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ABSTRACT

Leveraging the vast genetic diversity within microbiomes offers unparalleled in-
sights into complex phenotypes, yet the task of accurately predicting and un-
derstanding such traits from genomic data remains challenging. We propose a
framework taking advantage of existing large models for gene vectorization to
predict habitat specificity from entire microbial genome sequences. Based on our
model, we develop attribution techniques to elucidate gene interaction effects that
drive microbial adaptation to diverse environments. We train and validate our
approach on a large dataset of high quality microbiome genomes from different
habitats. We not only demonstrate solid predictive performance, but also how
sequence-level information of entire genomes allows us to identify gene associa-
tions underlying complex phenotypes. Our attribution recovers known important
interaction networks and proposes new candidates for experimental follow up.

1 INTRODUCTION AND RELATED WORK

Machine learning (ML) on genetic data. Determining how gene-gene interactions influence certain
traits, health, and disease has been a longstanding challenge for biologists and medical researchers
(Gilbert-Diamond & Moore, 2011; Wan et al., 2010). Modern high-throughput sequencing techniques
such as massive parallel methods (Ronaghi et al., 1996; Nyren et al., 1993; Nayfach et al., 2021) or
single cell RNA sequencing (Hwang et al., 2018; Jovic et al., 2022) together with recent developments
in transformer-based models (Vaswani et al., 2017), which nowadays operate on sequences lengths up
to 100,000 (Avsec et al., 2021) or even 1 million (Nguyen et al., 2023) base pairs, allow for modeling
highly complex sequence diversity spanning large sections of the genome.

Within this paradigm, Jumper et al. (2021) achieved state of the art in protein folding predictions,
Avsec et al. (2021) identified enhancer-promoter interactions with unprecedented accuracy, and Li
et al. (2023); Avsec et al. (2021) demonstrate promising results on gene regulatory network inference.
The potential impact on human health has also inspired large-scale concerted industry efforts into
building large transformer models that can perform multiple relevant tasks at once. For instance,
in a sequence of papers (Rives et al., 2019; Rao et al., 2020; 2021; Meier et al., 2021; Hsu et al.,
2022; Lin et al., 2022; 2023), a collection of models was released – dubbed Evolutionary Scale
Modeling (ESM) – that perform tasks from protein design (beyond natural proteins) and (inverse)
protein folding to variant-, function-, and property-prediction. Consens et al. (2023); Choi & Lee
(2023) provide detailed overviews of recent deep-learning (in particular transformer) based models
for the genome and what they are capable of.

Importance of the microbiome. Bacteria and archaea are often heavily underrepresented in deep
learning models trained on genetic data (Zhou et al., 2023; Dalla-Torre et al., 2023). While modeling
human genetic diversity has many direct implications for human health (Sapoval et al., 2022; Clapp
et al., 2017), developing models that incorporate the vast genetic diversity across the microbial tree of
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Figure 1: A conceptual overview of our data preprocessing pipeline. Each sample stands for an entire
genome covered by individual contigs. We identify all genes within each contig (using Prodigal)
and embed the corresponding protein sequences with a protein large language model (ESM-2) into
a demb-dimensional vector space. A single ‘input example’ is then represented by a (nj × demb)-
dimensional tensor.life may lead to similar benefits, such as the development of novel microbiome therapeutics, inferring
the health benefits of microbe-produced metabolites, and predicting the evolution of antibiotic
resistance (Hernández Medina et al., 2022). Unlike the relatively static nature of the human genome,
the microbiome is highly dynamic, adapting to environmental changes and interactions with its host
or environment (Lloyd-Price et al., 2017; Ducarmon et al., 2023). The plasticity of the microbiome
could be harnessed to treat disease more easily via microbiome interventions versus gene- or immuno-
therapy (Schupack et al., 2022; Ratiner et al., 2023).

While some work, such as ESM (Lin et al., 2023) and LookingGlass (Hoarfrost et al., 2022), have
included a large degree of known microbial diversity, such models are limited to single genes or short
DNA sequences of 100 to 200 base pairs (Hoarfrost et al., 2022). Moreover, microbial genes are
often arranged in operons that are co-regulated and often form protein complexes (Cao et al., 2019).
Modeling large segments of the genome can thus incorporate more genotypic complexity than models
trained on short DNA sequences (Wei et al., 2024; Nguyen et al., 2023; Cheifet, 2019).

Predicting phenotype from genotype is quite challenging in the context of the microbiome. First, the
majority of microbial genome assemblies are not complete (Parks et al., 2022; Chklovski et al., 2023),
and instead comprise 10’s to 1000’s of genome fragments (contigs). Even among individual genomes
belonging to the same species, genomes can differ substantially in genomic content and arrangement
(Rouli et al., 2015; Lapierre & Gogarten, 2009); thus, the ordering of contigs usually cannot be
inferred from closely related, completely assembled genomes. Second, microbial genome databases
under-represent microbial diversity, especially microbes that are rare in well-studied environments or
microbes only found in understudied environments (Brewster et al., 2019; Pavlopoulos et al., 2023).
Third, cellular functioning of most microbial genes and non-coding elements is unknown, which
has lead to initiatives to uncover this “microbial dark matter” (Hoarfrost et al., 2022; Pavlopoulos
et al., 2023); however, much work is still needed. This work is especially challenging, given that
many microbes cannot be cultivated (Almeida et al., 2021), and genetic tools only exist for a small
subset of cultivatable microbes (Marsh et al., 2023). Fourth, microbial phenotypes are often difficult
to measure, given the challenge to isolate and measure the traits of individual strains. Complex
phenotypes, such as microbial habitat may involve a number of factors, including many cellular
processes produced by a multitude of genes and regulatory elements.

We provide an in-depth overview of existing ‘genotype to phenotype’ methods with a comparison of
the different characteristics of existing models in Appendix D.

2 METHODOLOGY

Microbiome data. Various peculiarities arise from the prevailing sequencing technology Ghurye
et al. (2016) used for large scale microbial DNA sequencing screens as collected by ProGenomes
(Mende et al., 2016; 2019; Fullam et al., 2023). For example, instead of obtaining entire genomes,
one typically only reconstructs so-called ‘contigs’, i.e., contiguous consensus regions of DNA that
have been recovered from the short sequenced snippets. While different chromosomes are expected
to produce different contigs, even circular, single-chromosome genomes may lead to multiple contigs.
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Figure 2: A conceptual overview of our training and attribution pipelines. Training: We feed the
(nj × demb)-dimensional inputs to our transformer, interpreted as a sequence of embeddings. We
randomly shuffle contigs within samples, since the ‘correct’ order is unknown. The model is trained
with the cross-entropy loss. Attribution: After training, we run extract the last-layer attention maps
for all validation samples and find the indices of the top-k attention scores. The corresponding pairs
of embeddings are clustered and visualized via non-linear dimensionality reduction. Within each
cluster, we re-identify the all gene sequences and match them against databases for annotations.

While genes appear in the right order within a contig, we typically cannot determine the order in
which contigs appear within the full genome. We limit our attention to coding genes, requiring us to
identify individual genes from within each contig. Our tailored data-preprocessing aims at accounting
for these task-specific aspects. Figure 1 provides an overview of the first stage of our framework.

Dataset. We obtain all genomic data from ProGenomes v3, an open-source database comprising over
900,000 consistently annotated bacterial and archaeal genomes from over 40,000 species. Collectively,
the genomes contain 4 billion genes; for reference, the human genome contains about 20,000 coding
genes. Consistent phenotypic data across all genomes in the database is limited, so we focus on habitat
classification in order to comprehensively utilize the available genomic data and assess prediction
performance for a complex phenotype. We select the three habitats with the most associated genomic
data: host (symbiotic or parasitic microbiome, which relies on a host organism, typically collected
from animal feces), soil (generally free-living microbiome collected from the soil), and aquatic
(free-living microbiome collected from natural water bodies). In total, our genome dataset comprised
m = 29, 089 genomes (soil: 8,248; host: 9,770; aquatic: 11,070) and 3,056,557 contigs with a mean
length of 3445± 1632 genes.

Gene embeddings. The high variability of contig lengths in our dataset challenges direct application
of existing deep learning approaches. We therefore deploy a multi-gene approach that leverages an
existing protein large language model to produce fixed-sized embeddings as input to our model. Our
workflow consists of identifying coding genes in each contig with Prodigal (Hyatt et al., 2010), which
results in 33 ± 179 genes per contig. Figure 3(left) shows the distributions of how many contigs
are contained in a sample with a clear skew towards few contigs per sample (note the logarithmic
y-axis), and Figure 3(right) shows the distribution of the overall number of genes extracted per
sample. For completeness, we show the distribution of the number of genes per contig in Figure 4 in
Appendix A. The common peak at around 4,000 genes aligns well with expectations of average gene
counts in bacteria and archaea. We then use ESM-2 (3B) (Lin et al., 2023) to embed each amino acid
sequence identified by Prodigal into a fixed-dimensional (demb = 2560) vector space. Ultimately, for
each sample j (i.e., each genome) we stack all nj gene embeddings belonging to that sample into
a (nj × demb)-dimensional tensor, where nj still varies across samples and which comprises one
‘input example’ for our model. For the roughly 8k, 10k, and 11k samples from soil, host, and aquatic
habitats (a total of m = 29, 089 training examples), respectively this yields a total of almost 1TB
of pre-computed ESM-2 gene embeddings as the final dataset for our transformer model. Figure 1
provides an conceptual overview of our data preparation process.

Model architecture and training. Since individual genes are typically shared by many organisms
within and across habitats, we hypothesize that habitat specificity heavily depends on the co-presence
and interaction effects of multiple genes. For these interactions, the local context is relevant because
functionally related genes tend to be clustered in local neighborhoods on the genome (Xu et al.,
2019). The attention mechanism in transformer architectures (Vaswani et al., 2017) is not only well
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suited to capture such associations in making predictions but also allows for attribution techniques
to extract relevant pair-wise interaction effects. Hence, we propose an encoder-only BERT-like
architecture (Devlin et al., 2019) for classification (using the standard cross-entropy loss) with 15
layers, 1 attention heads, and a hidden dimension of 640. To reduce the memory footprint during
training, we feed the original embeddings of dimension demb = 2560 obtained from ESM-2 into a
single linear layer to obtain a reduced hidden dimension of 640.

We set the maximum input sequence length to 4096, reaching beyond the average number of genes
within a genome. Because some samples in our dataset contain more genes than that (c.f., Figure 3,
we truncate them.1 Here, we make use of the fact that the order of genes is preserved within contigs,
but not across contigs. Specifically, in each epoch we randomly permute the contigs within every
input example before potentially truncating (c.f., Figure 2). Over multiple epochs, this procedure
allows the model to learn dependencies between all possible pairs of genes even for the longest
examples despite the limited maximum sequence length. Moreover, the permutation may encode our
prior knowledge that there is no intrinsic (known) order among the contigs within an example as an
invariance in the model. While various techniques for sparse and/or linear attention (Tay et al., 2021)
may allow us to extend the maximum input sequence, it would impede attention-based attribution, as
we would not obtain comparable attention scores for all pairs of genes. Similarly, recent techniques
scaling transformers to millions of base pairs such as Hyena (Nguyen et al., 2023) rely on dilated
convolutions on the input sequence, rendering attribution to interactions difficult. Therefore, we
opted for full attention using FlashAttention (Dao et al., 2022) during training, which still allows us
to extract complete attention scores during attribution/validation.

Overall, our model consists of over 68 million trainable parameters. We used AdamW (Loshchilov &
Hutter, 2019) with linear learning rate decay and trained for 16 epochs on 4 NVIDIA A100 GPUs
until convergence of the out-of-sample classification performance on the validation set.

Attribution techniques. During training, we hold out nval = 1453 samples for validation and our
attribution analysis. The goal of our attribution technique is to extract gene-pairs or even larger
collections of genes whose co-presence in a given sample is predictive of the habitat. While genes
within a pair need not necessarily physically interact as in protein complexes, we posit that they
‘interact’ in being jointly specific to the habitat. We propose the following procedure for attribution,
which we depict in Figure 2.

1. For each sample in the validation set (each consisting of a collection of fixed-size gene embeddings
grouped into contigs; c.f., Figure 2) that was classified correctly with a certain confidence (top
softmax value above 0.85), compute all last-layer attention maps and extract the positions (indices)
of the top-k scores for a fixed k ∈ N. Following common practice in the literature (starting with
Vaswani et al. (2017)), we interpret high attention scores as relevant for the prediction task. Each of
the extracted nval ·k indices corresponds to a pair of input gene embeddings {pi := (x1

i , x
2
i )}

nval·k
i=1

for xj
i ∈ Rdemb .

2. In this step we use DBSCAN (Ester et al., 1996) as a clustering algorithm, which has the advantage
of inferring the number of clusters by itself, and cluster via the following custom distance function

dist(pi, pj) = min{2− Sc(x
1
i , x

1
j )− Sc(x

2
i , x

2
j ), 2− Sc(x

1
i , x

2
j )− Sc(x

2
i , x

1
j )} ,

where Sc is the cosine similarity and we are agnostic about the order of the genes with in the pair.

3. For each point pi in each cluster, we recover the two gene sequences that produced the gene
embeddings x1

i , x
2
i . We then perform sequence similarity search on all these genes in the databases

EggNOG (Cantalapiedra et al., 2021), KEGG orthologs (Kanehisa et al., 2015), and NCBI Blast
(Altschul et al., 1990; Boratyn et al., 2019; Camacho et al., 2023) to extract functional and
taxonomic annotations.

4. We propose gene interaction networks loosely inspired by gene pathways. If a certain gene appears
in more than one of the pairs within a sample, we use these overlaps in the extracted k pairs
of genes to construct a gene network. Genes that are hubs in these networks have many highly
predictive interactions with other genes and may thus be of particular functional importance.

1Note that each of these 4096 ’tokens’ represents an entire gene, each of which can consist of thousands of
base-pairs. Therefore, the ‘effective’ context window approaches 107 base-pairs.
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3 RESULTS

Why habitat classification? The reason we focus on the seemingly ‘simple’ three-way classification
of habitats (host, soil, and aquatic) is three-fold. First, habitat is a broad and highly complex
phenotype, which is difficult to predict directly from genotype. Hence, strong performance on this
task indicates that our general framework may apply equally to other phenotypes. Second, it is
straightforward to compare feature attributions among all three classes in order to help validate our
approach. Third, habitat annotations are typically reliable and widely available for microbiome
samples. In the remainder of this section, we particularly focus on extensive internal and external
validation results demonstrating that our modeling approach indeed manages to pick up on the
importance of the co-presence of genes.

We conjecture that gene pairs (or collections/networks) found by our attribution technique are of
biological interest in various ways. For example, when predicting host-related habitats, such gene
clusters may shed light not only on specific genes, but also gene interaction networks that may be
involved in colonization (Stephens et al., 2015; Powell et al., 2016b; Kemis et al., 2019). When the
identified gene pairs are found in gene annotation databases and have known functional annotations,
we can directly point to interactions of functional aspects associated to the predicted phenotype and
potential colonization properties. On the contrary, when the found genes are part of the “microbial
functional dark matter”, we hypothesize they are good candidates to follow up on experimentally. For
example, one could knock out the predicted genes and measure the abundance of the mutant versus
wild type in a model habitat (Powell et al., 2016a; Ellison et al., 2011; Brouwer et al., 2020).

Table 1: One-vs-rest classification performance of
our method on the test set.

class samples precision recall F1
host 488 0.84 0.80 0.82
soil 412 0.63 0.43 0.51

aquatic 553 0.66 0.84 0.74

Classification performance. We evaluate our
model on nval = 1453 held out samples from
the ProGenomes v3 dataset. It achieves an over-
all accuracy of 71% (Table 2). Given the com-
plexity of the task (see Section 1), this is a strong
performance for our 3-way classification task.
Table 1 shows how performance varies across
habitats: while host samples are identified well,
samples from soil are often misclassified as aquatic. Biologically, host microbiomes are mostly
symbiotic or parasitic, where they tend to lose unneeded portions of their genome due to deletional
bias in bacterial genomes (McCutcheon & Moran, 2012; Boscaro et al., 2017). This arguably leads
to substantial genomic differences from free-living microbiomes in soil or aquatic environments,
which conversely can have strong adaptability due to their versatile metabolic pathway and, therefore,
can survive in a variety of environments (Shu & Huang, 2022; Moreno-Gámez, 2022). There is
likely also more direct mixing of microbiomes inhabiting soil and aquatic environments, rendering
distinguishing soil from aquatic examples incredibly difficult. Finally, the sample imbalance in our
training set is slightly skewed towards aquatic examples. In Appendix C we perform an ablation
study of how the number of layers, size of feedforward layers, and embedding dimension affect our
model performance.

Table 2: Accuracy for ran-
dom forests and SVMs us-
ing linear and RBF kernels.

method k-mer acc

random
forest

3 57
5 58
8 59

SVM
linear

3 57
5 62
8 56

SVM
rbf

3 63
5 67
8 68

ours – 71

Baselines. Since our modeling approach is the only of its type, there
exist large gaps in terms of data types, capability, and interoperability
between existing works and ours. Table 5 in Appendix D provides a
detailed comparison to existing methods, highlighting in which way
most of them fall short in our problem setting. To compare raw pre-
dictive performance, we put together a strong baseline using k-mer
counts as features with traditional machine learning classifiers. This is
a widely popular and typically highly effective approach to supervised
ML on sequence data (Dubinkina et al., 2016; Benoit et al., 2016; Wood
& Salzberg, 2014). It avoids the necessity of annotations (highly in-
complete for prokaryotes) and scales well to entire genomes. The best
performing traditional ML models in the literature on k-mer counts and
in bioinformatics more broadly are often random forests (Bi et al., 2023;
Wheeler et al., 2018) and SVMs (Weimann et al., 2016a; Bi et al., 2023;
Barash et al., 2018). Table 2 shows that our method achieves higher
accuracy than these algorithms trained on k-mer counts for different
typical values of k. Finally, we highlight that by design (using k-mer
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counts as features), these methods cannot be interpreted in terms of single gene or gene interaction
importance. In Appendix B we provide an internal validation of the effectiveness of our attribution
techniques using ‘pseudo-samples’ providing strong evidence that our method indeed identifies
habitat-specific gene pairs.

Clustering. In Figure 5 we illustrate the gene pair clusters using UMAP (McInnes et al., 2018).2 The
pairs of genes indeed cluster well, indicating that gene pairs within a cluster are indeed functionally
similar as measured by distance of their ESM-2 embeddings. Further, different clusters are well-
separated, indicating that we have indeed identified different ‘hubs’ of gene interactions that are
individually predictive of the habitat. For completeness, we provide similar plots using t-SNE
(van der Maaten & Hinton, 2008) instead of UMAP in Figure 6 in Appendix A, showing that the
clear separation of clusters is not specific to the choice of dimensionality reduction technique.

We further verified that within most found clusters, gene families are quite uniform. From the extracted
functional and taxonomic annotations, we found that the clusters indeed recover biologically plausible
‘functional factors’. For example, in the largest (blue) cluster from host samples, most of the pairs
share the KEGG orthologs (Kanehisa et al., 2015) K01992 and K11051. The latter is known as
multidrug/hemolysin transport system permease, a protein that plays an important role in bacterial
infection of animal hosts. In the largest (blue) cluster from aquatic samples, most gene pairs share the
K08226 functional ortholog. Genes from this ortholog code chlorophyll transporter. This matches
our knowledge that most photosynthetic bacteria, such as Cyanobacteria and Chlorobi, live in water.
In the largest (blue) cluster from soil samples, we found the following frequent orthologs: K01535,
K01531, K17686, K01533, and K17686. These gene families are all involved in ion transport. For
completeness, we provide all found orthologs in all of the clusters for the three classes in Appendix E.

Gene interaction networks. We present an example of one of the gene interaction networks
constructed by our attribution technique in Figure 7. The genome from which this network was
constructed belongs to Streptococcus agalactiae, a commensal bacterium. Although it colonizes
the gastrointestinal and genitourinary tract of up to 30% of healthy human adults, it is still poorly
understood. We could only find functional annotations for 14 of the 41 genes in the network. The
rest of the genes have no annotation via our methodology. In particular, the gene with the most
connections, gene 1378, is identified as a peptidoglycan bound protein that can have various functions,
including roles in cell wall synthesis, cell division, and interaction with the environment. In the
context of bacterial colonization, peptidoglycan-bound proteins can contribute to the adherence
of bacteria to host tissues, evasion of the host immune response, and establishment of infection
(Dörr et al., 2014). Further, gene 1379, another highly connected hub in our network, is involved in
dextransucrase activity. Dextransucrase is an enzyme that catalyzes the formation of dextran, which
can contribute to the formation of biofilms, which are communities of bacteria that adhere to surfaces.
Biofilms play a crucial role in bacterial colonization, as they can protect bacteria from environmental
stresses and enhance their survival and growth (Besrour-Aouam et al., 2019; Lee & Park, 2015).
Finally, gene 471, yet another highly connected hub, belongs to peptidase S8 family 5, also known
as subtilases. This enzyme plays important roles in colonization, including the degradation of host
tissues and evasion of the host immune system (Cui et al., 2023).

Finally, we provide further validation of our attribution technique using the STRING database
(Szklarczyk et al., 2023), which was specifically set up to systematically collect and integrate
protein-protein interactions that contain both physical and functional associations in Appendix G.

4 CONCLUSION

We introduced a model that predicts complex phenotypes, such as habitat, from entire genomes
on the sequence level of microbial sequencing data. Our attribution techniques allow us to extract
pairs (and collections) of genes whose interaction or co-presence is highly predictive of the chosen
phenotype. We train our model on a large subset of the ProGenomes v3 dataset containing high-
quality prokaryotic genomes and demonstrate state of the art classification performance. Our internal
and external validation evidence the usefulness of our attribution techniques in uncovering habitat-
specific gene pairs and generating interpretable gene interaction networks that can serve as powerful
hypotheses generators for the underlying mechanisms of complex biological processes.

2We omit ‘outliers’, i.e., points that did not belonging to any cluster after DBSCAN finished for a clearer
illustration. These outliers are bound to exist due to the breadth of habitat as a phenotype.
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IMPACT STATEMENT

This work presents methodological advances in the use of machine learning for predicting complex
phenotypes from microbial genomic data, with potentially far-reaching implications for both the
field of computational biology and society at large. By enabling more accurate predictions of habitat
specificity from the genetic makeup of microbiomes and especially understanding the underlying
drivers in terms of gene interactions, our research may aid innovative applications in environmental
conservation, sustainable agriculture, and personalized medicine. The ability to understand and
predict the interactions between microbial genes and their environments could lead to breakthroughs
in the development of new biomarkers for health conditions, the creation of targeted microbiome
therapies, and the enhancement of biodiversity conservation strategies.

Ethically, while the potential for positive impact is vast, we recognize the importance of considering
potential downsides, especially in applications related to human and planetary health. The same
understanding that may be leveraged for improved treatments, may also be used to discover or
engineer particularly resistant pathological organisms. Generally, the adoption of advanced machine
learning techniques in genomics must be accompanied by efforts to prevent misuse and ensure
equitable access to the benefits they bring. We advocate for a continued democratic dialogue to
address these challenges and ensure that the advancements in computational biology contribute
positively to society and the environment.
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A ADDITIONAL VISUALIZATIONS

For completeness, besides the distributions of contigs per sample and genes per sample in Figure 3,
we also present the distribution of genes per contig across the three classes in Figure 4. Moreover,
Figure 6 provides a visualization akin to the one in Figure 5, using t-SNE (van der Maaten & Hinton,
2008) for non-linear dimensionality reduction instead of UMAP (McInnes et al., 2018). In both
visualizations, the same clusters are clearly visible and separated, indicating robustness of the found
clusters to the specific dimensionality reduction technique.

B INTERNAL VALIDATION

Table 3: Internal validation on ‘pseudo-samples’.

class samples precision recall F1
host 488 0.58 0.82 0.68
soil 412 0.58 0.16 0.24

aquatic 553 0.58 0.69 0.63

To provide some internal validation of the ef-
fectiveness of our attribution technique, we con-
struct ‘pseudo-examples’, inputs to our model
that consist only of genes that were identified
by the attribution to be part of highly-predictive
pairs for k = 100. We randomly concatenate

14

https://journals.asm.org/doi/abs/10.1128/msystems.00101-16
https://journals.asm.org/doi/abs/10.1128/msystems.00101-16
https://doi.org/10.1371/journal.pgen.1007333
https://doi.org/10.1371/journal.pgen.1007333
https://www.science.org/doi/abs/10.1126/sciadv.aax6525
https://www.science.org/doi/abs/10.1126/sciadv.aax6525
https://journals.asm.org/doi/abs/10.1128/msystems.01045-20


Figure 3: Left: Histogram of the number of contigs per sample (genome). Right: Histogram of the
number of genes per sample (genome).

Figure 4: Histogram of the number of genes per contig.

Figure 5: Two-dimensional visualization of the clusters for aquatic (left), host (middle), and soil
(right) samples via UMAP (McInnes et al., 2018), omitting points not belonging to any cluster.

Figure 6: Two-dimensional visualization of the clusters for each of the three habitats aquatic (left),
host (middle), and soil (right) separately via t-SNE (van der Maaten & Hinton, 2008), where do not
show points not belonging to any cluster.
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Table 4: Comparison of model configurations with different layers, layer sizes, and embedding
dimension (demb). The first model configuration has been used in this paper.

layers layer size demb acc (%) class precision recall F1

15 2048 2560 71.2
host 0.84 0.80 0.82
soil 0.63 0.43 0.51

aquatic 0.66 0.84 0.74

15 1024 2560 66.2
host 0.77 0.80 0.78
soil 0.49 0.45 0.47

aquatic 0.65 0.67 0.66

10 2048 2560 65.5
host 0.77 0.81 0.79
soil 0.51 0.54 0.52

aquatic 0.67 0.61 0.64

15 2048 1280 64.8
host 0.79 0.78 0.78
soil 0.50 0.53 0.51

aquatic 0.64 0.62 0.63

the respective gene embeddings from each vali-
dation example (without repetitions) to form ‘pseudo-examples’ which consist on average of only
about 100 genes. These pseudo-examples (a) present only about 3% of the original genomes, and
(b) only serve as a bag of genes in that the true order of genes on the genome (or within contigs) is
lost—typically crucial information (Salaverria et al., 2011). Given those limitations, we would expect
classification performance to drop to essentially random guessing unless the genes contained in the
‘pseudo-examples’ are indeed highly predictive for the habitat. Our model still achieves an overall
accuracy of 58%, substantially better than random guessing. Table 3 shows that again, the model can
apparently still extract useful information from host and aquatic ‘pseudo-examples’. This provides
strong evidence that gene pairs identified by our attribution, indeed contain a significant number (and
important combinations) of habitat-specific genes.

C ABLATION STUDY

We now show ablations of varying the number of attention layers, feedforward layer size, and embed-
ding dimension separately to understand their individual contribution to our model’s performance.
Table 4 compares different models in terms of overall accuracy as well as one-vs-rest classification
metrics for each class. These results highlight that downsizing the model in any way (10 instead of 15
layers, halving the feedforward layer size, or halving the embedding dimension using ESM2-650M
instead of ESM-3B) drastically reduces performance roughly to the level of the baselines shown in
Table 2. We highlight that the third and most impactful ablation of reducing the embedding dimension
implies using a weaker embedding model, i.e., one may still achieve better performance by optimally
compressing ESM-3B embeddings. Overall, these results may indicate that our model is not yet
“larger than necessary”, i.e., one may still obtain moderate performance improvements by using an
even larger model.

D ‘GENOTYPE TO PHENOTYPE’ OVERVIEW

Existing ‘genotype to phenotype’ methods. A number of approaches have be used to determine
microbial phenotypes from genomic data. The most prominent are homology-based methods in
which the function of a gene (or other genetic element) is inferred by a sequence similarity search to
references with characterized functions. This approach is challenged by a number of factors such as a
lack of characterized references and the often incorrect assumption that sequence similarity predicts
functional similarity. A similar approach is genome-wide association (GWAS) of nucleotide-level
variations among very closely related organisms to infer phenotype based on how genetic variation
correlates to characterized phenotypic variation (de Los Campos et al., 2018; Collins & Didelot, 2018;
Lees et al., 2020; Yang & Jiang, 2023). Such methods often require many closely related individuals
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(e.g., intra-species) with matched high quality genome assemblies and characterized phenotypes.
Another approach is the use of phylogenies to infer phenotypes of characterized sections of the
evolutionary tree based on relatedness to characterized representatives. This approach is challenged
by the difficulties of inferring accurate phylogenies, obtaining adequate numbers of phenotypically
characterized representatives, and assuming that evolutionary relatedness correlates strongly with
phenotypic similarity.

Given the often complex associations between genotype and phenotype, recent work has often
leveraged machine learning to produce intricate models trained on empirical data. Traditionally, the
focus has been on feature-based approaches, using genetic annotations from which phenotypes are
inferred (Wood & Salzberg, 2014; Youngblut et al., 2020; Wood et al., 2019). For example, Traitar
(Weimann et al., 2016b) uses support vector machines with a sparsity penalty to predict phenotypes
based on Pfam annotations (Mistry et al., 2021).3 Those features can be aggregated over large
collections of genes to use as input for machine learning methods (Weimann et al., 2016a; Barash
et al., 2018; Wheeler et al., 2018; Hernández Medina et al., 2022; D’Elia et al., 2023). A different
approach is to ignore gene-level information and directly work on taxonomic compositional count
data (Li, 2015; Calle, 2019; Knight et al., 2018; Zhou & Gallins, 2019; Huang et al., 2023). Djemiel
et al. (2022) provide a high-level overview of existing work on functional inference from microbiota.

Despite the impressive progress achieved by these efforts, recent advances suggest that incorporating
long stretches of genome sequences can enhance our understanding of genotype-phenotype relation-
ships (Eraslan et al., 2019; Alharbi & Rashid, 2022; Deschênes et al., 2023; Hammack & Blaby-Haas,
2023). Deep learning applied to raw DNA data, such as CNNs for taxonomy prediction (Rojas-Carulla
et al., 2019) or unsupervised training of transformers on k-mers as tokens (Ji et al., 2020), has indeed
shown promise in this regard, offering a more nuanced view of the genetic underpinnings of complex
phenotypes. Recently, several ML-based methods have also offered to prioritize non-coding variants;
still, the recognition of disease-associated variants in complex traits, such as cancers, is challenging
(Alharbi & Rashid, 2022). On a methodological level, operating on (collections of) entire genomes
at the sequence level remains difficult (Alharbi & Rashid, 2022). Even recent approaches to scale
transformer models to longer sequences via linear attention models (Dai et al., 2019; Sukhbaatar
et al., 2019; Rae et al., 2019; Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2021) or reducing
sequence lengths up front by stacked shifted window transformers (Liu et al., 2021) cannot directly
be scaled to entire (collections of) genomes.

In summary, studying how interactions among large collections of genes/proteins relate to complex
phenotypes (such as habitat) directly from sequence level data holds great promise to advance our
understanding of how the microbiome interacts with hosts and environments alike.

Overview of existing methods. We compiled Table 5 summarizing the capabilities of most of
the other potentially competing existing methods that we described in the related work. We assess
them along the key requirements we set for our method, namely a) whether functional or taxonomic
annotations/matches in existing databases are needed (often scarce for microbial life), b) whether they
make use of full (coding) sequence information and scale to the full (coding) genome, and c) whether
they allow for gene (interaction) attribution (requiring some sort of assessment of the influence or
importance of all possible gene pairs on the prediction).

In essence, existing approaches primarily fall short in at least one of the following two ways: a)
They do not take into account the full sequence information, but only highly abstracted annotations
of individual genes. In this work, we consider all coding regions of a genome to qualify as “full
sequence” as well. These approaches typically do not have enough information for strong prediction
performance, especially for prokaryotes where much less is known about a much larger fraction
of organisms, c.f. “microbial dark matter”. b) They do not allow for pair-wise attribution, either
because they have an excessively fine-grained granularity (Nguyen et al., 2023; Rojas-Carulla et al.,
2019), which makes gene-level identification intractable, or they accommodate large sequences via
“incomplete” attention computations (Zaheer et al., 2021; Beltagy et al., 2020). Most approaches to
increase the maximally allowed input sequence length of transformers is by reducing the attention

3There is a wide array of resources and platforms for computational microbiome research, such as the
MGnify platform for microbiome sequence data analysis (Richardson et al., 2023), SPIRE for searchable
database integrating diverse information derived from metagenomes including many modalities (Schmidt et al.,
2024), online analysis platforms (Alam et al., 2021), and more traditional protein family databases/mappers like
NMPFamsDB (Baltoumas et al., 2024) or eggNOG (Cantalapiedra et al., 2021).
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Table 5: Comparison of existing models in the literature with respect to the relevant aspects in our
problem setting. The “partial” symbol (✓) refers to the following. using full sequence: HyenaDNA up
to 1m bps; Borzoi up to 524k bps. attribution: only for fragments of genes that cannot be pre-selected;
classification: adaptations to the original model are required; Using full sequence means working
with sequence level information directly and includes both the full genome as well as all coding
regions.

model annotations
required

using full
sequence

gene
attribution

reference

ours ✗ ✓ ✓ –

baselines ✗ ✓ ✗ described in Section 3

HyenaDNA ✗ (✓) (✓) (Nguyen et al., 2023)

Enformer ✗ ✗ (✓) (Avsec et al., 2021)

Genomic Interpreter ✗ ✗ (✓) (Li et al., 2023)

Kraken 2 ✓ ✓ ✗ (Wood et al., 2019)

Traitar ✓ ✗ ✓ (Weimann et al., 2016b)

BacPaCS ✓ ✗ ✓ (Barash et al., 2018)

Genet ✗ ✗ (✓) (Rojas-Carulla et al., 2019)

DNABERT ✗ ✗ ✗ (Ji et al., 2020)

Geneformer ✗ ✗ ✗ (Theodoris et al., 2023)

Borzoi ✗ (✓) (✓) (Linder et al., 2023)

computation such that the quadratic cost is reduced (typically) to scale roughly linearly in the sequence
length. This inevitably means that we do not get all pairwise attention scores within any given sample,
which is what our attribution method is built on. If we relied on one of the linear attention methods,
we would have to work with approximate/incomplete attributions as well—leading to missing relevant
interactions only present in a subset of examples. Another way of reducing the computational cost is
by compressing the input sequences in the first place, e.g., via strided convolutions or other techniques
to compress sequences (Avsec et al., 2021; Benegas et al., 2023; Linder et al., 2023). Instead of
concatenating all gene sequences and compressing them jointly (thereby typically losing information
about gene boundaries), our approach leverages existing large protein models to preserve genes as
individual entities (but in a fixed-size vector representation instead of the base pair sequence).

E CLUSTER ORTHOLOG ANNOTATIONS

In Tables 6 to 8 we list all found orthologs from all the clusters in the three different habitats shown
in Figure 5. We provide this list as it demonstrates how our method can produce compact results
that can be used by domain experts to inform their experiments and provide hypotheses for relevant
interactions. For concrete instances, one can swiftly look up these orthologs in databases (with usable
online tools available) to get an idea of which genes have been clustered and which are important
hubs within our gene interaction networks.

F GENE INTERACTION NETWORKS

We provide two additional examples of gene interaction networks from the aquatic and soil habitats.
The network in Figure 8 is from an aquatic genome sample of Prochlorococcus marinus. The network
in Figure 9 is from a soil genome sample of class Acidimicrobiia (unknown species). Comparably,
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Table 6: Host cluster gene orthologs.
cluster KEGG orthologs
blue K01992, K11051, K01095, K02950, K02887, K03628, K02992,

K02952, K03438, K02986, K02874, K02358, K03686, K06168,
K02913, K02988, K06217, K04077, K01338, K03544

orange K01537, K03043, K01624, K02945, K03553, K00611, K03496,
K00088, K02976, K14623, K07254, K00549, K18929, K03621

green K02913, K02945, K03665, K06958

red K02935, K00817, K02950

purple K06898, K01937, K01677, K04565, K03628, K01939, K00052
,K07246, K00097, K22024, K06334, K00937, K02996, K03816,
K00533, K03070, K02431, K18843, K01571, K09124, K01892,
K00335, K03658, K03086, K00773, K00640

brown K04751, K04752, K03628, K00573

pink K02886, K07448, K03106

grey K06996, K03856

Table 7: Aquatic cluster gene orthologs.
cluster KEGG orthologs
blue K08226, K02200, K07712, K01578, K00937, K10716, K06916,

K17226, K00567, K00873, K07304, K07313, K01947, K03525,
K02045, K11712, K10943, K01104, K02844, K14335, K03628,
K06929, K03684, K00570, K03753, K04096, K01430, K01939,
K08483, K09984, K01259, K03825, K07068, K10912, K08311,
K03806, K08929, K05982, K18092, K17227, K01772, K00077,
K02498, K00052, K02313, K08963, K07636, K00097, K22024,
K00147, K01972, K07667, K09888, K01525

orange K01537, K03644, K03665, K00937, K01533K17686, K06916,
K12297, K01626, K03695, K02017, K10763, K01578, K00254,
K00931, K01534, K00574, K00773, K00325, K06921, K06954,
K03723, K03466, K03786, K03655, K03656, K03694, K03555,
K02669, K14682, K13821

green K00548,K01533, K17686, K01534, K01649

red no annotation

purple K03321, K14518, K02711, K00627, K00645, K01572, K02160,
K09966

brown K01535, K01537, K01537

pink K15012, K02112, K01561, K01626, K06861, K02010, K02017,
K00554, K03644, K06217, K00937, K01996

grey no annotation
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Table 8: Soil cluster gene orthologs.
cluster KEGG orthologs
blue K01535, K01531, K17686, K01533, K17686, K00937, K03644,

K00567, K22319, K00873, K16329, K07568, K14415, K03657,
K03750, K07219, K13599, K07146, K02428, K03495, K12132,
K11212, K00574, K08256, K00226, K00254, K01006, K01921,
K01588, K15371, K06442, K00641, K07020, K14414, K03183,
K01939, K07646, K01812, K01835, K01840, K07566, K14652,
K00260, K00261, K01972, K00471, K00955, K05838, K06949,
K00794, K14941, K01903, K03526, K07738, K00548, K01338

orange K21020, K01768, K07712, K07713, K07588, K02584, K06714,
K07659, K05962

green K04750, K01246

Figure 7: Gene interaction network constructed for the sample 1311.SAMN14644158. Coral color
indicates genes with more than one neighbor (hub), while blue indicates genes with only one
connection (peripheral). Genes are numbered by the order of their appearance on the genome. Purple
hubs are described in the text.

little can be said about the precise meaning and function of the key hubs in these networks, which
highlights the fact that much less is known about free-living bacteria compared to the ones living in
a host as they are comparably more relevant for human health and disease. We thus leave these as
two examples of relatively understudied and potentially interesting hypotheses to be followed up on
experimentally.

G VALIDATION ON THE STRING DATABASE.

In an attempt to further validate the biological relevance of our attribution technique, we turn to the
recently released STRING database (Szklarczyk et al., 2023). This database was specifically set up
to systematically collect and integrate protein-protein interactions that contain both physical and
functional associations. Unfortunately, a majority of prokaryotic genes in our dataset are not found
in the STRING database. However, we could still identify some genes in our validation set with
matches in the STRING database. We now manually compare the results of our attribution technique
with entries in the STRING database for genes related to the survival of prokaryotes, such as DNA
replication. In sample 91844.SAMEA2820670, which is identified as Candidatus Portiera, our model
identifies gene 249 as a hub. This gene is annotated as DNA polymerase III beta subunit (dnaN),
which is correctly found to interact with genes annotated as DNA polymerase III delta’ subunit (gene
36, holB), DNA polymerase III epsilon subunit (gene 54, dnaQ) and type IIA topoisomerase (DNA
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Figure 8: Gene interaction network constructed for the sample 159733.SAMEA6070310. Coral
color indicates genes with more than one neighbor (hub), while blue indicates genes with only one
connection (peripheral). Genes are numbered by the order of their appearance on the genome.

Figure 9: Gene interaction network constructed for the sample 2024894.SAMN08179843. Coral
color indicates genes with more than one neighbor (hub), while blue indicates genes with only one
connection (peripheral). Genes are numbered by the order of their appearance on the genome.
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Figure 10: Left: Gene interaction network constructed for the sample 91844.SAMEA2820670. Coral
color indicates genes with more than one neighbor (hub), while blue indicates genes with only one
connection (peripheral). Genes are numbered by the order of their appearance on the genome. Right:
Protein-protein interactions extracted from the STRING database (Szklarczyk et al., 2023) around
dnaN. Only edges in magenta color are experimentally verified. Edges in other colors are predictions
from the database.

gyrase/topo II, topoisomerase IV) B subunit (gene 250, gyrB), see Figure 10(left). The final DNA
polymerase III is a result of pairwise interactions of the subunits. In comparison, the similar (albeit
more difficult to interpret) complex shown in Figure 10(right) is obtained from the STRING database.

22


	Introduction and related work
	Methodology
	Results
	Conclusion
	Additional visualizations
	Internal validation
	Ablation study
	`Genotype to phenotype' overview
	Cluster ortholog annotations
	Gene interaction networks
	Validation on the STRING database.

