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Abstract
Contrastive losses have been extensively used
as a tool for multimodal representation learning.
However, it has been empirically observed that
their use is not effective to learn an aligned rep-
resentation space. In this paper, we argue that
this phenomenon is caused by the presence of
modality-specific information in the representa-
tion space. Although some of the most widely
used contrastive losses maximize the mutual in-
formation between representations of both modali-
ties, they are not designed to remove the modality-
specific information. We give a theoretical de-
scription of this problem through the lens of the
Information Bottleneck Principle. We also em-
pirically analyze how different hyperparameters
affect the emergence of this phenomenon in a con-
trolled experimental setup. Finally, we propose a
regularization term in the loss function that is de-
rived by means of a variational approximation and
aims to increase the representational alignment.
We analyze in a set of controlled experiments and
real-world applications the advantages of includ-
ing this regularization term.

1. Introduction
Multimodal Learning is an area of AI that is focused on pro-
cessing and integrating information from multiple modali-
ties (e.g., text, image or audio). It is becoming a pivotal topic
in the community because of multiple reasons, including,
but not limited to, (i) it permits to mimic human cognition
processes (Fei et al., 2022; Lee et al., 2023); (ii) it allows to
use a greater amount of training data from different modali-
ties, which tends to improve the performance of the models
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(Kaplan et al., 2020; Cuervo & Marxer, 2024); and (iii) it
is essential in real-world applications such as autonomous
vehicles (Xiao et al., 2020), healthcare (Kline et al., 2022)
or human-computer interaction (Sinha et al., 2010).

Similarly to humans, most AI systems work through ob-
taining intermediate representations, which are compressed
versions of the raw data that preserve useful information
to solve different downstream tasks (Bengio et al., 2013;
Cadieu et al., 2014). One of the most widely used ways of
training multimodal systems is Contrastive Representation
Learning (Karpathy & Fei-Fei, 2015; Oord et al., 2018; Tian
et al., 2020a). In this paradigm, representations correspond-
ing to similar input data are brought closer than dissimilar
ones. For example, the caption “a photo of a dog” should
become closer to an image of a dog than to that of a cat. The
most widely used of the contrastive losses is the InfoNCE
(Oord et al., 2018). Minimizing this loss is equivalent to
maximizing a lower bound of the mutual information of the
representations from both modalities. In other words, when
minimizing this loss, representations from each modality
should maximize the information that they contain about
what is common between them.

However, the above does not imply that representations
from both modalities contain the same information. Repre-
sentations could contain all the information about what is
common to both modalities, but still preserve much of the
information that is specific to their own modality (a.k.a. nui-
sances from now on). We argue that this can translate into a
substantial representational misalignment (Klabunde et al.,
2023), especially when the inputs contain a high level of nui-
sances. In other words, representations from two modalities
of a positive pair could be not so similar to each other due
to the fact that they are encoding different information. Fig-
ure 1 illustrates a trivial example in which two similar, yet
different, images have exactly the same caption. Thus, the
text representations are exactly the same, while the image
representations are different from each other, since they can
be encoding information about aspects like the color of the
dog, the number of clouds in the sky or the number of blades
of grass. This misalignment phenomenon has been already
observed and denominated modality gap (Liang et al., 2022).
However, to the best of our knowledge, the present is the
first work in which this phenomenon is explained from an
information theory perspective.
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Figure 1: Different modalities usually contain different in-
formation. A trivial example of this is the case in which
two different images have exactly the same caption. As a
consequence of this, representations from different modal-
ities tend to contain different information (thus leading to
misalignment) if the opposite is not explicitly imposed.

It is precisely this explanation which allows us to propose
a solution to this phenomenon. Concretely, we propose to
apply an Information Bottleneck (IB) (Tishby et al., 2000)
in the representation space. With this, apart from maximiz-
ing the mutual information between the representations of
both modalities through the contrastive loss, we reduce the
nuisances that can be found in the representations. This IB
is applied by means of a regularization term in the loss func-
tion that is derived using a variational approximation. Thus,
it is efficient, straightforward to implement and modality-
agnostic, which is advantageous over alternative approaches
(Li et al., 2021).

2. Preliminaries
Contrastive Representation Learning (CRL) This en-
compasses a set of techniques that learns a representation
space in which representations of similar inputs are closer
than those of dissimilar ones. It has emerged as one of the
most competitive methods for learning representations with-
out labels in a self-supervised way (Oord et al., 2018; Hjelm
et al., 2018; Wu et al., 2018; Logeswaran & Lee, 2018;
Bachman et al., 2019; Tian et al., 2020a; Chen et al., 2020a;
Henaff, 2020). The most widely used among the contrastive
losses is the InfoNCE (Oord et al., 2018) and it has been
shown that minimizing this is equivalent to maximizing a
lower bound of the mutual information (MI) between a pair
of representations (Bachman et al., 2019; Tian et al., 2020a).

Multimodal Contrastive Representation Learning One
of the tasks in which contrastive losses have gained popu-
larity is Multimodal Representation Learning, which con-
sists in designing systems that map inputs from different

modalities (e.g. image and text) into a joint representa-
tion space. Some foundation works used rank-based losses
(Yager, 1988; Usunier et al., 2009; Schroff et al., 2015)
to learn multimodal representation spaces (Weston et al.,
2010; Frome et al., 2013; Karpathy & Fei-Fei, 2015) while
more modern approaches have used the InfoNCE loss (Tian
et al., 2020a; Radford et al., 2021; Jia et al., 2021; Xu et al.,
2021; Girdhar et al., 2023) for this purpose. However, it has
been observed that, when trained in a contrastive way, rep-
resentations from different modalities tend to be located in
different regions of the space, a phenomenon called modal-
ity gap (Liang et al., 2022; Udandarao, 2022; Ramasinghe
et al., 2024; Fahim et al., 2024; Schrodi et al., 2024). This
phenomenon can be an issue in some applications such as
Image Captioning or Visual Question Answering, so sophis-
ticated training methods have been proposed to palliate it
(Chen et al., 2020b; Li et al., 2021; 2022; 2023).

Measuring Representational Alignment The represen-
tational alignment (or similarity) is typically measured
through kernel alignment metrics (Cristianini et al., 2001;
Cortes et al., 2012). Examples of these include Centered
Kernel Alignment (CKA) (Kornblith et al., 2019), SVCCA
(Raghu et al., 2017) and nearest-neighbor metrics (Klabunde
et al., 2023). However, in this work we restrict our attention
to the former, since it is the most widely used for this pur-
pose. Let Z(α) ∈ Rn×dα and Z(β) ∈ Rn×dβ be two sets of
representations, K = k(z

(α)
i , z

(α)
j ) and L = l(z

(β)
i , z

(β)
j ),

where k : Rdα × Rdα → R and l : Rdβ × Rdβ → R are
kernel functions. Then, the Hilbert-Schmidt Independence
Criterion is defined as:

HSIC(K,L) =
1

(n− 1)2
Tr (KHLH) (1)

where H = In − 1
n11

T is the centering matrix. Then, the
CKA is defined as follows:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(2)

This metric ranges between zero and one and we say that a
pair of representations is perfectly aligned when CKA = 1.

Information Bottleneck It is a framework that aims to
find a representation that contains all the information in
an input that is necessary to solve a given task, while dis-
carding irrelevant information (Tishby et al., 2000; Tishby
& Zaslavsky, 2015). Given an input X , a task Y and a
representation Z, the goal can be formulated as:

max
Z

I(Z;Y )− βI(Z;X) (3)

where β is a Lagrange multiplier that controls the trade-off
between compression and preserving the information that is
relevant for the task Y .
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3. On the Importance of Minimal Sufficient
Representations

To formulate our hypothesis, we assume that the data of a
modality are composed of an essence, which is all that infor-
mation that can be found in both modalities; and nuisances,
which refers to all that information that can be found only in
one modality. In addition, our goal is to obtain representa-
tions of the inputs of each modality. Next, we explain more
in detail these concepts. All the proofs of the Lemmas and
Theorems can be found in Appendix A

3.1. Input Data: Essence and Nuisances

Definition 1. Let (Xα, Xβ) be a pair of positive inputs
from modalities α and β, respectively. We call essence to a
variable Y that satisfies the following Markov Chains:

Xβ ↔ Y ↔ Xα (4)
Y ↔ Xβ ↔ Xα (5)

i.e., it refers to the common part of a positive pair of data.
Although there exists more than one essence (infinite, in
fact), all of them are equivalent under a one-to-one transfor-
mation, which is formalized next.

Lemma 1. Let Y and Y ′ be essences of the same pair of
modalities. Then, there exist a one-to-one transformation Ψ
such that Y = Ψ(Y ′).

Equivalently, the partitions of Xα and Xβ created by Y are
unique. We note that the essence Y is a variable that we
define to help us with the formulation, but our goal is not
to discover Y itself, but the partition of the input set that it
creates. For example, if we have two images with the same
caption, we will consider that both images are equivalent
in the sense that they belong to a common subset of the
images set, but we are not interested in defining the subset.
Thus, from now on we will refer to the essence as if it were
a unique variable.

Definition 2. Let Xα be an input of modality α, Y the
essence of Xα with respect to another modality. We call
nuisance of modality α to a variable Nα that satisfies:

I(Y ;Nα) = 0 (6)
I(Xα;Nα) = H(Xα)−H(Y ) = H(Nα) (7)

i.e., it refers to all information from Xα that cannot be found
in the other modality.

Diagram in Figure 2 schematizes the relationships between
all the elements described in this section.

3.2. Representations

Definition 3. We say that a variable Zα is a representation
of an input Xα if Zα is a stochastic function of Xα or,
equivalently, if Zα is fully defined by p(zα|xα).

Figure 2: Diagram of the inputs, essence and nuisances

Given a representation Zα of Xα, the following Markov
chains are satisfied:

Y ↔ Xα ↔ Zα (8)
Nα ↔ Xα ↔ Zα (9)

The goal of representation learning is to obtain representa-
tions with desirable properties for the problem to be solved.
In the case of multimodal learning we consider two prop-
erties to be desirable: (i) sufficiency and (ii) minimality
(Achille & Soatto, 2018a;b). We define these properties and
argue their desirability next.

Definition 4. Given a representation Zα of the input Xα

and an essence Y . We call Zα sufficient if it satisfies:

I(Zα;Y ) = I(Xα;Y ) (10)

i.e., a representation is sufficient if it preserves the essence
in its entirety or, equivalently, if it preserves all the infor-
mation that is common to both modalities. Because of
Equation (8) we know by the Data Processing Inequality
(DPI) that I(Zα;Y ) ≤ I(Xα;Y ), i.e. I(Xα;Y ) is an upper
bound of I(Zα;Y ). Thus, the objective to be optimized to
obtain a sufficient representation is:

max
Zα

I(Zα;Y ) (11)

Informally, sufficiency is connected to the performance of
our representations in downstream tasks. Our representa-
tions must have all the information in the essence to per-
fectly solve all the tasks that can be derived from the essence.
Here, we assume that tasks that are not in the essence can-
not be solved. For example, if we have a set of images of
dogs and a set of captions describing different aspects of
them except the color, we cannot expect the text encoder to
be able to understand the word “brown” even if there are
brown dogs in our set of images. We formalize this next.

Theorem 1. Let Y and Zα be the essence and a representa-
tion of input Xα respectively, and let T = {T : T = f(Y )}
be the set of all the deterministic functions of Y (i.e., all the
tasks derived from Y ). Then, we have that:

p(t|zα) = p(t|xα) ∀ T ∈ T =⇒ I(Zα;Y ) = I(Xα;Y )

Definition 5. Given a representation Zα and the nuisances
Nα of an input Xα. We call Zα minimal if it satisfies:

I(Zα;Nα) = 0 (12)
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i.e., a representation is minimal if it eliminates all the nui-
sances of its modality or, in other words, if all the informa-
tion that it contains can also be found in the input of the
other modality. Since mutual information is non-negative,
the objective to be optimized in order to obtain a minimal
representation is:

min
Zα

I(Zα;Nα) (13)

Informally, minimality is connected to representational
alignment. As explained in section 2, we can have rep-
resentations with a good performance in a wide variety of
downstream tasks but misaligned. Intuitively, even if two
representations Zα and Zβ have all the information about
the essence (i.e., they are sufficient), if they also contain
information about nuisances (i.e., they are not minimal),
then the information they are encoding is different and,
consequently, they will be misaligned. Revisiting the previ-
ous example, the sufficient representations of an image of
a yellow Labrador Retriever and of an image of a brown
Labrador Retriever could be different from each other, since
they can be coding different information. However, the suf-
ficient representations corresponding to the captions of each
image will be presumably the same, since both images have
presumably the same caption. Therefore, the presence of
nuisances in the representations could cause misalignment,
as stated next.
Theorem 2 (Informal). Let Zα and Zβ be the representation
of some inputs with nuisances Nα and Nβ , respectively,
such that Zα and Zβ are aligned in the sense of equation
(2). Then, I(Zα;Nα) = I(Zβ ;Nβ) = 0.

Summarizing the above, we have that our ideal representa-
tion should be a minimal sufficient statistic for Y . Equiva-
lently, it should contain only (minimal) all (sufficient) the
information that is common to both modalities (a.k.a. the
essence). In this scenario, similarly to Lemma 1, we know
that all the ideal representations create the same partition of
the input. This connects to the “Anna Karenina principle” 1

that has been mentioned in different works in representation
learning to hypothesize that all the well-performing mod-
els learn roughly the same internal representations (Bansal
et al., 2021; Huh et al., 2024). Here, all the minimal suffi-
cient (“happy”) representations (“families”) create the same
partition of the input (“are alike”).

4. Obtaining Minimal Sufficient
Representations

We have discussed in the previous section the importance
of minimal sufficient representations for good performance

1 “All happy families are alike; each unhappy family is unhappy
in its own way.” (Tolstoy, 1877). This principle was popularized
in (Diamond & Ordunio, 1999) to illustrate why only a small
number of wild animals have been successfully domesticated over
the course of history.

and alignment. We describe next a method to obtain them,
which connects to the Information Bottleneck principle.

4.1. Obtaining Sufficient Representations

Equation (11) shows that I(Zα;Y ) must be maximized to
find a representation Zα that is sufficient. Since the essence
Y is a variable that we have defined for our formulation
whose distribution is unknown, calculating this term could
seem problematic. However, in Appendix A.4 we show that
I(Zα;Y ) = I(Zα;Xβ). Thus, our objective becomes

max
Zα

I(Zα;Xβ) (14)

Computing exactly I(Zα;Xβ) is in general intractable,
since it involves integrating over the entire space of β-
modality inputs. However, we can obtain a lower bound
of I(Zα;Xβ): since Zβ is a representation of Xβ , we have
that Zα ↔ Xβ ↔ Zβ and, by the DPI, it follows that
I(Zα;Zβ) ≤ I(Zα;Xβ). That is, I(Zα;Zβ) is a lower
bound of I(Zα;Y ). Analogously, I(Zβ ;Zα) ≤ I(Zβ ;Y ),
so given the symmetry of the mutual information, we must
maximize I(Zα;Zβ) in order to jointly maximize I(Zα;Y )
and I(Zβ ;Y ). Thus, the objective becomes:

max
Zα,Zβ

I(Zα;Zβ) (15)

Again, computing exactly I(Zα;Zβ) requires integrating
over the representation spaces, which is in general in-
tractable. However, as explained in section 2, minimizing
InfoNCE loss is equivalent to maximizing a lower bound
of I(Zα;Zβ). Thus, encoders optimized through InfoNCE
tend to give sufficient representations. However, the result-
ing representations are not necessarily minimal due to the
fact that this loss imposes no conditions on I(Zα;Nα). We
derive in the next section a term that aims to increase the
degree of minimality of the representations.

4.2. Obtaining Minimal Representations

Equation (13) shows that I(Zα;Nα) must be minimized to
obtain a representation Zα that is minimal. Since Nα is an
abstract concept whose distribution is unknown, calculating
this term could seem problematic. However, by the DPI and
equation (9), we have that I(Zα;Nα) ≤ I(Zα;Xα). Thus,
the objective to obtain a minimal representation becomes:

min
Zα

I(Zα;Xα) (16)

Again, computing exactly I(Zα;Xα) requires integrating
over the representation and input spaces, which is intractable.
However, we demonstrate in Appendix A.5 that:

I(Zα;Xα) ≤ E
p(xα,xβ)

[
DKL

(
pθα(z|xα)||pθβ (z|xβ)

)]
(17)
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Therefore, we can minimize the given upper bound to mini-
mize I(Zα;Xα). That is, the distributions of the represen-
tations of a positive pair of data from different modalities
should be as similar as possible. Intuitively, if Zα and Zβ

are equal, then they can be affected only by the essence but
not by the nuisances.
Spherical Gaussian Case The upper bound of equation
(17) does not have a closed form in general. However,
it is common to assume in practice that the representa-
tions distributions given the input are Gaussian, in which
case, KL Divergence becomes tractable. In the case in
which pθα(z|xα) = N

(
z;µθα(xα), σ

2I
)

and pθβ (z|xβ) =

N
(
z;µθβ (xβ), σ

2I
)
, as shown in Appendix A.6, we reach:

E
p(xα,xβ)

[
DKL

(
pθα(z|xα)||pθβ (z|xβ)

)]
∝

E
p(xα,xβ)

[∥∥µθα(xα)− µθβ (xβ)
∥∥2
2

]
= LM

(18)

4.3. Information Bottleneck for two Modalities

Combining equations (14) and (16), the objective to obtain
a representation Zα that is sufficient and minimal becomes:

max
Zα

I(Zα;Xβ)− βI(Zα;Xα) (19)

This is equivalent to an information bottleneck in which the
task is the input of the other modality Xβ . That is, Zα must
retain only all the information that is common between Xα

and Xβ . The same applies for Zβ . Combining equations
(15) and (18), we have that this is equivalent to minimizing:

L = LInfoNCE + βLM (20)

5. Toy Experiment
The objectives of this experiment are to empirically vali-
date the different statements made throughout the previous
sections and understand the relations between the different
elements of our formulation. For this purpose, we use some
datasets typically employed in disentanglement related tasks
(Wang et al., 2024). Concretely, DSprites (Matthey et al.,
2017), MPI3D (Gondal et al., 2019) and Shapes3D (Burgess
& Kim, 2018) are used. These datasets contain images and
labels that represent multiple independent factors of varia-
tion. We jointly train an image encoder and a factors encoder
(i.e., images and factors are the two modalities). The reason
to use these datasets is that we can control the amount of
factors that we input to the encoder, thus controlling the
information imbalance between both modalities. Unless
otherwise stated, a ResNet20 (He et al., 2016) is used as
image encoder, an MLP as encoder for the factors 2 and
temperature in the InfoNCE loss is a trainable parameter
initialized to 0.07. More details are given in Appendix C.

2We encode the factors using one-hot.

5.1. Does the contrastive loss alone remove nuisances?

To answer this question we propose several scenarios per
dataset. In each scenario we provide all but one factor
to the encoder, i.e., the nuisances of the image modality
Nα are that missing factor. Thus, if the contrastive loss
were eliminating the nuisances, then the image represen-
tations Zα should contain no information about Nα, i.e.,
I(Zα;Nα) = 0. We calculate a lower bound of this mutual
information Î(Zα, Nα) by training a linear classifier from
Zα to Nα, following (Xu et al., 2020). We show in Table 1
the values of Î(Zα;Nα)

H(Nα) for each dataset and category of fac-
tors3. This value encodes a lower bound of the ratio of the
uncertainty of Nα that is reduced by observing Zα and its
value ranges from 0 to 1 (we call it uncertainty reduction ra-
tio or simply URR), so if the contrastive loss alone removed
all the nuisances, its value would be zero. We can extract
the following conclusions from this: (i) a non-negligible
amount of information about the missing factors is present
in the image representation for every category; (ii) image
encoder preserves more information on some categories
than on others; and (iii) some categories are almost equally
conserved among the datasets. We hypothesize that the
last two points could be due to the inductive biases of the
convolutional architecture of the image encoder (Cohen &
Shashua, 2016; Mitchell, 2017; Wang & Wu, 2023), but
exploring this point is out of the scope of this work.

Table 1: URR (in percentages) for each dataset and category.
Some factors are not used because they do not fall into any
category.

DSprites MPI3D Shapes3D
Location 16.1± 3.7 12.4± 7.3 8.5± 0.1
Shape 77.1± 4.6 10.3± 1.0 8.7± 0.4
Size 66.3± 3.1 37.8± 0.9 7.2± 0.5
Objects Color − 68.8± 2.3 54.1± 2.0

Not all architectures remove nuisances to the same extent
It is well established that different neural architectures intro-
duce distinct inductive biases (Raghu et al., 2021). Conse-
quently, the extent to which nuisance factors are retained in
the learned representations can vary depending on the model
architecture. To investigate this, we replicate the previous
experiment using a small Vision Transformer (ViT) (Doso-
vitskiy et al., 2020) as the image encoder. Table 2 reveals
two key observations: (i) local information—particularly Lo-
cation—is less preserved in ViTs, likely due to their global
attention mechanisms favoring long-range dependencies;
and (ii) more global features—such as Color—are compara-
bly preserved in both convolutional and transformer-based
models. We emphasize that these trends may also depend

3We organize the factors into categories for ease of understand-
ing of the conclusions. Information on what factors each category
is composed of is provided in Appendix C.
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on other architectural choices, such as the encoder depth, as
explored in the following paragraph.

Table 2: URR (in percentages) for each dataset and category
for ViT-based encoder.

DSprites MPI3D Shapes3D
Location 2.8± 0.6 2.8± 0.3 1.1± 0.1
Shape 64.9± 1.4 7.0± 0.4 8.7± 0.2
Size 30.7± 3.5 20.8± 3.5 6.9± 1.5
Objects Color − 63.5± 9.8 53.5± 1.6

Deeper neural encoders remove more nuisances It has
been argued that the success of Deep Learning can be ex-
plained through the fact that deep neural networks implicitly
introduce an Information Bottleneck (Tishby & Zaslavsky,
2015; Shwartz-Ziv & Tishby, 2017). Intuitively, determinis-
tic layers tend to remove information from the input because
of the DPI. Thus, when the number of layers grows, the out-
put of the neural network tends to be a more pruned version
of the input but that preserves the information that is nec-
essary to solve different downstream tasks (Alemi et al.,
2016). We hypothesize then that the use of deeper neural
encoders will tend to remove more nuisances. Effectively,
we can observe in Figure 3 a trend among different factors
in which deeper encoders remove more modality specific
information. This can serve as an explanation for The Ca-
pacity Hypothesis stated in (Huh et al., 2024), which says
that bigger models are more likely to converge to a shared
representation than smaller models. We hypothesize that
this representation is shared because it contains little infor-
mation about the nuisances.

20 32 44 56 110
10 3

10 2

10 1

100

Figure 3: URR (y-axis) for different number of layers of the
image neural encoder (x-axis). Same legend as Figure 4.

Higher temperatures remove more nuisances Wang &
Liu (2021) observed that the value of the temperature in the
InfoNCE loss considerably impacts on the entropy level of
the representations. As stated in section 3.2, alignment is
closely related to the level of nuisances in the representa-
tions and, consequently, to their entropy. We run an experi-
ment identical to the previous one for some factors in which
the temperature is fixed. Its results are shown in Figure 4
and we observe that (i) higher values of temperature tend
to remove more nuisances and (ii) not all the factors are
equally affected by the changes in temperature.

DSprites PosX
MPI3D Object Color

MPI3D Object Size
MPI3D Camera Height

Shapes3D Scale

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0

10 1

100

Figure 4: URR (y-axis) for different values of temperature
(x-axis).

5.2. Does the presence of nuisances in the representation
negatively correlate with the level of alignment?

As informally demonstrated in section 3.2, the fact that
two representations are minimal is a necessary condition for
them to be aligned. We hypothesize that misalignment is just
an effect of an information imbalance in the representation
space. To empirically analyze this phenomenon, we design
an experiment similar to the previous one. In this case, more
than one factor can be removed, i.e., Nα can be a set of
factors. We generate 100 scenarios per dataset in which
a randomly chosen subset of factors Nα is not provided
as input to the factors encoder. Similarly to the previous
experiment, we calculate Î(Zα;Nα) and the CKA metric.
In Figure 5 it is shown that, for the three datasets, there
exists a negative correlation between Î(Zα;Nα) and the
alignment value.

DSprites MPI3D Shapes3D

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

Figure 5: Alignment (y-axis) vs. Î(Zα;Nα) (x-axis).

5.3. Does our regularization term effectively increase
the alignment level?

To analyze this, we randomly select, for each dataset, 10 of
the 100 scenarios above and we train the encoders for differ-
ent values of β. In all of them we set the temperature fixed
to 0.01. We show in Figure 6 the value of different mea-
sures for different values of β. We can extract the following
conclusions from this: (i) lower values of β retain better the
essence (Fig. 6a), since increasing I(Zα;Y ) prevails over
decreasing I(Zα;Nα); (ii) lower values of β also tend to
retain more nuisances, since more entropic representations
are encouraged in this case (Fig. 6b); (iii) higher values of
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Figure 6: Relative change (with respect to the case in which β = 0) of different measures (y-axis) vs. β (x-axis). The
temperature is equal to 0.01 in all the cases. Same legend as Figure 5.

β remove more nuisances, since they favor the decreasing
of I(Zα;Nα) (Fig. 6b); (iv) higher values of β also tend to
discard more information of the essence, since they promote
less entropic representations (Fig. 6a); (v) representations
with lower I(Zα;Y ) result in a lower accuracy (Figs. 6a
and 6c), as stated in Theorem 1; and (vi) representations
with lower I(Zα;Nα) result in a higher alignment (Figs. 6b
and 6d), as stated in Theorem 2.

On the Information Homeostasis of the representations
In the previous experiment the temperature has been set
fixed. However, as shown in Figure 4, lower temperatures
tend to preserve more information of the nuisances. Thus,
the next question arises: Will the temperature be affected
by the value of β? To answer it, we repeat the previous
experiment but setting the temperature as a trainable param-
eter. We show the results in Figure 7 and we observe that:
(i) temperature tends to become lower when higher values of
β are used (Fig. 7a); and (ii) this translates into the fact that
nuisances tend not to be eliminated to the same extent as in
the case in which the temperature is fixed (Fig. 6b vs. 7b).
We call this phenomenon Information Homeostasis, since
it seems that, when an external stimulus (i.e., increasing
β) affects the encoder, this activates available mechanisms
(i.e., decreasing the temperature) in order to preserve to the
extent possible the entropy of the representations (DelMonte
& Kim, 2011). This effect becomes more pronounced for
the highest values of β. In these cases, the level of nuisances
is similar to the case in which β = 0, which reminds of an
homeostatic range (Kotas & Medzhitov, 2015). This is an
intriguing phenomenon that is out of the scope of this work.

6. Real-World Applications
Several real-world applications benefits from aligned repre-
sentations. These include those that consist in generating
one modality from another. We analyze what are the implica-
tions of introducing our regularization term in a real-world
scenario. Concretely, we train a Q-Former with a frozen
decoder-based LLM (Li et al., 2023) with different loss
functions. In all the cases, two terms are present: (i) an
image-text contrastive loss (ITC), i.e., the InfoNCE loss
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(a) Temperature
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Figure 7: Relative change (with respect to the case in which
β = 0) of different measures (y-axis) vs. β (x-axis). Tem-
perature is a trainable parameter. Same legend as Figure 5.

between image and text representations; and (ii) a language
model loss (LM), which trains the Q-Former to generate
text through the LLM using images as the condition. How-
ever, none of these losses explicitly encourages a high rep-
resentational alignment. Thus, we experiment by adding:
(i) an image-text matching loss (ITM), which is the binary
cross-entropy loss of a task in which the model must predict
if an image-text pair is positive or negative (Chen et al.,
2020b); or (ii) our regularization term in equation (20). We
note that, in contrast to ITM, our regularization term is
modality-agnostic, computationally efficient and straightfor-
ward to implement. COCO (Lin et al., 2014) is used to train
and test our model. More details are given in Appendix C.

6.1. Image Captioning

We argue that, for optimal performance in image caption-
ing, the learned image representations should contain as
little information as possible about nuisance factors. When
nuisance information is retained, representations may en-
code fine-grained visual details that the text decoder is not
equipped to handle, as it has not been trained to exploit
such information. Table 3 summarizes the performance of
different models. We observe the following trends: (i) loss
functions that promote alignment between modalities tend
to improve image captioning performance; (ii) there is a
trade-off between image captioning and retrieval: caption-
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Table 3: CIDEr (Vedantam et al., 2015), BLEU@4 (Papineni et al., 2002) and retrieval accuracy for Q-Formers trained with
different loss functions.

CIDEr BLEU@4 I2T R@1 T2I R@1

ITC+LM 91.7± 0.2 28.6± 0.1 64.2± 0.2 52.3± 0.4
ITC+LM+ITM 91.8± 0.5 28.8± 0.2 61.4± 0.6 49.7± 0.8

ITC+LM+0.01LM 92.3± 0.8 29.1± 0.4 64.0± 0.3 52.3± 0.5
ITC+LM+0.03LM 92.6± 0.3 29.2± 0.2 63.9± 0.4 52.1± 0.5
ITC+LM+0.1LM 93.0± 0.3 29.4± 0.3 63.0± 0.5 50.4± 0.5
ITC+LM+0.3LM 90.5± 0.4 28.5± 0.2 59.6± 0.4 47.1± 0.4

ing benefits from minimal representations, whereas suffi-
cient representations favors retrieval (as it is a downstream
task); (iii) our loss slightly improves captioning performance
for low values of β, with minimal degradation in retrieval
performance; (iv) for moderate values of β, our loss sub-
stantially enhances captioning performance, though at a
higher cost to retrieval accuracy; and (v) at high values of
β, captioning and retrieval performances drop sharply, as
representations become overly compressed and fail to retain
sufficient task-relevant information—mirroring the trend
found in Figure 6.

We also show in Figure 8 and in Appendix D some of the
captions generated by the different models in Table 3. We
observe that, in those cases in which representations are
less aligned, captions tend to be more entropic because the
representations are as well. This, in some cases, translates
into captions that have information that does not correspond
to the image. From a geometric point of view, we believe
that in a misaligned space, for example, the representations
of ”lots of trees” and ”a tree” are closer in the image than in
the text space and, thus, the text decoder ”confuses” them.

(1): a small airplane flying over a
forest with lots of trees

(2): a small airplane flying through
a blue sky above trees

(3): a small plane flying through a
blue sky above a tree

(5): a small plane flying through a
blue sky above a tree

(1): a cat is laying down on a bed
with a white blanket

(2): a black and white cat laying
    on a red blanket
(3): a black and white cat laying

on a red blanket
(5): a black wnd white cat laying

on a bed

Figure 8: Captions generated by some of the trained models.
Numbers correspondence is the same as in Table 3.

6.2. Multimodal Representation Space Arithmetic

Figure 9 shows image retrievals obtained from combining
image and text representations from the Q-Former trained

with β = 0.01. Examples including other loss functions are
found in Appendix E, showing that those not encouraging
alignment, result in worse multimodal retrievals.

"snowy mountain" "a white fire hydrant sitting
on the side of a road""sitting"

Figure 9: Multimodal image retrieval for β = 0.01.

7. Related Work
Information Bottleneck and Contrastive Representation
Learning Other works have previously connected IB to
CRL, especially in the context of multi-view learning. In
(Tian et al., 2020b), the authors argue that in CRL good
views for a given task are those that optimize an IB w.r.t. that
given task. Federici et al. (2020), analogously to us, propose
a loss function to obtain representations that retain only the
information shared by the two views, which is considered to
be the relevant for downstream tasks. Tsai et al. (2020) build
on the previous one and argue that including a reconstruction
loss encourages to preserve the downstream task-relevant
information. In (Wang et al., 2022) it is argued that, in the
multi-view setting, imposing a strong IB can be detrimental
for downstream tasks, since it could be removing an excess
of information in the representation. However, to the best of
our knowledge, the use of the IB in the multimodal setting
remains understudied and the present is the first work that
explores this and connects it to the misalignment typically
present between representations from different modalities.
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Alignment of Multimodal Contrastive Learned Repre-
sentations This is a well-studied field but still marked by
a great amount of unanswered questions. The first work
that extensively studied the alignment in CRL was (Wang
& Isola, 2020) and demonstrated that, under infinite neg-
ative samples, the InfoNCE is globally minimized if the
representations are perfectly aligned. They also define the
representational alignment as in equation (17), which makes
our formulation consistent with this work. However, it was
observed in (Liang et al., 2022) that there exists in practice a
great misalignment between representations from different
modalities. This misalignment becomes problematic for
tasks that need to combine both modalities. For example,
Chen et al. (2020b); Li et al. (2021; 2022; 2023) use modifi-
cations to the InfoNCE loss to obtain a better performance
in tasks in which image representations serve to obtain text,
such as Image Captioning or Visual Question Answering.
In the the opposite direction, Ramesh et al. (2022) use a
generative model to transform text representations to image
representations to train a text-conditioned image generator.
In our view, this generative model serves to increase the
entropy of the text representations to balance them with the
image representations, which are typically more entropic.
To the best of our knowledge, (Schrodi et al., 2024) is the
first work in which this phenomenon is explained through
the lens of an information imbalance. However, this im-
balance is analyzed in the input space rather than in the
representation space. Thus, aspects such as the encoder
depth and hyperparameters or modifications of the loss func-
tion are not explored.

8. Conclusions
We give an explanation to the phenomenon of multimodal
misalignment that usually emerges in encoders trained to
minimize contrastive losses. These are designed to obtain
representations that preserve the information about what is
common to both modalities, but not to remove modality-
specific information. We theoretically and empirically show
that the presence of this modality-specific information in
the representations is correlated with the misalignment phe-
nomenon. We also examine the impact that different hyper-
parameters such as the temperature or encoder depth have
on how much of this modality-information is removed. We
derive a term that can be added to the contrastive loss which
aims to eliminate this modality-specific information and,
thus, allows to obtain a more aligned representation space.
We find a phenomenon that we call Information Homeosta-
sis, which consists in the fact that encoders seem to prefer
representations with more nuisances and they modify, if
possible, some of their internal parameters for this purpose.
Finally, we show that our term in the loss function translates
into a better performance in image captioning and seems to
result in more consistent multimodal image retrievals.
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A. Proofs of Sections 3 and 4
A.1. Proof of Lemma 1

Lemma 1. Let Y and Y ′ be essences of the same pair of modalities. Then, there exist a one-to-one transformation Ψ such
that Y = Ψ(Y ′).

Proof. By Definition 1, Y and Y ′ are minimal sufficient statistics of Xα for Xβ . Then, by the definition of minimal
sufficient statistic, there exist two functions Ψ and Ψ′ such that Y = Ψ(Y ′) and Y ′ = Ψ′(Y ). Then, Ψ−1 = Ψ′.

A.2. Proof of Theorem 1

Theorem 1. Let Y and Zα be the essence and a representation of input Xα respectively, and let T = {T : T = f(Y )} be
the set of deterministic functions of Y (i.e., all the tasks derived from Y ). Then, we have that:

p(t|zα) = p(t|xα) ∀ T ∈ T =⇒ I(Zα;Y ) = I(Xα;Y )

Proof. First, we know from equation (4) that I(Y ;Zα) ≤ I(Y ;Xα). Second, since T = f(Y ), we have the Markov
Chain Zα ↔ Y ↔ Xα and, thus, by the DPI, I(T ;Zα) ≤ I(Y ;Zα). Third, since p(t|xα) = p(t|zα), we know that
I(T ;Xα) = I(T ;Zα). Thus, we have that I(T ;Xα) = I(T ;Zα) ≤ I(Y ;Zα) ≤ I(Y ;Xα). Finally, since T can be any
function of Y , it can be the identity function, in which case I(T ;Xα) = I(Y ;Xα).

A.3. Proof of Theorem 2

Theorem 2 (Informal). Let Zα and Zβ be two representations of a pair of inputs with nuisances Nα and Nβ respectively,
such that Zα and Zβ are aligned in the sense of equation (2). Then, I(Zα;Nα) = I(Zβ ;Nβ) = 0.

Proof. First, if I(Zα;Nα) ̸= 0, then there exists a surjective function f such that Zβ = f(Zα), i.e., more than one repre-

sentation of modality α can correspond with one representation of modality β. Let
{
z
(l)
α ∼ pθα

(
z|x(l)

α

)
: x

(l)
α ∼ p(xα)

}
and

{
z
(l)
β ∼ pθβ

(
z|x(l)

β

)
: x

(l)
β ∼ p(xβ)

}
be two infinite sets. Then, there exists a pair (l, l′) for which z

(l)
α ̸= z

(l′)
α and

z
(l)
β = z

(l′)
β and for which K(z

(l)
α , z

(l)
α ) ̸= K(z

(l)
α , z

(l′)
α ), but K(z

(l)
β , z

(l)
β ) = K(z

(l)
β , z

(l′)
β ).

We must note that, in practice, we usually work with finite sets, so we could obtain the maximum value of alignment while
having the presence of nuisances in the representation.

A.4. Proof of I(Zα;Y ) = I(Zα;Xβ)

Proof.

p(zα|y, xβ) =

∫
p(zα|y, xβ , xα)p(xα|y, xβ) dxα (21)

=

∫
p(zα|xα)p(xα|y) dxα = p(zα|y) (22)

In line (21), we apply Definition 3 and equation (4). Then, we have the following Markov Chain Xβ ↔ Y ↔ Zα and, by
the DPI, I(Zα;Y ) ≥ I(Zα;Xβ).

p(zα|y, xβ) =

∫
p(zα|y, xβ , xα)p(xα|y, xβ) dxα (23)

=

∫
p(zα|xα)p(xα|xβ) dxα = p(zα|xβ) (24)

In line (23), we apply Definition 3 and equation (5). Then, we have the following Markov Chain Y ↔ Xβ ↔ Zα and, by
the DPI, I(Zα;Y ) ≤ I(Zα;Xβ).
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A.5. Proof of equation (17)

Proof.

I(Zα;Xα) =

∫∫
pθα(z, xα) log

pθα(z|xα)

pθα(z)
dz dxα (25)

=

∫∫∫
pθα(z|xα)p(xα, xβ) log

pθα(z|xα)

pθα(z)
dz dxα dxβ (26)

=

∫∫∫
pθα(z|xα)p(xα, xβ) log

pθα(z|xα)

pθβ (z|xβ)

pθβ (z|xβ)

pθα(z)
dz dxα dxα (27)

= E
p(xα,xβ)

[
DKL

(
pθα(z|xα)||pθβ (z|xβ)

)]
− E

p(xα,xβ |z)

[
DKL

(
pθα(z)||pθβ (z|xβ)

)]
(28)

≤ E
p(xα,xβ)

[
DKL

(
pθα(z|xα)||pθβ (z|xβ)

)]
(29)

A.6. Proof of equation (18)

Proof. Let pθα(z | xα) = N (z;µα, σ
2I) and pθβ (z | xβ) = N (z;µβ , σ

2I), with µα = µθα(xα) and µβ = µθβ (xβ). The
KL divergence between these two Gaussians is given by:

DKL(p ∥ q) =
1

2

[
tr(Σ−1

q Σp) + (µq − µp)
⊤Σ−1

q (µq − µp)− d+ log
detΣq

detΣp

]
(30)

where p = N (µp,Σp) and q = N (µq,Σq). For Σp = Σq = σ2I , Eq. (30) simplifies to:

DKL

(
pθα(z | xα) ∥ pθβ (z | xβ)

)
=

1

2σ2

∥∥µθα(xα)− µθβ (xβ)
∥∥2
2
. (31)

Taking expectation over the joint distribution p(xα, xβ), we obtain:

Ep(xα,xβ)

[
DKL

(
pθα(z | xα) ∥ pθβ (z | xβ)

)]
=

1

2σ2
Ep(xα,xβ)

[∥∥µθα(xα)− µθβ (xβ)
∥∥2
2

]
(32)

Hence, the expected KL divergence is proportional to the expected squared ℓ2 distance between the mean embeddings:

Ep(xα,xβ)

[
DKL

(
pθα(z | xα) ∥ pθβ (z | xβ)

)]
∝ Ep(xα,xβ)

[∥∥µθα(xα)− µθβ (xβ)
∥∥2
2

]
. (33)

The constant of proportionality is 1
2σ2 and independent of the model parameters θα, θβ .
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B. Connection between our loss function and temperature
In the case where the embeddings are unit-norm, our proposed loss takes the form:

Li = log
exp(sii/τ)∑
k exp(sik/τ)

+ 2β(1− sii), (34)

where sik denotes the cosine similarity between the embeddings z(i) and z(k). The gradient of Li with respect to each
similarity term is given by:

∂Li

∂sii
= −1

τ

(
1− exp(sii/τ)∑

k exp(sik/τ)

)
− 2β, (35)

∂Li

∂sij
=

1

τ
· exp(sij/τ)∑

k exp(sik/τ)
for j ̸= i. (36)

We further analyze a modified variant of the InfoNCE loss where the temperature differs between the numerator and
denominator:

L′
i = log

exp(sii/τ
′)∑

k exp(sik/τ)
. (37)

The gradients of this variant are:

∂L′
i

∂sii
= − 1

τ ′

(
1− exp(sii/τ

′)∑
k exp(sik/τ)

)
, (38)

∂L′
i

∂sij
=

1

τ
· exp(sij/τ)∑

k exp(sik/τ)
for j ̸= i, (39)

which matches Eq. (36), confirming that the two losses only differ in their treatment of sii.

By comparing Eq. (35) and Eq. (38), we find that our regularized loss is equivalent to optimizing a variant of InfoNCE with
a temperature mismatch between numerator and denominator. Solving for β, we obtain:

β =
1

2

[
τ − τ ′

ττ ′
+

exp(sii/τ)− exp(sii/τ
′)∑

k exp(sik/τ)

]
. (40)

This expression reveals that:

• The effective temperature gap depends on the similarity between the anchor and all other samples in the batch.

• When sii ≪
∑

k exp(sik/τ), i.e., predictions are far from the target distribution, the second term in Eq. (40) is
negligible, and

β ≈ 1

2
·∆τ

with ∆τ = τ−τ ′

ττ ′ . Thus, larger values of β correspond to larger temperature mismatches.

• Conversely, when sii ≈
∑

k exp(sik/τ), i.e., the model is confident in its match, we have:

β ≈ 1

2
[∆τ + 1− exp(∆τ)] ,

indicating that the temperature gap required to match a fixed β is smaller in this regime.

Hence, our regularizer can be interpreted as an adaptive temperature adjustment that decreases the denominator temperature
when the model is uncertain, and aligns it closer to the numerator temperature when predictions are confident.
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C. Experimental Details
Below, we provide a summary of the experimental setup. Full implementation details and code are available at: https:
//github.com/antonioalmudevar/multimodal_ib.

Table 4: Hyperparameters of Section 5
DSprites MPI3D Shapes3D

factors encoder MLP {16, 16, 8, 8, 16, 16} {128, 128, 64, 64, 128, 128} {64, 64, 32, 32, 64, 64}
number of epochs 50 50 50
batch size 128 128 128
optimizer Adam Adam Adam
learning rate 0.001 0.001 0.001
scheduler Step Step Step
step size (epochs) 20 20 20
scheduler γ 0.3 0.3 0.3

Table 5: Categories of factors in section 5.1. In MPI3D, the factor background color actually refers to the color of a ring
in the images, so we consider it as an object (see https://github.com/rr-learning/disentanglement_
dataset). There are some factors missing because the do not fall into any category.

DSprites MPI3D Shapes3D
Location posX, posY horizontal axis, vertical axis orientation
Shape shape object shape shape
Size size object size scale
Object Color - object color, background color object hue

Table 6: Hyperparameters of Section 6
vision encoder VIT-g/14 (Fang et al., 2023)
image size 224
# of query tokens 32
cross attention frequency 2
representation dimension 256
text encoder BERTbase(Devlin, 2018)
batch size 128
optimizer Adam
learning rate 0.0001
optimizer β (0.9, 0.999)
scheduler cosine annealing
warm-up steps 1000
training steps 50000
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D. More Results of Section 6.1

(1): a woman sitting on a bench with
a bag of food

(2):   a woman sitting on a bench with
a plate of food

(3):  a woman sitting on a bench in
the snow

(5): a woman sitting on a bench in
the snow

(1): a man is taking a picture of
himself in the mirror

(2): a man is taking a picture of
himself in the mirror

(3): a man is seen in the
reflection of a mirror

(5): a man standing in front of a
bathroom mirror

(1): a cat laying on top of a
    wooden chair in a room
(2): a cat sitting on a chair looking

at the camera
(3): a cat sitting on a chair looking

at the camera
(5): a cat laying on top of a

wooden chair

(1): a couple of benches that are in
the grass

(2): a white park bench sitting next
to a tree

(3): a bench sitting in the middle of a
park

(5): a metal bench sitting in the
middle of a park

(1): a toy set of a man in a hospital
bed with a robot in the middle

(2): two dummy heads are on a bed
that is shaped like a boat

(3): a fake bed with a dummy head
and legs on it

(5): a display of a demonic joker
character in a bed

(1): a man and woman in a white
dress are sitting on a bed

(2): a man and woman are sitting in
a bed

(3): a picture of a couple in a
bedroom with a glass frame

(5): a photo of a couple in a frame
on a bed
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(1): a person holding a teddy bear
with a pair of scissors

(2): a person holding a teddy bear
with a woman's pregnant belly

(3): a person with a teddy bear on
their lap

(5): a pregnant woman holding a
teddy bear with a baby on it

(1): a jetliner flying through a cloudy
blue sky

(2): a plane flying in the sky with a
half moon in the background

(3): a plane flying in the sky with a
half moon in the background

(5): a plane flying in the sky with a
half moon in the background

(1): a group of horses standing
around a baby horse

(2): a group of horses standing
around a pile of hay

(3): a group of horses eating hay in
a field

(5): a group of horses standing next
to each other

(1): a couple of chairs and an
umbrella on a field

(2): a couple of chairs sitting next to
a table

(3): a couple of chairs and a table on
a field

(5): a couple of chairs sitting next to
a fence

(1): a man standing under a banner
with a frisbee

(2): a man standing under a banner
that says bicycle fair

(3): a man standing under a banner 
that says bicycle relief

(5): a man standing under a sign
that reads for a cause

(1): a cow standing in a field with a
house in the background

(2): a cow is standing in a field with
a house in the background

(3): a couple of cows standing on
top of a lush green field

(5): a cow is standing in a field with
a few trees

(1): a dog herding sheep in a field
with a dog

(2): a dog herding sheep in a field
with a dog running behind them

(3): a dog is herding three sheep in
a field

(5): a dog is herding some sheep in
a field

(1): a wooden bench sitting in the
middle of a yard

(2): a pile of wood sitting on the side
of a road

(3): a pile of wood sitting on the side
of a road

(5): a bunch of old used wooden
poles in a yard

(1): a close up of a pair of scissors in
a pile

(2): a group of scissors that are
hanging up together

(3): a bunch of pink scissors are
chained together in a room

(5): a bunch of pink scissors are all
grouped up

Figure 10: Captions generated by some of the trained models. Numbers correspondence is the same as in Table 3.
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E. More Results of Section 6.2

"a woman with
her face close
to a mans face"

"a white fire
hydrant sitting on
the side of a road"
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"snowy mountain"

"modern building"
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"old"

"bike"

Figure 11: Multimodal image retrievals from models train with different loss functions. We believe that text representations
from more simple captions (less entropic) are better aligned with image representations from encoders trained with a higher
values of β, since they are less entropic too.
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