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ABSTRACT

Recent work shows that path gradient estimators for normalizing flows have lower
variance compared to standard estimators for variational inference, resulting in
improved training. However, they are often prohibitively more expensive from a
computational point of view and cannot be applied to maximum likelihood train-
ing in a scalable manner, which severely hinders their widespread adoption. In
this work, we overcome these crucial limitations. Specifically, we propose a fast
path gradient estimator which improves computational efficiency significantly and
works for all normalizing flow architectures of practical relevance. We then show
that this estimator can also be applied to maximum likelihood training for which
it has a regularizing effect as it can take the form of a given target energy func-
tion into account. We empirically establish its superior performance and reduced
variance for several natural sciences applications.

1 INTRODUCTION

Normalizing flows (NFs) have become a crucial tool in applications of machine learning in the
natural sciences. This is mainly because they can be used for variational inference, i.e., for the
approximation of distributions corresponding to given physical energy functions. Furthermore,
they can be synergistically combined with more classical sampling methods such as Markov chain
Monte Carlo (MCMC) and Molecular Dynamics, as their density is tractable.
The paradigm of using normalizing flows as neural samplers has lately been widely adopted for
example in quantum chemistry (Boltzmann generators (Noé et al., 2019)), statistical physics (gen-
eralized neural samplers (Nicoli et al., 2020)), as well as high-energy physics (neural trivializing
maps (Albergo et al., 2019)). In these applications, the normalizing flow is typically trained using
a combination of two training objectives: Reverse Kullback-Leibler (KL) training is used to train
the model by self-sampling (see Section 2). Crucially, this training method on its own often fails
in high-dimensional sampling settings because self-sampling is unlikely to probe exceedingly
concentrated high probability regions of the ground-truth distribution and can potentially lead to
mode collapse. As such, reverse KL training is often combined with maximum likelihood training
(also known as forward KL training). For this, samples from the ground-truth distribution are
obtained by standard sampling methods such as, e.g., MCMC. As these methods are typically costly,
the samples are often of low number and possibly biased. The model is then trained to maximize
its likelihood with respect to these samples. This step is essential for guiding the self-sampling
towards high probability regions and, by extension, for successful training.
Since training normalizing flows for realistic physical examples is typically computationally
challenging, methods to speed up the convergence have been a focus of recent research. To this end,
path estimators for the gradient of the reverse KL loss have been proposed (Roeder et al., 2017;
Vaitl et al., 2022a;b). These estimators focus on the parameter dependence of the flow’s sampling
process, also known as the sampling path, while discarding the direct parameter dependency, which
vanishes in expectation. Path gradients have the appealing property that they are unbiased and tend
to have lower variance compared to standard estimators, thereby promising accelerated convergence
(Roeder et al., 2017; Agrawal et al., 2020; Vaitl et al., 2022a;b). At the same time, however, current
path gradient estimation schemes have often a runtime that is several multiples of the standard
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gradient estimator, thus somehow counteracting the original intention. As a remedy, recently, Vaitl
et al. (2022b) proposed a faster algorithm. Unfortunately, however, this algorithm is limited to
continuous normalizing flows.

Our work resolves this unsatisfying situation by proposing unified and fast path gradient estimators
for all relevant normalizing flow architectures. Notably, our estimators are between 1.5 and 8 times
faster than the previous state-of-the-art. Specifically, we a) derive a recursive equation to calcu-
late the path gradient during the sampling procedure. Further, for flows that are not analytically
invertible, we b) demonstrate that implicit differentiation can be used to calculate the path gradient
without costly numerical inversion, resulting in significantly improved system size scaling.
Finally, we c) prove by a change of perspective (noting that the forward KL divergence in data space
is a reverse KL divergence in base space) that our estimators can straightforwardly be used for max-
imum likelihood training. Crucially, the resulting estimators allow us to work directly on samples
from the target distribution. As a result of our manuscript, path gradients can now be used for all
widely used training objectives — as opposed to only objectives using self-sampling — in a unified
and scalable manner.
We demonstrate the benefits of our proposed estimators for several normalizing flow architectures
(RealNVP and gauge-equivariant NCP flow) and target densities with applications both in machine
learning (Gaussian Mixture Model) as well as physics (U(1) gauge theory, and ϕ4 lattice model).

1.1 RELATED WORKS

Pathwise gradients take the sampling path into account and are well established in doubly stochas-
tic optimization, see e.g. L’Ecuyer (1991); Jankowiak & Obermeyer (2018); Parmas & Sugiyama
(2021). The present work uses path gradient estimators, a subset of pathwise gradients, originally
proposed by Roeder et al. (2017) in the context of reverse KL training of Variational Autoencoders
(VAE), which is motivated by only using the sampling path for computing gradient estimators and
disregarding the direct parameter dependency. These were subsequently generalized by Tucker et al.
(2019); Finke & Thiery (2019); Geffner & Domke (2021a;b) to generic VAE self-sampling losses.
There has been substantial work on reducing gradient variance not by path gradients but with control
variates, for example in Miller et al. (2017); Kool et al. (2019); Richter et al. (2020); Wang et al.
(2023). For an extensive review on the subject, we refer to Mohamed et al. (2020).
Bauer & Mnih (2021) generalized path gradients to score functions of distributions which do not
coincide with the sampling distribution in the context of hierarchical VAEs. As we will show, our
fast path gradient for the forward KL training can be brought into the same form. However, only our
formulation allows the application of a fast estimation scheme for NFs and establishes that forward
and reverse path gradients are closely linked.
Path gradients for normalizing flows have recently been studied: Agrawal et al. (2020) were the
first to apply path gradients to normalizing flows as part of a broader ablation study. However, their
algorithm has double the runtime and memory constraints as it requires a full copy of the neural net-
work. Vaitl et al. (2022a) proposed a method that allows path gradient estimation for any explicitly
invertible flow at the same runtime cost as Agrawal et al. (2020) but half the memory footprint. They
also proposed an estimator for forward KL training which is however based on reweighting and thus
suffers from poor system size scaling, while our method works on samples from the target density.
For the rather restricted case of continuous normalizing flows, Vaitl et al. (2022b) proposed a fast
path gradient estimator. Our proposal unifies their method in a framework which applies across a
broad range of normalizing flow types.

2 NORMALIZING FLOWS

A normalizing flow is a composition of diffeomorphisms

x = Tθ(x0) := TL,θL ◦ · · · ◦ T1,θ1(x0), (1)

where we have collectively denoted all parameters of the flow by θ := (θ1, . . . , θL). Since diffeo-
morphisms form a group under composition, the map Tθ is a diffeomorphism as well.
Samples from a normalizing flow can be drawn by applying Tθ to samples from a simple base den-
sity x0 ∼ q0 such as q0 = N (0,1). The density of x = Tθ(x0), denoted by qθ, is then given by the
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pushforward density of q0 under Tθ, i.e.,

log qθ(x) = log q0
(
T−1θ (x)

)
+ log

∣∣∣∣det ∂T−1θ (x)

∂x

∣∣∣∣ , (2)

see also Appendix A for general remarks on the notation. We focus on applications for which
normalizing flows are trained to closely approximate a ground-truth target density p(x) =
1
Z exp(−E(x)) , where the energy E : Rd → R is known in closed-from but the partition function
Z =

∫
Rd e

−E(x)dx is intractable. To this end, there are two widely established training methods:

Reverse KL training relies on self-sampling from the flow and minimizes the reverse KL diver-
gence

DKL(qθ, p) = Ex∼qθ [E(x) + log qθ(x)] + const. (3)

Since reverse KL training is based on self-sampling, the flow needs to be evaluated in the base-to-
target direction Tθ.

Forward KL training requires samples from the target density p and is equivalent to maximum
likelihood training

DKL(p, qθ) = Ex∼p [− log qθ(x)] + const. (4)

Since forward KL training requires the calculation of the density qθ(x), the flow needs to be evalu-
ated in the target-to-base direction T−1θ , see (2).
As mentioned before, one typically uses a combined forward and reverse training to guide the self-
sampling to high probability regions of the target density. When choosing a normalizing flow archi-
tecture for this task, it is therefore essential that both directions Tθ and T−1θ can be evaluated with
reasonable efficiency. As a result, the following types of architectures are of practical relevance:

Coupling Flows are arguable the most widely used (see, e.g., Noé et al. (2019); Albergo et al.
(2019); Nicoli et al. (2020); Matthews et al. (2022); Midgley et al. (2023); Huang et al. (2020)).
They split the vector xl ∈ Rd in two components

xl = (xtransl , xcondl ) , (5)

with xtransl ∈ Rk and xcondl ∈ Rd−k for k ∈ {1, . . . , d− 1}. The map Tl+1,θl+1
is then given by

xtransl+1,i = fθ,i(x
trans
l , xcondl ) := τ(xtransl,i , hθ,i(x

cond
l )) , ∀ i ∈ {1, . . . , k} , (6a)

xcondl+1 = xcondl , (6b)

where fθ : Rk × Rd−k → Rk, τ : R × Rm → R are invertible maps with respect to their first
argument for any choice of the second argument and hθ,i : Rd−k → Rm is the i-th output of a neural
network. Note that the function fθ acts on the components of xtransl element-wise.

There are broadly two types of coupling flows with different choices for the transformation τ :

1. Explicitly invertible flows have the appealing property that the inverse map T−1l+1,θl+1
can

be calculated in closed-form and as efficiently as the forward map Tl+1,θl+1
. A particular

example of this type of flows are affine coupling flows (Dinh et al., 2014; 2017) that use an
affine transformation τ , i.e.,

xtransl+1 = fθ(x
trans
l , xcondl ) = σθ(x

cond
l )⊙ xtransl + µθ(x

cond
l ) , (7a)

xcondl+1 = xcondl , (7b)

with hθ = (σθ, µθ). Another example are neural spline flows (Durkan et al., 2019) which
use splines instead of an affine transformation.

2. Implicitly invertible flows use a map τ whose inverse can only be obtained numerically,
such as a mixture of non-compact projectors (Kanwar et al., 2020; Rezende et al., 2020)
or smooth bump functions (Köhler et al., 2021). This often results in more expressive
flows in particular in the context of normalizing flows on manifolds (Rezende et al., 2020).
Recently, it has been shown in Köhler et al. (2021) that implicit differentation can be used
to train these types of flows using the forward KL objective.
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Continuous Normalizing Flows use an ordinary differential equation (ODE) which relates to the
bijection Tθ : Rd → Rd, allowing for straightforward implementation of equivariances, but typically
coming with high computational costs (Chen et al., 2018).
Notably, autoregressive flows (Huang et al., 2018; Jaini et al., 2019) are less relevant in the context
of learning a target density p because they only permit fast evaluation in one direction and there is no
training method based on implicit differentiation. As a result, they are not considered in this work.

3 PATH GRADIENTS FOR REVERSE KL

In this section, we introduce path gradients and show how they are related to the gradient of the
reverse KL objective. The basic definition of path gradients is as follows:
Definition 3.1. The path gradient of a function φ(θ, Tθ(x0)) is given by

▼θφ(θ, Tθ(x0)) :=
∂φ(θ, x)

∂x

∣∣∣
x=Tθ(x0)

∂Tθ(x0)

∂θ
. (8)

Note that the total derivative of the function φ can be decomposed in the following way:

d

dθ
φ(θ, Tθ(x0)) = ▼θφ(θ, Tθ(x0)) +

∂

∂θ
φ(θ, x)

∣∣∣
x=Tθ(x0)

. (9)

The path gradient therefore only takes the parameter dependence of the sampling path Tθ into ac-
count, but does not capture any explicit parameter dependence denoted by the second term. This
decomposition was applied by Roeder et al. (2017) to the gradient of the reverse KL divergence to
obtain the notable result

d

dθ
DKL(qθ, p) = Ex0∼q0 [▼θ (E(Tθ(x0)) + log qθ(Tθ(x0)))] , (10)

where we have used the fact that Ex0∼q0
[
∂
∂θ log qθ(Tθ(x0))

]
= 0. Thus, an unbiased estimator for

the gradient of the KL divergence is given by

Gpath :=
1

N

N∑
n=1

▼θ
[
E(Tθ(x

(n)
0 )) + log qθ(Tθ(x

(n)
0 ))

]
, (11)

where x(n)0 ∼ q0 are i.i.d. samples. This path gradient estimator has been observed to have lower
variance compared to the standard gradient estimator (Roeder et al., 2017; Tucker et al., 2019;
Agrawal et al., 2020).
As the total derivative of the energy agrees with the path gradient of the energy function, i.e.,
d
dθE(Tθ(x0)) = ▼θE(Tθ(x0)), the first term in the estimator can be straightforwardly calculated
using automatic differentiation. The second term, involving the path score ▼θ log qθ(Tθ(x0)), is
however non-trivial as the path gradient through the sampling path Tθ has to be disentangled from
the explicit parameter dependence in qθ. Recently, Vaitl et al. (2022a) proposed a method to calcu-
late this term using the following steps:

1. Sample from the flow without building the computational graph:

x′ = stop gradients(Tθ(x0)) for x0 ∼ q0 . (12)

2. Calculate the gradient of the density with respect to the sample x′ using automatic differ-
entiation:

G =
∂

∂x′
log qθ(x

′) =
∂

∂x′

(
log q0(T

−1
θ (x′)) + log det

∣∣∣∣∂T−1θ (x′)

∂x′

∣∣∣∣) . (13)

3. Calculate the path gradient using a vector Jacobian product which can be efficiently calcu-
lated by standard reverse-mode automatic differentiation*:

▼θ log qθ(Tθ(x0)) = G
∂Tθ(x0)

∂θ
. (14)

*Following standard convention in the autograd community, we adopt the convention that G is a row vector.
This is because the differential df = dxi

∂f
∂xi

of a function f is a one-form and thus an element of the co-tangent
space.
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This method therefore requires the evaluation of both directions Tθ and T−1θ . For implicitly invert-
ible flows, backpropagation through a numerical inversion per training iteration is thus required,
which is often prohibitively expensive.
Even in the best case scenario, i.e., for flows that can be evaluated in both directions with the same
computational costs, such as RealNVP (Dinh et al., 2017), this algorithm has significant computa-
tional overhead. Specifically, it has roughly the costs of five forward passes: one for the sampling
(12) and two each for the two gradient calculations (13) and (14) (which each require a forward as
well as a backward pass). This is to be contrasted with the costs of the standard gradient estimator
which only requires a single forward as well as a backward pass, i.e., has the cost of roughly two
forward passes. In practical implementations, typically a runtime overhead of a factor of two instead
of 5

2 is observed for the path gradient estimator compared to the standard gradient estimator.

3.1 FAST PATH GRADIENT ESTIMATOR

In the following, we outline a fast method to estimate the path gradient. An important downside
of the algorithm outlined in the last section is that one has to evaluate the flow in both directions
Tθ and T−1θ . The basic idea of the method outlined in the following is to calculate the derivative
∂x log qθ(x) of the flow model recursively during sampling process. As a result, the flow only
needs to be calculated in the forward direction Tθ as the second step in the path gradient algorithm
discussed in the previous section can be avoided. In more detail, the calculation of the path gradient
proceeds in two steps:

1. The sample x = Tθ(x0) and the gradient G = ∂
∂x log qθ(x) can be calculated alongside the

sampling process using the recursive relation derived below.
2. The path gradient is then calculated with automatic differentiation using a vector Jacobian

product, where, however, the forward pass Tθ(x0) does not have to be recomputed:

▼θ log qθ(Tθ(x0)) = G
∂Tθ(x0)

∂θ
. (15)

The recursion to calculate the derivative ∂x log qθ(x) is as follows:

Proposition 3.2 (Gradient recursion). Using the diffeomorphism Tl, the derivative of the induced
probability can be computed recursively as follows

∂ log qθ,l+1(xl+1)

∂xl+1
=
∂ log qθ,l(xl)

∂xl

(
∂Tl,θl(xl)

∂xl

)−1
−
∂ log

∣∣∣ det ∂Tl,θl
(xl)

∂xl

∣∣∣
∂xl

(
∂Tl,θl(xl)

∂xl

)−1
.

(16)

For general Tl, computing the inverse Jacobian (∂Tl,θl
(xl)/∂xl)

−1 entails a time and space complexity
higher than O(d), which is the complexity of the standard gradient estimator. For autoregressive
flows, the total complexity is O(d2), since its Jacobian is triangular. For coupling-type flows, we
can simplify and speed up the recursion to have linear complexity in the number of dimensions,
i.e. O(d). We state the recursive gradient computations for these kind of flows in the following
proposition.

Proposition 3.3 (Recursive gradient computations for coupling flows). For a coupling flow,
xtransl+1 = fθ(x

trans
l , xcondl ) and xcondl+1 = xcondl , (17)

the derivative of the logarithmic density can be calculated recursively as follows

∂ log qθ,l+1(xl+1)

∂xtransl+1

=
∂ log qθ,l(xl)

∂xtransl

(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
− ∂

∂xtransl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ (∂fθ(xtransl , xcondl )

∂xtransl

)−1
,

(18)

∂ log qθ,l+1(xl+1)

∂xcondl+1

=
∂ log qθ,l(xl)

∂xcondl

− ∂ log qθ,l+1(xl+1)

∂xtransl+1

∂fθ(x
trans
l , xcondl )

∂xcondl

− ∂

∂xcondl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ ,
(19)
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starting with
∂ log qθ,0(x0)

∂xtrans0

=
∂ log q0(x0)

∂xtrans0

,
∂ log qθ,0(x0)

∂xcond0

=
∂ log q0(x0)

∂xcond0

. (20)

For a proof, see Appendix B.1. We stress that the Jacobian ∂fθ(x
trans
l ,xcond

l )/∂xtrans
l is a k × k square

and invertible matrix, since fθ(·, xcondl ) is bijective for any xcondl ∈ Rd−k, see (6).

Implicitly Invertible Flows. An interesting property of the recursions in Proposition 3.3 is that they
only involve (derivatives of) fθ(xtransl , xcondl ) and can thus be evaluated during the sampling from
the flow. As such, they are directly applicable to implicitly invertible flows. Further note that the
Jacobian ∂fθ(x

trans
l ,xcond

l )/∂xtrans
l can be inverted in linear time O(d), as it is a diagonal matrix; the

function f acts element-wise on xtransl , see (6). Therefore, the recursion has the decisive advantage
that no numerical inversions need to be performed. In particular, there is no need for prohibitive
backpropagation through such an inversion.

Explicitly Invertible Flows. For explicitly invertible normalizing flows — the most favorable setup
for the baseline method from Vaitl et al. (2022a) — the runtime reduction appears to be more mild at
first sight. The algorithm has roughly the cost of three forward passes: one each for the calculation
of both x andG and one more for the backward pass when calculating the path gradient in (15). This
is to be compared to the cost of five forward passes for the baseline method by Vaitl et al. (2022a) to
calculate path gradients and two forward passes for the standard total gradient. However, this rough
counting neglects the synergy between the sampling process x = T (x0) and the calculation of the
score G. As we will show experimentally in Section 5, the actual runtime increase is only about
forty percent compared to the standard total gradient.
Finally, let us note that for the aforementioned popular case of affine coupling flows our recursion
from Proposition 3.3 takes a particular form. Since fewer terms need to be calculated, the following
recursion gives an additional improvement in computational speed.

Corollary 3.4 (Recursive gradient computations for affine coupling flows). For an affine coupling
flow (7), the recursion for the derivative of the logarithmic density can be simplified to

∂ log qθ,l+1(xl+1)

∂xtransl+1

=
∂ log qθ,l(xl)

∂xtransl

� σθ(x
cond
l ), (21)

∂ log qθ,l+1(xl+1)

∂xcondl+1

=
∂ log qθ,l(xl)

∂xcondl

− ∂ log qθ,l+1(xl+1)

∂xtransl+1

(
∂σθ(x

cond
l )

∂xcondl

⊙ xtransl +
∂µθ(x

cond
l )

∂xcondl

)

− ∂

∂xcondl

log
∣∣∣ k∏
i=1

σθ,i(x
cond
l )

∣∣∣ ,
where xtransl is a matrix with entries

(
xtransl

)
ij
:= xtransl,i for i ∈ {1, . . . , k}, j ∈ {1, . . . , d− k}.

For a proof, see Appendix B.2. Additionally, we show in Appendix C that the fast path gradient
derived by Vaitl et al. (2022b) for continuous normalizing flows can be rederived using analogous
steps as in Proposition 3.3. Our results therefore unify path gradient calculations of coupling flows
with the analogous ones for continuous normalizing flows.
Finally, we note that a further distinctive strength of the proposed fast path gradient algorithm is that
it can be performed at constant memory costs. Specifically, the calculation ofG can be done without
saving any activations. Similarly, the activations needed for the vector Jacobian product (15) can be
calculated alongside the backward pass as Tθ(x0) = x is known using the techniques of Gomez
et al. (2017).

4 PATH GRADIENTS FOR THE FORWARD KL DIVERGENCE

For training normalizing flows with the forward KL divergence, previous works have mainly relied
on reweighting path gradients (Vaitl et al., 2022a). Specifically, their basic underlying trick is to
rewrite the expectation value with respect to the ground-truth p as an expectation value with respect
to the model qθ

DKL(p, qθ) = Ex∼p
[
log

p(x)

qθ(x)

]
= Ex∼qθ

[
p(x)

qθ(x)
log

p(x)

qθ(x)

]
. (22)
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For this reweighted loss, suitable path gradient estimators were then derived in Tucker et al. (2019).
Reweighting, however, has the significant downside that it leads to estimators with prohibitive vari-
ance — especially for high-dimensional problems and in the early stages of training (Hartmann &
Richter, 2021). As a result, the proposed estimators cannot be applied in a scalable fashion (Dhaka
et al., 2021; Geffner & Domke, 2021a).
In the following, we will propose a general method to apply path gradients to forward KL training
without the need for reweighting. To this end, we first notice that the forward KL of densities in data
space can be equivalently rewritten as a reverse KL in base space, namely

DKL(p, qθ) = DKL(pθ,0, q0) , (23)

where we have defined the pullback of the target density p to base space as follows

pθ,0(x0) := p(Tθ(x0))

∣∣∣∣det ∂Tθ(x0)∂x0

∣∣∣∣ . (24)

We refer to Papamakarios et al. (2021) for a proof. As a result, all results derived for the reverse KL
case in the last sections also apply verbatim to the forward KL case if one exchanges:

qθ ←→ pθ,0 , p←→ q0 , x0 ←→ x , Tθ(x0)←→ T−1θ (x) . (25)

In particular, the fast path gradient estimators can be straightforwardly applied. More precisely, the
following statement holds:
Proposition 4.1 (Path gradient for forward KL). For the derivative of the forward KL divergence
DKL(p|qθ) w.r.t. the parameter θ it holds

d

dθ
DKL(p|qθ) = Ex∼p

[
▼θ log

pθ,0
q0

(T−1θ (x))
]
, (26)

where pθ,0(x0) := p(Tθ(x0))
∣∣∣det ∂Tθ(x0)

∂x0

∣∣∣ is the pullback of the target density p to base space.

For a proof, see Appendix B.3. Note that if p is only known in unnormalized form, so is its pullback
pθ,0. However, this has no impact on the derived result as it only involves derivatives of the log
density for which the normalization is irrelevant. The following comments are in order:

• The proposed path gradient for maximum likelihood training provides an attractive mecha-
nism to incorporate the known closed-form target energy function into the training process.
In particular, this can help to alleviate overfitting, cf. Figures 1 and 8 — a particularly
relevant concern as the forward training often uses a low amount of samples which entails
the risk of density collapse on the individual samples for standard maximum likelihood
training. The information about the energy function helps the path-gradient-based training
to avoid this undesired behaviour. On the other hand, forward KL path gradient training
cannot be used if the target energy function is not known such as in image generation tasks.

• As for path gradients of the reverse KL, we expect lower variance of the Monte Carlo esti-
mator of (26) compared to standard maximum likelihood gradient estimators. In particular,
we note that at the optimum qθ = p the variance of the gradient estimator vanishes.

• The proof in Appendix B shows that the so-called generalized doubly reparameterized
gradient proposed in Bauer & Mnih (2021) in the context of hierarchical VAEs can be
brought in the the same form as the path gradient for the forward KL objective derived in
this section. However, only our formulation elucidates the symmetry between the forward
and reverse objective and therefore allows the application for fast path gradient estimators.

5 NUMERICAL EXPERIMENTS

In this section, we compare our fast path gradients with the conventional approaches for several
normalizing flow architectures, both using forward and reverse KL optimization. We consider target
densities with applications in machine learning (Gaussian mixture model) as well as physics (U(1)
gauge theory, and ϕ4 lattice model). We refer to Appendix E for further details. *

*Code for reproducing the experiments for GMM and U(1) at github.com/lenz3000/unified-path-gradients.
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Figure 1: Effective sample size (ESS) over the training iterations for a Gaussian mixture model
using the forward and the reverse KL divergence. The intervals denote the standard error over
5 runs. The best performance is indicated by a dot with subsequent faded average performance
in the left and center figure. For the forward KL, we compare multiple hyperparameter settings
(see Appendix E) and plot the respective best runs in the central plot. The right plot displays a
stereotypical dependency on the data set size for fixed hyperparameters, see Tables 3, 4 and 5 for
more details. We can see that, typically, path gradients perform better than standard maximum
likelihood gradients.
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Figure 2: Training the U(1) flow for Lattice Gauge Theory. Shaded area shows standard error over
4 runs. The Reverse KL Path Gradients reach higher performance and exhibit less erratic behavior.

Gaussian Mixture Model. As a tractable multimodal example, we consider a Gaussian mixture
model in Rd with σ2 = 0.5, i.e. we choose the energy function

E(x) = − log
∑

µ∈{−1,1}d
N (x;µ, σ2 Id) (27)

Note that the number of modes of the corresponding target density increases exponentially in the
dimensions, i.e. we have 2d modes in total. We choose d = 6, resulting in 64 modes. As shown
in Figure 1, for most choices of hyperparameters, path gradient training outperforms the standard
training objectives. In Figures 5 to 7 in the appendix we present further experiments, showing
that path gradient estimators are indeed often better and never significantly worse than standard
estimators. The slight overhead in runtime is therefore more than compensated by better training
convergence. The additional information about the ground-truth energy function included in the
forward path gradient training alleviates overfitting in forward KL training, see the discussion in
Section 4.

ϕ4 Field Theory can be described by a random vector ϕ ∈ Rd, whose entries ϕu represent the
values of the corresponding field across a 16× 8 lattice. The lattice positions are encoded in the set
Λ ⊂ N2. We assume periodic boundary conditions of the lattice. The random vector ϕ admits the
density* p(ϕ) = 1

Z exp(−S(ϕ)) with action

S(ϕ) =
∑
u,v∈Λ

ϕu△uvϕv +
∑
u∈Λ

(
m2ϕ2u + λϕ4u

)
, (28)

where △uv is the lattice Laplacian. The parameters m and λ are the bare mass and coupling,
respectively. We choose the value of these parameters such that they lie in the so-called critical
region, as this is the most challenging regime. We refer to Gattringer & Lang (2009) for more details

*Note that, by slightly abusing notation, ϕ plays the role of what was x before.
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Table 1: Results of the experiments from Section 5. We measure the approximation quality of the
variational density qθ by the effective sampling size (ESS) plus standard deviations, where higher is
better, i.e., 100% indicates perfect approximation, see Appendix E for details.

Reverse KL Forward KL
Gradient Path Gradient Gradient Path Gradient

GMM ESSp 92.2± 0.0 97.4 ± 0.0 79.1± 0.0 91.8 ± 0.0
ESSq 93.0± 0.0 97.4 ± 0.0 84.1± 0.0 91.8 ± 0.0

ϕ4
ESSp 85.6± 0.1 96.0 ± 0.1 85.1± 0.1 95.6 ± 0.0
ESSq 85.6± 0.1 96.0 ± 0.1 85.1± 0.1 95.6 ± 0.0

U(1)
ESSq 40.1± 0.0 41.1 ± 0.0 — —
ELBO 1346.42± .01 1346.43 ± .00 — —

Table 2: Factor of runtime increase (mean and standard deviation) in comparison to the standard
gradient estimator, i.e., runtime path gradient/runtime standard gradient on an A100-80GB GPU. The upper set of
experiments cover the explicitly invertible flows, applied to ϕ4 as treated in the experiments. The
lower set covers implicitly invertible flows applied to U(1) theory.

Algorithm Runtime factor with batch size
64 1024 8192

E
xp

l Alg. 1 (ours) 1.6 ± 0.1 1.4 ± 0.1 1.4 ± 0.0
Alg. 2 (Vaitl et al., 2022a) 2.1 ± 0.1 2.2 ± 0.1 2.1 ± 0.0

Im
pl Alg. 1 (ours) 2.2 ± 0.0 2.0 ± 0.1 2.3 ± 0.0

Alg. 2 + Köhler et al. (2021) 17.5± 0.2 11.0± 0.1 8.2 ± 0.0

on the underlying physics. Training is performed using both the forward and reverse KL objective
with and without path gradients. For the flow, the same affine-coupling-based architecture as in
Nicoli et al. (2020) is used. Samples for forward KL and ESS are generated using Hybrid Monte
Carlo. We refer to Appendix E for more details. The path gradient training again outperforms the
standard objective for both forward and reverse training, see Table 1.

Gauge Theory was recently widely studied in the context of normalizing flows (Kanwar et al., 2020;
Albergo et al., 2021; Finkenrath, 2022; Bacchio et al., 2023; Cranmer et al., 2023) as it provides an
ideal setting for illustrating the power of inductive biases. This is because the theory’s action has a
gauge symmetry, i.e., a symmetry which acts with independent group elements for each lattice site,
see Gattringer & Lang (2009) for more details. Crucially, the field takes values in the circle group
U(1). Thus, flows on manifolds need to be considered. We use the flow architecture proposed by
Kanwar et al. (2020) which is only implicitly invertible. Sampling from the ground-truth distribution
with Hybrid Monte Carlo is very challenging due to critical slowing down and we therefore refrain
from forward KL training and forward ESS evaluation. Table 1 and Figure 2 demonstrate that path
gradients lead to overall better approximation quality.

Runtime Comparison. In Table 2, we compare the runtime of our method to relevant baselines both
for the ex- and implicitly invertible flows. To obtain a strong baseline for the latter, we use implicit
differentiation as in Köhler et al. (2021) to avoid costly backpropagation through the numerical
inversion. Our method is significantly faster than the baselines. We refer to Appendix E for a detailed
analysis of how this runtime comparison scales with the chosen accuracy of the numerical inversion.
Briefly summarized, we find that our method compares favorable to the baseline irrespective of the
chosen accuracy.

6 CONCLUSION

We have introduced a fast and unified method to estimate path gradients for normalizing flows
which can be applied to both forward and reverse training. We find that the path gradient training
consistently improves training for both the reverse and forward case. An appealing property of path-
gradient maximum likelihood is that it can take information about the ground truth energy function
into account and thereby acts as a particularly natural form of regularization. Our fast path gradient
estimators are several multiples faster than the previous state-of-the-art, they are applicable accross
a broad range of NF architectures, and considerably narrow the runtime gap to the standard gradient
while preserving the desirable variance reduction.

9



Published as a conference paper at ICLR 2024

Acknowledgements. L.V. thanks Matteo Gätzner for his preliminary work on GDReGs. L.W.
thanks Jason Rinnert for visualization help and acknowledges support by the Federal Ministry of
Education and Research (BMBF) for BIFOLD (01IS18037A). The research of L.R. has been par-
tially funded by Deutsche Forschungsgemeinschaft (DFG) through the grant CRC 1114 “Scaling
Cascades in Complex Systems” (project A05, project number 235221301). P.K. wants to thank
Andreas Loukas for useful discussions.

REFERENCES

Abhinav Agrawal, Daniel R. Sheldon, and Justin Domke. Advances in black-box VI: normaliz-
ing flows, importance weighting, and optimization. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Michael S Albergo, Gurtej Kanwar, and Phiala E Shanahan. Flow-based generative models for
Markov chain Monte Carlo in lattice field theory. Physical Review D, 100(3):034515, 2019.

Michael S Albergo, Denis Boyda, Daniel C Hackett, Gurtej Kanwar, Kyle Cranmer, Sébastien
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Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, 2018.
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Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457), 2019.

George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn.
Res., 2021.

Paavo Parmas and Masashi Sugiyama. A unified view of likelihood ratio and reparameterization
gradients. In International Conference on Artificial Intelligence and Statistics, pp. 4078–4086.
PMLR, 2021.

Danilo Jimenez Rezende, George Papamakarios, Sébastien Racanière, Michael S. Albergo, Gurtej
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APPENDIX

A NOTATION

For a function ψ : Rd → R we denote with dψ
dx its total derivative, for a function φ : Rd × Rp → R

we denote with ∂φ(x,y)
∂x its partial derivative w.r.t. the first argument x ∈ Rd and for a function

T : Rd → Rd we denote by ∂T
∂x its Jacobian. For ease of notation, we sometimes use the shorthand

notation ∂xl

∂xl+1
for ∂

∂xl+1
T−1l+1,θl+1

(xl+1), keeping in mind that xl+1 = Tl+1,θl+1
(xl). We write

▼φ for the path gradient of φ as defined in Definition 3.1. The symbol ⊙ denotes elementwise
multiplication and � denotes elementwise division.

B PROOFS

In this section we collect the proofs of our propositions and corollaries, which we will recall here
for convenience.

B.1 RECURSIVE GRADIENT COMPUTATIONS FOR COUPLING FLOWS

First, let us recall the following proposition from Section 3.1.

Proposition 3.2 (Gradient recursion). Using the diffeomorphism Tl, the derivative of the induced
probability can be computed recursively as follows

∂ log qθ,l+1(xl+1)

∂xl+1
=
∂ log qθ,l(xl)

∂xl

(
∂Tl,θl(xl)

∂xl

)−1
−
∂ log

∣∣∣ det ∂Tl,θl
(xl)

∂xl

∣∣∣
∂xl

(
∂Tl,θl(xl)

∂xl

)−1
.

(16)

Proof. The basic definition of flows consisting of compositions

log qθ,l+1(xl+1) = log qθ,l(T
−1
l,θl

(xl+1)) + log

∣∣∣∣∣det ∂T
−1
l,θl

(xl+1)

∂xl+1

∣∣∣∣∣ (29)

implies the following recursion

∂ log qθ,l+1(xl+1)

∂xl+1
=
∂ log qθ,l(T

−1
l,θl

(xl+1))

∂xl+1
+

∂

∂xl+1
log

∣∣∣∣∣det ∂T
−1
l,θl

(xl+1)

∂xl+1

∣∣∣∣∣ . (30)

Since for general normalizing flows, the inverse T−1l (xl+1) is not efficiently computable, we apply
the chain rule and the inverse function theorem

∂ log qθ,l+1(xl+1)

∂xl+1
=
∂ log qθ,l(xl)

∂xl

∂T−1l,θl
(xl+1)

∂xl+1
− ∂

∂xl

(
log

∣∣∣∣det ∂Tl,θl(xl)∂xl

∣∣∣∣) ∂T−1l,θl
(xl+1)

∂xl+1

(31a)

=
∂ log qθ,l(xl)

∂xl

(
∂Tl,θl(xl)

∂xl

)−1
− ∂

∂xl

(
log

∣∣∣∣det ∂Tl,θl(xl)∂xl

∣∣∣∣)(∂Tl,θl(xl)∂xl

)−1
.

(31b)

We can break down the recursive operation further in the next proposition.

Proposition 3.3 (Recursive gradient computations for coupling flows). For a coupling flow,

xtransl+1 = fθ(x
trans
l , xcondl ) and xcondl+1 = xcondl , (17)
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the derivative of the logarithmic density can be calculated recursively as follows

∂ log qθ,l+1(xl+1)

∂xtransl+1

=
∂ log qθ,l(xl)

∂xtransl

(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
− ∂

∂xtransl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ (∂fθ(xtransl , xcondl )

∂xtransl

)−1
,

(18)

∂ log qθ,l+1(xl+1)

∂xcondl+1

=
∂ log qθ,l(xl)

∂xcondl

− ∂ log qθ,l+1(xl+1)

∂xtransl+1

∂fθ(x
trans
l , xcondl )

∂xcondl

− ∂

∂xcondl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ ,
(19)

starting with

∂ log qθ,0(x0)

∂xtrans0

=
∂ log q0(x0)

∂xtrans0

,
∂ log qθ,0(x0)

∂xcond0

=
∂ log q0(x0)

∂xcond0

. (20)

Proof. For coupling flows xl = (xtransl , xcondl ) and xcondl+1 = xcondl . This implies that the determi-
nant of the Jacobian is

det
∂xl
∂xl+1

= det

∂xtrans
l

∂xtrans
l+1

∂xtrans
l

∂xcond
l+1

0 1

 = det
∂xtransl

∂xtransl+1

. (32)

Using this result and splitting into the transformed and conditional components, the recursion can
be rewritten as follows

∂ log qθ,l+1(xl+1)

∂xtransl+1

=
∂ log qθ,l(xl)

∂xtransl+1

+
∂

∂xtransl+1

log

∣∣∣∣det ∂xtransl

∂xtransl+1

∣∣∣∣ , (33)

∂ log qθ,l+1(xl+1)

∂xcondl+1

=
∂ log qθ,l(xl)

∂xcondl+1

+
∂

∂xcondl+1

log

∣∣∣∣det ∂xtransl

∂xtransl+1

∣∣∣∣ , (34)

We want to rewrite the right-hand side of this recursion in terms of quantities that involve derivatives
with respect to xl. To this end, let us study derivatives w.r.t. xtransl+1 and xcondl+1 , respectively.

For a generic function φ : Rk × Rd−k → R it holds via the chain rule that

∂φ(xtransl , xcondl )

∂xtransl+1

=
∂φ(xtransl , xcondl )

∂xtransl

∂xtransl

∂xtransl+1

+
∂φ(xtransl , xcondl )

∂xcondl

∂xcondl

∂xtransl+1

. (35)

Noting that xtransl = f−1θ (xtransl+1 , xcondl+1 ) and noting that xcondl+1 = xcondl , we can compute

∂φ(xtransl , xcondl )

∂xtransl+1

=
∂φ(xtransl , xcondl )

∂xtransl

∂f−1θ (xtransl+1 , xcondl+1 )

∂xtransl+1

(36a)

=
∂φ(xtransl , xcondl )

∂xtransl

(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
, (36b)

where we used the fact that the Jacobian of the inverse is the inverse of the Jacobian due to the
inverse function theorem.

Similarly, we can write

∂φ(xtransl , xcondl )

∂xcondl+1

=
∂φ(xtransl , xcondl )

∂xtransl

∂xtransl

∂xcondl+1

+
∂φ(xtransl , xcondl )

∂xcondl

∂xcondl

∂xcondl+1

(37a)

=
∂φ(xtransl , xcondl )

∂xtransl

∂xtransl

∂xcondl+1

+
∂φ(xtransl , xcondl )

∂xcondl

, (37b)

where we have used the decomposition (6) of a coupling flow.
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Note that the Jacobian ∂xtrans
l

∂xcond
l+1

is not necessarily invertible and may not even be a square matrix. We

have assumed that xtransl = f−1θ (xtransl+1 , xcondl+1 ) is invertible only with respect to its first argument

(for any choice of its last). So while the Jacobians ∂xtrans
l

∂xtrans
l+1

and ∂fθ(x
trans
l ,xcond

l )
∂xtrans

l
are square and

invertible matrices, the same cannot be said for the Jacobian ∂xtrans
l

∂xcond
l+1

. However, we can use the
following trick

0 =
∂xtransl+1

∂xcondl+1

=
∂fθ(x

trans
l , xcondl )

∂xcondl+1

(38a)

=
∂fθ(x

trans
l , xcondl )

∂xtransl

∂xtransl

∂xcondl+1

+
∂fθ(x

trans
l , xcondl )

∂xcondl

∂xcondl

∂xcondl+1

(38b)

=
∂fθ(x

trans
l , xcondl )

∂xtransl

∂xtransl

∂xcondl+1

+
∂fθ(x

trans
l , xcondl )

∂xcondl

. (38c)

Since the Jacobian ∂fθ(x
trans
l ,xcond

l )
∂xtrans

l
is invertible, the above statement is equivalent to

∂xtransl

∂xcondl+1

= −
(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
∂fθ(x

trans
l , xcondl )

∂xcondl

. (39)

Substituting this result into (37b) yields

∂φ(xtransl , xcondl )

∂xcondl+1

= −∂φ(x
trans
l , xcondl )

∂xtransl

(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
∂fθ(x

trans
l , xcondl )

∂xcondl

+
∂φ(xtransl , xcondl )

∂xcondl

.

(40)

Next, we note that the determinant of the Jacobian can be rewritten as

log

∣∣∣∣∣det ∂f−1θ (xtransl+1 , xcondl+1 )

∂xtransl+1

∣∣∣∣∣ = − log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ , (41)

using again the inverse function theorem.

Now, plugging (36), (40) and (41) into (33) for suitable choices of φ, we can rewrite the recursion
in the desired form:

∂ log qθ(xl+1)

∂xtransl+1

=
∂ log qθ(xl)

∂xtransl

(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
− ∂

∂xtransl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ (∂fθ(xtransl , xcondl )

∂xtransl

)−1
.

(42)

This is precisely the form stated in the proposition. Analogously, plugging (36), (40) and (41) into
(34), the conditional component can be rewritten as

∂ log qθ(xl+1)

∂xcondl+1

=
∂ log qθ(xl)

∂xcondl

− ∂ log qθ(xl)

∂xtransl

(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
∂fθ(x

trans
l , xcondl )

∂xcondl

+
∂

∂xtransl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ (∂fθ(xtransl , xcondl )

∂xtransl

)−1
∂fθ(x

trans
l , xcondl )

∂xcondl

− ∂

∂xcondl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ .
(43)
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This can be brought in more compact form by noticing that the term ∂ log qθ(xl+1)
∂xtrans

l+1
appears in the

expression for the conditional component. Using this, we can rewrite the conditional component as

∂ log qθ(xl+1)

∂xcondl+1

=
∂ log qθ(xl)

∂xcondl

− ∂ log qθ(xl+1)

∂xtransl+1

∂fθ(x
trans
l , xcondl )

∂xcondl

− ∂

∂xcondl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ ,
(44)

which is precisely the form stated in the proposition.

B.2 RECURSIVE GRADIENT COMPUTATIONS FOR AFFINE COUPLING FLOWS

Let us recall the following corollary from Section 3.1.

Corollary 3.4 (Recursive gradient computations for affine coupling flows). For an affine coupling
flow (7), the recursion for the derivative of the logarithmic density can be simplified to

∂ log qθ,l+1(xl+1)

∂xtransl+1

=
∂ log qθ,l(xl)

∂xtransl

� σθ(x
cond
l ), (21)

∂ log qθ,l+1(xl+1)

∂xcondl+1

=
∂ log qθ,l(xl)

∂xcondl

− ∂ log qθ,l+1(xl+1)

∂xtransl+1

(
∂σθ(x

cond
l )

∂xcondl

⊙ xtransl +
∂µθ(x

cond
l )

∂xcondl

)

− ∂

∂xcondl

log
∣∣∣ k∏
i=1

σθ,i(x
cond
l )

∣∣∣ ,
where xtransl is a matrix with entries

(
xtransl

)
ij
:= xtransl,i for i ∈ {1, . . . , k}, j ∈ {1, . . . , d− k}.

Proof. Affine coupling flows are defined by

xtransl+1 = fθ(x
trans
l , xcondl ) = σθ(x

cond
l )⊙ xtransl + µθ(x

cond
l ), xcondl+1 = xcondl . (45)

This implies for the Jacobian

∂fθ(x
trans
l , xcondl )

∂xtransl

= diag
(
σθ(x

cond
l )

)
, (46)

and for its determinant it holds

det
∂fθ(x

trans
l , xcondl )

∂xtransl

=

k∏
i=1

σθ,i(x
cond
l ) , (47)

which notably does not depend on xtransl . Therefore, the recursion for the transformed component
simplifies to

∂ log qθ,l+1(xl+1)

∂xtransl+1

=
∂ log qθ,l(xl)

∂xtransl

(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
− ∂

∂xtransl

(
∂fθ(x

trans
l , xcondl )

∂xtransl

)−1
log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣ (48a)

=
∂ log qθ,l(xl)

∂xtransl

� σθ(x
cond
l ) , (48b)
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Figure 3: Gradient norm during training of the ϕ4-experiments. The norm of the path gradient
estimator is closer to zero than the norm of the standard gradient estimator when the target density
is well approximated, indicating lower variance.

which is precisely the form stated in the proposition. The recursion for the conditional component
simplifies to

∂ log qθ,l+1(xl+1)

∂xcondl+1

=
∂ log qθ,l(xl)

∂xcondl

− ∂ log qθ,l+1(xl+1)

∂xtransl+1

∂fθ(x
trans
l , xcondl )

∂xcondl

(49a)

− ∂

∂xcondl

log

∣∣∣∣det ∂fθ(xtransl , xcondl )

∂xtransl

∣∣∣∣
=
∂ log qθ,l(xl)

∂xcondl

− ∂ log qθ,l+1(xl+1)

∂xtransl+1

(
∂σθ(x

cond
l )

∂xcondl

⊙ xtransl +
∂µθ(x

cond
l )

∂xcondl

)

− ∂

∂xcondl

log

∣∣∣∣∣
k∏
i=1

σθ,i(x
cond
l )

∣∣∣∣∣ , (49b)

where xtransl is a matrix with entries
(
xtransl

)
ij

:= xtransl,i for i ∈ {1, . . . , k}, j ∈ {1, . . . , d − k}.
This shows the claim.

B.3 PATH GRADIENTS FOR THE FORWARD KL DIVERGENCE

In this section, we prove Proposition 4.1 and lay out its implications for path gradient estimators,
both for the forward and reverse KL divergence. In particular, we will discuss the favorable vari-
ance properties of path gradients in the case of the forward KL divergence, which we also verify
experimentally in Figure 3.

Proposition 4.1 (Path gradient for forward KL). For the derivative of the forward KL divergence
DKL(p|qθ) w.r.t. the parameter θ it holds

d

dθ
DKL(p|qθ) = Ex∼p

[
▼θ log

pθ,0
q0

(T−1θ (x))
]
, (26)

where pθ,0(x0) := p(Tθ(x0))
∣∣∣det ∂Tθ(x0)

∂x0

∣∣∣ is the pullback of the target density p to base space.
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Proof. Let us first note that

DKL(p|qθ) = Ex∼p
[
log p(x)− log

∣∣∣∣det ∂T−1θ (x)

∂x

∣∣∣∣− log q0(T
−1
θ (x))

]
(50a)

= Ex0∼pθ,0

[
log p(Tθ(x0)) + log

∣∣∣∣det ∂Tθ(x0)∂x0

∣∣∣∣− log q0(x0)

]
(50b)

= DKL(pθ,0|q0). (50c)
Note that in (50) we have essentially transformed a forward into a reverse KL divergence. By looking
at the problem of minimizing the forward KL divergence DKL(p|qθ) — from target density p to the
variational density qθ — as a reverse KL divergenceDKL(pθ,0|q0) — from a variational density pθ,0
to target density q0 —, we can employ the tools that exist for optimizing the reverse KL divergence.
In particular, we can now apply the standard path gradients as derived by Roeder et al. (2017) and
Tucker et al. (2019). We compute

d

dθ
DKL(pθ,0|q0) = Ex∼p

[
∂

∂θ
log

pθ,0
q0

(T−1θ (x))

]
(51a)

= Ex∼p
[
∂

∂x0

(
log

pθ,0
q0

(x0)

)
∂T−1θ (x)

∂θ
+
∂ log pθ,0(x0)

∂θ

∣∣∣
x0=T

−1
θ (x)

]
(51b)

= Ex∼p
[
▼θ log

pθ,0
q0

(T−1θ (x))

]
+ Ex0∼pθ,0

[
∂ log pθ,0(x0)

∂θ

]
(51c)

= Ex∼p
[
▼θ log

pθ,0
q0

(T−1θ (x))

]
, (51d)

where we used the fact that the score ∂
∂θ log pθ,0(x0) vanishes in expectation over pθ,0, since

Ex0∼pθ,0

[
∂

∂θ
log pθ,0(x0)

]
=

∫
Rd

∂

∂θ
log pθ,0(x0)pθ,0(x0)dx0 (52a)

=

∫
Rd

∂

∂θ
pθ,0(x0)dx0 (52b)

=
∂

∂θ

∫
Rd

pθ,0(x0)dx0 (52c)

=
∂

∂θ
1 = 0. (52d)

Now, the statement follows by combining (50) and (51).

B.3.1 VARIANCE: STICKING THE LANDING PROPERTY

The covariance matrix of the score term is known to be the Fisher Information (cf., e.g., Vaitl et al.
(2022a)). In this case, it is the Fisher Information I0(θ) of the pullback density pθ,0, defined as

I0(θ) := Ex0∼pθ,0

[
∂

∂θ
log pθ,0(x0)

⊤ ∂

∂θ
log pθ,0(x0)

]
. (53)

If the model perfectly approximates the target density, i.e. pθ,0(x0) = q0(x0) for all x0 ∈ Rd, then
the path gradient term

▼θ

(
log

pθ,0
q0

(T−1θ (x))

)
=

∂

∂x0
(log pθ,0(x0)− log q0(x0))︸ ︷︷ ︸

=0

∣∣∣∣∣
x0=T

−1
θ (x)

∂T−1θ (x)

∂θ
≡ 0

is zero almost surely. This implies that the path gradient estimator has zero variance in the limit of
perfect approximation (which is sometimes called sticking the landing), while the standard gradient
estimator has non-vanishing covariance I0(θ)/N , where N is the sample size of the Monte Carlo
estimator. Note that these results are exactly analogous to the reverse KL path gradients, noting
the relations in (25). Experimentally, we find for the forward KL divergence that the gradient norm
indeed behaves as in previous works (Roeder et al., 2017; Vaitl et al., 2022a), i.e. it exhibits the
vanishing gradient properties. This is illustrated in Figure 3.
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B.3.2 MOTIVATION FOR REGULARIZATION

The favorable behavior of path gradients for the forward KL divergence, which we have defined
in Proposition 4.1, can potentially be understood by identifying the additional terms appearing in
the gradient as having a regularizing effect. To this end, let us compare the standard maximum
likelihood gradients with the path gradients. The former is given by

d

dθ
DKL(p|qθ) = −Ex∼p

[
d

dθ
log qθ(x)

]
(54a)

= −Ex∼p
[
d

dθ

(
log q0(T

−1
θ (x)) + log

∣∣∣∣det ∂T−1θ (x)

∂x

∣∣∣∣)] , (54b)

whereas the latter can be computed as
d

dθ
DKL(p|qθ) = Ex∼p

[
▼θ

(
log

q0
pθ,0

(T−1θ (x))

)]
(55a)

= Ex∼p

[
∂

∂x0

(
log q0(x0))− log

∣∣∣∣det ∂Tθ(x0)∂x0

∣∣∣∣
− log p(Tθ(x0)

)∣∣∣∣∣
x0=T−1(x)

∂T−1θ (x)

∂θ

]
. (55b)

Note that only in the path gradient version (55), the target density p appears and we conjecture that
incorporating this information helps to not overfit to the given data sample. Crucially, in many ap-
plications, p is (up to normalization) given explicitly such that (55) can indeed be readily computed.
Because of the duality of the KL divergence, the regularization property also appears for the reverse
KL, where the term involving q0 does not appear in the standard gradient estimator, whereas for the
path gradients it does.

B.3.3 RELATION TO GDREG

The above gradient formula (26) can be seen as a special case of the Generalized Doubly-
Reparameterized Gradient Estimator (GDReG) derived in Bauer & Mnih (2021), by noting that

Ex∼p
[
▼θ log

pθ,0
q0

(T−1θ (x))

]
= −Ex∼p

[
▼θ log

p

qθ
(Tθ(x0))

∣∣∣
x0=T

−1
θ (x)

]
. (56)

This can be seen as follows:

▼θ log
p

qθ
(Tθ(z))

∣∣∣
x0=T

−1
θ (x)

(57a)

=
∂
(
log p(x)− log det

∣∣∣∂T−1
θ (x)

∂x

∣∣∣− log q0(T
−1
θ (x))

)
∂x

∂Tθ(x0)

∂θ

∣∣∣∣∣
x0=T

−1
θ (x)

(57b)

= −
∂
(
log p(x)− log det

∣∣∣∂T−1
θ (x)

∂x

∣∣∣− log q0(T
−1
θ (x))

)
∂x

∂Tθ(x0)

∂x0

∂T−1θ (x)

∂θ
(57c)

= −
∂
(
log p(Tθ(x0)) + log det

∣∣∣∂Tθ(x0)
∂x0

∣∣∣− log q0(x0)
)

∂x0

∂T−1θ (x)

∂θ
(57d)

= −▼θ log
pθ,0
q0

(T−1θ (x)), (57e)

where in (57c) we have used the identity

0 =
∂Tθ(T

−1
θ (x))

∂θ
=
∂Tθ(z)

∂z

∂T−1θ (x)

∂θ
+
∂Tθ(z)

∂θ

∣∣∣
x0=T

−1
θ (x)

. (58)

However, only our derivation allows to interpret the estimator as an instance of the standard sticking-
the-landing trick of eliminating a score function, which then motivates variance reduced estimators
and allows us to use the proposed Algorithm 1. Further, the time for computing (26) is expected to
be significantly lower than for the GDReG estimator since in this form we can employ our proposed
algorithm for efficiently computing the path gradient.
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C RELATION TO FAST PATH GRADIENT FOR CONTINUOUS NORMALIZING
FLOWS

In this section, we demonstrate that the recently proposed fast path gradient for continuous normal-
izing flows (CNFs) proposed by Vaitl et al. (2022b) can be obtained using completely analogous
reasoning as in our derivation for the fast path gradient of the coupling flows.

We first note that the algorithm described in Section 3.1 can be applied verbatim to the CNF case
with

Xt = Tθ(X0) := X0 +

∫ t

0

vθ(Xs, s) ds , (59)

where vθ : Rd × R → Rd is the generating vector field of the CNF. Note that Tθ defined in (1) can
be interpreted as a discretization of the flow Tθ and x in (1) can be seen as a discrete approximation
of Xt. The only difference between the CNF and coupling case arises in the recursive relation to
obtain the derivative

∂ log qθ(Xt)

∂Xt
. (60)

Vaitl et al. (2022b) proposed an ODE that can be evolved along with the sampling process. As we
will demonstrate subsequently, this ODE can easily be recovered by using the same reasoning as we
applied for the coupling flows.

We start from the observation that the ODE can be discretized as

xl+1 = xl + vθ(xl, l∆t)∆t . (61)

for l ∈ {0, . . . , t
∆t − 1} in the sense that Xl∆t = xl +O(∆t2) . Here, we assume for convenience

that the time increment ∆t > 0 is chosen such that t
∆t is an integer.

As for the coupling flows, we start from equation (31b), which for a discretized CNF is given by

∂ log qθ(xl+1)

∂xl+1
=
∂ log qθ(xl)

∂xl+1
+

∂

∂xl+1
log

∣∣∣∣det ∂xl
∂xl+1

∣∣∣∣ . (62)

Using the chain rule, this can be rewritten as

∂ log qθ(xl+1)

∂xl+1
=
∂ log qθ(xl)

∂xl

∂xl
∂xl+1

+

(
∂

∂xl
log

∣∣∣∣det ∂xl
∂xl+1

∣∣∣∣) ∂xl
∂xl+1

(63a)

=
∂ log qθ(xl)

∂xl

(
∂xl+1

∂xl

)−1
+

(
∂

∂xl
log

∣∣∣∣det ∂xl
∂xl+1

∣∣∣∣)(∂xl+1

∂xl

)−1
. (63b)

=
∂ log qθ(xl)

∂xl

(
∂xl+1

∂xl

)−1
−
(
∂

∂xl
log

∣∣∣∣det ∂xl+1

∂xl

∣∣∣∣)(∂xl+1

∂xl

)−1
. (63c)

From the discretized ODE (61), it follows that(
∂xl+1

∂xl

)−1
=

(
1+∆t

∂vθ
∂xl

(xl, l∆t)

)−1
= 1−∆t

∂vθ
∂xl

(xl, l∆t) . (64)

Using this expression, we obtain

∂ log qθ(xl+1)

∂xl+1
=

(
∂ log qθ(xl)

∂xl
− ∂

∂xl
log

∣∣∣∣det ∂xl+1

∂xl

∣∣∣∣)(1−∆t
∂vθ
∂xl

(xl, l∆t)

)
. (65)

Using the standard series expansion of the matrix-valued logarithm, we can check that

log

∣∣∣∣det(1+∆t
∂vθ
∂xl

(xl, l∆t)

)∣∣∣∣ = ∞∑
n=1

(−1)k+1

k
Tr

(
∂vθ
∂xl

)k
∆tk = ∆tTr

[
∂vθ
∂xl

(xl, l∆t)

]
+O(∆t2) ,

(66)
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where in the second equality, we have used that log detA = Tr logA and log(1 + B) =∑∞
k=1

(−1)k+1

k Bk for matrices A and B. Substituting this expression, in the expression above,
we obtain

1

∆t

(
∂ log qθ(xl+1)

∂xl+1
− ∂ log qθ(xl)

∂xl

)
= −∂ log qθ(xl)

∂xl

∂vθ
∂xl

(xl, l∆t)−
∂

∂xl
Tr

[
∂vθ
∂xl

]
(xl, l∆t) +O(∆t) .

Taking the limit ∆t→ 0, we obtain precisely the ODE derived by Vaitl et al. (2022b):

d

dt

∂ log qθ(Xt)

∂Xt
= −∂ log qθ(Xt)

∂Xt

∂vθ
∂Xt

(Xt, t)−
∂

∂Xt
Tr

[
∂vθ
∂Xt

]
(Xt, t) . (67)

As a result, the fast path gradient derived in this manuscript unifies path gradient calculations of
coupling flows with the analogous ones for CNFs.

D ALGORITHMS

In this section we state the different algorithms used in our work. As discussed in Section 4, due
to the duality of the KL divergence, we can employ the algorithms for both the forward and the
reverse KL.

The different algorithms treated in this paper are:

1. The novel fast path gradient algorithm — shown in Algorithm 1.

2. As a baseline, the method proposed in Vaitl et al. (2022a) — shown in Algorithm 2.

3. As a further baseline, the same algorithm, amended to the GDReG estimator (Bauer &
Mnih, 2021) — shown in Algorithm 3. We stress that this algorithm is an original proposal
of this paper, however, we did not introduce it in detail in the main text as it is slower than
our fast path gradient and therefore more of a side-product serving as a strong baseline.

The algorithms do not contain the path gradients for the target density, since those can be done
readily. A graphical visualisation of the respective terms of the algorithms is provided in Figure 4.

Algorithm 1: Fast Path Gradient: computation of ▼θ log qθ(Tθ(x0)), x0 ∼ q0
Input: base sample x0 ∼ q0
for l in {0, . . . , L− 1}: ▷ joint forward pass and recursive equations

Apply Tl+1,θl+1
to compute xl+1

Compute
∂ log qθ,l+1(xl+1)

∂xl+1
according to Proposition 3.3

return
∂ log qθ,L(xL)

∂xL

∂
∂θ xL ▷ compute vector-Jacobian products

Algorithm 2: Path gradient: computation of ▼θ log qθ(Tθ(x0)), x0 ∼ q0
Input: base sample x0 ∼ q0
x′ ← stop gradient(Tθ(x0)) ▷ forward pass of x0 through the flow without gradients

qθ(x
′)← q0(T

−1
θ (x′))

∣∣∣∣det ∂T
−1
θ

(x′)
∂x′

∣∣∣∣ ▷ reverse pass to calculate density

G← ∂ log(qθ(x′))
∂x′ ▷ compute gradient with respect to x′

x← Tθ(x0) ▷ standard forward pass
return G ∂

∂θ x ▷ compute vector-Jacobian products

E COMPUTATIONAL DETAILS

In this section we elaborate on computational details.
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Algorithm 3: Path gradient: computation of ▼θ log qθ(Tθ(x0))|x0=T
−1
θ (x), x ∼ p

Input: target sample x ∼ p
qθ(x

′)← q0(T
−1
θ (x′))

∣∣∣det ∂T−1
θ (x′)

∂x′

∣∣∣ ▷ reverse pass to calculate density

G← ∂ log(qθ(x′))
∂x′ ▷ compute gradient with respect to x′

x′
0 ← stop gradient(T−1

θ (x)) ▷ copy T−1
θ (x)

x← Tθ(x
′
0) ▷ standard forward pass

return G ∂
∂θ x ▷ compute vector-Jacobian products

Figure 4: The gradient of the loss function dθL(θ) consists of the path gradient (blue) and a score
term (red) — the latter vanishes in expectation, but has non-vanishing variance. The path gradient
framework computes the necessary quantities to perform stochastic gradient descent with only the
path gradients, eliminating the impact of the score term which tends to increase the variance of the
gradient leading to suboptimal gradient estimation. We propose a fast algorithm for computing the
Path Gradient estimator which evaluates ∂xθ

log qθ(xθ) (green) alongside the forward pass. The term
∂xθ

log p(xθ) is assumed to be available for a given energy function within the problem formulation.
We can then compute the derivative of the log ratio, ∂xθ

log (p(xθ)/qθ(xθ)), which can be interpreted
as a scaling of the gradient ∂θxθ, the gradient with respect to the parameters. Thus the gradient
dθL(θ) only consist of the path gradient, eliminating the negative influence of the score term.

Evaluation Metrics. As common, we assess the approximation quality of the variational density
qθ by the effective sampling size (ESS), defined as

ESS :=
1

Ex∼qθ [w2(x)]
=

1

Ex∼p[w(x)]
, (68)

where w(x) := p(x)
qθ(x)

are the importance weights.

As can be seen in (68), the ESS can be computed with samples from either qθ or p (if available),
which leads to two different estimators, namely

ÊSSq =
N∑N

n=1 ŵ
2
q(x

(n))
, x(n) ∼ qθ, ÊSSp =

N∑N
n=1 ŵp(x

(n))
, x(n) ∼ p, (69)

where the normalization constant Z appearing in the importance weights w can as well be approxi-
mated either with samples from qθ or p, respectively, namely

ŵq(x) :=
e−S(x)

qθ(x)Ẑq
, Ẑq =

1

N

N∑
n=1

e−S(x
(n))

qθ(x(n))
, x(n) ∼ qθ, (70)
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or

ŵp(x) :=
e−S(x)

qθ(x)Ẑp
, Ẑp =

(
1

N

N∑
n=1

qθ(x
(n))

e−S(x(n))

)−1
, x(n) ∼ p. (71)

Note that ÊSSq might be biased due to a potential mode collapse of qθ, which is not the case for
ÊSSp. The ESS is a measure of how efficiently one can sample from the target distribution. E.g.,
an ESS of 0.5 means that if we have N samples from the sampling distribution qθ, the variance of
the reweighted estimator is large as an estimator using 0.5N samples from the target distribution.
A maximum ESS of 1 occurs when the importance weights ŵ are exactly 1 for every sample, the
minimum ESS is 0.

Gradient Estimators. As baselines for the path gradients we used the Maximum Likelihood gra-
dient estimator as the Forward KL Standard Gradient estimator

d

dθ
DKL(p|qθ) ≈ −

1

N

N∑
n=1

∂

∂θ
log qθ(x

(n)), x(n) ∼ p , (72)

and for the reverse KL we used the reparametrization trick gradients

d

dθ
DKL(qθ|p) ≈

1

N

N∑
n=1

d

dθ

(
log

qθ
p
(Tθ(x

(n)
0 ))

)
, x

(n)
0 ∼ q0 . (73)

Note that both gradients are independent of the normalization constants of both qθ and p.

Gaussian Mixture Model. We use a RealNVP Dinh et al. (2017) flow with weight normalization.
The RealNVP flow contains 1,000 hidden neurons per layer and six coupling layers, each of which
consists of 6 hidden neural networks layers with Tanh activation to generate the affine coupling
parameters. We draw 10,000 samples from the Gaussian mixture model (GMM) for the forward KL
training, thus mimicking a finite yet large sample set.

The superior performance of path gradients for Gaussian Mixture Models can be observed in Figure
1. In case of the reverse KL in the left plot, both path gradients and standard gradients achieve
the same forward ESS, yet the path gradients converge faster in wall time, despite their increased
computational cost of 40% compared to the standard gradients.

The middle figure shows the improved performance of the forward KL path gradients compared to
the standard non-path gradient. The forward KL path gradients converge faster to a high forward
ESS and are able to maintain the achieved sampling efficiency compared to the standard gradients
which decrease to a forward ESS of zero.

Finally, the right plot examines the different performance of forward KL path gradients in more
detail by increasing the number of training samples on which the forward KL is optimized. The
advantage of path gradients becomes evident even more as they generally surpass standard gradients
earlier and achieve higher ultimate forward effective sampling sizes even for very large forward KL
training sets.

Besides the forward ESS, the corresponding negative Loglikelihood (NLL) for both gradients and
path gradients is plotted in Figure 9 for an increasing number of training samples. One observes
how the NLL for the training and test data set differ only slightly compared to the performance gap
of standard gradients measured in terms of NLL. Path gradients are robust even in low data regimes
where standard gradients diverge strongly in terms of their training and test performance, indicating
a tendency to overfit.

The results in the experiments in Figures 1 and 9 are obtained after 10, 000 optimization steps,
with a learning rate of 0.00001 with the Adam optimizer (Kingma & Ba, 2015) with a batch size of
4, 000. The target distribution p is identical to the setup in Section 5 and the forward ESS and NLL
are evaluated with 10, 000 test samples.

Finally, Figure 8 illustrates the performance gap between standard gradients and path gradients
on a simple two dimensional multivariate Normal distribution. The visualization hints at a stronger
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regularization for path gradients which are able to incorporate gradient information of the underlying
ground truth energy function.

Figures 5, 6 and 7 show the ESSp over the course of the optimization for varying numbers of
linear layers per coupling block, number of hidden neurons per linear layer and the batch size used
for optimization trained with Forward KL Path Gradients and non-path Forward KL Gradients.
While standard Forward KL gradients can relatively surpass Forward KL Path Gradients mildly in
a few cases for smaller models, a larger model trained with Path Gradients doubles the mean of the
ESSp in a direct comparison and improves upon the best Forward KL Gradients in absolute terms.
Ultimately, the best performance as measured with the ESSp is achieved with larger models trained
with path gradients. Importantly, path gradients provide increased robustness against overfitting
as can be seen in the performance during training. Standard gradients for larger models tend to
deteriorate their ESSp.

The Tables 3, 4 and 5 collect the best ESSp achieved during optimization for the same combination
of number of linear layers, number of hidden neurons per linear layer and batch size. This corre-
sponds to saving checkpoints during training and choosing the respective model with the best ESSp.
The Forward KL Path Gradients outperform their non-path counterpart except for a few instances,
which perform worse than larger models as measured in ESSp and trained with path gradients.

Table 3: We summarize the highest achieved average ESSp over the entire optimization which
corresponds to the best attainable performance in terms of ESSp possible for that model capacity.
The flow consists of 6 coupling layers, each with 2 linear layers, each of which has an increasing
width (number of neurons).

Layer Width 10 50 100 250 500 1000

Batch Size Std Path Std Path Std Path Std Path Std Path Std Path

10 55.7 56.9 58.5 58.8 58.5 58.8 60.0 62.4 71.3 72.7 72.1 71.7
50 58.0 58.3 58.9 59.2 59.3 60.0 69.8 75.2 76.0 77.2 66.6 80.5

100 58.3 58.6 59.1 59.4 60.2 62.1 73.4 79.7 75.1 78.3 66.3 84.1
200 58.5 58.7 59.4 59.7 62.7 66.2 75.1 81.7 73.7 78.4 68.3 86.1
500 58.6 58.8 60.0 60.8 68.9 66.8 75.7 81.8 73.0 80.5 67.0 86.9
1000 58.7 58.9 61.1 63.0 70.8 66.8 75.0 81.5 72.5 86.2 54.7 86.9
2000 58.7 58.9 63.5 66.7 69.9 72.0 75.2 85.7 69.8 88.0 44.5 86.6
4000 58.8 59.0 65.3 69.5 73.4 77.0 75.4 88.9 72.1 88.9 41.8 88.4

Table 4: We summarize the highest achieved average ESSp over the entire optimization which
corresponds to the best attainable performance in terms of ESSp possible for that model capacity.
The flow consists of 6 coupling layers, each with 4 linear layers, each of which has an increasing
width (number of neurons).

Layer Width 10 50 100 250 500 1000

Batch Size Std Path Std Path Std Path Std Path Std Path Std Path

10 56.2 57.4 59.0 59.2 59.0 59.1 59.1 59.2 59.5 64.7 66.5 76.8
50 58.5 58.8 59.0 59.2 59.0 59.1 61.3 68.1 73.1 78.9 74.7 84.7

100 58.7 58.9 59.0 59.2 59.0 59.1 68.1 76.6 74.0 83.4 72.4 86.6
200 58.9 59.0 59.0 59.2 59.1 59.7 73.7 81.1 75.9 86.0 69.8 88.4
500 58.9 59.1 59.0 59.2 59.9 65.5 77.8 84.7 74.7 88.3 68.3 90.5
1000 59.0 59.1 59.1 59.3 66.8 73.2 79.1 85.2 75.7 90.3 60.4 88.3
2000 59.0 59.1 59.2 60.3 71.3 73.4 78.4 86.9 71.8 90.0 52.9 87.6
4000 59.0 59.1 59.6 62.9 73.4 78.0 77.7 89.0 68.8 89.9 50.7 88.0
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Figure 5: The ESSp of a RealNVP flow with two linear layers in each of its six couplings blocks
trained with Forward KL Gradients shown in red and Forward KL Path Gradients shown in blue.
For higher model capacity and larger batch sizes, the Forward KL Path Gradients achieve higher
absolute ESSp while the Forward KL Gradients collapse with increasing model capacity. The rows
increase width of the linear layers (hidden neurons) and the columns increase the batch size used
during optimization.

ϕ4 Field Theory. For our flow architecture we use a slightly modified NICE (Dinh et al., 2014)
architecture, called Z2Nice (Nicoli et al., 2020), which is equivariant with respect to the Z2 symme-
try of the ϕ4 action in (28). We use a lattice of extent 16 × 8, a learning rate of 0.0005, batch size
8, 000, AltFC coupling, 8 coupling blocks with 4 hidden layers each. A learning rate decay with pa-
tience of 3, 000 epochs is applied. We used global scaling, Tanh activation and hidden width 1, 000.
As base-density we chose a Normal distribution q0 = N (0, 1). Gradient clipping with norm=1 is
applied. Just like in Nicoli et al. (2023), training is done on 50 million samples. Optimization is
performed for 48h on a single A100 each, which leeds to up to 1.5 million steps for the standard
gradient estimators and 1.1 million epochs with the fast path algorithm.

U(1) Gauge Theory. The U(1) experiments are based on the experimental design in Kanwar
et al. (2020). We consider a lattice with 162 sites with a batch size of 12, 288, learning rate 0.0001,
24 coupling blocks with a NCP (Rezende et al., 2020) with 6 mixtures, hidden size 8 × 8 and
kernel size 3 and a uniform base-density q0 = U(0, 2π). We train our models on an A100 for one
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Figure 6: For many combinations of increasing parameterization and increasing batch size, Forward
KL Path Gradients are able to maintain their high ESSp, while performance of Forward KL Gradi-
ents increasingly deteriorates. The rows increase width of the linear layers (hidden neurons) and the
columns increase the batch size used during optimization.

week, the batch size was chosen, so as to maximize GPU-RAM for a single GPU. Because training
from random initialization led to very high variance in performance, we pre-train the model for
β = 3.0 for 200,000 epochs. The shown benchmarks show the training after initializing from the
pretrained model for target beta β = 3.0. For the standard reverse KL gradient estimator (using
reparametrization trick) this yields 700,000 and for the fast path gradients 300,000 epochs.

The results can be seen in Figure 2; they are averaged over a running average of window size 3
and 4 repetitions, the mean and standard error are shown. The ESS is estimated on 10 × batch size
samples.

Runtimes. In order to give a fair comparison for the runtimes, we use the hyperparameters of the
experiments in this work as a testing ground. Namely for the affine coupling flow, we use the ϕ4
experiments and for the implicitly invertible flows, we use the U(1) experiments. Walltime runtimes
are measured on an A100 GPU with 1,000 repetitions.
For the affine flows, we use the setup from the ϕ4 experiments and look at the existing Algorithm 2
for computing path gradient, the proposed fast path Algorithm 1, as well as the equally new Algo-
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Figure 7: The higher model capacity compared to models with fewer linear layers per coupling
block increases the performance of Forward KL Path Gradients in terms of ESSp while Forward
KL Gradients deteriorate, resulting in a final ESSp = 0.0% for the model with the largest capacity
trained with the largest batch size. The rows increase width of the linear layers (hidden neurons)
and the columns increase the batch size used during optimization.

rithm 3, which uses the insights of Section 4 to speed up Algorithm 2. Here, Algorithm 1 for the
fast path gradient uses the recursive equation (49b). The results can be seen in the upper rows of
Table 6.

For the implicitly invertible flows, we use the setup of the U(1) experiments. Since the flows are
not easily invertible, a significant percentage of the time is spent on the root finding algorithm,
which is implemented as the bisection method. The root finding algorithm employs an absolute
error tolerance which determines when the recursive search stops. Each iteration of the bisection
method requires one evaluation of the function, in our case a normalizing flow.

Using backpropagation through the bisection is not only error-prone, but also costly in compute
and memory. Recently, Köhler et al. (2021) proposed circumventing the backpropagation through
the root finding via the implicit function theorem. Both of these methods can be combined with
the existing path gradient Algorithm 2. Due to the increase of computational cost and numerical
error of the root finding algorithm, these methods are outperformed in runtime and precision by our
proposed Algorithm 1. As the tolerance in root-finding, Köhler et al. (2021) chose a value of 1e−6
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Figure 8: We visualize the contours of the learned probability distribution qθ over the true contour
plot of p which is a two dimensional multivariate Gaussian distribution centered at 0 with 0.5 on
the diagonal entries of the covariance matrix and 0.25 on the off-diagonal entries. The RealNVP
is trained with 750 samples from p with the forward KL divergence. While the forward KL Path
Gradient is able to recover the true distribution well, the standard gradient exhibits numerous irreg-
ularities for the same training samples.
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Figure 9: We plot the train and test negative Loglikelihood (NLL) intervals denote the minimum and
maximum performance over 5 runs. We see that the path gradient training consistently outperforms
standard training in terms of NLL. The Forward KL Path Gradients is less prone to overfitting and
is able to maintain a steady test NLL. Already with comparitively few data samples, path gradients
converge to the test set NLL. In data regimes with little data, forward KL gradients are prone to
overfitting on the training data compared to forward KL path gradients.
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Table 5: We summarize the highest achieved average ESSp over the entire optimization which
corresponds to the best attainable performance in terms of ESSp possible for the corresponding
model capacity. The flow consists of 6 coupling layers, each with 6 linear layers each of which has
an increasing width (number of neurons).

Layer Width 10 50 100 250 500 1000

Batch Size Std Path Std Path Std Path Std Path Std Path Std Path

10 57.9 58.5 59.1 59.3 59.1 59.2 59.0 59.1 59.0 59.1 59.0 60.6
50 58.9 59.1 59.1 59.3 59.1 59.2 59.0 60.8 59.7 75.9 64.8 80.8

100 59.0 59.1 59.1 59.3 59.1 59.2 59.0 65.2 71.1 84.0 75.9 84.8
200 59.1 59.2 59.1 59.3 59.1 59.3 63.6 75.1 76.7 87.8 75.9 87.5
500 59.1 59.2 59.1 59.3 59.1 61.9 72.2 80.1 77.6 89.0 75.6 90.1
1000 59.1 59.2 59.1 59.2 61.3 68.9 75.7 82.3 78.6 91.1 75.6 86.5
2000 59.1 59.2 59.1 59.2 65.8 74.4 74.7 80.7 76.4 91.8 76.4 87.0
4000 59.1 59.2 59.1 60.2 69.4 77.8 73.1 85.8 75.7 91.6 74.6 88.9

Table 6: Factor of runtime increase in comparison to standard gradient estimator, i.e.,
runtime path gradient/runtime standard gradient on A100-80GB. (For error sterr and for runtime std is shown.)

Algorithm Error Runtime increase (batch size)
× 1e-7 64 1024 8,192

E
xp

lic
itl

y Alg. 1 (ours) - 1.6 ± 0.1 1.4 ± 0.1 1.4 ± 0.0
Alg. 2 (Vaitl et al., 2022a) - 2.1 ± 0.1 2.2 ± 0.1 2.1 ± 0.0
Alg. 3 (ours) - 1.8 ± 0.0 1.9 ± 0.1 1.8 ± 0.0

Im
pl

ic
itl

y

Alg. 1 (ours) 2.0 ± 0.4 2.2 ± 0.0 2.0 ± 0.1 2.3 ± 0.0
Black-box root finding abs tol
Alg. 2 + Autodiff 2e-6 >100,000 19.2 ± 0.3 11.8 ± 0.1 Out of Mem
Alg. 2 + Köhler et al. (2021) 2e-6 29.5 ± 13.5 4.8 ± 0.0 3.4 ± 0.0 3.4 ± 0.0
Alg. 2 + Köhler et al. (2021) 1e-6 4.1 ± 1.1 17.5 ± 0.2 11.0 ± 0.1 8.2 ± 0.0

for testing the runtime and during training on other benchmarks, they chose a tolerance of 2e−6.
Results for both of these tolerances are shown in the lower rows of Table 6. Numerical errors are
computed on 50 batches, each with 64 samples.

We show the behavior of the baseline Algorithm 2 with bisection and gradient computation as pro-
posed by Köhler et al. (2021) in Figure 10. We can see that our proposed method outperforms the
baseline irrespective of the chosen hyperparameters. For single-precision floating point, the numer-
ical error can only be reduced so far, after double-precision has to be employed which leads to a
drastic increase in runtime and memory.
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Figure 10: Runtime vs Precision trade-off in Köhler et al. (2021) U(1) experiments with lattice 162
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