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ABSTRACT

Humans excel at lifelong learning, as the brain has evolved to be robust to distri-
bution shifts and noise in our ever-changing environment. Deep neural networks
(DNNs), however, exhibit catastrophic forgetting and the learned representations
drift drastically as they encounter a new task. This alludes to a different error-
based learning mechanism in the brain. Unlike DNNs, where learning scales lin-
early with the magnitude of the error, the sensitivity to errors in the brain decreases
as a function of their magnitude. To this end, we propose ESMER which employs
a principled mechanism to modulate error sensitivity in a dual-memory rehearsal-
based system. Concretely, it maintains a memory of past errors and uses it to
modify the learning dynamics so that the model learns more from small consistent
errors compared to large sudden errors. We also propose Error-Sensitive Reser-
voir Sampling to maintain episodic memory, which leverages the error history to
pre-select low-loss samples as candidates for the buffer, which are better suited
for retaining information. Empirical results show that ESMER effectively reduces
forgetting and abrupt drift in representations at the task boundary by gradually
adapting to the new task while consolidating knowledge. Remarkably, it also en-
ables the model to learn under high levels of label noise, which is ubiquitous in
real-world data streams. Code: https://github.com/NeurAI-Lab/ESMER

1 INTRODUCTION

The human brain has evolved to engage with and learn from an ever-changing and noisy environ-
ment, enabling humans to excel at lifelong learning. This requires it to be robust to varying degrees
of distribution shifts and noise to acquire, consolidate, and transfer knowledge under uncertainty.
DNNs, on the other hand, are inherently designed for batch learning from a static data distribu-
tion and therefore exhibit catastrophic forgetting (McCloskey & Cohen, 1989) of previous tasks
when learning tasks sequentially from a continuous stream of data. The significant gap between the
lifelong learning capabilities of humans and DNNs suggests that the brain relies on fundamentally
different error-based learning mechanisms.

Among the different approaches to enabling continual learning (CL) in DNNs (Parisi et al., 2019),
methods inspired by replay of past activations in the brain have shown promise in reducing forgetting
in challenging and more realistic scenarios (Hayes et al., 2021; Farquhar & Gal, 2018; van de Ven
& Tolias, 2019). They, however, struggle to approximate the joint distribution of tasks with a small
buffer, and the model may undergo a drastic drift in representations when there is a considerable
distribution shift, leading to forgetting. In particular, when a new set of classes is introduced, the
new samples are poorly dispersed in the representation space, and initial model updates significantly
perturb the representations of previously learned classes (Caccia et al., 2021). This is even more
pronounced in the lower buffer regime, where it is increasingly challenging for the model to recover
from the initial disruption. Therefore, it is critical for a CL agent to mitigate the abrupt drift in
representations and gradually adapt to the new task.
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Figure 1: ESMER employs a principled mechanism for modulating the error sensitivity in a dual-
memory rehearsal-based system. It includes a stable model which accumulates the structural knowl-
edge in the working model and an episodic memory. Additionally, a memory of errors is maintained
which informs the contribution of each sample in the incoming batch towards learning such that the
working model learns more from low errors. The stable model is utilized to retain the relational
structure of the learned classes. Finally, we employ error sensitive reservoir sampling which uses
the error memory to prioritize the representation of low-loss samples in the buffer.

To this end, we look deeper into the dynamics of error-based learning in the brain. Evidence suggests
that different characteristics of the error, including its size, affect how the learning process occurs
in the brain (Criscimagna-Hemminger et al., 2010). In particular, sensitivity to errors decreases as
a function of their magnitude, causing the brain to learn more from small errors compared to large
errors (Marko et al., 2012; Castro et al., 2014). This sensitivity is modulated through a principled
mechanism that takes into account the history of past errors (Herzfeld et al., 2014) which suggests
that the brain maintains an additional memory of errors. The robustness of the brain to high degrees
of distribution shifts and its proficiency in learning under uncertainty and noise may be attributed to
the principled modulation of error sensitivity and the consequent learning from low errors.

DNNs, on the other hand, lack any mechanism to modulate the error sensitivity and learning scales
linearly with the error size. This is particularly troublesome for CL, where abrupt distribution shifts
initially cause a considerable spike in errors. These significantly larger errors associated with the
samples from unobserved classes dominate the gradient updates and cause disruption of previously
learned representations, especially in the absence of sufficient memory samples. To this end, we
propose an Error Sensitivity Modulation based Experience Replay (ESMER) method that employs
a principled mechanism to modulate sensitivity to errors based on its consistency with memory of
past errors (Figure 1). Concretely, our method maintains a memory of errors along the training
trajectory and utilizes it to adjust the contribution of each incoming sample to learning based on
how far they are from the mean statistics of error memory. This allows the model to learn more from
small consistent errors compared to large sudden errors, thus gradually adapting to the new task and
mitigating the abrupt drift in representations at the task boundary. To keep the error memory stable,
task boundary information is utilized to prevent sudden changes. Additionally, we propose an Error-
Sensitive Reservoir Sampling approach for maintaining the buffer, which utilizes the error memory
to pre-select low-loss samples from the current batch as candidates for being represented in the
buffer. It ensures that only the incoming samples that have been well learned are added to the buffer
that are better suited to retain information and do not cause representation drift when replaying them.
The proposed sampling approach also ensures higher-quality representative samples in memory by
filtering out outliers and noisy labels, which can degrade performance.

Another salient component of the learning machinery of the brain is the efficient use of multiple
memory systems that operate on different timescales (Hassabis et al., 2017; Kumaran et al., 2016).
Furthermore, replay of previous neural activation patterns is considered to facilitate memory forma-
tion and consolidation (Walker & Stickgold, 2004). These components may play a role in facilitating
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lifelong learning in the brain and addressing the challenges of distribution shifts. Therefore, ESMER
also employs experience replay in a dual-memory system. In addition to episodic memory, we main-
tain a semantic memory, which gradually aggregates the knowledge encoded in the weights of the
working model and builds consolidated representations, which can generalize across the tasks. The
two memories interact to enforce consistency in the functional space and encourage the model to
adapt its representations and decision boundary to the new classes while preserving the relational
structure of previous classes. The gradual aggregation of knowledge in semantic memory and the
enforced relational consistency further aid in mitigating the abrupt change in representations.

We extensively evaluate our method against state-of-the-art rehearsal-based approaches under vari-
ous CL settings, which simulate different complexities in the real world including distribution shift,
recurring classes, data imbalance, and varying degrees of noisy labels. ESMER provides consid-
erable performance improvement in all scenarios, especially with a lower memory budget, demon-
strating the versatility of our approach. On the challenging Seq-CIFAR10 with 200 buffer size and
50% label noise, ESMER provides more than 116% gain compared to the baseline ER method. Fur-
thermore, we show that it mitigates abrupt representation drift, is more robust to label noise, and
reduces the task recency bias, leading to uniform and stable performance across tasks.

2 RELATED WORK

Different approaches have been proposed to address the problem of catastrophic forgetting in
DNNs (De Lange et al., 2021). Among them, rehearsal-based methods (Hayes et al., 2021) that
use episodic memory for continual rehearsal of samples from previous tasks have shown promise
in challenging CL scenarios (Farquhar & Gal, 2018). The base Experience Replay (ER; Riemer
et al. (2018)) performs interleaved training of the new task and the memory sample to approximate
the joint distribution of tasks. Dark Experience Replay (DER++; Buzzega et al. (2020)) applies
an additional distillation loss by storing the output logits together with the samples and enforcing
consistency in the output space. Although promising, these methods struggle to approximate the
joint distribution of tasks. Caccia et al. (2021) show that the task transition causes a drastic drift in
the learned representations of the previous classes seen and propose an asymmetric cross-entropy
loss (ER-ACE) on the incoming samples that only considers logits of the new classes. However, an
optimal approach to replaying and constraining the model update to retain knowledge and mitigate
representation drift remains an open question.

Another promising direction is the utilization of multiple memory systems (Wang et al., 2022; Pham
et al., 2021). Notably, CLS-ER (Arani et al., 2021) mimics the interplay between fast and slow
learning systems by maintaining two semantic memories that aggregate the weights of the model at
different rates using an exponential moving average. It is still unclear, however, what the optimal
approach is to build and utilize multiple memory systems. Our method focuses on experience replay
in a dual-memory architecture and demonstrates the benefits of mimicking error sensitivity modu-
lation in the brain. We also advocate for a more comprehensive evaluation that covers the different
challenges involved in lifelong learning in the real world. In particular, we also evaluate on noisy
CL setting in which the agent has to learn continuously from a noisy data stream.

3 METHODOLOGY

We first motivate our study with an overview of the issue of abrupt representation drift in DNNs in
the CL setting, followed by inspiration from the learning dynamics in the brain. Finally, we present
the details of the different components of our method.

3.1 ABRUPT REPRESENTATION DRIFT IN DNNS

The sequential learning of tasks in CL potentially exposes the model to varying degrees of distri-
bution shifts in the input and output space. In particular, the introduction of previously unobserved
classes at the task boundary may lead to an abrupt representation drift, leading to forgetting. Caccia
et al. (2021) show that the samples of the new classes are poorly dispersed and lie near and within
the representation space of the previous classes. Therefore, the initial parameter updates cause a
significant perturbation of the representations of the previous classes. This is exacerbated by the
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inherent imbalance between the samples of the new classes in the current task and the stored sam-
ples of previous classes in memory, especially in the lower buffer size regime. Caccia et al. (2021)
further show that while the model is able to recover somewhat from the disruptive parameter updates
at the task transition with larger buffer sizes, the model fails to recover when the buffer size is small.
Moreover, learning scales linearly with the size of the error in standard training. Hence, the con-
siderably higher cross-entropy loss from the unobserved classes dominates learning and biases the
gradients towards the new classes. These insights suggest that there is a need for a different learning
paradigm tailored for CL that is more robust to abrupt distribution shifts.

3.2 INSPIRATION FROM THE BRAIN

The human brain, on the other hand, has evolved to be robust to distribution shifts and to continually
learn and interact with a dynamic environment. This is enabled by a complex set of mechanisms and
interactions of multiple memory systems. In particular, we probe the dynamics of error-based learn-
ing in the brain to draw some insights. Unlike DNNs where learning scales linearly with error size,
evidence suggests that the brain modulates its sensitivity to error as a function of error magnitude,
so it learns more from small consistent errors compared to large errors (Marko et al., 2012; Castro
et al., 2014; Smith & Shadmehr, 2004). To enable such a mechanism, the brain appears to maintain
an additional memory of errors that informs error sensitivity modulation (Herzfeld et al., 2014).

Another salient element of the learning machinery of the brain is the efficient use of multiple memory
systems that operate on different timescales (Hassabis et al., 2017; Kumaran et al., 2016). More-
over, replay of previous neural activation patterns is considered to facilitate memory formation and
consolidation (Walker & Stickgold, 2004; McClelland et al., 1995). These elements could facilitate
in enabling lifelong learning in the brain and addressing the challenges of distribution shifts.

3.3 PROPOSED APPROACH

We hypothesize that error sensitivity modulation and the interactions of multiple memory systems
that operate on different timescales may be crucial for a continual learning agent. To this end,
our method aims to incorporate a principled mechanism to modulate error sensitivity based on the
history of errors in a dual memory experience replay mechanism. It involves training a working
model θw on a sequence of tasks, while maintaining two additional memories: an instance-based
fixed-size episodic memoryM, which stores input samples from previous tasks, and a parametric
stable model θs, which gradually aggregates knowledge and builds structured representations.

The CL setting considered here involves learning a sequence of T i.i.d. tasks from a non-stationary
data streamDτ ∈ (D1, ...,DT ) where the goal is to approximate the joint distribution of all the tasks
and distinguish between the observed classes without access to the task identity at inference. In each
training step, the model has access to a random batch of labeled incoming samples drawn from the
current task (xτ , yτ ) ∼ Dτ and memory samples drawn from episodic memory (xm, ym) ∼M.

3.3.1 LEARNING FROM LOW-LOSS

To mimic the principled mechanism of error sensitivity modulation in the brain, we maintain a
memory of errors along the training trajectory and use it to determine how much to learn from each
sample. To this end, we maintain error memory using the momentum update of the mean cross-
entropy loss µℓ on the batch of samples from the current task. As the stable model is intended
to consolidate knowledge and generalize well across tasks, we use it to assess how well the new
samples are placed in the consolidated decision boundary and representation space. This also avoids
the confirmation bias that can arise from the use of the same learning model.

For each sample i in the current task batch, the cross-entropy loss Lce is evaluated using stable
model:

lis = Lce(f(x
i
b; θs), y

i
b) (1)

Subsequently, the weight assigned to each sample for the supervised loss is determined by the dis-
tance between the sample loss and the average running estimate µℓ:

λi =

{
1 if lis ≤ β · µℓ

µℓ/l
i
s otherwise

(2)
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where β controls the margin for a sample to be considered a low-loss. This weighting strategy
essentially reduces weight λi as sample loss moves away from the mean estimate, and consequently
reducing learning from high-loss samples so that the model learns more from samples with low-loss.
The modulated error-sensitive loss for the working model is then given by the weighted sum of all
sample losses in the current task batch: Lτ

w =
∑|xb|

i λi lis.

This simple approach to reducing the contributions of large errors can effectively reduce the abrupt
drift in representations at the task boundary and allow the model to gradually adapt to the new task.
For instance, when previously unseen classes are observed, the loss for their samples would be
much higher than the running estimate; thus, by reducing the weights of these samples, the model
can gradually adapt to the new classes without disrupting the learned representations of previously
seen classes. This implicitly accounts for the inherent imbalance between new task samples and past
tasks sample in memory by giving higher weight to samples in memory, which will most likely have
a low-loss as they have been learned.

The memory of errors is preserved using a momentum update of loss on the task batch on stable
model. To prevent sudden changes when the task switches, we have a task warm-up period during
which the running estimate is not updated. This necessitates the task boundary information during
training. To further keep the error memory stable and make it robust to outliers in the batch, we
evaluate the batch statistics on sample losses which lie within one std of batch loss mean:

lfs = {lis | i ∈ {1, ..., |xb|}, lis ≤ µs + σs} (3)
where µs and σs are the mean and std of task losses in stable model, ls. The mean of the filtered
sample losses l

f

s , is then used to update the memory of errors:

µℓ ← αℓ µℓ + (1− αℓ) l
f

s (4)
where αℓ is the decay parameter that controls how quickly the momentum estimate adapts to current
values. This provides us with an efficient approach to preserve a memory of errors that informs the
modulation of error sensitivity.

3.3.2 DUAL MEMORY SYSTEM

To mimic the interplay of multiple memory systems in the brain and employ different learning
timescales, our method maintains a parametric semantic memory and a fixed-size episodic memory.

Episodic Memory enables the consolidation of knowledge through interleaved learning of samples
from previous tasks. We propose Error-Sensitive Reservoir Sampling that utilizes the memory of
errors to inform Reservoir Sampling (Vitter, 1985). Importantly, we perform a pre-selection of
candidates for the memory buffer, whereby only the low-loss samples in the current batch of task
samples are passed to the buffer for selection:

(xc, yc) = {(xi, yi) | (xi, yi) ∈ Dτ , l
i
s ≤ β · µℓ} (5)

This ensures that only the learned samples from the current batch are added to the buffer, thereby
preserving the information and reducing the abrupt drift in the learned representations. It can also
facilitate the approximation of the distribution of the data stream by filtering out outliers and noise.

Semantic Memory is maintained using a parametric model (stable model) that slowly aggregates
and consolidates the knowledge encoded in the weights (Krishnan et al., 2019) of the working model.
Following Arani et al. (2021), we initialize the stable model with the weights of the working memory,
which thereafter keeps a momentum update of that:

θs ← αθs + (1− α)θw, if r > u ∼ U(0, 1) (6)
where α is the decay parameter that controls how quickly the semantic model adapts to the working
model and r is the update rate to enable stochastic update throughout the training trajectory.

Stable model interacts with episodic memory to implement a dual memory replay mechanism to
facilitate knowledge consolidation. It extracts semantic information from buffer samples and uses
the relational knowledge encoded in the output logits to enforce consistency in the functional space.
This semantic consistency loss encourages the working model to adapt the representation and deci-
sion boundary while preserving the relational structure of previous classes. The loss on the memory
samples is thus given by the combination of cross-entropy loss and semantic consistency loss:

Lm
w = Lce(f(Xm; θw), ym) + γLsc(f(xm; θw), f(xm; θs)) (7)
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Table 1: Comparison of CL methods in different settings with varying complexities and memory
constraints. We report the mean and one std of 3 runs. For completion, we provide results under
Task-IL setting by using the task label to select from the subset of output logits from the single head.

Buffer Method Seq-CIFAR10 Seq-CIFAR100 GCIL

Class-IL Task-IL Class-IL Task-IL Uniform Longtail

– JOINT 92.20±0.15 98.31±0.12 70.62±0.64 86.19±0.43 58.59±1.95 58.42±1.32

SGD 19.62±0.05 61.02±3.33 17.58±0.04 40.46±0.99 10.38±0.26 9.61±0.19

100

ER 41.10±1.10 89.34±1.14 19.99±0.45 54.88±1.16 14.43±0.36 13.22±0.60

DER++ 55.66±0.78 89.27±2.28 25.25±2.22 56.21±0.74 21.17±1.65 20.29±1.03

ER-ACE 52.55±3.06 88.96±1.21 31.28±0.36 59.23±1.39 23.76±1.61 23.05±0.18

CLS-ER 62.30±1.58 93.10±0.72 38.87±1.59 70.29±0.45 33.42±0.30 33.92±0.79

ESMER 65.37±0.68 93.32±0.15 42.89±0.40 73.00±0.49 35.77±0.32 34.26±0.26

200

ER 44.79±1.86 91.19±0.94 21.91±0.36 61.34±0.11 16.52±0.10 16.20±0.30

DER++ 64.88±1.17 91.92±0.60 30.68±1.35 62.71±0.68 27.73±0.93 26.48±2.04

ER-ACE 62.08±1.44 92.20±0.57 35.17±1.17 63.09±1.23 27.44±0.64 25.29±1.89

CLS-ER 66.10±0.75 93.90±0.60 43.80±1.89 73.49±1.04 35.88±0.41 35.67±0.72

ESMER 69.16±0.54 94.10±0.33 48.77±0.31 75.86±0.96 39.00±1.14 37.98±0.88

where the mean squared loss is used as the semantic consistency loss Lsc and γ controls the strength
of consistency loss. The overall loss of the working model is the sum of the loss on the new task
samples and the buffer samples, that is, Lw = Lτ

w + Lm
w .

Slow aggregation of knowledge in stable model further helps mitigate the abrupt change in represen-
tations. Even after potentially disruptive initial updates at the task boundary, stable model retains the
representations of the previous classes, and the enforced consistency loss encourages the working
model to retain the relational structure among the previous classes and not deviate too much from
them. Therefore, the two components complement each other, and the modulation of error sensi-
tivity coupled with the slow acquisition of semantic knowledge reduces the drift in parameters and
hence forgetting. For inference, we use stable model, as it builds consolidated representations that
generalize well across tasks (Figure S1 and Table S3). See Algorithm 1 for more details.

4 CONTINUAL LEARNING SETTINGS

To faithfully gauge progress in the field, it is imperative to evaluate methods on representative ex-
perimental settings that measure how well they address the key challenges of CL in the real world.
To this end, we evaluate scenarios that adhere to the proposed desideratas (Farquhar & Gal, 2018)
and present a different set of challenges. Class Incremental Learning (Class-IL) presents the most
challenging scenario (van de Ven & Tolias, 2019) where each task presents a new set of disjoint
classes and the agent is required to distinguish between all observed classes without access to the
task identity. However, the Class-IL setting assumes that the number of classes per task remains
constant, classes do not reappear, and the training samples are well-balanced across classes. Gen-
eralized Class-IL (GCIL) (Mi et al., 2020) alleviates these limitations and offers a more realistic
setting where the number of classes, the appearing classes, and their sample sizes for each task are
sampled from probabilistic distributions. We further emphasize that noise is ubiquitous in the real
world; therefore, the learning agent is required not only to avoid forgetting, but also to learn under
noisy labels. We consider the Noisy-Class-IL setting, which adds varying degrees of symmetric
noise in the Class-IL setting. Details of the datasets used in each setting are provided in Section A.3.

5 EMPIRICAL EVALUATION

We compare our method with strong rehearsal-based methods with single memory (ER, DER++,
ER-ACE) and multiple memories (CLS-ER) under different CL settings and uniform experimental
settings (details in Section A.1 in Appendix). Table 1 provides the results for the Class-IL and GCIL
settings with different data complexity and memory constraints.
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Table 2: Performance under extremely low buffer sizes on Seq-CIFAR10 and different number of
tasks on Seq-CIFAR100 with 200 buffer size. We report the mean and one std of 3 runs.

Method Seq-CIFAR10 (Buffer) Seq-CIFAR100 (#Tasks)

200 100 50 10 5 10 20

ER 44.79±1.86 41.10±1.10 32.51±1.77 22.20±1.36 21.91±0.36 14.17±0.53 9.97±0.68

DER++ 64.88±1.17 55.66±0.78 49.36±2.12 29.04±2.65 30.68±1.35 25.50±3.07 20.50±1.42

ER-ACE 62.08±1.44 52.55±3.06 43.92±3.74 26.26±2.88 35.17±1.17 25.75±1.56 18.68±0.82

CLS-ER 66.10±0.75 62.30±1.58 53.80±3.34 33.87±4.71 43.80±1.89 35.42±0.47 25.98±1.70

ESMER 69.16±0.54 65.37±0.68 59.94±1.67 36.83±1.53 48.77±0.31 36.37±0.46 27.26±0.52

Table 3: Effect of varying degrees of label noise on Seq-CIFAR10 and Seq-CIFAR100 datasets. All
experiments use a buffer size of 200. We report the mean and one std of 3 runs.

Method Seq-CIFAR10 Seq-CIFAR100

Clean 10% 25% 50% Clean 10% 25% 50%

ER 44.79±1.86 36.97±1.80 25.54±2.14 19.72±1.53 21.91±0.36 17.12±0.36 13.00±0.42 8.01±0.07

DER++ 64.88±1.17 53.10±3.83 43.17±3.40 32.95±2.43 30.68±1.35 25.13±1.07 18.99±0.62 11.04±0.42

ER-ACE 62.08±1.44 50.39±1.29 37.16±1.01 30.14±0.44 35.17±1.17 23.77±1.14 13.59±0.66 5.71±0.33

CLS-ER 66.10±0.75 54.86±1.86 34.49±2.23 23.97±1.39 43.80±1.89 35.19±0.85 24.59±0.35 12.16±0.69

ESMER 69.16±0.54 63.24±1.31 56.65±1.01 42.72±2.70 48.77±0.31 41.80±0.88 33.49±1.29 20.68±1.21

Class-IL requires the method to transfer and consolidate knowledge while also tackling the abrupt
representation drift at the task boundary when new classes are observed. The consistent performance
improvement in both considered datasets demonstrates the proficiency of ESMER in consolidating
knowledge with a low memory budget. Generally, we observe that multiple-memory systems per-
form considerably better in these challenging settings. Note that Seq-CIFAR100 is a considerably
more complex setting in terms of both the recognition task among semantically similar classes and
the potential representation drift in the split setting, which introduces 20 unobserved classes with
high semantic similarity to previous classes. The improvement of ESMER over the well-performing
CLS-ER in this challenging setting suggests that our error-sensitivity modulation method success-
fully mitigates representation drift and reduces interference among similar tasks. The performance
of our method under extremely small buffer sizes in Table 2, which exacerbates abrupt representa-
tion drift, further supports the claim. This gain is promising, given that CLS-ER uses two semantic
memories with different update frequencies, while our method uses only one.

Table 1 also provides the results for the GCIL setting, which further requires the model to tackle
the challenges of class imbalance, sample efficiency, and learn from multiple occurrences of an
abject. ESMER provides a consistent improvement in both uniform and longtail settings. The
error-sensitivity modulation and consequent gradual adaptation to unobserved classes can allow the
model to deal with the class imbalance and learn over multiple occurrences well. Considering a
new task with a mix of unobserved and recurring classes, the loss of samples from the recurring
classes would most likely be low, as they have been learned earlier, while the loss on unobserved
classes would be significantly higher. Consequently, the contribution of unobserved classes would
be down-weighted, allowing the model to focus and adapt the representations of the recurring class
with reduced interference and representation drift from the unobserved classes. Learning more from
low errors also provides more consistent learning and can improve sample efficiency by avoiding
potentially suboptimal gradient directions caused by outliers.

Finally, Table 3 provides the results under the Noisy-Class-IL setting where the agent is required
to concurrently tackle the challenges of learning from noisy labels. Our strong empirical results
demonstrate the superiority of ESMER in tackling the unique challenges of this setting. Learning
from low errors implicitly makes our model more robust to label noise and reduces memorization
since noisy labels would correspond to higher errors. Furthermore, the error-sensitive reservoir
sampling approach ensures a higher purity of the memory buffer, which plays a critical role in noisy
CL as buffer samples are replayed multiple times, further aggravating their harmful effect.
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Table 4: Ablation Study: Effect of systematically removing different components of ESMER on
performance on Seq-CIFAR10 with different buffer sizes and label noise (for 200 buffer size).

Error Sensitivity Stable Error Sensitive Buffer Label Noise

Modulation Model Reservoir Sampling 50 100 200 25% 50%

✓ ✓ ✓ 59.94±1.67 65.37±0.68 69.16±0.54 56.61±1.40 42.43±2.89

✓ ✓ ✗ 57.53±1.80 64.44±0.62 69.07±0.87 51.16±1.56 34.42±2.79

✗ ✓ ✗ 37.11±4.88 51.59±5.26 63.41±1.43 38.84±0.52 22.10±2.62

✓ ✗ ✗ 36.03±0.83 42.56±0.56 54.58±2.89 38.50±1.53 24.70±1.49

✗ ✗ ✗ 32.51±1.77 41.10±0.10 44.79±1.86 25.54±2.14 19.72±1.53

Figure 2: (a) Effect on Task 1 performance as the models are trained on Task 2. SM and WM denote
stable model and working model (b) The average probability of predicting each task at the end of
training on Seq-CIFAR10 with 200 buffer size. Figure S2 provides recency bias for other settings.

6 WHY DOES ESMER WORK?

Here, we attempt to provide insights into what enables the gains with ESMER. We perform our
analysis on Seq-CIFAR10 with 200 buffer size and compare it with ER, DER++ and CLSER.

Ablation Study: We systematically remove the salient components of our method and evaluate their
effect on performance in Table 4. Error-sensitivity modulation provides considerable gains in both
low-buffer and noisy label settings. Furthermore, the gradual accumulation of knowledge in stable
model proves to be a highly proficient approach to consolidating knowledge. Finally, the proposed
error-sensitive reservoir sampling technique provides further generalization gains, particularly in the
Noisy-Class-IL setting, where maintaining a clean buffer is critical. Importantly, these components
complement each other so that the combination provides the maximum gains.

Drift in Representations: To assess ESMER in mitigating the abrupt drift in representations at the
task boundary, we monitor the performance of the model on Task 1 as it learns Task 2. Figure 2 (a)
shows that ESMER successfully maintains its performance, while ER suffers a sudden performance
drop and fails to recover from earlier disruptive updates. Furthermore, while the working model
in ESMER undergoes a reduced representation drift after the task warmup period, the stable model
retains the performance and provides a stable reference to constrain the update of the working model,
helping it recover from the disruption. This suggests that error-sensitivity modulation, coupled with
gradual adaptation in stable model, is a promising approach to mitigate abrupt representation drift.

Robustness to Noisy Labels: We probe into what enables ESMER to be more robust to label noise.
One of the key challenges in learning under noisy labels is the tendency of DNNs to memorize in-
correct labels (Arpit et al., 2017) that adversely affect their performance (Sukhbaatar et al., 2014).
To evaluate the degree of memorization, we track the performance of the model on noisy and clean
samples during training. Figure 3 (a) shows that ESMER significantly reduces memorization, lead-
ing to better performance. Furthermore, the quality of the samples in the memory buffer can play a
critical role in the performance of the model, as the memory samples are replayed multiple times.
Figure 3 (b) compares the percentage of noisy labels in the buffer with our proposed error-sensitive
reservoir sampling and the typical reservoir sampling approach. Our approach considerably reduces
the probability of adding a noisy sample in episodic memory and maintains a higher quality of the
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Figure 3: (a) Accuracy of the models on clean and noisy samples as training progresses on Seq-
CIFAR10 with 50% label noise. A lower value is better as it indicates less memorization. See
Figure S3 for the working model. (b) Percentage of noisy labels in the memory with reservoir
sampling in ER and error-sensitive reservoir sampling in ESMER.
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Figure 4: The performance of the models (x-axis) after training on each task in Seq-CIFAR10 with
200 buffer size. See Figure S4 for other datasets and buffer sizes.

buffer. Note that both features are a byproduct of mimicking error-sensitivity modulation in the
brain rather than being explicitly designed for the setting.

Recency Bias: The sequential learning of tasks with standard SGD in CL induces a recency bias
in the model, making it much more likely to predict newly learned classes (Hou et al., 2019). To
evaluate the task recency bias of the different methods, we calculate the average probability of
predicting each task at the end of training by averaging the softmax outputs of the classes associated
with each task on the test set. Figure 2 (b) shows that ESMER provides more uniform predictions
across tasks. Generally, methods that employ multiple memories are better at reducing the recency
bias, and the dynamics of low-loss learning in our method further reduce the bias. Figure 4 further
shows that ESMER maintains a better balance between the plasticity and the stability of the model.

7 CONCLUSION

Inspired by the dynamics of error-based learning and multiple memory systems in the brain, we
proposed ESMER, a novel approach for error sensitivity modulation based experience replay in
a dual memory system. The method maintains a memory of errors along the training trajectory,
which is used to modulate the contribution of incoming samples towards learning such that the
model learns more from low errors. Additionally, semantic memory is maintained that gradually
aggregates the knowledge encoded in the weights of the working model using momentum update.
We also proposed an error-sensitive reservoir sampling approach that prioritizes the representation
of low-loss samples in the memory buffer, which are better suited for retaining knowledge. Our
empirical evaluation demonstrates the effectiveness of our approach in challenging and realistic
CL settings. ESMER mitigates abrupt drift in representations, provides higher robustness to noisy
labels, and provides more uniform performance across tasks. Our findings suggest that a principled
mechanism for learning from low errors in a dual-memory system provides a promising approach to
mitigating abrupt representation drift in CL that warrants further study.
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A APPENDIX

Algorithm 1 Error Sensitivity Modulation based Experience Replay (ESMER) Algorithm
Input and Params: error memory params αℓ and β; stable model params α and r; semantic
consistency weight γ; data stream D; learning rate η
Initialize: lµ = 0,M←− {}, θs = θw

1: while Training do
2: Sample batch from task stream, (xτ , yτ ) ∼ Dτ , and episodic memory, (xm, ym) ∼M
3: Evaluate loss of task samples on stable model, lis (Eq. 1)
4: Get the weights of task samples, λi (Eq. 2)
5: Evaluate the sensitivity-modulated task loss, Lτ

w =
∑|xb|

i λi · lis
6: Evaluate the cross-entropy and consistency loss on memory samples, Lm

w (Eq. 7)
7: Combine overall loss: Lw = Lτ

w + Lm
w

8: Update parameters of working model: θw ←− θw − η∇θwLw

9: Update the stable model: θs ← αθs + (1− α) θw, if r > a ∼ U(0, 1) (Eq. 6)
10: Filter candidates for episodic memory, (xc, yc) (Eq. 5)
11: Update episodic memory:M←− Reservoir(M, (xc, yc))
12: Remove outliers from task batch loss: lfs (Eq. 3)
13: Update error memory if epoch > task warm-up period: µℓ (Eq. 4)

return θs

A.1 EXPERIMENTAL DETAILS

We conducted all our experiments under common settings to disentangle the performance improve-
ment of the different CL methods from the training settings (Mirzadeh et al., 2020). Following
(Arani et al., 2021; Buzzega et al., 2020), we use ResNet-18 network and train with SGD optimizer.
For all our experiments, we train for 50 epochs with a batch size of 32 for both incoming samples
and memory and apply random crop and horizontal flip data augmentations. Note that we store
non-augmented images in the buffer and apply the data augmentations to the memory samples for
replay. We report the mean and std of 3 runs.

A.1.1 HYPERPARAMETER TUNING

We use a small validation set to select the hyperparameters for all methods. For ESMER, we use
αl = 0.99, αl = 0.999, and tune γ ∈ {0.15, 2.0}, β ∈ [0.8, 3.0] and r ∈ [0, 1]. Note that
we did not conduct an exhaustive parameter search for each experiment, and it is possible that a
better hyperparameter search can further improve performance. The hyperparameters used for each
experiment are provided in Table S1.

For the baselines, we use the results from (Arani et al., 2021) if similar settings are provided; oth-
erwise, we conduct a grid search over the hyperparameter values used in the original paper. For ER
and ER-ACE, we search η ∈ {0.1, 0.01, 0.001}. For DER++ we search over η ∈ {0.1, 0.01, 0.001},
α ∈ {0.1, 0.2, 0.5, 1.0} and β ∈ {0.5, 1.0}. Finally, for CLS-ER, we search over αs = 0.999,
αp = 0.999, λ ∈ {0.15, 2.0}, rp ∈ [0, 1] and rs ∈ [0, 1]. The parameters selected for the baselines
in each setting are provided in Table S2.

A.2 COMPARISON WITH NEUROMODULATION

Metaplasticity (Abraham, 2008) and Neuromodulation (Doya, 2002) refers to different mechanisms
to modulate the plasticity rate of individual synapses (strengths / weights of the incoming and out-
going connections in DNNs) (Kudithipudi et al., 2022; Bailey et al., 2000). These form the biolog-
ical underpinning behind the popular regularization-based approaches where the goal is to identify
synapses that are important for previous tasks and penalize changes to them while learning a new
task (Zenke et al., 2017; Kirkpatrick et al., 2017). Neuromodulation has also been explored in con-
junction with local learning (Madireddy et al., 2020) which shows promise.

The error sensitivity modulation in ESMER differs substantially from these methods, as instead of
modulating the plasticity rate of individual synapses, we modulate the contribution of each sample
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Table S1: Hyperparameters for ESMER. For all experiments, the models are trained for 50 epochs
with a batch size of 32 for incoming and memory samples.

Dataset Buffer Label noise η αl β γ α r

Seq-CIFAR100 100 0 0.03 0.99 1.2 0.15 0.999 0.07
200 0 0.03 0.99 1.0 0.15 0.999 0.07

GCIL - Unif 100 0 0.05 0.99 2.5 0.2 0.999 0.2
200 0 0.05 0.99 2.5 0.2 0.999 0.2

GCIL - Longtail 100 0 0.05 0.99 3.0 0.2 0.999 0.2
200 0 0.05 0.99 2.5 0.2 0.999 0.2

Seq-CIFAR10

10 0 0.03 0.99 0.9 0.15 0.999 0.1
50 0 0.03 0.99 0.9 0.15 0.999 0.1

100 0 0.03 0.99 0.9 0.15 0.999 0.1
200 0 0.03 0.99 1.2 0.15 0.999 0.1

Noisy-Seq-CIFAR10

200 10% 0.03 0.99 0.9 0.15 0.999 0.1
200 25% 0.03 0.99 0.9 0.15 0.999 0.1
200 50% 0.03 0.99 1.0 0.15 0.999 0.1

in the batch based on its error magnitude. Our work aims to bring about a salient characteristic of the
learning dynamics of the brain: it learns more from small consistent errors compared to large errors.
This is not the case for standard ANNs, where learning scales linearly with the error size. Therefore,
the error sensitivity modulation in ESMER specifically focuses on utilizing a memory of errors to
modulate the contribution of samples to learning based on their error magnitude, so that the model
learns more from small errors. Please note that our approach is complementary to metaplasticity and
neuromodulation-based approaches, and the interaction of these biologically plausible mechanisms
is an interesting avenue of research.

A.3 DATASETS

Here we provide details of the datasets used in each of the considered CL setting.

A.3.1 CLASS-IL

For Class-IL, we use the common sequential versions of CIFAR10 (Seq-CIFAR10) and CIFAR100
(Seq-CIFAR100) datasets whereby the classes are split into five tasks each containing a disjoint set
of 2 and 20 classes, respectively. We do not vary the order of classes, and so, for instance, Task 1 in
Seq-CIFAR10 always contains the first two classes.

Note that our method does not utilize separate classification heads or subnets. For completion, we
also evaluate the performance of the same model trained for Class-IL under the Task-IL setting
where the model assumes availability of task labels at inference. We use the task label to narrow
down predictions to the subset of output logits belonging to classes belonging to the task.

A.3.2 GCIL

Following (Mi et al., 2020; Arani et al., 2021), we apply the GCIL setting on CIFAR100 dataset. The
setting involves training 20 tasks sequentially, and for each task, the number and appearing classes
are sampled from a probability distribution but capped at a maximum of 50 and subsequently 1000
samples are drawn from either a uniform (Unif) or longtail sample distributions. For further details,
see (Mi et al., 2020).

Importantly, we found that even for a fixed dataset seed, the corresponding tasks in the Longtail
and Unif settings differ not only in the sample distribution (as expected) but also significantly in the
number of classes drawn and the appearing classes. For instance, with the dataset seed set to 1993,
the last task in the Longtail setting contains 50 classes, whereas the corresponding task in the Unif
setting contains only 17 classes. This makes the former task significantly easier.
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Table S2: Selected hyperparameters for baselines. All methods are trained for 50 epochs with a
batch size of 32 for incoming and memory samples. For CLS-ER, αs = αp =0.999

Dataset Buffer Method Hyperparameters

Seq-CIFAR100

100

ER η=0.1
ER-ACE η=0.01
DER++ η=0.03, α=0.1, β=0.1
CLS-ER η=0.1 λ=0.15, rp=0.1, rs=0.05

200

ER η=0.1
ER-ACE η=0.01
DER++ η=0.03, α=0.2, β=0.1
CLS-ER η=0.1 λ=0.15, rp=0.1, rs=0.05

GCIL-Unif

100

ER η=0.1
ER-ACE η=0.1
DER++ η=0.03, α=0.5, β=0.1
CLS-ER η=0.1 λ=0.1, rp=0.7, rs=0.09

200

ER η=0.1
ER-ACE η=0.1
DER++ η=0.03, α=0.2, β=0.1
CLS-ER η=0.1 λ=0.1, rp=0.7, rs=0.1

GCIL-Longtail

100

ER η=0.1
ER-ACE η=0.1
DER++ η=0.03, α=0.2, β=0.1
CLS-ER η=0.1 λ=0.1, rp=0.7, rs=0.08

200

ER η=0.1
ER-ACE η=0.1
DER++ η=0.03, α=0.5, β=0.1
CLS-ER η=0.1 λ=0.1, rp=0.7, rs=0.1

Seq-CIFAR10

10

ER η=0.1
ER-ACE η=0.01
DER++ η=0.03, α=0.5, β=0.5
CLS-ER η=0.1 λ=0.15, rp=0.3, rs=0.04

50

ER η=0.1
ER-ACE η=0.01
DER++ η=0.03, α=0.2, β=0.5
CLS-ER η=0.1 λ=0.15, rp=0.3, rs=0.05

100

ER η=0.1
ER-ACE η=0.01
DER++ η=0.03, α=0.2, β=0.5
CLS-ER η=0.1 λ=0.15, rp=0.3, rs=0.05

Noisy-Seq-CIFAR10 200

ER η=0.1
ER-ACE η=0.01
DER++ η=0.03, α=0.1, β=0.5
CLS-ER η=0.1 λ=0.15, rp=0.3, rs=0.1

We fix this in our implementation by drawing 20 random numbers (after setting the random seed to
1993) when the dataset is initialized and setting the same unique seed before sampling each task.
This ensures that the same number of classes and the appearing classes (if not all the samples for a
particular class are seen already) are drawn for the two settings. This provides a better evaluation of
the effect of the difference in data distributions between the two variants.

This leads to a significant difference in baseline performance compared to those reported in (Arani
et al., 2021). We also perform the hyperparameter for all the considered methods and find that, for
the modified setting, our choice of parameters performs considerably better than the ones used in
(Arani et al., 2021). We report the results on more optimal hyperparameters provided in Table S2.
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Table S3: Working model and stable model performance on all the considered CL scenarios. Stable
model consistently provides better performance.

Dataset Buffer Label Noise Stable Model Working Model

Seq-CIFAR100 100 - 42.89±0.40 27.56±1.26

200 - 48.77±0.31 37.87±1.29

GCIL - Unif 100 - 35.77±0.32 23.36±0.81

200 - 39.00±1.14 29.55±1.24

GCIL - Longtail 100 - 34.26±0.26 22.94±0.28

200 - 37.98±0.88 28.59±0.94

Seq-CIFAR10

10 - 36.83±1.53 26.35±0.89

50 - 59.94±1.67 44.98±3.18

100 - 65.37±0.68 55.80±2.45

200 - 69.16±0.54 65.18±3.14

Noisy-Seq-CIFAR10

200 10% 63.24±1.31 56.01±1.14

200 25% 56.65±1.01 48.76±1.57

200 50% 42.72±2.70 34.24±2.66

A.3.3 NOISY-CLASS-IL

Noisy Class-IL aims to evaluate the robustness of a learning agent to label noise. Since noise is
ubiquitous in real-world streams, ideally, a CL method should be able to tackle the challenges of
learning under noisy labels and CL concurrently. This requires them to avoid memorization and
forgetting. We consider varying degrees of symmetric label noise on Seq-CIFAR10 dataset, Noisy-
Seq-CIFAR10. For each task, we sample random labels from the classes in the task and replace a
fraction of the original labels with the random ones. Note that, under this setting, the random label
may correspond to the original label.

A.4 WORKING MODEL PERFORMANCE

To assess how well stable model aggregates knowledge across the task, we compare its performance
with the performance of the working model across all datasets and memory constraints in Table S3.
Stable model considerably provides higher performance. To better understand, we look at the task-
wise performance on the test set at the end of each task in Figure S1. Stable model retains more
knowledge of previous tasks and consolidates information to build representations that generalize
across tasks.

A.5 EFFECT OF HYPERPARAMETERS

Tuning ESMER involves setting the hyperparameters for two complementary components: error
sensitivity modulation (β, αl) and stable model (r, α, γ). To understand the interaction of these
components and the sensitivity of our method to hyperparameters, we look at the performance of
the model with different sets of values for the most pertinent parameters (β, r). Table S4 shows that
the loss margin, β, and the update frequency, r complement each other and, generally, a higher r
requires a lower β. Furthermore, a different set of values can provide similar performance, which
significantly facilitates hyperparameter tuning. As can be seen in Table S1, the majority of parame-
ters (αs, αℓ and γ) can be fixed, and the optimal parameters do not vary much for different memory
budgets.
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Figure S1: Comparison between the task-wise performance (x-axis) of working model and stable
model after training on each task. Stable model provides higher stability and provides more uniform
performance across the tasks.

Table S4: Performance of the models trained on Seq-CIFAR10 with different hyperparameters. We
use η=0.03, αl=0.99, α=0.999 and γ=0.15 for all the experiments.

Buffer r β Stable Model Working Model

100

0.08
0.8 58.74±0.77 53.76±2.04

1.0 60.67±2.40 54.81±3.19

1.2 63.61±1.13 54.26±1.25

0.10
0.8 61.21±1.02 52.86±2.03

1.0 65.37±0.68 55.80±2.45

1.2 62.73±2.42 51.43±3.90

0.20
0.8 59.63±1.07 55.96±1.44

1 59.29±1.17 55.20±0.97

1.2 57.49±2.57 52.98±3.45

200

0.08
0.8 59.06±2.98 62.15±1.86

1.0 62.47±0.75 64.34±0.87

1.2 63.64±0.55 64.00±0.83

0.1
0.8 64.99±2.57 63.82±0.81

1 66.79±1.04 63.78±1.46

1.2 69.16±0.54 65.18±3.14

0.2
0.8 64.81±1.50 61.70±1.55

1 67.37±1.48 64.40±1.74

1.2 66.36±0.11 62.93±0.50
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Figure S2: Average probability of predicting each task at the end of training for different datasets
and buffer sizes. ESMER provides more uniform predictions.
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Figure S3: Accuracy of the models on clean and noisy samples as training progresses. We compare
ER with the working model (WM) and stable model (SM) in ESMER on Seq-Cifar10 with 50%
symmetric noise and 200 buffer size. The working model initially has slightly higher memorization
than SM but then recovers with the aid of the consistency loss from the stable model.
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Figure S4: Taskwise performance of the models (x-axis) after training on each task on different
datasets with varying memory budget. ESMER provide a good tradeoff between the stability and
plasticity of the model.
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