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A High-Fidelity and Low-Interaction-Delay Screen Sharing System
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The pervasive computing environment and wide network bandwidth provide users more opportunities to
share screen content among multiple devices. In this article, we introduce a remote display system to enable
screen sharing among multiple devices with high fidelity and responsive interaction. In the developed
system, the frame-level screen content is compressed and transmitted to the client side for screen sharing,
and the instant control inputs are simultaneously transmitted to the server side for interaction. Even if
the screen responds immediately to the control messages and updates at a high frame rate on the server
side, it is difficult to update the screen content with low delay and high frame rate in the client side due to
non-negligible time consumption on the whole screen frame compression, transmission, and display buffer
updating. To address this critical problem, we propose a layered structure for screen coding and rendering to
deliver diverse screen content to the client side with an adaptive frame rate. More specifically, the interaction
content with small region screen update is compressed by a blockwise screen codec and rendered at a high
frame rate to achieve smooth interaction, while the natural video screen content is compressed by standard
video codec and rendered at a regular frame rate for a smooth video display. Experimental results with real
applications demonstrate that the proposed system can successfully reduce transmission bandwidth cost
and interaction delay during screen sharing. Especially for user interaction in small regions, the proposed
system can achieve a higher frame rate than most previous counterparts.
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1. INTRODUCTION

The ubiquity of current computation and communication capabilities provides oppor-
tunities for users to share computing and storage resources among multiple computing
devices through network connection. One general way to access or control the resource
remotely is screen sharing, that is, capturing and sending the screens from remote
devices over networks to local devices in real time [Lu et al. 2011]. A variety of screen
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sharing applications have been developed to facilitate remote resource access. For
example, remote desktop systems, such as Remote Desktop Protocol (RDP) [Microsoft
2016a] and Splashtop [2016], support desktop sharing among devices. Screencast
systems, such as Airplay [Apple 2016] and Chromecast [2016], provide the convenience
of playing multimedia content among a laptop, a tablet, and a TV over home networks.

A screen sharing system is usually developed based on the thin-client computing
architecture, in which the client displays the received screen updates and allows users
to interact with screen content by sending the control commands, while the server
intercepts, encodes, and transmits screen updates to the client. In order to provide
high-fidelity display and responsive interaction for users as if they were using local
machines, some important factors should be considered in a screen sharing system:

—Bandwidth consumption: Screen sharing systems are expected to achieve accept-
able performance in bandwidth-constrained network conditions. However, multiple
screen content with multimedia applications and complicated graphical interfaces
makes effective screen compression and transmission challenging.

—Smooth interaction user experience: During screen sharing, smooth interaction should
guarantee that the response screen content is updated within tolerant latency after
the interface operation.

—Cross-platform adaptation: More and more consumer electronic devices can easily
access the Internet. These devices may vary in access bandwidths and operating
systems. Therefore, cross-platform adaptation becomes essential for a screen sharing
system that can be widely deployed.

The performance of a screen sharing system is highly relevant to the mechanism
defining the rules of representing and delivering screen update from server to client.
A traditional remote desktop system, X-system [Scheifler and Gettys 1986], utilizes
graphical primitives to represent screen update. This method is efficient in represent-
ing the display of graphical interface. However, it suffers from performance degradation
when representing display-intensive multimedia applications, such as video playback.
In addition, the interpretation of graphical commands heavily depends on the oper-
ating systems. It is difficult to develop and support cross-platform screen sharing, as
servers and clients may be built up on different operating systems with different render-
ing mechanisms. Some thin-client system, such as Virtual Network Computing (VNC)
[Richardson et al. 1998], utilize raw pixel primitives to represent the screen update and
support cross-platform implementation. This kind of system lacks efficient compression
mechanisms for multimedia application. Recently, a frame-based representation model
for screen sharing has attracted much attention and many emerging screen casting
and cloud gaming systems are developed based on this model. In this model, the whole
screen is captured as a sequence of image frames, which are compressed by video codec
and transmitted to the client side. A frame-based model is friendly for cross-platform
implementation, since screen update is represented based on screen capture and video
compression, and a standard video codec can be easily employed in distinct systems. For
example, an open-source cloud gaming system, GamingAnywhere [Huang et al. 2013],
which employs x264 as video encoder, is available on Windows, Linux, and OS X. For
the systems built up based on the frame-based model, the integrated screen compres-
sion scheme is crucial to the system performance. In most of these systems, traditional
video codecs are employed for screen compression, which can handle the natural video
content well. However, the compression performance of the video codec is not adequate
for the text, like text, and graphic content, which are more challenging with respect
to the requirements on the high visual quality of screen display and instant user in-
teraction. In this article, we focus on the screen compression efficiency and complexity
issues in the screen sharing system with a frame-based representation model.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 3, Article 44, Publication date: May 2016.



A High-Fidelity and Low-Interaction-Delay Screen Sharing System 44:3

The main challenges can be summarized as follows: First, the screen is composed
of multiple types of content, including text, graphical interface, and natural video. A
traditional standard video codec can handle natural video compression well but coding
efficiency for typical graphic/text content is inadequate. Thus, the screen coding scheme
for the graphic/text compression should be designed and integrated into the system.
Second, the coding frame rate determines the screen update frequency in the client
device. The requirement of the screen update frequency for smooth screen sharing is
various for distinct content. For the multimedia application, such as video playback,
the regular frame rate of 30 frames per second (fps) is acceptable for smooth display.
While for the user interface (UI), in order to achieve smooth interaction, the screen
is expected to be updated at a higher frame rate. For example, a measurement study
[Hsu et al. 2015] reveals that a frame rate higher than 30fps (e.g., up to 60fps) can
provide a better user experience during interaction with remote display. However, the
higher frame rate is challenging for the screen compression scheme. Finally, during
screen rendering, the I/O processing, that is, the screen content copying from the
decoding buffer to the rendering buffer, is also critical to the system performance. This
is because the frequent buffer copy will lead to heavy processor load and increase the
system-level delay.

Considering the above issues, we propose a layered screen sharing system based on a
frame-based model. In the proposed system, a layered screen coding scheme is designed
for efficient screen compression and to further facilitate flexible transmission and high-
frame-rate rendering. For layered screen video coding, we have utilized this framework
to support the quality scalability [Miao et al. 2013] and high-frame-rate coding [Miao
et al. 2014], respectively. In this article, we jointly consider the high frame rate and
visual quality enhancement issues in a real system. In the enhanced coding framework,
distinct content is partitioned into the appropriate encoders and compressed with an
adaptive frame rate. More specifically, the screen frame with natural video content
is compressed by a standard video codec at a regular frame rate that is acceptable
for smooth video display and the screen frame with interaction content is compressed
by a blockwise screen codec at a high frame rate to facilitate a smooth interaction
experience. To further improve visual quality, the text/graphic content fed into the
video codec is selected and enhanced in the screen codec.

Based on the layered coding structure, we employ several mechanisms at the sys-
tem level to reduce the bandwidth cost and interaction latency. On the server side, a
timer-driven screen update mechanism with multiple thread processing is adopted to
schedule the capture, compression, and transmission in an adaptive frame rate based
on available bandwidth resources. On the client side, with the assistance of the layered
structure, we introduce a fast rendering scheme, in which the partial region update is
supported to save the I/O buffer copy cost during screen interaction. To the best of our
knowledge, there is little published work that considers rendering optimization in a
screen sharing system.

The main contributions of this article can be summarized as follows:

—Based on the frame-based model, the screen update is represented as the whole
frame plus small region blocks for the distinct content and a layered coding scheme
is proposed to combine the advantages of video and screen codecs for high efficiency
coding with high frame rate during interaction.

—Based on the layered coding scheme, an adaptive frame capture mechanism com-
bining with a flexible transmission scheme is proposed on the server side and a fast
rendering scheme is adopted on the client side to improve system performance.

—The developed system can leverage existing coding resources and facilitate cross-
platform implementation.
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The remainder of the article is organized as follows. Section 2 reviews related work.
Section 3 presents the architecture of the proposed system. Section 4 introduces the
layered structure design on coding and rendering. Following that, Section 5 provides a
detailed description on the layered coding implementation. The experimental results
of the proposed system are presented in Section 6. Section 7 concludes the article.

2. RELATED WORK

Screen sharing has attracted much attention from both academia and industry due to
its rich usage scenarios, and many relevant systems have been developed.

2.1. Screen Sharing System

Existing screen sharing systems span a range of differences in several aspects, such as
the policies for updating the client display, algorithms for compressing screen updates,
supported display color depth, and transport protocol used. Among these factors, a
method to represent and compress the screen update plays an important role in a
screen sharing system.

2.1.1. Region Update Model. Some thin-client systems, such as VNC [Richardson et al.
1998] and THINC [Baratto et al. 2005], represent screen updates with 2D primitives
and compress the update with run-length encoding (RLE) or Lempel-Ziv Welch (LZW).
Such a mechanism allows the server to simply forward graphics to be updated into the
compressors and discard other stable regions directly. On the client side, the screen
presenter renders the decoded graphics and overlays rectangular areas of pixels in des-
tined regions. Although this method is efficient in representing the display of graph-
ical interface, it suffers from performance degradation, especially when representing
display-intensive multimedia applications, such as video playback. This is because the
temporal correlation in natural video cannot be exploited by the above coding schemes.
Recently, a screen sharing system named DisplayCast [Chandra et al. 2012] has been
proposed for the intranet environment. In this scheme, the screen update is represented
as a pixmap, which is captured with distinct frequency for different screen content and
compressed by a modified Zlib lossless coding scheme. Although the screen update rate
can be significantly improved for interaction scenarios, the compression efficiency is
still inadequate for video display.

2.1.2. Frame-Based Model. With the increase of multimedia applications appearing in
screen sharing scenarios, many screencast systems have been developed in the industry,
such as Miracast [Wi-Fi Alliance 2016], Airplay [Apple 2016] and Chromecast [2016].
Screencast treats the screen as a fixed resolution video while capturing and encoding
them at the low level of the protocol stack and usually employs hardware video codec
for screen compression. A video codec integrated into the system can support efficient
compression for natural video content and the implementation through hardware can
also reduce the CPU usage at the expense of slightly higher GPU usage. In addition to
multimedia applications, screencast systems are also developed and utilized in many
other scenarios, such as NCast [2016], which is designed to support screen streaming
in the presentation scenario. In this system, rich screen content, such as natural video,
images, and slides, are compressed by H.264 video encoder and transmitted to users.
When a screencast system is used for sharing multiple types of screen content, a
standard video codec can achieve efficient coding on natural video content but may not
be suitable to other text and graphic content.

Cloud gaming can also be considered a remote screen sharing scenario in which the
computer games run on cloud servers and users interact with games via thin clients.
Providing a good user experience in cloud gaming is not an easy task, because users ex-
pect both high-quality video and low response delay. Generic desktop systems, such as
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LogMeIn [2016] and TeamViewer [2016], can support cloud gaming. However, a mea-
surement study [Chang et al. 2011] reveals that these thin clients achieve low frame
rates, on average 13.5fps, which lead to sluggish game plays. A better user experience
is possible with thin clients specifically designed for cloud gaming, for example, OnLive
[2016] and StreamMyGame [2016]. Nevertheless, another measurement study [Chen
et al. 2011] demonstrates that these cloud gaming systems also suffer from non-trivial
response time. In addition to cloud gaming development, many research works have
been attempted in this area. For example, in Wu et al. [2015b], the authors guarantee
the delivery quality of high-frame-rate video in mobile cloud gaming scenarios based
on a novel transmission scheduling framework [Wu et al. 2015a]. Huang et al. [2013]
propose the first open-source cloud gaming system, GamingAnywhere, based on a video
streaming mechanism, and focus on the modularized system design and optimization.
This system can achieve good performance of video streaming during screen sharing.
But high frame rate is not supported very well during interaction. To better evaluate
the performance of cloud gaming solutions, some measurement schemes [Choy et al.
2012; Jarschel et al. 2011; Chen et al. 2014] are also proposed.

Shen et al. [2009] develop a screen sharing platform based on a pure compression
model, in which the whole screen frame is compressed by a blockwise screen video
codec and transmitted to a thin client. In this codec, the screen frame is partitioned as
text blocks and image blocks. The text block is compressed in pixel domain while the
image block is compressed by a JPEG encoder. This platform performs well on pure
screen content sharing, but the bandwidth cost increases dramatically when natural
video with high motion is embedded in the screen.

2.1.3. Hybrid Protocol. Several screen sharing platforms have been developed based on
the hybrid remote desktop protocol, in which the Remote Framebuffer (RFB) protocol
employed in VNC is leveraged with a video streaming mode to transport the rendered
images of multimedia applications. Deboosere et al. [2007] and Simoens et al. [2008]
develop a hybrid encoding scheme that switches between H.264 and VNC codecs. The
switch is decided by a heuristic algorithm that monitors desktop motion status. The
frame with high motion is fed into video encoder while the frame with low motion is
relayed through the VNC-RFB protocol. In this scheme, the motion detection algorithm
plays an important role. The more precise the motion detection algorithm, the lower the
necessary bandwidth between clients and servers. As the authors claim in the article,
the content partition scheme should be refined to deal with the frame mixed with video
and still content. Tan et al. [2010] improve this algorithm by splitting each remote
frame to be parts of low motion and high motion. However, its high/low motion decision
algorithm is based on the Linux X Window system and cannot be applied universally.
Moreover, this kind of system suffers from inadequate performance. For example, the
system in Tan et al. [2010] achieves 22.46fps of video playback with low resolution
in a low-bandwidth condition and drops to less than 10fps through a VNC protocol
if the partition failed. Note that the compression scheme in the proposed system can
be also considered a combined scheme with a video codec and blockwise screen codec.
Compared with the above schemes, the content partition scheme based on a fast global
motion detection algorithm is more efficient and robust and the screen codec in the
proposed scheme is also more efficient than VNC.

2.2. Screen Video Coding Scheme

Considering that the screen compression scheme plays an important role in the screen
sharing system, several works have contributed to screen compression. To improve
coding efficiency on the distinct content in screen, some layer-based coding frameworks
are proposed, in which the distinct content is segmented at the pixel level or block
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level and compressed by different algorithms. For example, the mixed raster content
model (MRC) segments the screen into a foreground layer with text and graphics, a
background layer with natural images and white spaces, and a mask layer to indicate
the pixels of each layer. Based on the MRC, the DjVu scheme [Haffner et al. 1998]
compresses the two layers with a wavelet-based algorithm (IW44) and compresses the
mask layer with JBIG2. It can achieve a high compression ratio but suffers from high
computational complexity due to the overhead on pixel segmentation. The distinct
content can also be classified at the block level. Pan et al. [2013] partition the screen
frame into image and text blocks. JPEG is employed for image block compression. Text
blocks are entropy encoded after quantization in pixel domain. This scheme performs
well on pure screen content, but its performance decreases dramatically when natural
video with high motion is embedded.

In order to leverage a standard video codec, some new coding methods have been
designed for screen compression. For example, Ding et al. [2007] introduce a new intra
mode in a pixel domain based on H.264/AVC to better exploit spatial correlation in the
text region. Although rate distortion performance is improved, the compatibility with
a standard codec is destroyed due to the modification on coding syntax. Zhang et al.
[2013] propose an arbitrary-sized motion detection algorithm instead of traditional
block-based motion estimation for large motion regions in screen video. This scheme
can reduce both encoding time and bit rate in terms of the implementation in H.264.
But the spatial correlation in text/graphic content is not exploited.

Recently, some screen coding schemes have been proposed that aim to guarantee
coding compatibility with a standard video codec, so existing coding resources can be
utilized without modification. For instance, Wang et al. [2012] propose a layered hybrid
screen video codec. In their work, the video region is segmented and padded as a whole
frame, which is compressed by a video codec. The rest of the content is encoded by a
screen coding scheme. Although high compatibility with the standard is achieved, it
is difficult to reconstruct the whole screen from the video codec with only the video
region available. Moreover, a high coding frame rate for a smooth interaction is not
considered in this scheme. In our previous works [Miao et al. 2013, 2014], two layered
screen coding schemes were proposed. In Miao et al. [2013], we achieve a quality
scalability leveraging standard video codec in terms of a layered coding structure. Due
to the support on the low-quality bitstream extraction from a standard video codec,
the high coding frame rate cannot be guaranteed in this scheme. In Miao et al. [2014],
the layered coding scheme can support high-frame-rate coding for interaction content.
Since the screen frames with a large region content update are compressed by the
standard video codec, visual quality for the text content can be further improved.

3. SYSTEM ARCHITECTURE

We develop a screen sharing system that employs a frame-based representation model.
The system architecture is illustrated in Figure 1. On the server side, the whole screen
frame is captured from the display buffer and fed into the encoder. The generated bits
are transmitted to the client side via a network. On the client side, the datastream
received is decompressed as a screen frame, which is copied from the decoding buffer
to the rendering buffer for screen update. Meanwhile, the user input data is encrypted
and sent to the server side to enable remote interaction.

As discussed in the introduction, system performance is highly relevant to screen
coding efficiency, screen update frame rate, and I/O processing efficiency. In order to
improve system performance, a layered screen video scheme is developed for efficient
screen compression and to further facilitate flexible transmission and high-frame-rate
rendering. In addition, a timer-driven screen update mechanism with multiple thread
processing is adopted on the server side to schedule the capture, compression, and
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Fig. 1. The architecture of the interactive screen sharing system.

Fig. 2. The multi-thread screen update process based on timer-driven mechanism.

transmission in an adaptive frame rate based on available bandwidth resources. On
the client side, with the assistance of the layered structure, a fast rendering scheme
is employed, in which a partial region update is supported to save the buffer copy cost
during screen rendering.

The screen frames are compressed by the proposed layered coding scheme. The basic
idea is that screen frames are partitioned to different layers based on the temporal
update property and compressed by distinct codecs. For example, a screen frame con-
taining considerable natural video content is very likely extracted and compressed
by video codec. The screen update during interaction is presented at the block level
and compressed by a blockwise screen codec with a low complexity to support the high-
frame-rate screen update. Under this layered coding structure, an enhancement coding
scheme is proposed to improve the visual quality of the text/graphic among the natural
video content.

Screen capture, transmission, and rendering should be jointly optimized with screen
compression. In the screen sharing system, the server can respond immediately to the
request and the screen can update up to 100 times per second. Although the screen
can be captured once the update is detected, this mechanism may generate a num-
ber of screen frames fed to the encoder and lead to a heavy load on compression and
transmission, which may slow down the overall pipeline speed. To schedule the opera-
tions of screen capture, compression, and transmission, we adopt a timer-driven screen
capture mechanism with multi-thread processing on the server side. The work flow is
illustrated in Figure 2. A minimal time interval is set between two captured consec-
utive frames. During processing, if the consuming time of capture and compression
for one frame is within the time interval, then the screen updating thread will wait
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Fig. 3. Framework of the layered screen coding and rendering.

until the next timepoint to capture a new frame. Otherwise, the next frame will be
captured after compression is finished. In this way, we can control the screen update
frequency and avoid the overloading of frames into the processing pipeline to eat up
large amounts of computing and communication resources. On the other side, given
the resource constraint, we can set the time interval as small as possible to support a
high-frame-rate screen update.

Parallel with the screen-updating thread, a background sending thread fetches bits
from the to-send queue and sends them to the client. Considering the interaction
between the two threads shown in Figure 2, if the coding efficiency is inadequate, then
massive coding bits will slow the sending thread processing. Meanwhile, if the coding
complexity is high, then the coding processing will slow the compression thread and
the sending thread must wait for it. Thus, screen compression plays an important role
in the architecture, the efficiency and complexity of which will determine the thread
processing speed. Moreover, to match the two threads, we also need to set the screen
update frequency to guarantee that the encoded bits of the captured frame can be
sent using the available bandwidth. Considering all of the above, we propose a layered
screen compression scheme to support high coding efficiency and low coding complexity.
Based on the layered coding scheme, we can estimate the bitrate cost of each layer and
dynamically determine the time interval to achieve a high screen update frame rate
under the bandwidth constraint. In the proposed system, the data are transmitted
through a TCP channel, and a TCP-friendly rate control (TFRC) scheme [Handley
et al. 2002] is employed to estimate the available bandwidth.

On the client side, to display the screen content, the decoded frames are copied from
the decoding buffer into the rendering buffer and then rendered on the screen. The
frequency of this buffer copy will partially determine the interaction delay and frame
rate on the client side. Based on the layered coding structure, we can skip the data copy
operation in the stable content during interaction to reduce the rendering complexity
and improve the system performance. Meanwhile, the clients send the input events as
client-to-server (C-S) messages to the remote server when the user presses/releases a
key in the keyboard or clicks/moves the pointing device.

4. LAYERED SCREEN COMPRESSION AND RENDERING

In this section, we discuss the layered structure of screen coding and rendering, the
diagram of which is shown in Figure 3. During screen sharing, the requirement of the
frame update frequency is diverse for distinct screen content. For natural video con-
tent, the regular frame rate is acceptable for smooth display. For interaction content,
the screen frame is expected to be updated at a higher frame rate to achieve smooth
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Fig. 4. An example of content classification for layered coding.

interaction. Thus, a screen frame with different content is partitioned into distinct
layers to achieve an adaptive coding frame rate. A frame with natural video is labeled
as a display frame and fed to a standard video encoder compressed at a regular frame
rate. A screen frame with interaction content is labeled as an interaction frame and
compressed by a blockwise screen encoder at a high frame rate. Meanwhile, the vi-
sual quality of the display frame can be improved by overcoming two types of coding
artifacts. One is the chromatic aberration distortion caused by the data format con-
version for YUV420. The other is the coding artifacts introduced by a transform-based
video encoder on text/graphic content. In the proposed scheme, the blocks sensitive to
the video quality degradation in the display frame will be selected and compressed
in the screen encoder again. An example of content classification is shown in Figure 4.
The screen content is partitioned as two layers in terms of frame type classification
and enhancement block selection. The partitioned content will be compressed in each
layer independently. On the client side, the frames are decoded based on the bitstream
in each layer and then merged as the complete content in the temporal domain. The
enhanced blocks are padded into the decoded frame to obtain quality improvement.
After decoding, the rendering is performed with the buffer copy from decoding buffer to
rendering buffer and data format transformation. With the side information from the
layered structure, we can skip the operation on stable content in a large region which
greatly reduces interaction delay during user interaction on the client side.

4.1. Content Classification in Temporal Domain

Screen content with natural video usually updates in a large region during video
display. In contrast, many types of user interactions cause screen updates in a small
region, such as text input or cursor moving. To verify this update pattern, we measure
the content variation for distinct screen content. We first classify the block in each
frame as one of two types: stable block and update block. For each block, if it is exactly
the same as an original region in the previous frame, this block is identified as a stable
block. Otherwise, it is identified as an update block with content updates. We measure
the update block ratio in each frame captured from the screen sequences shown in
Figure 5 with a resolution of 1360 × 768. Then the distribution of the update block
ratio in each frame is shown in Figure 6, which reflects the content update percentage
in each frame. From the results, we can observe the natural video content updates in
almost the whole frame and the webpage video causes a screen update in a certain
percentage that is related to the size of video window. The screen update ratio of the
interaction content is within a small range.

Based on the measurement results, we can simply classify screen content in terms
of the update block ratio. If the update block ratio is within a threshold, then this
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Fig. 5. Sample frames of distinct scenarios used for screen sharing in experiment. ((a) and (b)) Video display
as full-screen video and webpage video; ((c) and (d)) user interaction as webpage browsing and editing on
the board.

Fig. 6. The distribution of the update block percentage in screen sequence.

Fig. 7. An example of screen frame layer classification.

frame is considered an interaction frame and fed to the screen encoder. Otherwise, it is
considered a display frame, which is fed to the video encoder as shown in Figure 7. An
example of screen frame classification can be observed in Figure 4. The initial frame
is fed to the video encoder at first, and then the frames with a small region update
during webpage scrolling are fed to a screen encoder. After the webpage video display,
the frames are fed to the video encoder.

4.2. Content Selection for Quality Improvement

To maintain the compatibility with the optimized standard video codec, the data format
of the display frame should be transformed as YUV420 in the video coding layer. The
downsampling in the chroma channel may introduce distortion in the high-contrast
region. Moreover, the text/graphic content may appear in a display frame, such as
text/graphic around the webpage video or in large region interaction during scene
changes. The transform-based coding scheme cannot compress text/graphic content
efficiently. To address these issues and improve the visual quality further, the block
sensitive to quality degradation is selected and the original data are compressed inde-
pendently in the screen encoder again.
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Fig. 8. The flow of block selection algorithm for quality enhancement.

Fig. 9. An example of enhancement block selection.

We evaluate the content’s impact on the visual quality in both temporal and spatial
domains. The temporal impact is determined by its duration. If the screen content is
stable, then quality enhancement at the beginning will be preserved in the following
stable frames by global motion compensation. Accordingly, the overall video quality can
be improved with a limited bitrate cost on enhancement coding at only one frame. For
the active region with frequent content change, although video quality can be enhanced
frame by frame, quality improvement can hardly be perceived due to fast changes in
content. Thus, we select the stable content as enhancement candidates. In the spatial
domain, the impact on video quality is evaluated by inherent texture of content. Since
the human visual system is more sensitive to the distortion in a high-contrast region
than a smooth region, the high contrast blocks will be enhanced.

In combination with temporal and spatial selection rules, the flow of the proposed
algorithm is illustrated in Figure 8. The stable content duration is measured by the
number of successive stable blocks in adjacent frames. For a block region, a stable
period is considered detected if m consecutive blocks are all stable in this location
(m > 1), as shown in Figure 9. Notice that this algorithm is an on-line scheme during
the encoding process. What we can obtain is only the block type in the current and
previous frames. For one block in the current frame Fn detected as a stable block, if
the blocks in the co-located position of the previous m− 1 frames are all stable, then
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the content within this position is stable. Then, if no block has been enhanced after
the nearest update block in the (n− m)-th frame, the current block will be regarded an
enhancement coding candidate. If there is any stable block enhanced in this position,
then the following stable blocks will be labeled as the enhancement preserving block
and reconstructed by copying from the previous enhanced block on the decoder side to
preserve the quality improvement in this stable period. After temporal filtering, the
gradient value of each pixel in block is calculated. If the number of pixels with a high
gradient value is beyond a threshold, then the block is considered a high-contrast block
with text/graphic or image edge content. We will perform enhancement coding on it.
An instance of enhancement block selection is shown in Figure 4. In this example, the
blocks with high-contrast content, such as text/graphics around the video region in a
webpage, are selected and compressed again in the screen encoder.

4.3. Timer-Driven Screen Capture

On the server side, the frequency of screen capture is determined by the time interval
we set in the system. We can achieve a high frame rate by setting a small time interval.
Meanwhile, we need to control the time interval to guarantee that the captured screen
frames will not overload the bandwidth and block the transmission pipeline. In this
subsection, we will dynamically determine the screen frame update frequency based on
the estimated bitrate cost of the layered codec and the available bandwidth resource.

Based on the layered coding structure, the overall bitrate cost will be

R = α · fd · Rd + (1 − α) · fi · Ri, (1)

where fd, fi are the frame rates of the display frame and the interaction frame, re-
spectively. Rd, Ri are the average bitrate costs for each display frame and interaction
frame. α is the display frame ratio in a screen sequence. In the proposed system, if
the consuming time of the capture and compression for one frame is within the time
interval, the screen updating thread will wait until the next timepoint to capture a
new frame. Otherwise, the next frame will be captured after compression is finished.
In the layered coding scheme, the display frame is compressed by a video codec in a
regular frame rate, which is lower than the high frame rate set in the system. Thus, the
display frame rate fd can be estimated as a regular frame rate. Given the quantization
step-size set in the video codec, the bitrate Rd can be estimated by the rate distortion
model [Chiang and Zhang 1997]. For the screen coding layer, the bitrate is mainly
consumed by intra-block coding. Thus, the upper bound of the bitrate can be estimated
as:

Riupper = N · Th0 · rupdate, (2)

where rupdate is the average bitrate cost for each update block in the screen codec. Th0
is the update block ratio threshold. N is the block number in each frame. N · Th0 will
be the maximum number of update blocks possibly appearing in an interaction frame.
The average bitrate cost rupdate is updated by the previous encoded update blocks. We
employ this upper bound to perform the estimation on capture frequency, so we can
avoid the capture overloading caused by estimation error. Considering that the screen
content has a temporal correlation, we use the frame type information of the previous
neighboring frames to estimate the display frame ratio in this period. Based on the TCP
rate control scheme, we can estimate the available bandwidth. Given the bandwidth
constraint R0 and Equation (1), we can dynamically determine the update rate for the
interaction frame fi. To support this high frame rate, we can set the screen capture
frame rate f0 as:

f0 = min( f̄i, fmax), (3)
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Fig. 10. An example of layered screen rendering. The gray region will be preserved without processing in
the buffer.

where f̄i is the estimated rate of the interaction frame and fmax is an upper bound
frame rate we set to guarantee that the coding frame rate in screen layer can achieve
or close to this frequency. Then the time interval T0 will be set as 1/ f0.

4.4. Layered Screen Rendering

On the client side, the decoded frame should be copied from the decoding buffer to
the rendering buffer with the data format transformed from YUV to RGB for dis-
play. The rendering processing complexity will affect interaction delay on the thin
client side. The frequent I/O buffer copy and data format conversion for large amounts
of pixels will be very costly in terms of computing resources and reduce the screen
frame update speed. In this system, we introduce a rendering scheme in terms of the
layered structure aiming to reduce rendering complexity. As we know, there is no con-
tent change for the stable content between the neighboring decoded interaction frames,
and content can be preserved without updates to the rendering buffer. Thus, during
rendering, we extract block type information from the layered screen codec. For the
interaction frame, update blocks will be processed and rendered for display while sta-
ble blocks with zero motion will be skipped from buffer copy as well as data format
conversion, and the content in the buffer is preserved without change, as shown in
Figure 10. Considering that the interaction frame contains update blocks in a small
region and stable blocks in a large region, the numbers of buffer copy and data format
conversion operations can be saved with computing complexity reduction.

5. SCREEN CONTENT CODEC DESIGN

In this section, we will introduce the implementation of the layered coding scheme
including the coding mode in screen encoder and layered syntax design.

5.1. Blockwise Screen Content Coding

In order to compress interaction content with high visual quality and low complexity,
the screen encoder is designed as an open-loop coding structure. Four coding modes are
introduced, which are skip mode, text mode, image smooth mode, and image edge mode.
For the stable block, temporal data correlation is exploited by skip mode without resid-
ual coding and reference frame reconstruction on the encoder side. A fast global motion
detection [Christiansen and Schauser 2002] is conducted based on original frames. For
the detected stable block, only block type and motion vector are transmitted to the
decoder. In this way, the abundant redundancy within stable content can be efficiently
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Fig. 11. The quantization in pixel domain for mode decision.

exploited with very low complexity and the main computation cost is allocated to the
update blocks in the small region.

For the update block, we first perform content classification. Considering that a
text/graphic region has high contrast and a limited number of base colors, a histogram-
based quantization algorithm is employed to classify the text/graphic region from the
image one. The colors with peak values in the histogram are selected as base colors,
shown in Figure 11. Then, an equal size window is used to range the close colors that are
quantized to the base color in the same window. There might also be some pixels that
escaped from the ranging windows. If the escaped pixel number is within a threshold,
then the block is considered a text/graphic. Otherwise, it is set as an image block. The
image content is then further classified as a smooth region and an edge region based
on the block gradient value. If the block gradient value is beyond a threshold, then the
block is considered an image edge block. Otherwise, it is an image smooth block.

For the text/graphic block, encoding without transform is an efficient coding scheme
for content with complicated and irregular edges. Thus, we employ a pixel domain
coding scheme [Miao et al. 2013]. Based on the above quantization scheme, the text
block can be represented by several base colors, escaped colors, and an index map,
which indicates that each pixel corresponds to a particular color value. These color
values and index map are entropy encoded directly. For the image block, the mature
JPEG encoder is adopted. In the edge region, considering that chroma downsampling
will introduce chromatic aberration distortion, UV channel data will be compressed
without downsampling. In the smooth region, the chroma channel is downsampled for
efficient coding.

For enhancement coding, since the blocks selected for enhancement all have a high
gradient value, the to-enhance blocks will be classified as a text/graphic one or image
edge one and compressed by the text mode or image edge mode, respectively. The stable
blocks following the to-enhance one in the co-located position will be compressed by the
skip mode to preserve quality improvement.

5.2. Syntax of the Layered Coding Scheme

To combine the standard video codec and the blockwise screen codec under the layered
coding structure, we design the coding syntax as illustrated in Figure 12. For each
encoded screen frame, the bitstream starts with the frame type label that may be the
display frame or interaction frame. Following that, the slice level bitstream is written.
Three types of slices are introduced, which are video slice, interaction slice, and quality
enhancement slice.

The video slice contains the bitstream of display frame encoded by a standard video
encoder. To achieve the tradeoff between the coding efficiency and coding complexity,
H.264/AVC is adopted with the real-time implementation of x264 as an encoder and
FFmpeg as a decoder. Thus, in the video slice, the H.264/AVC bitstream of one frame
is written following the slice type. The interaction slice contains the bitstream of the
interaction frame from the screen encoder. Following the slice type, the bitstream of
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Fig. 12. Syntax of the layered coding.

each block is written with a horizontal scan order. The quality enhancement slice
contains the coding bitstream of enhanced blocks. Since partial blocks are selected for
quality improvement, following the slice type, there is an enhancement map written
into the bitstream to identify the location of the block. Three coding modes, including
text mode, image edge mode, and skip mode, are involved for the enhancement coding.

On the decoder side, the decoded frames from two layers are merged as the complete
screen video first. For the interaction frame, the reconstructed update block is padded to
the decoded frame directly. For stable blocks, the reconstructed content is copied from
the previous decoded frame in the completed screen sequence. Then, the enhanced
blocks are padded to a decoded frame to improve quality, and enhancement preserving
blocks are reconstructed by copying from the previous frame with enhanced content in
terms of global motion.

6. EXPERIMENTAL RESULT

We implement the proposed screen sharing system and evaluate its performance on
the real application over a wide range of network environments. Considering that
this system is developed based on software implementation, we compare it with sev-
eral popular software-based screen sharing systems, including RDP, VNC, THINC,
DisplayCast [Chandra et al. 2012], AnyDesk [2016a], Splashtop [2016], and Gaming
Anywhere [Huang et al. 2013].

6.1. Tested Setup

The test-bed consists of two desktop computers within various network conditions. The
server is running on Microsoft Windows 8 and equipped with an Intel Core i5-3210M
processor with two 2.50GHz cores. The client is running on Microsoft Windows 8 and
configured with an Intel Core i5-3317U processor with two 1.70GHz cores. The display
resolutions on both the server and client are set as 1360 × 768, which is one option in
Windows. The conditions of the relevant screen sharing systems are as follows:

—RDP: We use the pre-installed version of Windows 8.
—VNC: We use the TightVNC downloaded from TightVNC [2016].
—THINC: The system is downloaded from THINC [Software Systems Laboratory

2016].
—DisplayCast: The system is downloaded from Github [DisplayCastSourcecode 2016].
—AnyDesk: The system is downloaded from the webpage [AnyDesk 2016a].
—Splashtop: The system is downloaded from the webpage [Splashtop 2016]. To use

this service, we create an account and run the sender and receiver programs on the
respective machines.
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—GamingAnywhere (GA): This is an open-source cloud gaming platform download from
GamingAnywhere [2016].

In the proposed system, the mature software x264 [VideoLAN 2016] is integrated as
the encoder in video coding layer and the default mode is used for encoding configura-
tion. Considering that the hierarchical b-frame will increase decoding delay, we disable
the b-frame prediction and employ IPPP coding structure with one reference frame to
reduce the decoding delay. The GOP size is set as 16. The mature software FFmpeg
[2016] is used as a video decoder.

In the screen coding layer, the number of base colors in the pixel domain is set as
4, since four clusters can cover most color values in the text block by quantization. It
also achieves a good tradeoff on bitrate cost between the index map and escaped colors.
Based on the investigation result in Section 4.1, the update block ratio threshold is
set as 20% for the frame classification. Under this setting, most video display cases
including full-screen video and webpage video can be classified as natural video content.
This parameter can be adjusted in terms of distinct screen sharing scenarios or screen
resolutions. The upper bound frame rate we set in the capture module is equal to 60fps
based on the coding complexity of the screen coding layer.

We use a 1Gb/s LAN network, with 1ms latency, which is the maximum granularity
in the network. A software-based network emulation is performed on the server side
by Shunra VE Desktop Client to emulate the different network conditions. Wireshark
1.2.8 [Wireshark 2016] is used to monitor and record network traffic. The tested net-
work environments vary among 100Mbps FastEthernet LAN, 10Mbps Ethernet, and
5Mbps and 2Mbps low-bandwidth 802.11g, which are all produced by the software-
based network emulator.

In our experiment, two types of scenarios are tested, which are video display and
interaction. For video display, the scenario is further classified as full-screen video
display, as shown in Case (a) in Figure 5, which is a trailer of “Transformer 3,” and
webpage video display as shown in Case (b) in Figure 5, in which the video is clicked
following an input interaction. For the interaction scenario, two cases are tested shown
as Cases (c) and (d) in Figure 5, which are webpage browsing and writing on the board.

6.2. Latency and Frame-Rate Test

In this experiment, we measure the end-to-end screen updating latency between the
server and the client, which is the time difference between the screen update appearing
at the server side and the update displaying at the client side. The end-to-end latency
can be calculated as the sum of the encoding, transmission, decoding, and other pro-
cessing times. Given that some reference systems are close source and it is difficult to
measure the time of each module, a photo-capture-based method is employed in this
article, which is used in both academia and industry for performance measurement on
screen sharing [Hsu et al. 2015; measurement in AnyDesk 2016b]. In this method, the
screen with a timer showing in the corner of the screen is sent from the server to the
client. Both screens on server and client sides are recorded in one image by a Fujifilm
x100s camera at the same time. The difference between times shown on two screens is
considered the latency. We measure the latency for video display and interaction sce-
narios. Each scenario has two cases, as shown in Figure 5. We repeat the experiment
10 times for each case given the bandwidth condition.

The average latency results for distinct scenarios are shown in Table I. From the
results, we can reach several conclusions. First, the latency will increase as the band-
width decreases, mainly due to the increase of transmission time. Second, the latency
of the video display is larger than that of the interaction for the distinct systems. This
is mainly because the natural video content update will cause more compressed bits
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Table I. Average Latency Comparison Results During Interaction and Video Display (MS)

Interaction Video
Systems 100Mbps 10Mbps 5Mbps 2Mbps 100Mbps 10Mbps 5Mbps 2Mbps

RDP 46 61 93 145 60 198 271 383
VNC 36 48 73 137 67 194 298 410

THINC 32 40 74 138 52 116 213 373
AnyDesk 26 41 92 117 43 73 176 275

DisplayCast 23 34 53 86 63 156 231 398
Spalashtop 37 45 85 124 47 84 187 352

GamingAnywhere 33 46 83 135 35 57 132 201
Proposed 24 36 47 78 38 72 142 228

Table II. Frame Rate Comparison Results During Interaction and Video Display (FPS)

Interaction Video
Systems 100Mbps 10Mbps 5Mbps 2Mbps 100Mbps 10Mbps 5Mbps 2Mbps

RDP 24 22 20 16 18 13 11 8
VNC 35 32 27 23 17 14 13 11

THINC 37 35 29 25 23 19 15 12
AnyDesk 43 38 35 32 27 25 20 15

DisplayCast 50 45 36 30 23 16 13 8
Spalashtop 31 29 28 25 23 21 16 13

GamingAnywhere 35 33 31 29 31 25 23 16
Proposed 49 43 37 35 28 24 21 14

than the interaction update in a small region and will cost more time on compression
and transmission accordingly. Third, in the interaction scenario, the proposed system
and DisplayCast can achieve lower latency than other systems. In the proposed system,
the latency can be preserved within 80ms, even if the bandwidth is limited. Compared
with GamingAnywhere, in which x264 is employed for screen compression, the latency
can be reduced about 40% in low-bandwidth conditions. This is mainly because the
encoding, decoding, and transmission times can be reduced due to the high-efficiency
and low-complexity coding in the proposed scheme. Moreover, the rendering time can
be further reduced by the partial region update during interaction. When bandwidth
is sufficient and the transmission cost introduces less impact on latency, the proposed
system can also achieve about 20% improvement compared with GamingAnywhere.
For video display scenario, GamingAnywhere can outperform others and the proposed
system can achieve a performance comparable to that of GamingAnywhere. Compared
with VNC, the proposed system can reduce the latency significantly in various band-
width conditions.

Since the frame rate will influence user experience, we measure the frame rate on
the client side by using the API function of DirectX to monitor the screen update
while the screen sharing system is running. Once the screen changes, the time is
noted and the frame rate is recorded. Considering that the requirement for screen
update varies for distinct content, we measure the frame rate of video display and
interaction, respectively. For each scenario, two cases, shown in Figure 5, are tested.
The average results for each scenario are shown in Table II. We can observe that,
in the interaction scenario, the proposed system can outperform most other systems.
The frame rate can achieve up to 50fps in the high-bandwidth condition and about
35fps in the low-bandwidth condition. The high frequency of screen update can be
also supported well in DisplayCast when the bandwidth is sufficient. Compared with
GamingAnywhere, the proposed system can achieve an approximately 35% higher
frame rate in the high-bandwidth condition and about a 20% improvement in low-
bandwidth condition. This is mainly because the open-loop coding structure in screen
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Fig. 13. Frame-rate variation during webpage video interaction and display.

codec can reduce the encoding and decoding time. The rendering cost can also be saved
in the stable region during interaction. In contrast, the close-loop coding structure in
video codec and whole frame rendering operation introduce higher coding and rending
complexity in the reference system. Even though the transmission time can be reduced
in the high bandwidth condition, the frame rate in local devices cannot be improved
further due to the bottleneck caused by the coding and rendering complexity.

For the video display scenario, GamingAnywhere can achieve the best performance,
followed by the proposed system. In these two systems, a standard video codec can
support real-time streaming when the bandwidth is beyond 5Mbps. The frame rate
in the system based on the region update model is inadequate for video display. For
example, the frame rate in VNC for webpage video can achieve about 20fps, while
it drops to about 10fps for full-screen video display. This is because the screen is
updated as the form of updated pixels and the frame rate will decrease significantly
if the amount of the update pixels is as large as the whole screen. Similarly to VNC,
DisplayCast is also based on pixel update and suffers from the same issue for full-screen
video display. Note that the frame rate in the proposed system is also inadequate for
video display when bandwidth is limited. We will improve it further for the bandwidth-
limited condition.

We also test the frame-rate variation in a webpage video display case shown as
Figure 5(b). In this case, the user first typed the video name in the search bar on the
Youtube webpage and then clicked a video for display. The frame-rate variation result
under the bandwidth of 100Mbps is shown in Figure 13. From the result, we can see that
during the user interaction, the frame rate in the client side can achieve up to 50fps.
After video display, the frame rate is beyond 20fps. The proposed coding scheme can
provide an adaptive frame rate for distinct content. We can also see that the frame rate
in VNC can also achieve about 20fps during webpage video display. As mentioned above,
the screen in TightVNC is represented as rectangles of pixels, which are compressed
by a Hextile scheme in this experiment. The compression efficiency and complexity
are relevant with the size of rectangle. When the screen update ratio is about 30% as
webpage video display, a frame rate of about 20fps can be supported in TightVNC.

6.3. Video Quality Test

In this section, we present the evaluation of video quality at the codec level and system
level, respectively. We first capture four offline screen video sequences under the
distinct scenarios shown in Figure 5. Each sequence has 200 frames with a resolution
of 1360 × 768. These four video sequences are compressed by the proposed layered
codec with different bitrates. Considering that x264 is widely employed in many
screen sharing systems, such as Miracast [Wi-Fi Alliance 2016] and GamingAnywhere
[Huang et al. 2013], we compare the proposed layered codec with x264. The encoding
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Table III. Performance of the Proposed Scheme Compared with
x264 Evaluated by PSNR and SSIM

Sequence �PSNR(dB) �Bitrate(%) �SSIM �Bitrate(%)

Full-screen video −0.09 1.46 −0.0012 1.23
Webpage video 0.56 −10.76 0.0082 −11.38
Web browsing 1.24 −22.54 0.0138 −23.34

Editing 0.63 −13.52 0.0094 −13.47

Fig. 14. Visual quality comparison between the proposed layered coding scheme and x264. (a) Reconstructed
from the proposed scheme (bitrate: 1.83Mbps). (b) Reconstructed from x264 (bitrate: 1.84Mbps).

configuration is set the same as the video codec integrated in the video coding layer,
and the main setting is introduced in Section 6.1. The data format in x264 is YUV420
while it is YUV444 in the screen coding layer of the proposed scheme. Considering
that the chroma data are processed and compressed in distinct ways in the proposed
scheme and reference scheme, we evaluate the coding performance in the RGB color
space. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) values
are calculated as the average value of each channel in RGB color space. The rate
distortion performance is shown in Table III.

For the natural video display in full screen, the coding performance of the proposed
coding scheme is almost the same as x264. This is because most screen frames are
distributed into the video coding layer. The limited coding lost is caused by the layered
coding overhead. For the webpage video content, the proposed scheme achieves better
rate-distortion performance than x264 due to the fact that the natural video content is
compressed by the video codec and the text/graphic content is enhanced by the proposed
screen coding. For the screen with full text/graphic content, the coding performance of
the proposed scheme is much better than x264. This is because the pixel domain coding
is more efficient for text content, and chromatic aberration distortion is avoided by full
chroma data compression without downsampling. The visual quality comparison is
shown in Figure 14, in which a region of screen is cut from the webpage. The bitrate
is controlled similarly for the two schemes. We can observe that there are artifacts
around the boundary of text in the image reconstructed from x264. In contrast, the
reconstruction result from the proposed scheme has a clear boundary of text.

We compare the video quality at the system level using a similar method employed
in Hsu et al. [2015]. We hack and record the screen frames from the display buffer
in both server and client to calculate the frame quality based on PSNR. To facilitate
the comparison, we add a frame identifyer at the corner of each frame for matching.
Since the frame rates may be mismatched between the server and the client, the
number of the received screen frames on the client side could be less than that on
the server side. We copy the previous received frames on the client side to guarantee
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Table IV. Video Quality Comparison During Interaction and Video Display Based on PSNR Value (dB)

Interaction Video
Systems 100Mbps 10Mbps 5Mbps 2Mbps 100Mbps 10Mbps 5Mbps 2Mbps

RDP 31 27.6 26 24.5 26.8 23.4 21 15
VNC 32.4 31 28.9 26 26 24.4 22.5 18.4

THINC 31 28.5 26.8 24 31 28.5 26 21
AnyDesk 34 32.5 29 27 32 30.5 28.2 22

DisplayCast 36 33.5 32 28.4 27.2 25.4 22.3 19
Spalashtop 32 30.7 29 27.5 29.5 26.2 24.5 21

GamingAnywhere 33 32.1 30.6 27.3 33 32 30.5 23.5
Proposed 36.5 34 32.4 29 32.5 31.1 29.5 23

Table V. Small Region Update Performance

Webpage Editing
Protocol Data(Mbps) Speed(fps) Data(Mbps) Speed(fps)

VNC 1.61 31 0.90 36
Proposed 0.71 43 0.25 49

that the total numbers of screen frames are equal for comparison. Thus, the video
quality in this test is mainly determined by two factors. One is the received video
quality and the other is the frame rate on the client side. If the frame rate on the
client side is much lower than that on the server side, then the quality will decrease
dramatically. The comparison results are shown in Table IV. In the interaction scenario,
the video quality of the proposed system is better than other system under various
bandwidth conditions. Compared with the screen sharing system employing x264,
such as GamingAnywhere, the proposed system can provide 5%–10% performance
improvement in low- to high-bandwidth conditions. The larger improvement in high
bandwidth is mainly caused by the higher frame rate supported in the proposed system.
Compared with the systems based on the region update model, such as VNC and
THINC, the video quality improvement is caused by both the quality improvement in
the text content and the frame-rate preservation on the client side. In the video display
scenario, the video quality in this system is similar to that of GamingAnywhere, since
the screens are compressed by x264 in both systems. Compared with the systems
based on a region update model, the video quality improvement is mainly caused by
frame-rate preservation on the client side.

We also compare the small region update performance between the proposed system
and VNC using Cases (c) and (d) shown in Figure 5. In the experiment, we measure the
transmission rate and frame rate shown in Table V. Due to the high coding efficiency
on text/graphic content, the bitrate of the proposed system is lower than VNC. Since
the complexity on blockwise coding and layered rendering can be preserved in a low
level, the updating rate in the proposed system on a small region can be higher than a
regular frame rate.

6.4. Complexity Test

This experiment is designed to measure the CPU utilization on both the server and
client sides. A Performance Monitor tool [Microsoft 2016b] is used to monitor the CPU
usage and the results are shown in Table VI.

From the results, we can observe that the CPU usage of the proposed system is
comparable with other systems. For the distinct scenarios, the CPU utilization for
full-screen video display is highest when the video codec is working for the screen
compression. The interaction case consumes the least amount of CPU resources, since
the complexity of the screen codec is lower than that of the nature video codec.
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Table VI. CPU Utilization Comparison Results

Full-screen video Webpage video Interaction
Protocol Server Client Server Client Server Client

VNC 16% 12% 13% 17% 14% 12%
RDP 35% 32% 35% 22% 27% 19%

THINC 21% 19% 18% 15% 16% 15%
AnyDesk 29% 23% 21% 18% 17% 15%

DisplayCast 39% 32% 33% 25% 24% 21%
Spalashtop 31% 27% 26% 19% 23% 21%

GamingAnywhere 33% 18% 27% 17% 19% 12%
Proposed 37% 15% 32% 16% 12% 10%

Table VII. Complexity of the Rendering Operation (MS/Frame)

Scenario Reference Proposed Ratio

Full-screen video 6.82 6.87 1.01
Webpage video 6.71 4.49 0.67

Interaction on small region 6.51 1.35 0.21
Note: Ratio = Proposed/Reference

We also test the complexity of the rendering operation with buffer copy and data for-
mat conversion. Considering that it is difficult to measure screen rendering complexity
in other closed-source systems, we test the rendering cost compared with a reference
system integrated with pure video codec for screen coding, that is, x264 software as the
screen encoder and FFmpeg as the decoder. The result is shown in Table VII, in which
we can observe that the rendering cost in the reference system is almost fixed. This is
because the data format conversion and buffer copy are performed for the whole frame.
In the proposed system, the rendering cost can be reduced, since the stable content in
each frame skip the rendering operation during screen update. The reduce proportion
corresponds to the stable content ratio in each scenario. For the interaction in teh small
region, the rendering cost can be saved up to 80% compared with the reference system,
whereas, for the natural video display, the rendering cost is almost the same as the
reference.

7. CONCLUSION AND DISCUSSION

In this article, we have presented a novel screen sharing system. In this system, we
develop a low-level compression-friendly architecture to represent and compress the
display information. Within the model, we further propose a layered screen compression
scheme for screens with multiple types of content. The proposed screen compression
scheme employs the standard video codec to compress the screen with multimedia
content at a regular frame rate and the specially designed blockwise screen codec to
compress interaction content at a high frame rate. The experimental results show that
the proposed system delivers superior performances compared with several popular
screen sharing systems.

In order to improve system performance and extend application scenarios, we shall
focus our future work on hardware implementation. In the future research, we plan
to implement hardware encoding and decoding of video codec in the system to reduce
the end-to-end latency as well as CPU usage in server and client. Moreover, with the
benefit of hardware implementation, we shall be able to support more scenarios, such
as screencast from a laptop to a TV through a developed screen sharing box, in which
the screen is decoded and sent to a TV through an HDMI port. More comparisons with
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hardware-based screen sharing systems, such as Miracast and Airplay, will also be
conducted in the future.
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