

bath salts
batik

batting glove
batting helmet
beach towel
beacon
beanbag
beaver
Bedford cord
bed jacket

bedsitting
room

bedstead
beer barrel
beer glass
beer hall
belfry

belt buckle
bench press
besom

bib

bicycle chain
bicycle rack
bicycle seat
bier
billboard
binder
binnacle
biplane
birdbath
birdcage
blackwash
blender
blue

boat hook
boathouse
bobby pin
bobsled

bodice
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bookcase
bookend
boot
bootlace
Boston rocker
bottle
bowling alley
bowling shoe
bracer

brake drum
brake lining
brake pad
brake shoe
brasserie
bread-bin
breakfast area
breathalyzer
broad arrow
brochette
buckram
buckskins
buffer

bugle
bullpen
bulwark
bungalow
bunk bed
bunker
bunsen burner
burqa

bushel basket
bustle
butterfly valve
cabinetwork
cafeteria tray
caftan
caldron
camisole
campanile
canopic jar
canopy
canteen
canteen

cantilever
bridge

cantle

car

caravansary
car bomb
cardroom
carpenter’s kit
carpet sweeper
carryall
carrycot
carving knife
case knife
cash machine

Cassegrainian
telescope

cassette
recorder

catamaran
cat box
cathedral
CD drive
CD-R

censer

cereal box
chafing dish
chain
chainlink fence
chain store
chair

chalice
chancel
chancellery
chateau
chatelaine
checkout
cheekpiece
chemise
chemise
chest protector
chiffon
chiffonier
chin rest
chukka
churn

cigar box
cigarette butt
circle

circuit breaker
city hall
cleats
cleaver
clerestory

climbing frame
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clinical  ther-
mometer

clipper

clock tower
cloisonne
cloister
clothesbrush
clothes tree
coat button
cockhorse
cockleshell
cockpit
cocktail lounge
cocktail shaker
cocotte

coffee can

coif

collar

collet

Colt
columbarium

combination
lock

command
module

compact-disk
burner

compound mi-
croscope

compression
bandage

concert grand
concert hall
concrete mixer
console table
contact
container ship
control tower
cooler

corbel

cords

cork

corner

cornice
country store
courthouse
covered bridge

coverlet

cowbell
crampon
crazy quilt
cricket bat
croquet mallet
crucifix
cupola
curbstone
dacha

dairy

dais
dashiki
data system
davenport
day school
deck chair
deep-freeze
denim

department
store

derrick

desktop com-
puter

dessert spoon
detached house
dhow

dialog box
diaper

digital clock

digital sub-
scriber line

dining-room
furniture

DIP switch
disk brake
dispensary
Dixie cup
donkey jacket
door
doorplate
dormer
dovecote
Dragunov
drawer
drawing room
drawknife
dredger

dress hat
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dressing case
dress suit
driver
dropper
drum printer
dry fly

dry wall
duckpin
duffel

dump truck
dustcloth
dustpan
Eames chair
earmuff
easel

eaves
eggbeater
eight ball
elbow pad
electric
electrical cable

electric  loco-
motive

electric  type-
writer

electronic fetal
monitor

embassy
encaustic
English saddle
ensign
erecting prism
espadrille
etagere
ethernet
evening bag
eyeliner

face guard
face powder
fairy light
false face

fan blade
fancy dress
fan vaulting
felucca

fez

field artillery

field hockey
ball

field house
fifth wheel
figure skate
finger
finger paint
fire bell
fire screen
firing chamber
first class
fixer-upper
flagpole
flintlock
flip-flop
float
floatplane
floor lamp
florist

floss

flying buttress
fob

food court
foredeck
foremast
foulard
four-poster

franking ma-
chine

freewheel
freight liner
French horn
Frisbee

front projector
fruit machine
gabardine
gaff topsail
gag

gaiter
gambrel
Garand rifle
garter belt
garter stitch
gas gun

gas holder
gas oven

gateleg table
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gharry

ghat

gift shop

gift wrapping
gig

glebe house

Global  Posi-
tioning System

gnomon
goalpost
golf bag
golf glove
golliwog
gouge
gown
grab bag

graduated
cylinder

grandfather
clock

grape arbor
grater
gravestone
grey
griddle
grinder
Guarnerius

guided missile
frigate

gusset

hair spray
half binding
hand glass
hand lotion
hand luggage
hard hat
harness
harp

hatpin

hay bale
headboard
head gasket
headpiece

headset

headstall
hearse

heat lamp
hemostat
hemstitch
hideaway
highchair
hippodrome
hockey stick
home plate
hone
honeycomb
horseshoe
horseshoe
hose

hot tub

hot-water bot-
tle

houseboat
hula-hoop

ice ax
iced-tea spoon
ice tongs
igloo
inclinometer
incubator

integrated cir-
cuit

internal drive
irons
irrigation ditch
jack-in-the-box
jigsaw puzzle
joystick
jungle gym
junk

junk shop
kachina

kayak

ketch

khadi

kilt

kirtle

kitchen table
knee-high

knitting  ma-
chine

knocker
ladder-back
ladder truck
lag screw
lame

lancet window
land line

laser

laser-guided
bomb

laser printer
lawn chair
lawn furniture
leading rein
leatherette
lever lock
lifeboat
light pen
Link trainer
local

lock

log cabin
long johns
long sleeve
loving cup
LP

luxury liner
lyceum
macrame
magnum
maillot
mallet
manhole
manor
manse
marina
masher
mattress cover

measuring cup

meat grinder
megaphone
menhir
microprocessor
microtome
microwave
midiron
miller
minicar
ministry
minivan
miter joint
monkey-
wrench
monocle
Moorish arch
mortar
mosaic

motor scooter
mountain bike
mountain tent
mouse
mouthpiece
mouthpiece
mouthpiece
movement
mufti

mule

muzzle
nailbrush

nail polish
narrow wale

national monu-
ment

neck brace

needlenose pli-
ers

negative
newspaper
newsroom
nipple
nude

nylons



	Introduction
	Method
	Two-Stage Sparsity-driven Learning
	Gradual Forgetting
	Inference
	Discussions

	Benchmark Datasets and Architectures
	New Benchmark Dataset ImageNet-CIL-1K
	Standard Benchmark Datasets
	Benchmark Architectures

	Experiments
	Baseline Methods
	Implementation Details
	Long Task Sequence CIL Results
	Standard Benchmark Evaluation
	Ablation Studies

	Related work
	Limitations
	Conclusion
	Appendix
	Implementation Details
	Additional Ablation Studies
	Comparison of Training Speed
	Sparsity-driven continual learning algorithm
	New Benchmark Dataset ImageNet-CIL-1K
	Ethics Statement
	Reproducibility Statement
	Use of LLM.


