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Abstract— Linear regression is an important tool across many
fields that work with sensitive human-sourced data. Significant
prior work has focused on producing differentially private point
estimates, which provide a privacy guarantee to individuals
while still allowing modelers to draw insights from data by
estimating regression coefficients. The problem of Bayesian linear
regression, with the goal of computing posterior distributions that
correctly quantify uncertainty given privately released statistics,
was investigated in [1]. In the aforementioned paper, it was shown
that a naive approach that ignores the noise injected by the
privacy mechanism does a poor job in realistic data settings. This
has motivated the corresponding authors to develop noise-aware
methods that perform inference over the privacy mechanism and
produce correct posteriors across a wide range of scenarios. In
this paper, the methods developed in [1] are first reproduced
and then enhanced through various experiments. Finally, based
on the outcome of the present paper and the current state of the
art, some future research directions are proposed.

Keywords—Logistic regression, LDA, cross validation, accuracy,
complexity, features selection, features construction.

I. INTRODUCTION

Linear regression is one of the most widely used statistical
methods, especially in social sciences [1], [2] and other
domains where data comes from humans. It is important to
develop robust tools that can realize the benefits of regression
analyses while maintaining the privacy of individuals. On the
other hand, differential privacy [3] is a widely known paradigm
that provides algorithmic privacy. In fact, a differentially
private algorithm randomizes its computation to provably limit
the risk that the outputs disclose information about individuals.
Existing works on differentially private linear regression focus
on frequentist approaches. A variety of privacy mechanisms
have been applied to the estimation of regression coefficients,
including sufficient statistic perturbation (SSP) [4]–[8], pos-
terior sampling (PS) [7]–[12], subsample and aggregate [13],
[14], objective perturbation (OP) [15], and noisy stochastic
gradient descent (SGD) [16]. for the same problem, only a
few recent works address uncertainty quantification through
confidence interval estimation [17] and hypothesis tests [18].

A Bayesian approach for linear regression naturally quan-
tifies parameters’ uncertainty through a full posterior distri-
bution and provides other Bayesian capabilities such as the
ability to incorporate prior knowledge and compute poste-
rior predictive distributions. Existing approaches to private
Bayesian inference include PS, Markov chain Monte Carlo
(MCMC) [12], variational inference (VI) [19]–[21], and SSP
[4], [22], but none provide a fully satisfactory approach for
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Bayesian regression modeling. PS does not naturally produce
a representation of a full posterior distribution. MCMC ap-
proaches incur per-iteration privacy costs and satisfy only
approximate (ε, δ)-differential privacy. Private VI approaches
also incur per-iteration privacy costs, and are most relevant
when the original inference problem requires VI. When ap-
plicable, SSP is a very desirable approach, since sufficient
statistics are perturbed once and then used in conjugate updates
to obtain parameters of full posterior distributions, and often
outperforms other methods in practice [4], [7]. In [22] it
was demonstrated that, for unconditional exponential family
models, naive SSP, which ignores noise introduced by the pri-
vacy mechanism, systematically underestimates uncertainty at
small to moderate sample sizes. In [1], a differentially private
method for Bayesian linear regression was proposed and it was
shown that the same phenomenon holds for Bayesian linear
regression. Specifically, naive SSP produces private posteriors
that are properly calibrated asymptotically in the sample size,
but for realistic data sets and privacy levels may need very
large population sizes to reach the asymptotic regime.

These results and observations motivated the authors in [1]
to develop Bayesian inference methods for linear regression
that properly account for the noise due to the privacy mech-
anism. Precisely, in [1], a model, in which data and model
parameters are latent variables, and noisy sufficient statistics
are observed, was leveraged first. Then, some MCMC-based
techniques to sample from posterior distributions were devel-
oped, as done for exponential families [22]. A significant chal-
lenge relative to prior works is the handling of covariate data.
Typical regression modeling treats only response variables and
parameters as random, and conditions on covariates. However,
this is not possible in the private setting, since covariates must
be kept private and therefore treated as latent variables. To
overcome this issue, some assumptions about the distribution
over covariates were required. Based on this, two inference
methods were developed. The first includes latent variables for
each individual, i.e., it requires an explicit prior distribution
for covariates. The second marginalizes out individuals and
approximates the distribution over the sufficient statistics, i.e.,
it requires weaker assumptions about the covariate distribution
(only moments). One of the main differences between the two
methods is that the runtime of the first method scales with the
population size, whereas the ones of the second method does
not. Finally, it was shown that, through various experiments
real data, the noise-aware methods are as well or nearly as
well calibrated as the non-private method, and have better
utility than the naive method and that they quantify posterior
predictive uncertainty significantly better than naive SSP.

In this paper, we reproduce the Bayesian inference methods
developed in [1]. Specifically, we revise all the analytical
analysis derived for the methods and we run various experi-
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ments to reproduce the claimed experimental results. Our main
contributions in this paper are listed as follows.

1) Adding two loops to recreate Figure 3.(a) and Figure
3.(d). The original code [23] does not have a loop in
driver.py that displays these figures.

2) Adding a custom implementation of the Kolmogorov-
Smirnov (KS) statistic using the ks_2samp() function of
the scipy library.

3) Adding a custom implementation of the maximum mean
discrepancy (MMD) metric, where we implemented a
function that reproduces the expression MMD2(P,Q)
that is shown in page 8 [1] and a function that emulates
a 2-dimensional (2d) standard normal kernel to emulate
the function k(p, q) that is used for MMD2(P,Q).

4) Adding scripts to save and plot the values of the param-
eters and the posterior distributions for each Bayesian
inference methods.

5) Improving the function run_methods() to keep track of
the runtimes of the Bayesian inference methods.

6) Adding an experiment to test if the Noise-naive method
produces an asymptotically correct posterior. The output
result is displayed by plotting the mean posterior esti-
mates of non-private method versus naive method.

The rest of the paper is organized as follows. Section II
presents the analytical formulation of the Bayesian inference
methods developed in [1]. Section III presents the implemen-
tation details of the Bayesian inference methods. Section IV
presents the ablation studies and the proposed improvements.
Section V presents the performance evaluation of the Bayesian
inference methods along with the proposed improvements.
Section VI presents the conclusion and some future research
directions.

II. BAYESIAN LINEAR REGRESSION

A. Non-Private Bayesian Linear Regression

Let x ∈ Rd be an individual’s covariate or regressor data
and let y ∈ R be its dependent response data. Assuming
a conditionally Gaussian model y ∼ N

(
θT x, σ2

)
, where

θ ∈ Rd are the regression coefficients and σ2 is the error
variance, the goal behind linear regression is obtaining a point
estimate of θ, given an observed population of n individuals.
The population data can be written as X ∈ Rn×d, where each
row corresponds to an individual x, and y ∈ Rn. Based on
the results of [24], the ordinary least squares (OLS) solution

is θ̂ =
(

XTX
)−1

XT y.
In Bayesian linear regression, the parameters θ and σ2

are random variables with a specified prior distribution. The
conjugate priors are p

(
σ2
)

= IG (a0, b0) and p
(
θ|σ2

)
=

N
(
µ0, σ

2Λ−1
0

)
, where IG refers to the inverse Gaussian

distribution. This defines a normal-inverse gamma prior distri-
bution p

(
θ, σ2

)
= NIG (µ0,Λ0, a0, b0). Due to conjugacy of

the prior distribution with the likelihood model, the posterior

distribution p
(
θ, σ2|X, y

)
is expressed as

p
(
θ, σ2|X, y

)
= NIG (µn,Λn, an, bn) , (1a)

Λn = XTX + Λ0, (1b)

µn = Λ−1
n

(
XT y + ΛT

0 µ0

)
, (1c)

an = a0 +
n

2
, (1d)

bn = b0 +
1

2

(
yT y + µT0 µ0µ0 − µTnµnµn

)
, (1e)

which is also a normal-inverse gamma distribution [25]. Ad-
ditionally, the statistics

s := t (X, y) =

n∑
i=1

t (xi, yi) =
[
XTX,XT y, yT y

]
, (2)

are sufficient statistics for the model in (1). These statistics
capture all information about the model parameters contained
in the sample (X, y) and are the only quantities needed for the
conjugate posterior updates in (1) [26].

B. Private Bayesian Linear Regression

As opposed to the non-private case, the goal behind the
private Bayesian linear regression is perform the same model
but with an ε-differentially private manner. The privacy is
ensured by employing sufficient statistic perturbation (SSP),
in which the Laplace mechanism is used to inject noise into
the sufficient statistics of the model, making them fit for
public release [4], [6], [8]. The question is then how to
compute the posterior over the model parameters θ and σ2

given the noisy sufficient statistics. To answer this question,
a naive method that ignores the noise in the noisy sufficient
statistics is considered first. We then more principled noise-
aware inference approaches that account for the noise due to
the privacy mechanism are studied.
1) Privacy Mechanism: Using the Laplace mechanism to

release the noisy sufficient statistics z results in the model
shown in Fig. 1. This is the same model used for non-
private linear regression except the introduction of z, which
requires the exact sufficient statistics s to have finite sensitivity.
A standard assumption in literature is to assume x and y
have known a priori lower and upper bounds, (ax, bx) and
(ay, by), with bound widths wx = bx − ax (assuming for
simplicity equal bounds for all covariate dimensions) and
wy = by − ay , respectively [7], [17], [27], [28]. Then, one
can reason about the worst case influence of an individual on
each component of s =

[
XTX,XT y, yT y

]
. Thus, recalling that

s =
∑n
i=1 t (xi, yi), it follows that[

∆(XT X)
j,k

,∆(XT y)
j

,∆y2

]
= [w2

x , wxwy, w
2
y]. (3)

The number of unique elements in s is
[
d(d+1)

2 , d, 1
]
, so ∆s =

w2
x
d(d+1)

2 +wxwyd+w2
y . The noisy sufficient statistics fit for

public release are z =
[
zi ∼ Lap

(
si,

∆s
ε

)
, si ∈ s

]
, where Lap

refers to the Laplace distribution.
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Fig. 1. Private regression model

2) Noise-Naive Method: Previous works developed methods
to obtain OLS solutions via SSP by ignoring the noise injected
into the sufficient statistics [7], [17], [27]. One corresponding
approach for Bayesian regression is to naively replacing s
in Fig. 1 with the noisy version z and then performing the
conjugate update in (1). This noise-naive method is simple
and fast, and it was empirically shown in [1] that it produces
an asymptotically correct posterior.
3) Noise-Aware Inference: Instead of ignoring the noise

introduced by the privacy mechanism as done in the previous
paragraph, the authors in [1] proposed to perform inference
over the noisy model in Fig. 1 in order to produce correct
posteriors regardless of the data size. The biggest change from
non-private to private Bayesian linear regression is that, due
to privacy constraints, conditioning on the covariate data X
is no longer possible. Based on [1], the non-private posterior
probability is given by

p
(
θ, σ2|X, y

)
∝ p

(
θ, σ2

)
p
(
y|X,θ, σ2

)
, (4)

while the private posterior is given by

p
(
θ, σ2|z

)
∝
∫
p (X) p

(
θ, σ2

)
p
(
y|X,θ, σ2

)
p (z|X, y) dXdy.

(5)
The private posterior contains the term p(X), which means
that, in order to calculate it, it is required to know some-
thing about the distribution of X. This approach is simple
to implement using existing tools. However, it places a sub-
stantial burden on the model relative to the non-private case
by requiring an explicit prior distribution p(X), and hence,
poor choices will potentially lead to incorrect inferences [1].
Additionally, since MCMC-Ind instantiates latent variables for
each individual, its runtime scales with population size and it
may be slow for large populations.

An appealing possibility to overcome the aforementioned
issue is marginalizing out the variables X and y representing
individuals and performing inference directly over the latent
sufficient statistics s instead. Recall that the joint distribution
is p(θ, σ2, s, z) = p(θ, σ2)p(s|θ, σ2)p(z|s). The goal is to
compute a representation of p(θ, σ2|z) ∝

∫
p(θ, σ2, s, z)ds by

integrating over the sufficient statistics. Due to the fact that
the closed-form expression of this distribution is not readily
available, the authors in [1] developed a Gibbs sampler to
sample from the posterior distribution as done in their prior

work for unconditional exponential family models [22] . This
requires methods to sample from the conditional distributions
for both the parameters (θ, σ2) and the sufficient statistics
s given all other variables. The full conditional distribution
p(θ, σ2|s) for the model parameters can be computed and
sampled using conjugacy, exactly as in the non-private case.
The full conditional for s can be decomposed into two terms
as p(s|θ, σ2, z) ∝ p(s|θ, σ2)p(z|s). The first is the distribution
over sufficient statistics of the regression model, for which an
asymptotically correct normal approximation was developed.
The second is the noise model due to the privacy mechanism,
for which variable augmentation is used to ensure the possi-
bility to sample from the full conditional distribution of s.
4) Normal Approximation for p(s|θ, σ2): The conditional

distribution over the sufficient statistics given the model pa-
rameters is expressed as

p(s|θ, σ2) =

∫
t−1(s)

p(X, y|θ, σ2)dXdy, (6)

where
t−1(s) := {X, y : t(X, y) = s} . (7)

The integral over t−1(s) (all possible populations which
have sufficient statistic s) is intractable to compute. In-
stead, note that the components of s =

∑
i t(xi, yi) are

sums over individuals. Therefore, using the central limit
theorem (CLT), their distribution can be approximated as
p(s|θ, σ2) ≈ N (s;nµt, nΣt), where µt = E [t(x, y)] and
Σt = Cov(t(x, y)) are the mean and covariance of the
function t(x, y) on a single individual. This approximation
is asymptotically correct, i.e., 1√

n
(s− nµt)

D−→ N (0,Σt)
[29]. Hence, the conditional distribution can be approximated
as s|· ∼ N (nµt, nΣt). The components of µt and Σt can
be written in terms of the model parameters (θ, σ2) and the
second and fourth non-central moments of x [1]. This method
is called Gibbs-SS. The current parameters values are available
within the sampler, but the modeler must provide estimates for
the moments of x, either using prior knowledge or by privately
estimating the moments from the data. To do so, three specific
possibilities can be adopted, which are private sample mo-
ments (Gibbs-SS-Noisy), moments from generic prior (Gibbs-
SS-Prior) and hierarchical normal prior (Gibbs-SS-Update).
These three methods are presented in details in [1]. As it can
be seen in the above analysis, more modeling assumptions are
needed in the private case than in the non-private case, where
it is possible to condition on x. However, Gibbs-SS requires
more assumptions (second and fourth moments) than MCMC-
Ind (a full prior distribution).
5) Variable Augmentation for p(z|s): The above approxima-

tion for the distribution over sufficient statistics means of the
full conditional distribution involves the product of a normal
and a Laplace distribution as

p(s|θ, z) ∝ N (s;nµt, nΣt)× Lap(z; s,
∆s

ε
). (8)

It is unclear how to sample from this distribution directly.
A similar situation arises in the Bayesian Lasso, where it
is solved by variable augmentation [30]. In their prior work
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in [22], Bernstein and Sheldon adapted the variable aug-
mentation scheme to private inference in exponential family
models. In [1], the same approach is adopted, where the
authors represented a Laplace random variable as a scale
mixture of normal distributions. Specifically, l ∼ Lap(u, b)
is identically distributed to l ∼ N (u, ω2) where the variance
w2 ∼ Exp( 1

2b2 ) is drawn from the exponential distribution
with density 1

2b2 exp
(
− w2

2b2

)
. Each component of the vector

z was augmented separtely so that z ∼ N (s,diag(ω2), where
ω2 ∼ Exp

(
ε2

2∆2
s

)
. The augmented full conditional p(s|θ, z, ω)

is a product of two multivariate normal distributions, which is
itself a multivariate normal distribution.

III. IMPLEMENTATION DETAILS

In this section, we represent the implementations details of
reproducing the Bayesian linear regression methods developed
in [1].

A. Environment Settings

The characteristics of the machine on which all the simula-
tions are performed are as follows.
• System Type: AWS EC2, m5ad.4xlarge.
• 16 CPU, 64 GiB RAM, 2 x 300 NVMe SSD

All the analysis was performed on Python 3.7.

B. Running the code

The first step to reproduce the results of [1] in this paper was
to clone the associated GitHub repository and run the code.
The main file is driver.py, which according to the GitHub
Readme, generates toy data, calculates the posterior for each
method, and plots them.

The code inside driver.py runs the following steps.
1) Initialize the number of individuals to be sampled N =

1000.
2) Initialize the privacy setting ε = 0.01.
3) Initialize datadim = 1, so we are effectively running a

simple linear regression.
4) Call setup_data(), which returns the following vari-

ables
• data_prior_params

[µ′,Λ′,Ψ′, ν′] = [0, 1, 1, 50].
• model_prior_params

[µ,Λ, α, β] = [[0, 0],diag([ .5
20−1 ,

.5
20−1 ]), 20, .5] .

• true_params
(Θ, σ2) ∼ NIG(µ,Λ, α, β),
(µx, τ

2) ∼ NIW(µ′,Λ′,Ψ′, ν′).
• X and y, samples of size N generated using

X ∼ N (µx, τ
2) and

y ∼ N (XTθ, σ)
• sensitivity_x = xmax − xmin
• sensitivity_y = ymax − ymin

5) Call run_methods(), which returns 2000 samples
from the posterior distribution for each of the following
methods: ’non-private’, ’naive, ’mcmc’, ’gibbs-noisy’ and
’gibbs-update’.

Fig. 2. Posterior distributions generated by driver.py

Fig. 3. Resulting QQ plot generated by NIW.py

6) Call plot_posteriors(), which plots the posterior
distributions for each of the following parameters θ0, θbias

and σsquared. The resulting plot is shown in Fig. 2.
Additionally, the file NIW.py contains a __main__ routine
that plots the quantile-quantile (QQ) plots of µx and τ for 100
trials of the following experiment

[µ′,Λ′,Ψ′, ν′] = [0, 1, 1, 50],

(µx, τ
2) ∼ NIW (µ′,Λ′,Ψ′, ν′),

X ∼ N(µx, τ
2),

S = X,XTX,

posterior = ConjugateUpdate(S, [µ′,Λ′,Ψ′, ν′]).

which outputs the results in Fig. 3

C. Necessary Add-Ones

The paper displays several other figures that cannot be
reproduced simply by running the code available in the GitHub
repository. We have therefore created multiple new functions
to perform the following tasks

1) For n in 10,100,1000, plot the utility metric for θ0 ,
θbias and σsquared.

2) For n in 10,100,1000, plot the calibration metric versus
n for θ0 , θbias and σsquared, with ε = 0.1.
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Fig. 4. Custom MMD plots for each parameter to be estimated, n=1000,
epsilon=0.01

3) For ε in 0.01,0.1,1.0, plot the calibration metric versus
ε for θ0 , θbias and σsquared, with n = 10.

1) Maximum Mean Discrepancy (MMD): The utility Max-
imum Mean Discrepancy (MMD) measures how close the
computed posterior is to the non-private posterior p(θ, σ2|s).
In [1], the authors evaluated utility as "closeness to the non-
private posterior, which we measure with maximum mean
discrepancy (MMD)". Unfortunately, we did not find any code
to compute this metric in the GitHub repository associated
to this paper. After trying several publicly available libraries
with no success - they required theano tensors of dimension at
least 2 but the posteriors generated in the experiments are one
dimensional numpy arrays - we decided to implement our own
functions to compute the maximum mean discrepancy. Our
custom code is available inside new_plots.py and follows
the formula from section 4.2 of the paper, which specifies that
given m i.i.d samples (p, q) ∼ PxQ, an unbiased estimate of
the MMD is

MMD2(P,Q) =
1

m(m− 1)
SUM, (9)

where

SUM =

m∑
i=j

(k(pi, pj)+k(pi, pj)−k(pi, pj)−k(pi, pj)). (10)

Since the authors used the standard normal kernel for k, we
used the following equation in our custom implementation

k(x, y;σ) =
1

2πσ2
exp(−x

2 + y2

2σ2
), (11)

where σ = 1. The available plots for n = 1000 and
ε = 0.01 are presented in Fig. 4. In order to create this
figure, we looped through each the samples associated to the
posterior distributions of each of the following methods ’naive,
’mcmc’, ’gibbs-noisy’ and ’gibbs-update’ and computed their
MMD score with the equivalent ’non-private’ posterior sample.
Furthermore, our custom MMD2 function takes a long time
to run for large values of m, so we had to limit ourselves to
m = 300, effectively only computing the score for the first 300
samples of each distribution. Even if the shapes of the plots
are different, we arrive to the same conclusion as the authors,
namely that the ’Naive’ method generates more distant (higher
MMD, hence lower utility) posteriors.
#----------------------------------------
# Pseudo-Code to Generate the MMD Plot

#----------------------------------------
set epsilon = .01
methods = [
’non-private’, ’naive’, ’mcmc’,
’gibbs-noisy’, ’gibbs-update’
]
for N in [10, 100, 1000]:

setup_data()
for method in methods:

compute_posterior()
save_posterior()

for method in methods:
if method != ’non_private’:

computeMMD(
saved_posterior,
non_private_posterior

)
)

2) Kolmogorov-Smirnov (KS) statistic : The authors define
calibration as the measure of how close the computed posterior
is to p(θ, σ2|z), the correct posterior given noisy statistics.
To measure calibration, the paper chooses the Kolmogorov-
Smirnov (KS) goodness-of-fit test [31]. The setup is as follows.

[µ,Λ, α, β] = [[0, 0],diag([
.5

20− 1
,

.5

20− 1
]), 20, .5],

[µ′,Λ′,Ψ′, ν′] = [[0], [1], 1, 50],

(Θ, σ2) ∼ NIG(µ,Λ, α, β),

µx, τ
2 ∼ NIW(µ′,Λ′,Ψ′, ν′),

X ∼ N(µx, τ
2),

Again, neither the function to compute the KS-Statistic, nor
the code to generate the calibration plots are available in
the public GitHub repository, so we decided to implement a
different version of the experiment and compare our conclu-
sions to the ones from the paper. In this new experiment, we
use the ks_2samp() function from scipy.stats which
computes the Kolmogorov-Smirnov statistic on two samples.
The pseudo-code is as follows.
#----------------------------------------
# Pseudo-Code to Generate the KS-stats
#----------------------------------------
methods = [
’non-private’, ’naive’, ’mcmc’,
’gibbs-noisy’, ’gibbs-update’
]
for N in [10, 100, 1000]:

epsilon = .01
setup_data()
for method in methods:

compute_posterior()
save_posterior()

for method in methods:
if method != ’non_private’:

compute_KS_stat(
saved_posterior,
non_private_posterior

)
)

The resulting plot is shown in Fig. 5. We also ran a similar
logic, this time by setting N = 10 and looping through ε ∈
[0.01, 0.1, 1.0] as in Figure 3, plot (b) of the paper, resulting
in Fig. 6. Interestingly, even with this different method, we
arrive at the same conclusion as suggested by the equivalent
figures from the paper, namely that the ’Naive’ method always
generates the most distant posterior distribution, regardless of
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Fig. 5. Custom KS-statistics plots for n in 10,100,1000, epsilon=0.01

Fig. 6. Custom KS-statistics plots for n=10, epsilon in 0.01,0.1,1.0

the parameter. However, besides from the case of the parameter
σ2, our plots do not seem show the same strong clustering of
the non-naive methods as the original paper.

IV. ABLATION STUDIES AND IMPROVEMENTS

In this paper, and compared to the results of [18], we
represent the following improvements/ablation experiments.

1) Isolate and improve the process of generating the syn-
thetic data, as well as the generation of the posterior
distributions for each model

2) Test the statement from section 3.2 of the paper according
to which the Noise-naive method produces an asymptot-
ically correct posterior.

A. Isolating and improving the process of generating the
synthetic data and the posterior distributions

Upon reading the paper and running the code, one of
the first things that we noticed, was that there was no script
available to plot the synthetic data that was generated by the
function setup_data(). As a first improvement, we added
the following 3 scripts

1) experiment1_driver.py
sets ε = 0.01 loops through N = 10, 100, 1000, and
saves all the relevant data (true parameters, synthetic data,
posterior distributions...). Another loop loads the saved
files and plots them.

2) experiment1_save_data.py
implements the functions save_true_params() and
save_posteriors() that turn the variables into csv
data-frames, and saves them as csv files inside the
./data sub-directory.

3) experiment1_plots.py
implements plot_data_distributions() that

Fig. 7. Synthetic data and posterior distributions for n=10, epsilon=0.01

Fig. 8. Synthetic data and posterior distributions for n=100, epsilon=0.01

loads the csv data-frames inside the ./data sub-
directory and plots them. We also added a frequentist
Ordinary Least Squares fit to the synthetic data for the
sake of comparison.

The results of this experiment are presented in Fig. 7 (n=10),
Fig. 8 (n=100), and Fig. 9 (n=1000). We notice that, besides
the case of σ2, the precision of the non-naive methods do
not necessarily improve as N increases. The case of the
noise-aware MCMC method is interesting: as N increases, the
posterior distributions of θ0 and θbias display less variance,
so in theory we should be more certain about the values of
these parameters, yet their bias increases as the mean value
of the posterior distributions become more distant to the true
parameter.

B. Does the Noise-naive method produce an asymptotically
correct posterior

In [18], the method that is used to add privacy to the data is
adding Laplace noise to the sufficient statistics of the model
s := t(X, y), so that the noisy sufficient statistics fit for public
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Fig. 9. Synthetic data and posterior distributions for n=1000, epsilon=0.01

Param True Value

theta-0 -2.573476124657823
theta-bias 1.6327237063518738

sigma-squared 0.04339340003526078
mu-x 0.048364541952864874
tau 0.019778847315076873

TABLE I
CONTENTS OF ./DATA/TRUE-PARAMS-N1000-E0.01.CSV

release are z = [zi ∼ Lap(si,
∆s
ε |si ∈ s)]. In the published

code on GitHub [23], the experiment goes as follows:

• setup-data(datadim,N )

[µ,Λ, α, β] = [[0, 0], diag([
.5

20− 1
,

.5

20− 1
]), 20, .5],

[µ′,Λ′,Ψ′, ν′] = [[0], [1], 1, 50],

(Θ, σ2) ∼ NIG(µ,Λ, α, β),

µx, τ
2 ∼ NIW (µ′,Λ′,Ψ′, ν′),

X ∼ N(µx, τ
2),

S := t(X, y) = [XTX,XT y, yT y],

sensitivityx = xmax − xmin,
sensitivityy = ymax − ymin,

• privatize-suff-stats(S, sensitivityx, sensitivityy, ε)

d = S[XX].shape[0],

wx = Σ(sensitivityx[: −1])
2
,

wy = sensitivityy
2,

∆s = wx
2d(d+ 1)/2 + wxwyd+ wy

2,

z = [zi ∼ Lap(si,∆s/ε : si ∈ S)],

Once the noisy sufficient statistics z is computed, Section 3.2
of the paper explains the principle behind the ’Noise-naive’
method:

1) Naively replace the non-private sufficient statistic s in
with the noisy version z

2) Perform the conjugate update as described in Eq (1).

Fig. 10. Does the Noise-naive method produce an asymptotically correct
posterior?

Fig. 11. Run-times per method, in seconds, for experiment 2

Because the noise-naive method is fast, we were able to set
up an experiment where we compute the noise-naive posterior
for N in 10, 100, 1,000, 10,000, 50,000, 10,0000, 50,0000,
1,000,000 and test if it effectively produces an asymptotically
correct posterior as proposed by the authors in section 3.2. The
resulting plot (Fig. 10) does confirm the authors’ statement:
for each parameter θ0, θbias and σ2, as N increases, the
mean value of the posterior distribution gets closer to the non-
private estimate. From N = 500, 000 the estimates become
nearly indistinguishable. The run-times figure (Fig. 11) for this
experiment shows how fast the Naive method runs regardless
of the sample size, which suggests that this method could be
a very good candidate to consider for large enough N .

V. PERFORMANCE METRICS

Figure 3.(f) from the original paper [1] describes the
method run-times for ε = 0.1, and N in 10, 100. For the sake
of comparison, we have reproduced this plot in Fig. 12. Since
we were not able to find the code that generated this figure
in the GitHub repository, we implemented our custom version
by improving the author’s run_methods() function.

#----------------------------------------
# Pseudo-Code for the new run_methods()
#----------------------------------------
runtimes = pd.DataFrame(

index=list(methods),
columns=[’runtime’]

)
for method in methods:

start = time.time()
compute_posterior(method)
end = time.time()
runtimes.at[’method’,’runtime’] = end-start

)
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Fig. 12. Figure 3.f from the original paper

Fig. 13. Our custom reproduction of Figure 3.f from the original paper. The
run-times are in seconds

In the main script (*driver.py) we loop through N =
10, 100, 1000. For each iteration, we call a custom function
that plots the run-times for each method. Our version of Fig.
12 is presented in Fig. 13, where we added the case of N =
1000. It appears that our hardware setup is faster than the
one used to run the code in the original paper, but we arrive
to the same conclusion as the authors: compared to the other
methods, ’Naive’ and ’Non-private’ are by far the fastest to
run, ’Gibbs-update’ is the slowest, the run-time of ’mcmc’
increases proportionally to the sample size N .

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we attempted to reproduce the results of the
paper "Differentially Private Bayesian Linear Regression" by
Bernstein and Sheldon [18]. Despite the fact that we were
not able to replicate most of the results reported in the paper
by running the code provided by the authors, we were able
to recreate our own versions of some of the plots by adapt-
ing the methods described in the paper. We also performed
two ablation and improvement studies. Our first experiment
isolated the generation of synthetic data and posteriors and
attempted to illustrate it by new plots that were not present
in the published code. Our second experiment confirmed the
statement from the authors according to which the Noise-naive
method produces an asymptotically correct posterior.
In [18], Bernstein and Sheldon adopted the Laplace Mecha-
nism to inject some noise into the data. This noise follows the
Laplace distribution since it follows the ε-indistinguishability.
As an extension, one can generate the noise from the general-
ized normal (GL) distribution, which belongs to the exponen-
tial family. In fact the Laplace and the Gaussian distribution

are special cases from the GL distribution and the GL distribu-
tion satisfies the ε-indistinguishability [32]. Another extension
for this work is to extending the methods developed for the
Bayesian linear regression to the Bayesian logistic regression.
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