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Figure 1: We present a framework for whole-body control of a legged robot with a robot arm attached. Left
half shows how whole-body control achieves larger workspace by leg bending and stretching. Right half shows
different real-world tasks, including wiping whiteboard, picking up a cup, pressing door-open buttons, placing,
throwing a cup into a garbage bin and picking in clustered environments. Videos on the project website.

Abstract: An attached arm can significantly increase the applicability of legged
robots to several mobile manipulation tasks that are not possible for the wheeled
or tracked counterparts. The standard modular control pipeline for such legged
manipulators is to decouple the controller into that of manipulation and locomotion.
However, this is ineffective. It requires immense engineering to support coordina-
tion between the arm and legs, and error can propagate across modules causing
non-smooth unnatural motions. It is also biological implausible given evidence for
strong motor synergies across limbs. In this work, we propose to learn a unified
policy for whole-body control of a legged manipulator using reinforcement learn-
ing. We propose Regularized Online Adaptation to bridge the Sim2Real gap for
high-DoF control, and Advantage Mixing exploiting the causal dependency in the
action space to overcome local minima during training the whole-body system. We
also present a simple design for a low-cost legged manipulator, and find that our
unified policy can demonstrate dynamic and agile behaviors across several task
setups. Videos are at https://maniploco.github.io
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1 Introduction

Locomotion has seen impressive performance in the last decade with results in challenging outdoor
and indoor terrains, otherwise unreachable by their wheeled or tracked counterparts. However, there
are strong limitations to what a legged-only robot can achieve since even the most basic everyday tasks,
besides visual inspection, require some form of manipulation. This has led to widespread interest
and progress towards building legged manipulators, i.e., robots with both legs and arms, primarily
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Figure 2: Whole-body control framework. During training, a unified policy is learned by conditioned on
environment extrinsics. During deployment, the adaptation module is reused without any real-world fine-tuning.
The robot can be commanded in various modes including teleoperation, vision and demonstration replay.

achieved so far through physical modeling of dynamics [1, 2, 3, 4, 5, 6]. However, modeling
a legged robot with an attached arm is a dynamic, high-DoF, and non-smooth control problem,
requiring substantial domain expertise and engineering effort on the part of the designer. The control
frameworks are often modular where kinematic constraints are dealt with separately for different
control spaces [7], thus limited to operating in constrained settings with limited generalization.
Learning-based methods, such as reinforcement learning (RL), could help lower the engineering
burden while aiding generalization to diverse scenarios.

However, recent learning-based approaches for legged mobile manipulators [8] have also followed
their model-based counterparts [9, 10] by using modular models in a semi-coupled fashion to control
the legs and arm. This is ineffective due to several practical reasons including lack of coordination
between the arm and legs, error propagation across modules, and slow, non-smooth and unnatural
motions. Furthermore, it is far from the whole-body motor control in humans where studies suggest
strong coordination among limbs. In fact, the control of hands and legs is so tied together that
they form low-dimension synergies, as outlined over 70 years ago in a seminal series of writings
by Russian physiologist Nikolai Bernstein [11, 12, 13]. Perhaps the simplest example is how it is
hard for humans to move one arm and the corresponding leg in different motions while standing.
The whole-body control should not only allow coordination but also extend the capabilities of the
individual parts. For instance, our robot bends or stretches its legs with the movement of the arm to
extend the reach of the end-effector as shown in Figure 1.

Unlike legged locomotion, it is not straightforward to scale the standard sim2real RL to whole-body
control due to several challenges: (a) High-DoF control: Our robot shown in Figure 3 has total
19 degrees of freedom. This problem is exacerbated in legged manipulators because the control is
dynamic, continuous and high-frequency, which leads to an exponentially large search space even in
few seconds of trajectory. (b) Conflicting objectives and local minima: Consider when the arm tilts to
the right, the robot needs to change the walking gait to account for the weight balance. This curbs the
locomotion abilities and makes training prone to learn only one mode (manipulation or locomotion)
well. (c) Dependency: Consider picking an object on the ground, the end-effector of the arm needs
support from the torso by bending legs. This means the absolute performance of manipulation is
bounded until legs can adapt.

In this work, we present both a hardware setup for customized low-cost fully untethered legged
manipulators and a method for learning one unified policy to control and coordinate both legs and arm,
which is compatible with diverse operating modes as shown in Figure 1. We use our unified policy
for whole-body control, i.e. to control the joints of the quadruped legs as well as the manipulator
to simultaneously take the arm end-effector to desired poses and command the quadruped to move
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Command Following (rfollowing) Energy (renergy) Alive (ralive)
rmanip 0.5 · e−‖[p,o]−[pcmd,ocmd]‖1 −0.004 ·

∑
j∈arm joints |τj q̇j | 0

rloco −0.5 ·
∣∣vx − vcmd

x

∣∣+ 0.15 · e−|ωyaw−ωcmd
yaw | −0.00005 ·

∑
i∈leg joints |τiq̇i|

2
0.2 + 0.5 · vcmd

x

Table 1: Both manipulation and locomotion rewards follow: rfollowing + renergy + ralive, which encourages
command following while penalizes positive mechanical energy consumption to enable smooth motion [17].
Denote forward base linear velocity vx, yaw angular base velocity ωyaw, torque τ , joint angle velocity q̇.

in desired velocities. The key insights of the method are that we can exploit the causal structure in
action space with respect to manipulation and locomotion to stabilize and speed up learning, and
adding regularization to domain adaptation bridges the gap between simulation with full states and
real world with only partial observations.

We perform evaluation on our proposed legged manipulator. Despite immense progress, there exists
no easy-to-use legged manipulator for academic labs. Most publicized robot is Spot Arm from Boston
Dynamics [14], but the robot comes with pre-designed controllers that cannot be changed. Another
example is the ANYmal robot with a custom arm [8] from ANYBotics. Notably, both these hardware
setups are expensive (more than 100K USD). We implement a simple design of low-cost legged Go1
robot [15] with low-cost arm on top (hardware costs 6K USD). Our legged manipulator can run fully
untethered with modest on-board compute. We show the effectiveness of our learned whole-body
controller for teleoperation, vision-guided control as well as open-loop control setup across tasks
such as picking objects, throwing garbage, pressing buttons on walls etc. Our robot exhibits dynamic
and agile leg-arm coordinated motions as shown in videos at https://maniploco.github.io.

2 Method: A Unified Policy for Coordinated Manipulation and Locomotion

We formulate the unified policy π as one neural network where the inputs are current base state
sbase
t ∈ R5 (row, pitch, and base angular velocities), arm state sarm

t ∈ R12 (joint position and
velocity of each arm joint), leg state sleg

t ∈ R28 (joint position and velocity of each leg joint, and
foot contact indicators), last action at−1 ∈ R18, end-effector position and orientation command
[pcmd, ocmd] ∈ SE(3), base velocity command [vcmd

x , ωcmd
yaw ], and environment extrinsics zt ∈ R20

(details in Section 2.2). The policy outputs target arm joint position aarm
t ∈ R6 and target leg joint

position aleg
t ∈ R12, which are subsequently converted to torques using PD controllers. We use

joint-space position control for both legs and the arm. As opposed to operational space control of the
arm, joint-space control enables learning to avoid self-collision and smaller Sim-to-Real gap, which is
also found to be useful in other setups involving multiple robot parts, like bimanual manipulation [16].

Command Vars Training Ranges Test Ranges
vcmd
x [0, 0.9] [0.8, 1.0]

ωcmd
yaw [-1,0, 1.0] [-1, -.7] & [.7, 1]
l [0.2, 0.7] [0.6, 0.8]
p [−2π/5, 2π/5] [−2π/5, 2π/5]
y [−3π/5, 3π/5] [−3π/5, 3π/5]
Ttraj [1, 3] [0.5, 1]

Table 2: Ranges for uniform sampling of command
variables

We use RL to train our policy π by
maximizing the discounted expected return
Eπ
[∑T−1

t=0 γtrt

]
, where rt is the reward at time

step t, γ is the discount factor, and T is the max-
imum episode length. The reward r is the sum
of manipulation reward rmanip and locomotion
reward rloco as shown in Table 1. Notice that
we use the second power of energy consumption
at each leg joint to encourage both lower aver-
age and lower variance across all leg joints. We
follow the simple reward design that encourages minimizing energy consumption from [17].

Env Params Training Ranges Test Ranges

Base Extra Payload [-0.5, 3.0] [5.0, 6.0]
End-Effector Payload [0, 0.1] [0.2, 0.3]
Center of Base Mass [-0.15, 0.15] [0.20, 0.20]
Arm Motor Strength [0.7, 1.3] [0.6, 1.4]
Leg Motor Strength [0.9, 1.1] [0.7, 1.3]

Friction [0.25, 1.75] [0.05, 2.5]

Table 3: Ranges for uniform sampling of environment
parameters

We parameterize the end-effector position com-
mand pcmd in spherical coordinate (l, p, y),
where l is the radius of the sphere and p and
y are the pitch and yaw angle. The origin of the
spherical coordinate system is set at the base of
the arm, but independent of torso’s height, row
and pitch (details in Supplementary). We set the
end-effector pose command pcmd by interpolat-
ing between the current end-effector position p
and a randomly sampled end-effector position
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pend every Ttraj seconds:

pcmd
t =

t

Ttraj
p+

(
1− t

Ttraj

)
pend, t ∈ [0, Ttraj].

pend is resampled if any pcmd
t leads to self-collision or collision with the ground. ocmd is uniformly

sampled from SO(3) space. Table 2 lists the ranges for sampling of all command variables.

2.1 Advantage Mixing for Policy Learning

Training a robust policy for a high-DoF robot is hard. In both manipulation and locomotion learning
literature, researchers have used curriculum learning to ease the learning process by gradually
increasing the difficulty of tasks so that the policy can learn to solve simple tasks first and then tackle
difficult tasks [18, 19, 20]. However, most of these works require many manual tunings of a diverse
set of the curriculum parameters and careful design of the mechanism for automatic curriculum.

Instead of introducing a large number of curricula on the learning and environment setups, we rely
on only one curriculum with only one parameter to expedite the policy learning. Since we know
that manipulation tasks are mostly related to the arm actions and locomotion tasks largely depends
on leg actions, we can formulate this inductive bias in policy optimization by mixing advantage
functions for manipulation and locomotion to speed up policy learning. Formally, for a policy with
diagonal Gaussian noise and a sampled transition batch D, the training objective with respect to
policy’s parameters θπ is

J(θπ) =
1

|D|
∑

(st,at)∈D

log π(aarm
t | st)

(
Amanip + βAloco)+ log π(aleg

t | st)
(
βAmanip +Aloco)

β is the curriculum parameter that linearly increases from 0 to 1 over timesteps Tmix: β =
min(t/Tmix, 1). Amanip and Aloco are advantage functions based on rmanip and rloco respectively.
Intuitively, the Advantage Mixing reduces the credit assignment complexity by first attributing differ-
ence in manipulation returns to arm actions and difference in locomotion returns to leg actions, and
then gradually anneal the weighted advantage sum to encourage learning arm and leg actions that
help locomotion and manipulation respectively. We optimize this RL objective by PPO [21].

2.2 Regularized Online Adaptation for Sim-to-Real Transfer

Much prior work on Sim-to-Real transfer utilize the two-phase teacher-student scheme to first train a
teacher network by RL using privileged information that is only available in simulation, and then the
student network using onboard observation history imitates the teacher policy either in explicit action
space or latent space [22, 23, 24, 25]. Due to the information gap between the full state available to
the teacher network and partial observability of onboard sensories, the teacher network may provide
supervision that is impossible for the student network to predict, resulting in a realizability gap. This
problem is also noted in Embodied Agent community [26]. In addition, the second phase can only
start after the convergence of the first phase, yielding extra burdens for both training and deployment.

To tackle the realizability gap and to remove the two-phase pipeline, we propose Regularized Online
Adaptation (shown in Figure 2). Concretely, the encoder µ takes the privileged information e as
input and predict an enviornment extrinsics latent zµ for the unified policy to adapt its behavior in
different environments. The adaptation module φ estimates the environment extrinsics latent zφ by
only condition on recent observation history from robot’s onboard sensories. We jointly train µ with
the unified policy π end-to-end by RL and regularize zµ to avoid large deviation from zφ estimated
by the adaptation module. The adaption module φ is trained by imitating zµ online. We formulate
the loss function of the whole learning pipeline with respect to policy’s parameters θπ, privileged
information encoder’s parameters θµ, and adaptation module’s parameters θφ as

L(θπ, θµ, θφ) = −J(θπ, θµ) + λ||zµ − sg[zφ]||2 + ||sg[zµ]− zφ||2 ,

where J(θπ, θµ) is the RL objective discussed in Section 2.1, sg[·] is the stop gradient oper-
ator, and λ is the Laguagrian multiplier acting as regularization strength. The loss function
can be minimized by using dual gradient descent: θπ, θµ ← arg minθπ,θµ E(s,a)∼π(...,zµ)[L],
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Survival ↑ Base Accel. ↓ Vel Error ↓ EE Error ↓ Tot. Energy ↓
Unified (Ours) 97.1± 0.61 1.00± 0.03 0.31± 0.03 0.63± 0.02 50± 0.90

Separate 92.0± 0.90 1.40± 0.04 0.43± 0.07 0.92± 0.10 51± 0.30
Uncoordinated 94.9± 0.61 1.03± 0.01 0.33± 0.01 0.73± 0.02 50± 0.28

Table 4: Comparison of unified policy with separate policies for legs-arm, and one uncoordinated policy. The
unified policy achieves the best performance given same energy consumption. The test ranges are in Table 2.

θφ ← arg minθφ E(s,a)∼π(...,zφ)[L], and λ← λ+α∂L∂λ with step size α. This optimization process is
known to converge under mild conditions [27, 28]. In practice, we alternate the optimization process
of the unified policy π and encoder µ and the one of adaptation module φ by a fixed number of
gradient steps. λ increases from 0 to 1 by a fixed linear scheme. Notice that RMA [22] is a special
case of Regularized Online Adaptation, in which the Laguagrian multiplier λ is set to be constant zero
and the adaptation module φ starts training only after convergence of the policy π and the encoder µ.

Deployment During deployment, the unified policy and adaptation module executes jointly onboard.
To specify commands, we develop three interfaces: teleopertion by joysticks, closed-loop control by
using RGB tracking, and open-loop reply of human demonstrations. Details are in Section 3.3.

3 Experimental Results

3.1 Robot System Setup

RGB Camera
Onboard 

Compute & 
Power

6DoF Arm

Go1 
Quadruped

Rail 
Mount

Figure 3: Robot system setup

The robot platform is comprised of a Unitree Go1
quadraped [15] with 12 actuatable DoFs, and a robot
arm which is the 6-DoF Interbotix WidowX 250s [29]
with a parallel gripper. We mount the arm on top of
the quadruped. The RealSense D435 provides RGB
visual information and is mounted close to the gripper
of WidowX. Both power of Go1 and WidowX are
provided by Go1’s onboard battery. Neural network
inference is also done onboard of Go1. Our robot
system uses only onboard computation and power so
it is fully untethered.

3.2 Simulation Experiments

The purpose of our simulation experiments is to address the following questions:

• Does the unified policy improves over separate policies for the arm and legs? If so, how?
• How Advantage Mixing helps learning the unified policy?
• What’s the performance of Regularized Online Adaptation compared with other Sim2Real methods?

Baselines and Metrics: We compare our method with the following baselines:

1. Separate policies for legs and the arm: one policy controls legs based on the quadraped observation,
and another policy controls the arm based on arm observation.

2. One uncoordinated policy: Same as unified policy which observes aggregate state of base, legs
and the arm, but only rmanip is used to train arm actions, and only rloco for leg actions.

3. Rapid Motor Adaptation (RMA) [22]: Two-phase teacher-student baseline.
4. Expert policy: the unified policy using the privileged information encoder zµ.
5. Domain Randomization: the unified policy trained without environment extrinsics z.

Arm workspace (m3) ↑ Survival under perturb ↑
Unified (Ours) 0.82± 0.02 0.87± 0.04

Separate 0.58± 0.10 0.64± 0.06
Uncoordinated 0.65± 0.02 0.77± 0.06

Table 5: In unified policy, legs help increase the arm workspace
and the arm helps the quadruped to stabilize.

We report following metrics: (1) sur-
vival percentage, (2) Base Accel: an-
gular acceleration of base, (3) Vel Er-
ror: L1 error between base velocity
commands and actual base velocity,
(4) EE Error: L1 error between end-
effector (EE) command and actual EE
pose, (5) Tot. Energy: total energy consumed by legs and the arm. All metrics are normalized by
episode length. All experiments are tested over 3 randomly initialized networks and 1000 episodes
each. Details of simulation and training are in Supplementary.
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Realizability Gap
‖zµ − zφ‖2

↓ Survival ↑ Base Accel. ↓ Vel Error ↓ EE Error ↓ Tot. Energy ↓

Domain Randomization - 95.8± 0.2 0.44± 0.00 0.46± 0.00 0.40± 0.00 21.9± 0.53
RMA [22] 0.31± 0.01 95.2± 0.2 0.54± 0.02 0.44± 0.00 0.26± 0.04 27.3± 0.95
Regularized Online Adapt (Ours) 2e-4 ±0.00 97.4± 0.1 0.51± 0.02 0.39± 0.01 0.21± 0.00 25.9± 0.56

Expert w/ Reg. - 97.8± 0.2 0.52± 0.02 0.40± 0.01 0.21± 0.00 25.8± 0.49
Expert w/o Reg. - 98.3± 0.2 0.51± 0.02 0.39± 0.00 0.21± 0.00 25.6± 0.30

Table 6: Regularized Online Adaptation outperforms other baselines with the smallest imitation error which
helps it to have the same performance as the expert policy which uses privileged information to predict envi-
ronment extrinsics. Expert policy trained with regularization term ‖zµ − sg[zφ]‖2 has negligible performance
degradation compared with the expert trained without regularization. Test ranges in Table 3. Domain Random-
ization learns to just stand in most cases, hence, trivially collapsing to low Tot. Energy and Base Accel.

Improvements of the Unified Policy over Baselines: In Table 4, our unified policy outperforms
separate and uncoordinated policies because both the arm and leg actions are trained with the sum
of reward for manipulation and locomotion are given with observations for the arm, legs and the
quadraped base, while baselines struggle to maintain a small base acceleration, which results in larger
error in command velocity following and inaccurate EE pose following.

Unified Policy Increases Whole-body Coordination: Table 5 shows that our unified policy pro-
motes whole-body coordination where (1) leg actions will help the arm to achieve a larger workspace
via bending for lower EE commands and standing up high for higher EE commands, and (2) arm will
help the robot balance under larger perturbation (1.0 m/s initial velocity of base) resulting in higher
survival rate of the unified policy. We estimate the the arm workspace via calculating the volume
of the convex hull of 1000 sampled EE poses, subtracted by the volume of a cube that encloses the
quadruped.

Figure 4: Advantage Mixing helps the unified
policy to learn to follow the command velocity
much faster (aggregated Vel Error over episodes
decreases sharply) than without mixing.

Advantage Mixing Helps Learning the Unified
Policy: Without Advantage Mixing, the unified pol-
icy has difficulty in credit assignment, resulting in the
policy first learns EE command following but ignores
the locomotion task. As shown in Figure 4, Advan-
tage Mixing helps the policy to focus on each task
first and then merge them together, which induces
a curriculum-like mechanism to speed up training.
Details in Supplementary.

Robust OOD Performance of Regularized Online
Adaptation: We find that our Regularized Online
Adaptation is more robust than RMA and Domain
Randomization (DR), tested in environments with
out-of-distribution (OOD) environment parameters in
Table 3. In RMA, it is not guaranteed the estimated
environment extrinsics by the adaptation module can
imitates the one learned by the expert. With Regularized Online Adaptation, the expert learns to
predict environment extrinsics with regularization from the adaptation module, thus tiny imitation
error, resulting in 20% reduction in EE Error. Table 6 shows that adding regularization to expert
has negligible negative impact on performance, while every metric gets improved compared to RMA
due to smaller latent imitation error. Note that DR has better base acceleration and total energy as it
just stands in place under difficult environments.

3.3 Real-World Experiments

We use the built-in Go1 MPC controller and the IK solver for operational space control of WidowX as
the baseline in the real world, which we refer to as MPC+IK. More details are in the Supplementary.

Teleoperation: We specify EE position command pcmd
t by parameterizing pcmd

t+1 = pcmd
t + ∆p,

where ∆p = (∆l,∆p,∆y) is specified by two joysticks. With human in the loop, we can command
the end-effector to reach points within or outside of training distribution. In Figure 5, we analyze the
whole-body control in the real world, and show that the quadruped’s base rotation (rquad, pquad, yquad)
strongly correlates with the EE position command pcmd

t . This indicates that our unified policy enables
whole-body coordination where the leg joints, as well as the arm joints, help reaching.
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(a) Body pitch pquad correlates with command
EE pitch p with various lengths l.

(b) Body pitch rquad correlates with command
EE pitch p with various yaws y.

Figure 5: Real-world whole-body control analysis. (a) We fix command EE yaw y = 0 and change command
EE pitch p and length l. When p has a large magnitude, the quadruped will pitch upward or downward to help
the arm reach for its goal. With larger l (goal far away), the quadruped will pitch more to help. (b) When the
magnitude of command EE yaw y is closer to 1.578 (arm turns to a side of the torso), the quadruped will roll
more to help the arm. When y = 0, the quadruped pitches downward instead of roll sideways to help the arm.

: Easy Tasks : Hard Tasks

SuccessSuccess Fail Fail

(a) Our method: success in both easy and hard
tasks with coordinated behaviors.

: Easy Tasks : Hard Tasks

SuccessSuccess Fail Fail

(b) MPC+IK: failure in both scenarios. Left: fail
due to missed cup. Right: fail due to self-collision.

Figure 6: Comparison of our method and the baseline controller (MPC+IK) in vision-guided pick-up tasks. We
sample different points around the robot as the target pick-up position. Easy tasks: 3 points are in normal distance
from the robot. Hard tasks: when the point is very close to the front feet and are hard to reach without whole-body
control. More hard tasks are in the Supplementary. Videos are at https://maniploco.github.io

Success
Rate ↑ TTC ↓ IK Failure

Rate ↓ Self-Collision
Rate ↓

Easy tasks (tested on 3 points)
Ours 0.8 5s - 0
MPC+IK 0.3 17s 0.4 0.3

Hard tasks (tested on 5 points)
Ours 0.8 5.6s - 0
MPC+IK 0.1 22.0s 0.2 0.5

Table 7: Comparison of our method v.s. MPC+IK on pick-up
tasks. pend is the goal position sampled from the points on the
ground. TTC is the average time to completion. Each task
performance is averaged on 10 real-world trials.

Vision-Guided Tracking: In addition to
joystick control by humans, we also show
successful picking tasks using visual feed-
back from an RGB camera. We mount a
Realsense D435i camera near the gripper
of the arm and use AprilTag [30] to get the
relative position between the gripper and
the object to be picked up. AprilTag is a
visual fiducial system popular in robotics
research using simple 2D black and white
blocks to encode pose information. We
first get the translation of the AprilTag in
the camera frame ptag = [xtag, ytag, ztag]T .
Then we design and use a simple yet effective position feedback controller to set the current EE
position command pcmd

t = KT ptag, where K = [−1.5,−1.5, 0.1]T is a gain vector for position
control. In Figure 6 and Table 7, we compare our method and the baseline (MPC+IK) in several
pick-up tasks by measuring the success rate, average time to to completion (TTC), IK failure rate,
and self-collision rate for every setting. We initialize the robot to the same default configuration and
before execution.

Analysis of Success and Failure Modes: Our method succeeds most of times on easy tasks without
visible performance drop in hard task. The failed trials of our method are largely due to the mismatch
between the actual cup position and the AprilTag position, which can be mitigated by using two
AprilTags and averaging their poses (details in the Supplementary). Since the visual estimation is not
the focus of this work, we infer that our method has higher precision and higher efficiency on pick-up
tasks than MPC+IK. MPC+IK succeeds in some of the easy tasks and fails due to IK singularity or
self-collision. In hard tasks, the major failure cause is self-collision given the cup is too close to the
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Figure 7: The arm follows a demonstration trajectory to pick up a cup while walking. The start position is
p = (0.5,−0.5,−1.2), at the right upper side of the robot and the end position is pend = (0.55,−0.9, 0.4), on
the left lower front side close to the ground. Ttraj = 2.5s. The robot initially stands on the ground and then is
commanded by a constant forward velocity vcmd

x = 0.35. Meanwhile the EE position command changes. When
EE position command is high, the quadruped starts to walk without significant tilting behavior with a natural
walking gait. As the EE position command moves below the torso, the quadruped starts to pitch downwards, roll
to the left and yaw slightly to the right to help the arm reach the goal.

body. Notice that the TTC of MPC+IK is also longer than our method because solving online IK and
operational space control more computationally demanding than joint position control (ours).

Open-loop Control from Demonstration: In this part, we analyze how agile walking is coupled
with dynamic arm movement. The robot is given a pre-defined end-effector trajectory to follow in
an open-loop manner while being commanded to walk at the same time. Results in Figure 7 show
agility and dynamic coordination of our legged manipulator on uneven grass terrain powered by
our whole-body control method.

4 Related Work
Legged Locomotion Traditional model-based control methods for legged robots have shown
success but often require controllers to be meticulously designed and many manual tunings [1, 2,
3, 4, 5, 31, 32, 33, 34, 35, 36, 6, 37]. The extra weight and movement of a robot arm on top of the
legged robot will make such design process more challenging. Recent advances in reinforcement
learning enable legged robots to traverse challenging terrains and adapt to changing dynamics
[38, 24, 22, 39, 40, 41, 42, 43, 44, 45, 46, 47, 17, 48, 49, 50]. However these works only focus on
the mobility part and few interactions with objects or the environment by manipulation are studied.

Mobile Manipulation Adding mobility to manipulation is studied in [51, 52, 53, 8, 54, 55, 10, 9,
56, 57, 58]. Advances have also been made in the field of biped humanoid [59, 60, 61, 62]. More
recently, Ma et al. [8] proposed using an MPC controller to track the desired end-effector position of
the arm mounted on a quadruped with a RL policy to maintain balance. However, the controllers for
legs (RL) and arm (model-based) are separate modules and no dynamic movements are demonstrated.
In [55], language models are used to guide a mobile robot to finish different tasks using the arm.
However, the manipulation and mobility are utilized in a decoupled step-by-step manner.

5 Discussion and Limitations

We proposed a hardware setup as well as an algorithm to learn whole-body control of a legged robot
with robotic arm. Our policy shows coordination between legs and arm while being able to control
them in a dynamic manner. Although we have shown preliminary results on object interaction (e.g.
picking, pressing, erasing), incorporating general-purpose object interaction (e.g. occlusion and soft
object) into the our unified policy is a challenging open research direction. There are several ways in
which the current methodology could be extended, such as, learning vision-based policies from the
egocentric camera mounted on torso [63] and on the arm, climbing on the obstacle using front legs
to pick something up on the table where the arm alone cannot reach, and etc. We believe this paper
provides a first step towards several of such future directions.
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