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ABSTRACT

Deep learning-based medical volumetric segmentation methods either train
the model from scratch or follow the standard “pre-training then fine-tuning”
paradigm. Although fine-tuning a pre-trained model on downstream tasks can
harness its representation power, the standard full fine-tuning is costly in terms
of computation and memory footprint. In this paper, we present the study on
parameter-efficient transfer learning for medical volumetric segmentation and pro-
pose a new framework named Med-Tuning based on intra-stage feature enhance-
ment and inter-stage feature interaction. Additionally, aiming at exploiting the
intrinsic global properties of Fourier Transform for parameter-efficient transfer
learning, a new adapter block namely Med-Adapter with a well-designed Fourier
Transform branch is proposed for effectively and efficiently modeling the cru-
cial global context for medical volumetric segmentation. Given a large-scale pre-
trained model on 2D natural images, our method can exploit both the crucial spa-
tial multi-scale feature and volumetric correlations along slices for accurate seg-
mentation. Extensive experiments on three benchmark datasets (including CT and
MRI) show that our method can achieve better results than previous parameter-
efficient transfer learning methods on segmentation tasks, with much less tuned
parameter costs. Compared to full fine-tuning, our method reduces the fine-tuned
model parameters by up to 4×, with even better segmentation performance.

1 INTRODUCTION

Medical image segmentation, which aims to delineate tumors and sub-regions of organs from
biomedical images, is capable of assisting doctors in making accurate clinical diagnoses and treat-
ment planning. It is vital to improve the accuracy and efficiency of medical volumetric segmentation,
since the widely adopted medical modalities, including computed tomography (CT) (Nguyen et al.,
2015) and magnetic resonance imaging (MRI) (Huo et al., 2017), are all composed of 3D volumes,
and plenty of practical applications (e.g. tumor segmentation and anomaly detection) are based on
the corresponding segmentation of these modalities. Deep neural networks have become a popular
tool for this task, including architectures based on convolutional neural networks (CNNs) (Ron-
neberger et al., 2015; Milletari et al., 2016; Zhang et al., 2018; Myronenko, 2018; Çiçek et al., 2016;
Zhou et al., 2018; Oktay et al., 2018; Isensee et al., 2021) and Transformers (Chen et al., 2021b;
Valanarasu et al., 2021; Huang et al., 2021; Wu et al., 2022; Wang et al., 2021c; Li et al., 2022).
With the continuous improvement of model performance, the number of model parameters and cor-
responding training costs have increased greatly, especially the Transformer-based models. Besides,
due to the great challenges in realizing effective model training, these methods usually benefit from
fine-tuning the models pre-trained on larger-scale datasets (e.g. ImageNet (Deng et al., 2009)), but
still tune all the model parameters, which results in further training costs. Therefore, we are in-
terested in the question: Is there a way to pursue a balance between the model performance and
fine-tuning parameter efficiency?

In the community of natural image processing, the “pre-training then fine-tuning” paradigm has
become standard practice to boost the model performance on downstream tasks. Conventional fine-
tuning schemes include full fine-tuning and head fine-tuning, which optimize either the entire net-
work or only the specific head (e.g. Linear (He et al., 2022) and Partial (Yosinski et al., 2014)). Full
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fine-tuning usually achieves higher accuracy but also a higher training cost. Recent studies (Jia et al.,
2022; Chen et al., 2022; Pan et al., 2022; Yu et al., 2022; Zhang et al., 2023a; Xu et al., 2023; Sung
et al., 2022) on parameter-efficient transfer learning (PETL) aim to strike a balance in between.

In this paper, we explore the potential of PETL for medical volumetric segmentation. Unlike natural
image datasets, the scale of the acquired medical datasets is generally small because of high anno-
tation costs. As a result, there are many strong pre-trained 2D models on large-scale natural image
datasets but such pre-trained models are lacking in the medical domain. As image-level annotations
are much more easily acquired than pixel-level ones, the majority of off-the-shelf pre-trained
models (either through strong supervision or self-supervision) are classification-based archi-
tectures. While the very recent visual foundation model Segment Anything Model (SAM) (Kirillov
et al., 2023) highlights its potential in the medical domain, directly transferring its full segmentation
model may result in a constrained architectural design, possibly not meeting accuracy standards for
diverse downstream tasks. In contrast, using classification pre-trained backbones offers more
flexibility and convenience. To provide a thorough evaluation in this work, we also incorporate
SAM as a backbone candidate in our following experiment section, further showcasing the power-
ful potential of our method. Therefore, the goal of this study is to understand how to adeptly adapt
strong pre-trained classification models from 2D natural images to medical volumetric segmentation
tasks, rather than just pursuing top-tier performance through intricate designs.
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Figure 1: The illustration of the two-fold gaps
between source and target domain when exploring
pre-trained model on large-scale 2D natural image
datasets for medical volumetric segmentation.

As shown in Fig. 1, there are two-fold gaps
between the pre-training source domain and
downstream target domain that require consid-
erations to achieve successful PETL: (1) the
modality gap between 2D natural images and
3D medical volumes; (2) the task gap be-
tween the pre-training classification task and
the downstream segmentation task. To nar-
row these gaps, we propose to build a PETL
framework for medical volumetric segmenta-
tion based on pre-trained classification models
on natural images with an efficient plug-and-
play block to exploit the crucial spatial multi-
scale features and volumetric correlations.

Specifically, for the first gap brought by 3D medical data itself, there is an essential temporal conti-
nuity that needs to be exploited between adjacent medical image slices. To address this, we design
an adapter block (i.e. Med-Adapter) with high efficiency and flexibility while jointly conducting
spatial-temporal (slice) modeling. For the second gap of taking semantic segmentation as the down-
stream task, previous studies (Long et al., 2015; Szegedy et al., 2015; Chen et al., 2014; 2017a;b;
Wang et al., 2021a; Liu et al., 2021; Guo et al., 2022; Wang et al., 2021b) have shown that such dense
prediction requires crucial multi-scale information, As a vital aspect of the multi-scale features, the
global information counts a lot for the dense prediction tasks, while the Fast Fourier Transform
(FFT) and Inverse Fast Fourier Transform (IFFT) naturally have a global vision due to their internal
operation mechanism (more details can be found in Sec. 3.1), which is right on demand. Thus, by
leveraging the intrinsic global vision characteristic of the FFT and IFFT, high-efficiency multi-scale
branches coupled with the FFT branch (i.e. global branch) are effectively leveraged in our method
for intra-stage feature enhancement and inter-stage feature interaction.

The main contributions can be summarized as follows:

• We present a study on PETL for medical volumetric segmentation and propose a new framework
Med-Tuning, achieving the trade-off between segmentation accuracy and parameter efficiency.

• A new Medical Adapter (Med-Adapter) is proposed for PETL, as a plug-and-play component to
simultaneously consider both multi-scale representations and inter-slice correlations.

• Our framework is generic and flexible, which can be easily integrated with common Transformer-
based architectures to greatly reduce training costs and simultaneously boost model performance.

• Extensive experiments on three benchmark datasets with different modalities (e.g. CT and MRI)
validate the effectiveness (e.g. Fig. 2) of our Med-Tuning over full fine-tuning and previous PETL
methods for medical volumetric segmentation.
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2 RELATED WORK

2.1 MEDICAL VOLUMETRIC SEGMENTATION
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Figure 2: Comparison with previous PETL
methods in terms of the trade-off between
the number of tuned parameters and segmen-
tation accuracy. The backbone ViT-B/16 is
pre-trained on ImageNet-21k and fine-tuned
on BraTS2019 dataset.

Unlike natural images, medical images pose unique
challenges, such as uneven foreground-background
distribution and sharp variations in lesion shape
and scale. As proved by previous works (Çiçek
et al., 2016; Milletari et al., 2016; Zhou et al.,
2018; Chen et al., 2021a;b; Oktay et al., 2018),
extracting multi-scale representations is crucial for
desired segmentation performance. For example,
Ronneberger et al. (Ronneberger et al., 2015) con-
catenated multi-scale features from CNN encoder
and up-sampled features, complementing the loss
of spatial information caused by down-samplings.
Cao et al. (Cao et al., 2021) also used skip connec-
tions to gradually fuse the low-level features and the high-level features in Transformer architecture.

In addition, the information between continuous slices (i.e. volumetric correlation) of medical im-
ages is of critical importance. Various medical volumetric segmentation methods (Çiçek et al., 2016;
Milletari et al., 2016; Zhou et al., 2018; Oktay et al., 2018) have effectively explored this vital con-
tinuity by utilizing 3D convolutions (Çiçek et al., 2016; Milletari et al., 2016; Zhou et al., 2018) or
introducing self-attention mechanism among the 3D input patches (Wang et al., 2021c).

Based on the above analysis, the proposed framework Med-Tuning simultaneously takes both multi-
scale feature representations and inter-slice correlation into consideration, realizing the effective
spatial feature and temporal relationship modeling in a parameter-efficient manner by the simple yet
effective PETL architecture.

2.2 PARAMETER-EFFICIENT TRANSFER LEARNING

Conventional fine-tuning methods fail to achieve the trade-off between accuracy and parameter effi-
ciency. Therefore, various PETL methods were born on demand recently, which can be summarized
into three categories: The first one is Prompting (Bahng et al., 2022), which modifies the input pixel
space of Transformer layers. VPT (Jia et al., 2022) added learnable prompts to patch embeddings
for downstream visual tasks. However, VPT’s sensitivity to prompt number and token length may
limit parameter efficiency for dense prediction tasks. Pro-tuning (Nie et al., 2022) inserted mul-
tiple stage-wise prompt blocks into different stages of the backbone. DePT (Zhang et al., 2023a)
tackles the Base-New Tradeoff dilemma in prompt tuning from a feature decoupling perspective for
achieving better zero-shot generalization on new tasks.

The second type is Adapter that can be easily inserted into backbones. Specifically, Adapt-
Former (Chen et al., 2022) replaced the original MLP block in Transformer with the proposed
AdaptMLP. Despite its promising results, AdaptFormer overlooks volumetric information, which
may lead to the loss of connections between video clips. To tackle this problem, ST-Adapter (Pan
et al., 2022) injected Adapter-like blocks in each Transformer layer and introduced the 3D depth-
wise convolution (Ye et al., 2018) to capture spatial-temporal features. However, it does not
take multi-scale representation modeling into account, which is critical for the segmentation task.
Aim (Yang et al., 2023) implements spatial, temporal, and joint adaptation to enhance spatiotempo-
ral reasoning in image models.

The third category includes other PETL techniques, e.g., LoRA (Hu et al., 2021) inserted learn-
able low-rank matrices into the self-attention block in Transformer, while V-PETL (Yu et al., 2022)
extended the parameters of prefix tuning (He et al., 2021) from randomly initialized to input associ-
ated. SAN (Xu et al., 2023) is a small network that uses shortcut connections to take intermediate
activations from backbone networks and make predictions. TransSeg (Zhang et al., 2023b) em-
ploys a weight inflation strategy to transition pre-trained Transformers from a 2D to a 3D context,
preserving the advantages of both transfer learning and depth of information.

Nevertheless, the above-mentioned research mainly focuses on the 2D/3D classification tasks on
natural images. Few of these works make targeted structural improvements for downstream dense
prediction tasks like segmentation. Besides, as analyzed above, none of the previous works has
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simultaneously considered multi-scale spatial features and 3D volumetric information modeling
which are crucial for segmentation. Different from previous works, our Med-Tuning shifts the
concentration from classification to dense prediction task (i.e. medical volumetric segmentation)
and makes tailored structural design for exploitation of spatial and temporal correlations, realizing
the promising PETL with greatly boosted model performance. It is noteworthy that, despite the
recent surge in popularity of the Segment Anything Model (SAM), a few very recent studies such as
(Wu et al., 2023; Chai et al., 2023) have focused on leveraging parameter-efficient transfer learning
strategies to explore the potential of SAM for medical image analysis. However, the focus of these
works primarily rests on SAM, rather than concentrating on the universality and adaptability across
various backbones as a plug-and-play component, which is the focal point of our work.

3 METHODOLOGY

3.1 PRELIMINARIES

Vanilla Adapter. Adapter (Houlsby et al., 2019) is composed of lightweight MLP modules with
residual connections and inserted between the feed-forward layer and layer normalization in each
Transformer layer. During training, only Adapters are tuned while all the other layers stay frozen.
In this way, adapter-based fine-tuning requires much fewer learnable parameters and less training
cost than full fine-tuning. Each vanilla adapter utilizes a down-projection linear layer to project
the original d-dimensional features into a smaller m-dimension, which is followed by a non-linear
activation function and an up-projection linear layer to project features back to d-dimensions. By
setting m ≪ d, the vanilla adapter limits the number of introduced module parameters. Specifically,
for the input embedding feature representation X ∈ RN×d from the i-th layer in Transformer, the
vanilla adapter can be represented as:

Adapter(X) = X + σ(XWdown)Wup, (1)

where Wdown ∈ Rd×m and Wup ∈ Rd×m indicate the down-projection layer and up-projection
layer, σ(·) is the activation function.
Fourier Transform. Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform
(IDFT) serve as indispensable techniques for traditional signal analysis, which plays a vital role in
our Med-Adapter. Given a sequence data F ∈ RN , a single dimensional DFT f(k) and IDFT F (n)
are given below:

f(k) =

N−1∑
n=0

F (n)e−j2π kn
N , (k = 0, 1, 2, ..., N − 1) (2)

F (n) =
1

N

N−1∑
x=0

f(k)ej2π(
kn
N ), (n = 0, 1, 2, ..., N − 1). (3)

Furthermore, a 3-dimensional DFT can be computed by the composition of a sequence of one-
dimensional DFTs along each dimension (Cooley & Tukey, 1965). Given a 3D data (one image or
feature cube) F ∈ RD×H×W , its 3D-DFT f(x, y, z) and 3D-IDFT F (d, h, w) can be defined as:

f(x, y, z) =

W−1∑
w=0

H−1∑
h=0

D−1∑
d=0

F (d, h, w)e−j2π( xd
D

+ yh
H

+ zw
W ), (4)

F (d, h, w) =
1

DHW

W−1∑
z=0

H−1∑
y=0

D−1∑
x=0

f(x, y, z)ej2π(
xd
D

+ yh
H

+ zw
W ). (5)

Note that the accelerated version of DFT and IDFT are employed in our implementation and referred
to as FFT and IFFT. When processing 3D images or features with 3D-FFT, the acquired representa-
tion is composed of the entire 3D spatial frequency component. Since the FFT operation essentially
discretizes spatial domain content into individual frequency components in the frequency domain,
each frequency component in the resulting Fourier spectrum has the intrinsic global vision (Rao
et al., 2021), which is fully exploited in the global dependency modeling design of our Med-Adapter.

3.2 MEDICAL ADAPTER

In this work, we propose a task-oriented and simple yet effective module for medical data, namely
Med-Adapter. The PETL framework for various visual Transformer-based models integrated with
our Med-Adapters is referred to as Med-Tuning.
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Figure 3: Med-Tuning is our proposed PETL framework, which consists of 2D Transformer base-
lines for medical volumetric segmentation with our proposed Med-Adapter modules gradually in-
serted in each stage. Note that we need to reshape and shuffle the 3D input medical volumes from
[B,D,H,W ] to [BD,H,W ] before feeding them to this pipeline, where B = Batch. During train-
ing, only Med-Adapters and Decoder are tuned while all the other layers are frozen. The concate-
nation operation is calculated along the channel dimension.

The inspiration of our Med-Adapter is to empower a 2D Transformer model pre-trained on natural
images to gain the capability of spatial and temporal feature modeling among medical volumes
in a parameter-efficient manner. Here we consider three criteria when designing the adapter: (1)
Medical volumetric segmentation task oriented: The focus of our study is efficiently and effectively
narrowing the two-fold gaps mentioned in Sec.1. (2) Light-weight: Structure with a low amount
of parameters is a typical standard for PETL methods. (3) Plug-and-play: An easy-to-implement
module is friendly to the practical deployment.

Based on the above inspirations, our Med-Adapter is shown in the right part of Fig. 3. While re-
taining the overall bottleneck structure of the vanilla adapter (Eq. 1) with a reduction ratio α, a
few tailored designs for medical volumetric segmentation are introduced into the internal struc-
ture. Formally, given the embedded feature representation X ∈ RBD×C×HW in Transformer
(B,C,D,H,W denote the number of batch size, channel, slice, height, and width respectively),
a down-projection layer is first adopted to reduce the embedding dims of tokens, followed by an
activation function and a reshape operation to obtain X ′ ∈ RB×C

α ×D×H×W , which is expressed as:
X′ = Reshape(σ(XWdown)), (6)

where Wdown denotes the down-projection layer, σ(·) is the activation function.

Intra-stage Feature Enhancement (Intra-FE). Since accurately accomplishing the segmentation
task relies on both fine-grained feature representations as well as coarse-grained global semantics,
3D convolutions with diverse kernel sizes are employed to capture the multi-scale representations.
Simultaneously, the normal 3D convolution operations are replaced with 3D depth-wise convolu-
tions (Ye et al., 2018) to model the 3D volumetric information in a parameter-efficient manner.
Moreover, to pursue an extremely light-weight structure, we take advantage of the combination of
1 × K × K and K × 1 × 1 3D convolutions as an approximation of conventional K × K × K
3D convolution (where K denotes the kernel size). As for the frequency branch to realize global
dependency modeling, the conventional large-size convolutional kernel and attention mechanism
with large memory and computation costs are substituted by parameter-efficient 3D FFT and matrix
calculation. In this manner, channel-separable multi-scale features are fully captured by the three
parallel branches, followed by a 1 × 1 × 1 convolution to realize efficient channel mixing and ob-
tain the expected layer-wise enhanced feature representation H with rich multi-scale information.
Formally, Intra-FE can be formulated as:

F = IFFT (WF ⊙ FFT (X′) + bF ), (7)

H = Conv1×1×1(DWConv3(X′) +DWConv5(X′) + F), (8)
where FFT and IFFT denote the Fast Fourier Transform and Inverse Fast Fourier Transform, ⊙ is
the Hadamard product, WF , and bF are the introduced learnable parameters. DWConvK denotes
two cascaded 3D depth-wise convolutions with the kernel size of 1×K ×K and K × 1× 1.

In this way, our Med-Adapter can effectively and efficiently perform modeling of correlations among
slices and capture abundant spatial multi-scale features for the downstream dense prediction task,
i.e. medical volumetric segmentation.
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Inter-stage Feature Interaction (Inter-FI). Besides, we further consider the feature interaction
between different stages. As for the specific Med-Adapters located at the end of each stage, to fully
exploit the representations collected by our Med-Adapter at each stage, the intra-stage enhanced
feature representation H will be directly fused with the previous HLastStage from the corresponding
Med-Adapter at the former stage. In this way, feature representations extracted by multiple Med-
Adapters in shallow layers are gradually fed to adjacent higher layers, realizing inter-stage feature
interaction by explicit enhancement for boosted model performance. Inter-FI is expressed as Eq. 9.

H =

{
Cat(A(H,HLastStage)), if last
H, if not last

(9)

where A denotes using convolutions to realize the alignment between H and HLastStage in terms of
spatial resolution and channel dimension, Cat refers the concatenation along the channel dimension.
last is a bool parameter and last = True when the current Med-Adapter is the last one at stage n.

In summary, our Med-Adapter can be formulated as Eq. 10. H and X′ are combined by element
addition, and then the aggregated feature is symmetrically reshaped back to the same shape as X,
followed by the up-projection layer Wup and the activation function.

Med-Adapter(X) = X + σ(Reshape(H + X′)Wup). (10)

3.3 ADAPTING 2D TRANSFORMERS TO MEDICAL VOLUMES

The overall architecture of our method, namely Med-Tuning, consists of a commonly utilized de-
coder and a 2D Transformer backbone G pre-trained on large-scale natural images. As shown in
Fig. 3, G has N stages and the n-th stage (n = 1, 2, ..., N ) has a specific number of Transformer
blocks, our proposed Med-Adapters are integrated right after each Transformer block, which makes
it friendly for practical deployment as a plug-and-play component. Given a batch of 3D medical
volume as input XB ∈ RB×C×D×H×W , we first need to reshape them to X ′

B ∈ R(B×D)×C×H×W

and then send them into the 2D pre-trained backbone. Similarly, the output of the decoder should
be reshaped back to the same size as XB to ensure the alignment of prediction and ground truth.
During training, the backbone network is frozen, while only the parameters of our Med-Adapter and
the traditional decoder are updated on corresponding datasets.

Through layer-wise insertion and feature interaction between different stages, Med-Adapters ob-
tain and fuse the feature representations with diverse levels. Besides, since our Med-Adapter is
not restricted to any specific model structure, Transformer-based architectures can incorporate our
framework to greatly reduce the training costs and simultaneously boost model performance.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics. Our proposed Med-Tuning is comprehensively evaluated on
three benchmark datasets with CT and MRI as two different modalities (i.e. BraTS 2019 (Menze
et al., 2014; Bakas et al., 2017; 2018), BraTS 2020 (Menze et al., 2014; Bakas et al., 2017; 2018)
and KiTS 2019 (Heller et al., 2019)) for medical image segmentation. Due to space limits, more
detailed elaborations are presented in the Appendix A.1.
Implementation Details. Our Med-Tuning framework is implemented based on PyTorch (Paszke
et al., 2019) and trained with NVIDIA GeForce RTX 3090 GPUs. As the most representative
Transformer-based baselines for medical image segmentation take Swin Transformer (Liu et al.,
2021) and Vision Transformer (Dosovitskiy et al., 2020) as visual backbone, Swin-UNet (Cao et al.,
2021) and ViT (Dosovitskiy et al., 2020) with UPerNet (Xiao et al., 2018) pre-trained on ImageNet-
1k and ImageNet-21k are selected as two strong baselines for a fair comparison. All methods share
the same settings with the Adam optimizer during fine-tuning, while the “scratch” version is trained
with random initialization (i.e. without any pre-training). More implementation details can be found
in the Appendix A.1. The code will be made publicly available.

4.2 RESULTS AND ANALYSIS

BraTS 2019. We conduct experiments on the BraTS 2019 validation set and compare our method
with previous state-of-the-art (SOTA) approaches for PETL. With the combination of ViT (Doso-

6



Under review as a conference paper at ICLR 2024

Table 1: Performance comparison on BraTS 2019 and BraTS 2020 with ViT-B/16 backbone pre-
trained on ImageNet-21k dataset. Red and Blue text denote the performance improvement and the
percentage of tuned parameters compared to Full (i.e. full fine-tuning, shown with grey background).

ViT + UPerNet
Tuned
Params

(M)

Inserted
Params

(M)

BraTS2019 BraTS2020
Dice (%) ↑ Hausdorff (mm) ↓ Dice (%) ↑ Hausdorff (mm) ↓

ET WT TC ET WT TC ET WT TC ET WT TC
Scratch 100.849 - 64.96 83.03 71.34 7.635 10.602 10.942 65.80 83.72 72.01 32.475 10.060 21.467
Full 100.849 - 68.49 85.56 75.12 6.672 7.878 10.525 69.12 85.90 75.29 34.428 7.315 17.093
Head 15.007 - 65.71 84.19 74.77 6.128 7.505 7.864 66.03 84.50 74.47 37.805 7.474 14.150
VPT-Shallow
(Jia et al., 2022) 15.015 0.008 66.02 84.72 75.84 6.114 7.506 8.471 66.52 84.82 75.46 37.765 7.465 13.531

VPT-Deep
(Jia et al., 2022) 15.100 0.092 67.01 85.14 76.80 6.064 7.717 7.648 67.69 85.28 76.59 31.772 7.737 10.621

Adapter
(Houlsby et al., 2019) 18.567 3.560 68.30 85.37 77.05 5.501 7.636 7.986 68.58 85.77 77.00 32.626 8.172 16.183

AdaptFormer
(Chen et al., 2022) 16.197 1.190 65.88 84.34 74.77 6.652 8.204 8.430 65.52 84.14 74.28 41.026 8.393 14.778

Pro-tuning
(Nie et al., 2022) 19.812 4.805 67.18 85.32 76.51 5.805 7.073 7.564 67.28 85.57 76.58 40.434 7.000 12.865

ST-Adapter
(Pan et al., 2022) 22.118 7.110 69.18 86.27 79.18 6.077 6.939 6.778 68.60 86.55 79.52 34.060 6.790 12.770

Ours 17.853
(17.70%)

2.846
(2.82%)

70.53
(+2.04)

86.58
(+1.02)

79.35
(+4.23)

5.862
(-0.810)

6.224
(-1.654)

6.947
(-3.578)

70.69
(+1.57)

86.69
(+0.79)

79.36
(+4.07)

28.643
(-5.785)

6.198
(-1.117)

15.045
(-2.048)

vitskiy et al., 2020) and UPerNet (Xiao et al., 2018) as the baseline, the comparisons with SOTA
methods are presented in Table 1 (left), which shows that our method surpasses most of the previous
methods. Additionally, our Med-Tuning also achieves high parameter efficiency, with only 17.70%
tuned parameters of the full fine-tuning and inserted parameters that are only 2.82% of fine-tuning
all parameters. Compared with other PETL methods, Med-Tuning attains a much better trade-off
between performance and efficiency with our Med-Adapters as the easily inserted plug-and-play
component, achieving comparable or even better results with smaller parameter costs. Qualitative
results are shown in Fig. 4, with comparison to full fine-tuning, ST-Adapter (Pan et al., 2022) and
VPT (Jia et al., 2022). As the labels for the validation set are not available, five-fold cross-validation
is conducted on the training set for visualization. It can be seen that our method recognizes brain
tumors about their enhancing and non-enhancing regions more accurately and reduces missed or
false identification of the peritumoral edema in general.

Full ST-
Adapter

VPT Ours GT

Figure 4: The visual comparison of seg-
mentation results on BraTS 2019 dataset.
The blue, red and green regions denote the
enhancing tumors, non-enhancing tumors,
and peritumoral edema. Full and GT de-
note full fine-tuning and ground truth.

BraTS 2020. We also evaluate our Med-Tuning on
BraTS 2020 validation set. As shown in Table 1 (right),
with the combination of ViT (Dosovitskiy et al., 2020)
and UPerNet (Xiao et al., 2018) as a baseline, our
method achieves considerable performance gain on all
the metrics compared to full fine-tuning. Compared
with previous PETL methods that originated on natural
images, Med-Tuning shows better segmentation results
while maintaining high parameter efficiency.

KiTS 2019. To evaluate the generalization ability of
our method, we conduct experiments of kidney tumor
segmentation on CT scans from the KiTS 2019 dataset
(Heller et al., 2019), as shown in Table 2. We can see
that the proposed method boosts the performance of
full fine-tuning considerably and achieves much higher
Dice scores than previous SOTA methods, with much
fewer tuned model parameters. In comparison with re-
cently proposed PETL methods (e.g. VPT (Jia et al., 2022), Pro-tuning (Nie et al., 2022) and ST-
Adapter (Pan et al., 2022)), our Med-Tuning achieves better performance-efficiency trade-off on two
baselines. Specifically, Med-Tuning improves model performance by a large margin (i.e. ↑ 1.01%
Kidney Dice, ↑ 8.02% Tumor Dice, ↑ 4.52% Composite Dice on Swin-UNet (Cao et al., 2021)
and ↑ 4.20% Kidney Dice, ↑ 17.13% Tumor Dice, ↑ 10.67% Composite Dice on ViT (Dosovitskiy
et al., 2020)) with only 27.58% and 17.70% of tuned parameters respectively in comparison with
full fine-tuning. In addition, the corresponding qualitative comparison presented in the Appendix
A.3 shows that our method segments the organs and different kinds of tumors more accurately and
generates much better fine-grained segmentation masks of corresponding tumors.
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Table 2: Performance comparison on KiTS 2019 with Swin-T backbone pre-trained on ImageNet-1k
and ViT-B/16 backbone pre-trained on ImageNet-21k respectively.

Swin-UNet Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑ ViT + UPerNet Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
Kidney Tumor Composite Kidney Tumor Composite

Scratch 27.154 - 94.33 61.10 77.71 Scratch 100.849 - 88.01 46.53 67.27
Full 27.154 - 94.68 62.13 78.40 Full 100.849 - 87.32 47.34 67.33
Head 6.752 - 91.95 53.93 72.94 Head 15.007 - 87.35 42.85 65.10
VPT-Shallow
(Jia et al., 2022) 6.753 0.001 91.72 54.86 73.29 VPT-Shallow 15.015 0.008 86.91 41.67 64.29

VPT-Deep
(Jia et al., 2022) 6.780 0.029 91.53 53.41 72.47 VPT-Deep 15.100 0.092 88.01 46.45 67.23

Adapter
(Houlsby et al., 2019) 7.541 0.790 93.02 57.15 75.08 Adapter 18.567 3.560 89.75 49.03 69.39

AdaptFormer
(Chen et al., 2022) 7.124 0.372 93.74 59.79 76.77 AdaptFormer 16.197 1.190 87.62 44.46 66.04

Pro-tuning
(Nie et al., 2022) 8.359 1.607 90.34 51.19 70.77 Pro-tuning 19.812 4.805 89.44 48.32 68.88

ST-Adapter
(Pan et al., 2022) 8.328 1.577 92.97 57.33 75.15 ST-Adapter 22.118 7.110 90.33 61.29 75.81

Ours 7.489
(27.58%)

0.738
(2.72%)

95.69
(+1.01)

70.14
(+8.02)

82.92
(+4.52) Ours 17.853

(17.70%)
2.846

(2.82%)
91.52

(+4.20)
64.47

(+17.13)
78.00

(+10.67)

4.3 ABLATION STUDIES

We conduct extensive ablation experiments to justify the proposed design based on five-fold cross-
validation evaluations on the BraTS 2019 training set. Due to space limits, more ablation studies
can be found in the Appendix A.2.

Table 3: Ablation study on our Intra-FE.
ConvK denotes two cascaded 3D depth-wise
convolutions with a kernel size of 1×K×K and
K × 1× 1 separately, CM indicates the channel
mixing operation by a 1× 1× 1 convolution.

Conv3 Conv5 FFT CM Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC

✓ 7.550 0.798 75.42 89.77 80.22
✓ ✓ 7.574 0.823 75.19 89.44 80.89
✓ ✓ ✓ 7.577 0.825 75.30 89.93 81.93
✓ ✓ ✓ ✓ 7.675 0.924 77.10 90.05 81.02

Table 4: Ablation study on inter-stage fea-
ture interaction. Swin-UNet with Swin-T pre-
trained on supervised ImageNet-1k is taken as a
baseline.

Method Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC

Intra-only 7.675 0.924 77.10 90.05 81.02
Add 7.896 1.144 75.79 88.99 79.00
Max 7.896 1.144 75.22 89.72 81.41
Concat 7.994 1.243 77.22 90.09 81.59

Table 5: Ablation study on different encoder
pre-trained weights.
Pre-trained

Weights Method Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC

Supervised Full 100.849 - 66.19 84.72 73.92
Ours 17.853 2.846 68.27 87.22 81.63

CLIP Full 100.849 - 64.58 84.69 73.31
Ours 17.853 2.846 68.05 86.29 77.34

MAE Full 100.849 - 64.86 84.71 73.95
Ours 17.853 2.846 66.32 85.50 78.05

MoCo v3 Full 100.849 - 65.06 84.30 73.51
Ours 17.853 2.846 67.09 85.45 77.41

SAM Full 100.849 - 65.89 85.32 74.05
Ours 17.853 2.846 67.64 86.10 78.33

Table 6: Ablation study on reduction ratio α.
Swin-UNet with Swin-T pre-trained on super-
vised ImageNet-1k is chosen as a baseline.

Method Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC

α=2 10.064 3.313 76.89 90.14 81.92
α=4 7.994 1.243 77.22 90.09 81.59
α=6 7.489 0.738 77.06 90.28 82.71
α=8 7.271 0.520 76.94 89.62 80.74

Multi-scale Branch Design. We first probe into the rationale of the proposed intra-stage feature
enhancement in our Med-Adapter. For the default setting, the reduction ratio α is set to 4 without
inter-stage feature interaction. Swin-UNet with Swin-T pre-trained on supervised ImageNet-1k is
selected as the baseline. As presented in Table 3, the introduction of either Conv5 branch or FFT
branch consistently leads to a considerable performance increase. Specifically, with only 0.002M
additional tuned parameters, the FFT branch greatly improves the segmentation accuracy, show-
ing the effectiveness and parameter efficiency of our employed FFT branch. Additionally, channel
mixing further boosts the performance by a large margin, especially on ET (↑ 1.80%).
Inter-stage Feature Interaction. After investigating the effect of the intra-stage feature enhance-
ment, we further verify the effectiveness of the inter-stage feature interaction, as shown in Table 4.
Compared with the intra-only structure (i.e. without the feature connectivity between adjacent Med-
Adapters), the model with inter-stage achieves a considerable performance gain with only 0.319M
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extra parameters for feature alignment among adjacent stages, showing the effectiveness of our
inter-stage interaction. Unlike concatenation which maintains the feature representations of dif-
ferent stages as much as possible, direct addition or taking the maximum value (at each pixel) of
neighboring feature maps with diverse semantic levels would unintentionally degrade the original
feature representation, resulting in a sharp decrease in segmentation performance.
Encoder Pre-trained Weights. To explore the potential of our Med-Tuning, we also investigate
the effect of diverse encoder pre-trained weights taking ViT-B/16 as the backbone. Since the pre-
trained weights of ViT (Dosovitskiy et al., 2020) are relatively easy to acquire, supervised learning-
based, multi-modal learning based (i.e. CLIP (Radford et al., 2021)), self-supervised learning based
(i.e. MAE (He et al., 2022), MoCo v3 (Chen et al., 2021c)) pre-trained weights are all utilized
for a comprehensive comparison. Besides, with the recent advancements in the research of vi-
sual foundation models, we also include the Segment Anything Model (i.e. SAM) (Kirillov et al.,
2023) for a more comprehensive comparison. As is presented in Table 5, given pre-trained weights
acquired by different approaches, our Med-Tuning boosts the performance significantly with much
fewer tuned parameters compared with full fine-tuning. Based on the supervised learning-based pre-
trained weights such as SAM (Kirillov et al., 2023) that are not pre-trained on medical image domain
with great domain gaps, our framework can easily adapt the whole structure for effective medical
volumetric segmentation task with all the properly inserted Med-Adapters. With only 17.70% of the
tuned parameters of full fine-tuning, our framework consistently improves the segmentation accu-
racy by a large margin (i.e. Average Dice scores of 2% to 4%), suggesting the effectiveness, the
versatility and the powerful parameter-efficiency of our Med-Tuning framework.
Reduction Ratio in Bottleneck Design. We analyze the effect of different reduction ratios of the
bottleneck structure in our Med-Adapter. Note that the reduction ratio α here is a key factor that
influences the tuned parameters introduced by our Med-Adapter. Four diverse settings of α are
selected. As shown in Table 6, Med-Tuning achieves a promising trade-off between segmentation
accuracy and the tuned parameter costs with α = 6. On this basis, higher α would cause inferior
model performance because of the deteriorated representation capability with limited tuned param-
eters, while lower α would lead to a certain degree of information redundancy and a sharp increase
of tuned parameters, resulting in both decreased segmentation accuracy and high training costs.

Table 7: Ablation study on data efficiency property with pre-trained ViT-B/16.

Dataset Ratio Method Memory Cost (GB)↓ Training Time (h)↓ Dice (%) ↑ HF (mm)↓
ET WT TC ET WT TC

100% Full 16.55 1.34 68.04 85.74 76.58 6.94 7.28 7.99
100% Ours 13.53 1.20 75.46 86.80 86.24 3.78 6.94 4.34
75% Ours 13.53 1.05 69.12 86.69 78.06 6.33 6.01 6.63
50% Ours 13.53 0.72 69.19 86.26 77.26 6.28 7.03 7.12
25% Ours 13.53 0.39 67.43 85.64 74.57 6.32 7.71 8.14
5% Ours 13.53 0.17 59.61 80.44 64.01 15.07 16.64 16.36

Data Efficiency. At last, we also explore the data efficiency property of our method by examining
performance across various training data ratios, particularly in low-data settings. Table 7 shows the
quantitative comparison with different numbers of training samples. Our Med-Tuning can already
achieve comparable performance to full fine-tuning using only 25% training data. As the scale of
training data increases, our method consistently improves the segmentation accuracy, with reduced
training time and memory cost compared with full fine-tuning.

5 CONCLUSION

In this work, we present the study on exploring the potential of PETL for medical volumetric seg-
mentation and propose a new framework named Med-Tuning with high parameter efficiency. Taking
advantage of both spatial multi-scale features and 3D volumetric correlations along slices, our frame-
work achieves a trade-off between accuracy and the number of tuned parameters. Extensive experi-
ments show that our method achieves promising performance with greatly shrunk-tuned parameters
on three benchmark datasets compared to full fine-tuning and previous PETL SOTA methods.

Our approach provides a new solution of PETL for the practical application of medical volumetric
segmentation, suggesting new research in this direction. To some extent, our framework can get
rid of the dilemma that the pre-trained weights on large-scale datasets cannot be obtained in the
area of medical image analysis. The presented study also encourages the community to consider
shifting from constructing large-scale medical image datasets (or pre-training methods) to studying
the PETL of pre-trained models on relatively easily acquired natural images.
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A APPENDIX

The appendix is organized into the following sections:

1. (Sec. 1) More specific details about the datasets’ information, evaluation metrics and im-
plementation details on the utilized three benchmark datasets (i.e. BraTS 2019, BraTS
2020 and KiTS 2019).

2. (Sec. 2) More experimental results and analysis on BraTS 2019 and BraTS 2020 for a
comprehensive investigation.

3. (Sec. 3) More visual comparison of brain tumor segmentation and kidney tumor segmen-
tation for qualitative analysis.

Our code will be publicly available.
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A.1 DATASETS, EVALUATION METRICS AND IMPLEMENTATION DETAILS

Datasets and Evaluation Metrics. Brain Tumor Segmentation 2019 (BraTS 2019): The BraTS
2019 (Menze et al., 2014; Bakas et al., 2017; 2018) dataset contains 335 patient cases for training
and 125 cases for validation. Each sample consists of 3D brain MRI scans with four modalities,
while each modality has a volume of 240 × 240 × 155 that has already been aligned into the same
space. The ground truth contains 4 classes: background (label 0), necrotic and non-enhancing tumor
(label 1), peritumoral edema (label 2), and GD-enhancing tumor (label 4).

Brain Tumor Segmentation 2020 (BraTS 2020): The BraTS 2020 (Menze et al., 2014; Bakas et al.,
2017; 2018) dataset’s information is identical to BraTS 2019 except for the number of total samples
in the dataset. It contains 369 cases for training and 125 cases for validation respectively. On these
above two datasets, the segmentation accuracy is measured by Dice score and the Hausdorff distance
(95%) metrics for enhancing tumor region (ET, label 4), regions of the tumor core (TC, labels 1 and
4), and the whole tumor region (WT, labels 1,2 and 4).

Kidney Tumor Segmentation 2019 (KiTS 2019): The KiTS 2019 (Heller et al., 2019) dataset is com-
posed of multi-phase 3D CTs, including 300 patient cases with high-quality annotated voxel-wise
labels. It contains 210 patient cases as the training set and the remaining 90 patients as the testing
set. Each CT image/label has a spatial resolution of 512 × 512 with roughly 50 annotated slices
depicting the kidneys and tumors for each case. The ground truth contains 3 classes: background
(label 0), kidney (label 1), and kidney tumor (label 2). The same evaluation metrics as KiTS 2019
challenge are utilized: kidney dice considers both kidneys and tumors as foreground, tumor dice
considers everything except the tumors as background, and composite dice is the average of kidney
dice and tumor dice.

Implementation Details. As shown in Table 8, the specific implementation details on BraTS 2019,
BraTS 2020, and KiTS 2019 datasets for two baselines are comprehensively illustrated. On all three
benchmark datasets, models are fine-tuned with a batch size of 16 and the Adam optimizer. During
training, the following data augmentation techniques are applied to BraTS 2019 and BraTS 2020
datasets: (1) random cropping from 240× 240× 155 to 128× 128× 128 voxels; (2) random mirror
flipping across the axial, coronal and sagittal planes by a probability of 0.5; (3) random intensity
shift between [-0.1, 0.1] and scale between [0.9, 1.1]. L2 Norm is also applied for regularization
with a weight decay rate of 10−5. As for the KiTS 2019 dataset, the employed data augmentations
follow as the prior work (Isensee et al., 2021).

Table 8: Implementation details on BraTS 2019, BraTS 2020, and KiTS 2019 datasets for two
baselines (i.e. Swin-UNet, ViT) with supervised ImageNet weights.

Dataset Baseline Backbone Pre-train Learning
rate

Training
epochs

Warm-up
epochs

BraTS 2019
& BraTS 2020

Swin-UNet Swin-T ImageNet-1k 0.002 250 60
ViT+UPerNet ViT-B/16 ImageNet-21k 0.002 250 25

KiTS 2019 Swin-UNet Swin-T ImageNet-1k 0.002 500 20
ViT+UPerNet ViT-B/16 ImageNet-21k 0.004 500 20

A.2 MORE RESULTS AND ANALYSIS

In this section, to further explore the potential of our parameter-efficient framework and justify
the rationale of its design choices, more comprehensive experiments are conducted. (1) Taking
Swin-UNet (Cao et al., 2021) as the second baseline, we evaluate and compare our proposed Med-
Tuning framework with previous SOTA approaches for PETL on BraTS 2019 and BraTS 2020
validation sets. (2) Besides, as the supplemented ablation study, we further probe into the effect of
various designs for the global dependency modeling of our Med-Adapter Block. (3) Furthermore,
we also investigate the effectiveness of different designs for decoder in the whole architecture. (4)
Finally, we present more experimental results on a more general and large-scale medical volumetric
segmentation benchmark Medical Segmentation Decathlon (MSD) dataset with Swin UNETR (Tang
et al., 2022) as a 3D baseline model. Noticeably, the ablation experiment is carried out using five-
fold cross-validation evaluations on the BraTS 2019 training set.
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Table 9: Performance comparison on BraTS 2019 and BraTS 2020 with Swin-T backbone pre-
trained on ImageNet-1k dataset. Red and Blue text denote the performance improvement and the
percentage of tuned parameters compared to Full (i.e. full fine-tuning) which has a grey background.

Swin-UNet
Tuned
Params

(M)

Inserted
Params

(M)

BraTS2019 BraTS2020
Dice (%) ↑ Hausdorff (mm) ↓ Dice (%) ↑ Hausdorff (mm) ↓

ET WT TC ET WT TC ET WT TC ET WT TC
Scratch 27.154 - 78.38 88.59 76.46 6.055 10.651 9.176 78.72 89.12 77.07 7.621 6.977 19.081
Full 27.154 - 78.26 89.56 79.16 4.327 6.149 6.704 79.09 89.87 79.15 9.671 6.029 15.311
Head 6.752 - 78.07 88.68 77.26 5.021 6.697 7.091 78.77 88.66 76.90 4.893 8.491 16.064
VPT-Shallow
(Jia et al., 2022) 6.753 0.001 77.16 88.30 76.77 5.421 6.154 7.345 77.43 88.23 76.13 7.532 6.070 16.074

VPT-Deep
(Jia et al., 2022) 6.780 0.029 77.02 88.65 76.91 5.297 7.088 7.940 78.63 88.80 77.17 8.265 6.227 13.249

Adapter
(Houlsby et al., 2019) 7.541 0.790 77.98 89.22 78.02 5.298 6.622 8.490 78.51 89.16 77.71 7.045 6.245 19.090

AdaptFormer
(Chen et al., 2022) 7.124 0.372 77.69 88.61 76.83 4.909 6.290 7.885 78.22 88.92 76.40 10.354 6.480 16.900

Pro-tuning
(Nie et al., 2022) 8.359 1.607 78.58 89.33 78.79 5.273 6.410 8.236 78.77 89.46 78.20 7.306 6.505 10.542

ST-Adapter
(Pan et al., 2022) 8.328 1.577 78.40 89.54 77.44 4.751 6.013 7.405 78.96 89.54 77.85 7.673 5.480 15.525

Ours 7.489
(27.58%)

0.738
(2.72%)

78.51
(+0.25)

89.68
(+0.12)

80.44
(+1.28)

4.003
(-0.294)

5.517
(-0.632)

5.756
(-0.948)

79.25
(+0.16)

90.06
(+0.19)

80.79
(+1.64)

12.395
(+2.724)

4.410
(-1.619)

11.591
(-3.720)

A.2.1 PERFORMANCE COMPARISON ON BRATS 2019 AND BRATS 2020 WITH SWIN-UNET

To evaluate the generalization capability of our Med-Tuning, we also select Swin-UNet as another
baseline to conduct experiments of brain tumor segmentation on MRI scans utilizing BraTS 2019
(Menze et al., 2014; Bakas et al., 2017; 2018) and BraTS 2020 (Menze et al., 2014; Bakas et al.,
2017; 2018) datasets. The corresponding performance comparison on BraTS 2019 and BraTS 2020
validation sets are presented in Table 9. It can be clearly seen that, by jointly exploiting the spatial
multi-scale feature representation and correlations along slices, our method once again considerably
boosts the model performance of the full fine-tuning paradigm and achieves higher segmentation
accuracy than previous SOTA methods with much less tuned parameter costs. To be clear, since
Swin-UNet (Cao et al., 2021) with the crucial multi-scale feature representations is essentially a
more suitable baseline for dense prediction tasks than ViT (Dosovitskiy et al., 2020), the achieved
performance gain by our Med-Tuning on Swin-UNet baseline is understandably not as much as
that on ViT. Specifically, with only 27.58% of the tuned parameters of full fine-tuning, our Med-
Tuning improves the Dice score and the Hausdorff Distance by a large margin, especially on TC
(i.e. ↑ 1.28% and 1.64% on BraTS 2019 and BraTS 2020 validation set separately).

A.2.2 ABLATION STUDY ON DESIGN FOR GLOBAL DEPENDENCY MODELING

Table 10: Ablation study on different designs for global dependency modeling. The baseline is
Swin-UNet with Swin-T pre-trained on supervised ImageNet-1k. DWConvK denotes depth-wise
convolution with a kernel size of K × K.

Method Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
ET WT TC

DWConv9 7.837 1.086 76.48 90.58 81.10
DWConv11 8.126 1.375 76.82 89.40 80.05
FFT 7.994 1.243 77.22 90.09 81.59

In order to pursue the effective and parameter-efficient architecture of our proposed Med-Adapter,
we also investigate different designs for the global branch in our Med-Adapter block to achieve
global dependency modeling. Since convolutional blocks with a large kernel size or self-attention
are usually adopted by previous works for global contextual modeling and the baseline Swin-UNet
itself consists of plenty of self-attention operations in each local window, we take the depth-wise
convolution with a kernel size of 9 and 11 separately to replace our originally employed Fast Fourier
Transform (i.e. FFT) branch for a comprehensive comparison. The comparison of the segmentation
performance and tuned model parameters is shown in Table 10. It can be obviously noticed that by
taking advantage of the parameter-efficient FFT branch for effective long-range context modeling,
the architecture with the FFT branch achieves the optimal trade-off between model performance
and tuned parameters, reaching the best segmentation accuracy with only 1.243M introduced model
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parameters. In contrast, too large kernel size of the employed convolutions (i.e. DWConv11) will
result in a burdensome model structure and a large number of tuned parameter costs.

A.2.3 ABLATION STUDY ON DESIGN FOR DECODER

Table 11: Ablation study on decoder design. ViT-B/16 is pre-trained on supervised ImageNet-1k.

Method Tuned
Params(M)

Decoder
Params(M)

Dice (%) ↑
ET WT TC

UPerNet (Default) 19.562 15.095 68.27 87.22 81.63
U-Net 9.269 4.712 67.68 88.08 81.72
SETR-MLA 8.347 3.790 68.12 87.91 81.98
SETR-Naive 5.004 0.447 69.11 86.93 81.71
SETR-PUP 5.200 0.643 68.55 86.51 80.42

Here we explore the effect of different decoder designs in our architecture. Although the backbone
is frozen and only the inserted Med-Adapters as well as the decoder are updated during fine-tuning,
the essentially tuned model parameters introduced by the segmentation decoder can not be reckoned
as negligible. In other words, to pursue an extremely PETL framework, the design of the employed
decoder should be sufficiently lightweight with strictly controlled model parameters. Thus, vari-
ous segmentation decoders with greatly varied model complexity are introduced respectively for
a thorough analysis. As shown in Table 11, ViT-B/16 with the SETR-MLA decoder reaches the
best trade-off between segmentation accuracy and tuned parameter costs, benefiting from the ef-
fective multi-scale feature aggregation. Besides, taking the simplest SETR-Naive that is composed
of a convolution and an interpolation operation for upsampling as the decoder leads to the lowest
tuned parameters 5.004M while achieving promising segmentation performance with an average
Dice score of 79.34%. It can be seen from Table 11 that although the decoder size dominantly
decides the overall tuned parameters, it does not show a direct impact on model performance.

A.2.4 RESULTS ON MEDICAL SEGMENTATION DECATHLON (MSD) DATASET

To further evaluate the generalization capability and superiority of our Med-Tuning, we conduct ex-
periments to encompass additional body parts on another popular benchmark Medical Segmentation
Decathlon (MSD) dataset. Simultaneously, as a study on transfer learning in medical volumetric
segmentation, since 2D models are naturally outperformed by 3D counterparts with richer temporal
information and a few available 3D models pre-trained on medical data exists, the fair comparison
with this kind of baselines is essential for our work to achieve a more comprehensive comparison.
Therefore, we choose Swin UNETR (Tang et al., 2022) as a supplementary 3D medical pre-trained
baseline for comparison to convince the effectiveness of our method over both 3D models and base-
line models pre-trained on medical data. The experimental results of three tasks (i.e. heart, lung,
spleen) are listed in Table 12. Same conclusion can be drawn from Table 12 that our method consis-
tently boosts model performance with less memory cost and training time on various body parts.

Table 12: Results on MSD dataset with pre-trained Swin UNETR.
Organ Method Memory(GB)↓ Time(h)↓ Dice AVG(%)↑

Task02 Heart
(MRI)

Scratch 19.73 1.05 91.95
Full 19.73 1.06 93.73
Ours 13.44 0.86 95.84

Task06 Lung
(CT)

Scratch 23.51 8.39 65.82
Full 23.51 8.39 67.69
Ours 20.30 8.03 78.09

Task09 Spleen
(CT)

Scratch 20.32 3.21 95.76
Full 20.32 3.21 96.52
Ours 19.71 2.22 97.06

A.3 MORE VISUAL COMPARISON

To further demonstrate the advantage of our proposed framework, we present more visualizations of
brain tumor segmentation and kidney tumor segmentation results on BraTS 2019 dataset and KiTS
2019 dataset respectively for qualitative analysis in Fig. 5 and Fig. 6. The various methods utilized
for visual comparison include traditional full fine-tuning paradigm, ST-Adapter (Pan et al., 2022),
VPT (Jia et al., 2022) and our Med-Tuning. It can be clearly observed from both Fig. 5 and Fig. 6
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that our method can segment the specific organs and different kinds of tumors more accurately and
generate much better fine-grained segmentation masks of corresponding tumors.

Full FT ST-Adapter VPT Ours GT

Figure 5: The visual comparison of MRI brain tumor segmentation results. The blue regions denote
the enhancing tumors, the red regions denote the non-enhancing tumors, and the green ones denote
the peritumoral edema. Full FT and GT denote full fine-tune and ground truth respectively.
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Full FT ST-Adapter VPT Ours GT

Figure 6: The visual comparison of segmentation results on KiTS 2019 dataset. The red and green
regions denote the kidneys and kidney tumors. Full and GT denote full fine-tuning and ground truth.
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