
Segment, Shuffle, and Stitch: A Simple Layer for
Improving Time-Series Representations

Shivam Grover Amin Jalali Ali Etemad
Queen’s University, Canada

{shivam.grover, amin.jalali, ali.etemad}@queensu.ca

Abstract

Existing approaches for learning representations of time-series keep the temporal
arrangement of the time-steps intact with the presumption that the original order
is the most optimal for learning. However, non-adjacent sections of real-world
time-series may have strong dependencies. Accordingly, we raise the question:
Is there an alternative arrangement for time-series which could enable more
effective representation learning? To address this, we propose a simple plug-and-
play neural network layer called Segment, Shuffle, and Stitch (S3) designed to
improve representation learning in time-series models. S3 works by creating non-
overlapping segments from the original sequence and shuffling them in a learned
manner that is optimal for the task at hand. It then re-attaches the shuffled segments
back together and performs a learned weighted sum with the original input to
capture both the newly shuffled sequence along with the original sequence. S3
is modular and can be stacked to achieve different levels of granularity, and can
be added to many forms of neural architectures including CNNs or Transformers
with negligible computation overhead. Through extensive experiments on several
datasets and state-of-the-art baselines, we show that incorporating S3 results in
significant improvements for the tasks of time-series classification, forecasting, and
anomaly detection, improving performance on certain datasets by up to 68%. We
also show that S3 makes the learning more stable with a smoother training loss
curve and loss landscape compared to the original baseline. The code is available
at https://github.com/shivam-grover/S3-TimeSeries.

1 Introduction
Time-series data serve an important role across diverse domains, including but not limited to health
analytics [1, 2, 3], human-computer interaction [4, 5], human activity recognition [6, 7], climate
analysis [8, 9], energy consumption [10, 11, 12], traffic management [13, 14], financial markets [15],
and others. The pervasive nature of time-series data has resulted in considerable interest among
researchers, leading to the development of a variety of deep learning solutions for classification
[16, 17, 18] and forecasting tasks [10, 19, 20]. Neural architectures such as convolutional networks
[16, 21], recurrent networks [22, 23], and Transformers [10, 20] can capture the essential spatial and
temporal information from time-series. Notably, these approaches have frequently outperformed
traditional approaches, including Dynamic Time Warping [24], Bag of Stochastic Frontier Analysis
Symbols [25], and the Collective of Transformation-Based Ensembles [26] in various scenarios.

While both traditional machine learning and deep learning solutions aim to extract effective goal-
related representations prior to classification or forecasting, the general approach is to keep the
original temporal arrangement of the time-steps in the time-series intact, with the presumption that the
original order is the most optimal. Moreover, most existing models do not have explicit mechanisms
to explore the inter-relations between distant segments within each time-series, which may in fact
have strong dependencies despite their lack of proximity. For example, CNN-based models for

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/shivam-grover/S3-TimeSeries

time-series learning generally utilize fixed convolutional filters and receptive fields, causing them
to only capture patterns within a limited temporal window [27, 28]. As a result, when faced with
time-series where important patterns or correlations span across longer time windows, these models
often struggle to capture this information effectively [28]. Dilated convolutional neural networks
partially solve this by increasing the receptive field through the dilation rate. However, they are
still practically limited by their inherent architectures, as their receptive fields rely on the number of
layers, which may not be large enough to fully capture the long-range dependencies and can lead
to vanishing gradients as more layers are added [29]. Similarly, the out-of-the-box effectiveness
of Transformers [30] in capturing long-term dependencies highly depends on a variety of factors
such as sequence length, positional encoding, and tokenization strategies. Accordingly, we ask a
simple question: Is there a better arrangement for the time-series that would enable more effective
representation learning considering the classification/forecasting task at hand?

In this paper, we introduce a simple and plug-and-play network layer called Segment, Shuffle, and
Stitch, or S3 for short, designed to enhance time-series representation learning. As the name suggests,
S3 operates by segmenting the time-series into several segments, shuffling these segments in the most
optimal order controlled by learned shuffling parameters, and then stitching the shuffled segments.
In addition to this, our module integrates the original time-series through a learned weighted sum
operation with the shuffled version to also preserve the key information in the original order. S3 acts
as a modular mechanism intended to seamlessly integrate with any time-series model and as we will
demonstrate experimentally, results in a smoother training procedure and loss landscape. Since S3 is
trained along with the backbone network, the shuffling parameter is updated in a goal-centric manner,
adapting to the characteristics of the data and the backbone model to better capture the temporal
dynamics. Finally, S3 can be stacked to create a more fine-grained shuffling with higher levels of
granularity, has very few hyper-parameters to tune, and has negligible computation overhead.

For evaluation, we integrate S3 in a variety of neural architectures including CNN-based and
Transformer-based models, and evaluate performance across various classification, univariate fore-
casting, and multivariate forecasting datasets, observing that S3 results in substantial improvements
when integrated into state-of-the-art models. Specifically, the results demonstrate that integrating S3
into state-of-the-art methods can improve performance by up to 39.59% for classification, and by up
to 68.71% and 51.22% for univariate and multivariate forecasting, respectively. We perform detailed
ablation and sensitivity studies to analyze different components of our proposed S3 layer.

Our contributions are summarized as follows:

• We propose S3, a simple and modular network layer that can be plugged into existing neural
architectures to improve time-series representation learning. By dynamically segmenting
and shuffling the input time-series across the temporal dimension, S3 helps the model
perform more effective task-centric representation learning.

• By stacking multiple instances of S3, the model can perform shuffling at different granularity
levels. Our proposed layer has very few hyperparameters and negligible added computational
cost.

• Rigorous experiments on various benchmark time-series datasets across both classification
and forecasting tasks demonstrate that by incorporating S3 into existing state-of-the-art
models, we improve performance significantly. Experiments also show that by adding our
proposed network layer, more stable training is achieved.

• We make our code public to contribute to the field of time-series representation learning and
enable fast and accurate reproducibility.

2 Related work
Deep learning architectures have recently made significant progress in the area of time-series rep-
resentation learning. In the category of convolution-based methods, DSN [16] introduces dynamic
sparse connections to cover different receptive fields in convolution layers for time-series classifica-
tion. In another convolution-based approach, SCINet [21] captures temporal features by partitioning
each time sequence into two subsequences at each level to effectively model the complex temporal
dynamics within hierarchical time-series data.

Transformer-based approaches are another category of solutions that have drawn considerable atten-
tion. Informer [10] improves the capabilities of the vanilla Transformer on long input sequences by

2

introducing self-attention distillation using ProbSparse which is based on Kullback-Leibler diver-
gence, and a generative style decoder. Autoformer [20] introduces decomposition blocks with an
auto-correlation mechanism that allows progressive decomposition of the data. ContiFormer [31]
integrates the continuous dynamics of Neural Ordinary Differential Equations with the attention
mechanism of Transformers. PatchTST [32] enhances time-series forecasting by leveraging patch-
ing techniques to split long input sequences into smaller patches, which are then processed by a
Transformer to capture long-term dependencies efficiently. Finally, [33] investigated the effective-
ness of Transformers in dealing with long sequences for forecasting and highlighted the challenges
Transformers encounter in this regard.

Recently, foundation models for time-series data, which are large-scale, pre-trained models designed
to capture complex temporal patterns, have gained popularity. A prominent example is Moment [34],
which pre-trains a Transformer encoder using a univariate setting on a large and diverse collection of
data called ‘Pile’. It leverages a masked reconstruction method and is capable of performing various
downstream forecasting tasks after fine-tuning, demonstrating strong adaptability and forecasting
accuracy.

Contrastive methods have recently demonstrated state-of-the-art performances in time-series learning.
TS2Vec [17] employs unsupervised hierarchical contrastive learning across augmented contextual
views, capturing robust representations at various semantic levels. InfoTS [35] uses information-
aware augmentations for contrastive learning which dynamically chooses the optimal augmentations.
To address long-term forecasting, [28] introduces a contrastive approach that incorporates global
autocorrelation alongside a decomposition network. Finally, SoftCLT [36] is a recent contrastive
approach that uses the distances between time-series samples (instance-wise contrastive) along with
the difference in timestamps (temporal contrastive), to capture the correlations between adjacent
samples and improve representations.

Given the existence of seasonal and trend information in time-series, disentanglement is an approach
that has been widely used across both classical machine learning [37, 38, 39] and deep learning
solutions [40, 19]. For instance, CoST [40] attempts to capture periodic patterns using frequency
domain contrastive loss to disentangle seasonal-trend representations in both time and frequency
domains. Similarly, LaST [19] recently employed variational inference to learn and disentangle latent
seasonal and trend components within time-series data.

3 Method x

Segment

Shuffle

Stitch

Segment
Shuffle
Stitch

Segment
Shuffle
Stitch

x′

S3 layer

Learned
weighted

sum

Learned
weighted

sum

Learned
weighted

sum

Figure 1: Stacking S3 layers. In this depiction, we
use n = 2, ϕ = 3, and θ = 2 as the hyperparame-
ters.

Problem definition. Given a set of N time-
series instances as {xi}Ni=1, where xi ∈ RT×C

has a length of T and C channels, the goal is
to optimally rearrange the segments of xi and
form a new sequence x′

i to better capture the
underlying temporal relationships and depen-
dencies within the time-series, which would
consequently lead to improved representations
given the target task.

Proposed mechanism. We propose S3, a
simple neural network component for address-
ing the aforementioned problem in three steps,
as the name suggests, Segment, Shuffle, and
Stitch, described below (see Figure 1).

The Segment module splits the input sequence
xi into n non-overlapping segments, each
containing τ time-steps, where τ = T/n.
The set of segments can be represented by
Si = {si,1, si,2, . . . , si,n} ∈ R(τ×C)×n where
si,j = xi[(j − 1)τ : jτ] and si,j ∈ Rτ×C .

The segments are then fed into the Shuffle
module, which uses a shuffle vector P = {p1, p2, . . . , pn} ∈ Rn to rearrange the segments in the
optimal order for the task at hand. Each shuffling parameter pj in P corresponds to a segment si,j

3

in Si. P is essentially a set of learnable weights optimized through the network’s learning process,
which controls the position and priority of the segment in the reordered sequence. The shuffling
process is quite simple and intuitive: the higher the value of pj , the higher the priority of segment si,j
is in the shuffled sequence. The shuffled sequence Sshuffled

i can be represented as

Sshuffled
i = Sort(Si, key = P), (1)

where the segments in Si are sorted according to the values in P. Permuting Si based on the sorted
order of P is not differentiable by default, because it involves discrete operations and introduces
discontinuities [41]. Soft sorting methods such as [42, 41, 43] approximate the sorted order by
assigning probabilities that reflect how much larger each element is compared to others. While this
approximation is differentiable in nature, it may introduce noise and inaccuracies, while making
the sorting non-intuitive. To achieve differentiable sorting and permutation that are as accurate and
intuitive as traditional methods, we introduce a few intermediate steps. These steps create a path
for gradients to flow through the shuffling parameters P while performing discrete permutations
on Si based on the sorted order of P. We first obtain the indices that sort the elements of P using
σ = Argsort(P). We have a list of tensors S = [s1, s2, s3, ...sn] (for simplicity, we skip the index i)
that we aim to reorder based on the list of indices σ = [σ1, σ2,σn] in a differentiable way. We
then create a (τ × C)× n× n matrix U, which we populate by repeating each si, n times. Next, we
form an n× n matrix Ω where each row j has a single non-zero element at position k = σj which is
pk. We convert Ω to a binary matrix Ω̃ by scaling each non-zero element to 1 using a scaling factor
1

Ωj,k
. This process creates a path for the gradients to flow through P during backpropagation.

By performing the Hadamard product between U and Ω̃, we obtain a matrix V where each row j has
one non-zero element k equals to sk. Finally, by summing along the final dimension and transposing
the outcome, we obtain the final shuffled matrix of size Sshuffled

i ∈ Rτ×C×n. To better illustrate,
we show a simple example with S = [s1, s2, s3, s4] and a given permutation σ = [3, 4, 1, 2]. We
calculate V as

V = U⊙ Ω̃ =

s1 s2 s3 s4
s1 s2 s3 s4
s1 s2 s3 s4
s1 s2 s3 s4

⊙

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =

 0 0 s3 0
0 0 0 s4
s1 0 0 0
0 s2 0 0

 , (2)

and Sshuffled
i is obtained by

Sshuffled
i = (

n∑
k=1

(Vj,k))
T = [s3 s4 s1 s2] . (3)

We previously assumed that the set of shuffling parameters P is one-dimensional, containing n
scalar elements, each corresponding to one of the segments. By employing a higher-dimensional P,
we can introduce additional parameters that enable the model to capture complex representations
that a single-dimensional P could struggle with. Therefore, we introduce a hyperparameter λ to
determine the dimensionality of the vector P. When λ = m, the size of P becomes n× n× · · · × n
(repeated m times). We then perform a summation of P over the first m− 1 dimensions to obtain a
one-dimensional vector. Mathematically, this is represented as

P̃ =

n∑
d1=1

n∑
d2=1

· · ·
n∑

dm−1=1

Pd1,d2,...,dm−1 . (4)

This results in a one-dimensional matrix P̃, which we then use to compute the permutation indices
σ = Argsort(P̃). This approach allows us to increase the number of shuffling parameters, thereby
capturing more complex dependencies within the time-series data, without affecting the sorting
operations.

In the final step, the Stitch module concatenates the shuffled segments Sshuffled
i to create a single

shuffled sequence x̃i ∈ RT×C as x̃i = Concat(Sshuffled
i). To retain the information present in the

original order along with the newly generated shuffled sequence, we perform a weighted sum between
xi and x̃i with learnable weights w1 and w2 optimized through the training of the main network.
For practical convenience, we can use a simple learnable Conv1D or MLP layer taking xi and x̃i as
inputs and generating the final time-series output x′

i ∈ RT×C .

4

Stacking S3 layers. Considering S3 as a modular layer, we can stack them sequentially within a
neural architecture. Let’s define ϕ as a hyperparameter that determines the number of S3 layers. For
simplicity and to avoid defining a separate segment hyperparameter for each S3 layer, we define θ
which acts as a multiplier for the number of segments in subsequent layers as

nℓ = n× θℓ−1 for ℓ = 1, 2, . . . , ϕ, (5)

where n is the number of segments in the first S3 layer. When multiple S3 layers are stacked, each
layer ℓ from 1 to ϕ will segment and shuffle its input based on the output from the previous layer. We
can formally represent the output of each layer ℓ as x′

ℓ by

x′
ℓ = Stitch(Shuffle(Segment(x′

ℓ−1, nℓ),Pℓ), (wℓ,1,wℓ,2)), for ℓ = 1, 2, . . . , ϕ, (6)

where x′
0 is the original time-series x, Pℓ is the set of shuffling parameters for layer ℓ, and (wℓ,1,

wℓ,2) are the learnable weights for the sum operation between the concatenation of the shuffled
segments and the original input, at layer ℓ. Figure 1 presents an example of three S3 layers (ϕ = 3)
applied to a time-series with n = 2 and θ = 2.

All the Pℓ values are updated along with the model parameters, and there is no intermediate loss for
any of the S3 layers. This ensures that the S3 layers are trained according to the specific task and the
baseline. In cases where the length of input sequence x is not divisible by the number of segments n,
we resort to truncating the first T mod n time-steps from the input sequence. In order to ensure that
no data is lost and the input and output shapes are the same, we later add the truncated samples back
at the beginning of the output of the final S3 layer.

4 Experiment setup
Evaluation protocol. For our experiments, we integrate S3 into existing state-of-the-art models
for both time-series classification and forecasting. We first train and evaluate each model adhering
strictly to their original setups and experimental protocols. We then integrate S3 at the beginning of
the model, and train and evaluate it with the same setups and protocols as the original models. This
meticulous approach ensures that any observed deviation in performance can be fairly attributed to the
integration of S3. For classification, we measure the improvement as the percentage difference (Diff.)
in accuracy resulting from S3, calculated as (AccBaseline+S3 −AccBaseline)/AccBaseline. For forecasting,
since lower MSE is better, we use (MSEBaseline −MSEBaseline+S3)/MSEBaseline. A similar equation
is used for measuring the percentage difference in MAE.

Classification datasets. For classification we use the following datasets: (1) The UCR archive [44]
which consists of 128 univariate datasets, (2) the UEA archive [45] which consists of 30 multivariate
datasets, and (3) three multivariate datasets namely EEG, EEG2, and HAR from the UCI archive
[46]. For our experiments with pre-trained foundation model in Section 5, we also use the PTB-XL
[47] dataset. The train/test splits for all classification datasets are as provided in the original papers.

Forecasting datasets. For forecasting, we use the following datasets: (1) both the univariate and
multivariate versions of three ETT datasets [10], namely ETTh1 and ETTh2 recorded hourly,
and ETTm1 recorded at every 15 minutes, (2) both the univariate and multivariate versions of the
Electricity dataset [46], and (3) the multivariate version of the Weather dataset [48].

Anomaly detection datasets. We employ the widely used Yahoo [49] and KPI [50] datasets for
anomaly detection tasks. The Yahoo dataset consists of 367 time-series sampled hourly, each with
labeled anomaly points, while the KPI dataset contains 58 minutely sampled KPI curves from various
internet companies. Our experiments are performed under normal settings, as outlined in [17, 36].

Baselines. We select baselines from a variety of different time-series learning approaches. Specifically,
for classification, we use four state-of-the-art baseline methods, SoftCLT [36], TS2Vec [17], DSN
[16], and InfoTS [35]. For forecasting, we use five state-of-the-art baseline methods, TS2Vec [17],
LaST [19], Informer [10], PatchTST [32] and CoST [40]. For anomaly detection, we use two state-
of-the-art baseline methods, SoftCLT [36] and TS2Vec [17]. Additionally, we use MOMENT [34]
for experiments with foundation model. For each baseline method, we integrate one to three layers of
S3 at the input level of the model and compare its performance with that of the original model.

Implementation details. All implementation details match those of the baselines. We used the exact
hyperparameters of the baselines according to the original papers when they were specified in the
papers or when the code was available; alternatively, when the hyperparameters were not exactly

5

specified in the paper or in the code, we tried to maximize performance with our own search for the
optimum hyperparameters. Additionally, for experiments involving PatchTST and LaST with the
Electricity dataset, we use a batch size of 8 due to memory constraints. Accordingly, some baseline
results may slightly differ from those available in the original papers. Note that deviations in baseline
results affect both the baseline model and baseline+S3. For the weighted sum operation in S3, we
use Conv1D. Our code is implemented with PyTorch, and our experiments are conducted on a single
NVIDIA Quadro RTX 6000 GPU. We release the code at: https://github.com/shivam-grover/S3-
TimeSeries.

5 Results

Table 1: Comparison with baselines on time-
series classification

Method UCR UEA EEG EEG2 HAR

TS2Vec 0.819 0.695 0.593 0.845 0.930
TS2Vec+S3 0.851 0.720 0.672 0.9733 0.935
Diff. 3.90% 3.63% 19.47% 15.18% 11.31%

DSN 0.794 0.687 0.516 0.961 0.957
DSN+S3 0.833 0.736 0.717 0.980 0.971
Diff. 4.85% 7.24% 38.90% 1.93% 1.41%

InfoTS 0.733 0.691 0.515 0.822 0.876
InfoTS+S3 0.760 0.727 0.719 0.947 0.929
Diff. 3.71% 5.34% 39.59% 15.21% 6.05%

SoftCLT 0.825 0.699 0.516 0.893 0.918
SoftCLT+S3 0.845 0.734 0.672 0.950 0.936
Diff. 2.42% 4.76% 30.16% 6.38% 1.96%

Classification. The results of our experiments on
time-series classification are presented in Table 1. In
this table we observe that the addition of S3 results in
substantial improvements across all baselines for all
univariate and multivariate datasets. For UCR, UEA,
EEG, EEG2, and HAR, we achieve average improve-
ments of 3.89%, 5.25%, 32.03%, 9.675%, and 5.18%
respectively over all models. The full classification
results on UCR and UEA datasets for all baselines
with and without S3 are mentioned in Appendix (Ta-
ble A1 and A2). These results highlight the efficacy
of S3 in improving a variety of different classification
methods over a diverse set of datasets despite negli-
gible added computational complexity (we provide a
detailed discussion on computation overhead later in
this section). In addition to quantitative metrics, we
also visualize the t-SNE plots for several datasets in
Figure 2 and Appendix A1, which show that adding S3 results in representations with better class
separability in the latent space.

Forecasting. Table 2 presents a comprehensive overview of the results for univariate forecasting
on different datasets and horizons (H), with and without the incorporation of S3. We observe that
S3 consistently leads to improvements for all baseline methods across all datasets, with an average
improvement in MSE and MAE of 4.58% and 4.20% for TS2Vec, 4.02% and 3.01% for LaST, 16.69%
and 8.19% for Informer, 1.64% and 1.20% for PatchTST, and 3.01% and 2.62% for CoST. Figure 3
shows two forecasting outputs for Informer with and without S3, on two different horizon lengths for
a sample from the ETTh1 dataset. In both cases, S3 improves the ability of the baseline Informer to
generate time-series samples that better align with the ground truth. Similarly, Table 3 presents the
results of multivariate forecasting. Consistent with univariate forecasting, S3 significantly enhances
the performance of the baseline on multivariate forecasting and achieves average improvements in
MSE and MAE of 13.71% and 7.78% for TS2Vec, 9.88% and 5.45% for LaST, 25.13% and 14.82%
for Informer, 1.62% and 1.17% for PatchTST, and 4.41% and 1.97% for CoST.

Anomaly detection. Table 4 presents the results for anomaly detection on Yahoo and KPI datasets.
The anomaly score is computed as the L1 distance between two encoded representations derived
from masked and unmasked inputs, following the methodology described in previous studies [17, 36].
We observe that the proposed S3 layer enhances the performance in terms of F1 for both datasets
under the normal settings, with scores of 0.7498 and 0.6892, respectively.

Loss behaviour. We make interesting observations while training the baseline models as well as the
baseline+S3 variants. First, we observe that the training loss vs. epochs for baseline+S3 variants
generally converge faster than the original baselines. See Figure 4 where we demonstrate examples
of this behavior. Second, we observe that the training loss curves for baseline+S3 are generally
much smoother than the original baselines. This can again be observed in Figure 4. Additionally, we
measure the standard deviations of the loss curves for SoftCLT with and without S3 on all the UCR
datasets and measure an average reduction in standard deviation of 36.66%. The detailed values for
the standard deviations of the loss curves are presented in Appendix A4. Lastly, according to [51],
we investigate the loss landscape of the baselines and observe that the addition of S3 generally results
in a smoother loss landscape with fewer local minima (Figure 5). Additional examples are provided
in Appendix A2.

6

https://github.com/shivam-grover/S3-TimeSeries
https://github.com/shivam-grover/S3-TimeSeries

Table 2: Univariate forecasting results for different baselines with and without S3.

Dataset H Metric
TS2Vec LaST Informer PatchTST CoST

Base +S3 Diff. Base +S3 Diff. Base +S3 Diff. Base +S3 Diff. Base +S3 Diff.

ETTh1

24 MSE 0.0409 0.0370 9.40% 0.0295 0.0293 0.80% 0.1169 0.0851 27.18% 0.0265 0.0258 2.57% 0.0386 0.0377 2.22%
MAE 0.1614 0.1459 9.58% 0.1297 0.1291 0.45% 0.2753 0.2263 17.76% 0.1237 0.1232 0.38% 0.1501 0.1486 0.99%

48 MSE 0.0714 0.0605 15.24% 0.0479 0.0464 3.07% 0.1358 0.1132 16.57% 0.0397 0.0389 1.99% 0.0592 0.0565 4.47%
MAE 0.2035 0.1884 7.45% 0.1630 0.1628 0.11% 0.2959 0.2727 7.81% 0.1503 0.1478 1.67% 0.1856 0.1818 2.02%

168 MSE 0.1362 0.1202 11.71% 0.0765 0.0731 4.40% 0.1604 0.0944 41.12% 0.0681 0.0672 1.28% 0.0920 0.0879 4.47%
MAE 0.3235 0.2663 17.65% 0.2071 0.2069 0.10% 0.3207 0.2434 24.10% 0.1999 0.1982 0.86% 0.2322 0.2221 4.38%

336 MSE 0.1699 0.1426 16.09% 0.0948 0.0920 2.89% 0.1411 0.1021 27.59% 0.0820 0.0806 1.71% 0.1083 0.1040 3.92%
MAE 0.3333 0.2949 11.54% 0.2409 0.2366 1.80% 0.2990 0.2532 15.30% 0.2034 0.1974 2.21% 0.2557 0.2440 4.56%

720 MSE 0.1739 0.1734 0.29% 0.1417 0.1370 3.33% 0.269 0.0841 68.71% 0.0866 0.0855 1.24% 0.1297 0.1247 3.84%
MAE 0.3307 0.3359 -1.58% 0.3098 0.2989 3.50% 0.2159 0.1980 8.27% 0.2132 0.2098 1.59% 0.2840 0.2782 2.02%

ETTh2

24 MSE 0.0973 0.0938 3.49% 0.0708 0.0675 4.58% 0.0851 0.0844 0.75% 0.0704 0.0702 0.34% 0.0784 0.0766 2.37%
MAE 0.2363 0.2344 0.82% 0.1956 0.1902 3.20% 0.2230 0.2210 1.02% 0.2036 0.2012 1.19% 0.2059 0.2033 1.27%

48 MSE 0.1269 0.1242 1.77% 0.0995 0.0939 5.72% 0.1503 0.1461 2.77% 0.0963 0.0943 2.08% 0.1163 0.1072 7.84%
MAE 0.2781 0.2761 0.72% 0.2394 0.2279 4.80% 0.3036 0.2990 1.54% 0.2410 0.2399 0.44% 0.2589 0.2520 2.65%

168 MSE 0.1974 0.1853 6.12% 0.1796 0.1680 6.40% 0.2637 0.2470 6.34% 0.1604 0.1595 0.58% 0.1805 0.1677 7.10%
MAE 0.3562 0.3437 3.50% 0.3194 0.3098 3.02% 0.4120 0.3756 8.83% 0.3184 0.3148 1.12% 0.3339 0.3161 5.33%

336 MSE 0.2031 0.1953 3.86% 0.2213 0.2049 7.39% 0.3177 0.2993 5.79% 0.1847 0.1812 1.89% 0.1963 0.1949 0.74%
MAE 0.3638 0.3551 2.41% 0.3819 0.3579 6.28% 0.4543 0.4432 2.44% 0.3398 0.3378 0.59% 0.3548 0.3542 0.18%

720 MSE 0.2084 0.1983 4.82% 0.2754 0.2712 1.53% 0.2678 0.2548 4.88% 0.2236 0.2202 1.52% 0.2048 0.1962 4.19%
MAE 0.3719 0.3620 2.36% 0.4297 0.4215 1.91% 0.4199 0.3975 5.34% 0.3549 0.3483 1.86% 0.3664 0.3550 3.10%

ETTm1

24 MSE 0.0150 0.0152 -1.74% 0.0231 0.0229 16.22% 0.0246 0.0228 7.13% 0.0099 0.0097 1.55% 0.0146 0.0132 9.44%
MAE 0.0910 0.0928 -1.96% 0.1070 0.0982 8.25% 0.1117 0.1079 3.33% 0.1123 0.1105 1.60% 0.0880 0.0849 3.59%

48 MSE 0.0283 0.0290 -2.44% 0.0479 0.0465 3.08% 0.0561 0.0501 10.76% 0.0169 0.0167 1.18% 0.0252 0.0233 7.35%
MAE 0.1304 0.1350 -3.52% 0.1580 0.1517 3.99% 0.1749 0.1632 6.70% 0.1189 0.1184 0.42% 0.1177 0.1130 4.01%

96 MSE 0.0480 0.0458 4.41% 0.0765 0.0715 6.53% 0.1124 0.1100 2.15% 0.0362 0.0359 0.90% 0.0378 0.0346 8.64%
MAE 0.1713 0.1643 4.07% 0.2071 0.1967 5.04% 0.2421 0.2433 -0.51% 0.1389 0.1384 0.36% 0.1462 0.1391 4.88%

228 MSE 0.0992 0.0953 3.92% 0.1058 0.0953 9.94% 0.1833 0.1762 3.87% 0.0527 0.0518 1.75% 0.0728 0.0669 8.10%
MAE 0.2495 0.2359 5.46% 0.2490 0.2231 10.40% 0.3368 0.3209 4.73% 0.1578 0.1556 1.39% 0.2051 0.1946 5.11%

672 MSE 0.1568 0.1529 2.50% 0.1699 0.1589 6.47% 0.2686 0.2582 3.88% 0.0744 0.0732 1.67% 0.1053 0.0969 7.97%
MAE 0.3100 0.3028 2.33% 0.3165 0.3089 2.75% 0.4212 0.4166 1.10% 0.2072 0.2035 1.79% 0.2486 0.2345 5.66%

Electricity

24 MSE 0.2546 0.2460 3.38% 0.1525 0.1486 2.58% 0.1937 0.1778 8.18% 0.1434 0.1408 1.76% 0.2420 0.2369 2.12%
MAE 0.2846 0.2710 4.75% 0.2797 0.2750 1.69% 0.3153 0.3053 3.15% 0.2713 0.2676 1.37% 0.2628 0.2604 0.91%

48 MSE 0.3001 0.2923 2.60% 0.1888 0.1856 1.69% 0.2760 0.2129 22.86% 0.1765 0.1749 0.91% 0.2912 0.2888 0.81%
MAE 0.3151 0.3011 4.43% 0.3086 0.3023 2.03% 0.3794 0.3308 12.82% 0.2985 0.2962 0.79% 0.2977 0.2957 0.65%

168 MSE 0.4303 0.4054 5.79% 0.2473 0.2415 2.35% 0.3402 0.3202 5.87% 0.2484 0.2436 1.94% 0.4084 0.4019 1.58%
MAE 0.3872 0.3728 3.71% 0.3506 0.3423 2.36% 0.4292 0.4043 5.81% 0.3470 0.3456 0.38% 0.3781 0.3750 0.83%

336 MSE 0.5636 0.5383 4.49% 0.2907 0.2802 3.63% 0.4062 0.3520 13.34% 0.2963 0.2925 1.26% 0.5690 0.5563 2.22%
MAE 0.4712 0.4563 3.17% 0.3831 0.3793 1.00% 0.4634 0.4169 10.02% 0.3868 0.3808 1.55% 0.4693 0.4620 1.57%

720 MSE 0.8641 0.8444 2.27% 0.3239 0.3180 1.82% 0.4799 0.3484 27.41% 0.3393 0.3296 2.86% 0.8965 0.8783 2.03%
MAE 0.6538 0.6345 2.94% 0.4229 0.4197 0.76% 0.5126 0.4257 16.95% 0.4311 0.4237 1.70% 0.6471 0.6345 1.95%

Average MSE 0.2093 0.1997 4.58% 0.1434 0.1376 4.02% 0.2124 0.1769 16.69% 0.1216 0.1196 1.64% 0.1933 0.1873 3.01%
MAE 0.3011 0.2884 4.20% 0.2700 0.2619 3.01% 0.3303 0.3032 8.19% 0.2408 0.2380 1.20% 0.2744 0.2670 2.62%

8 6 4 2 0 2 4 6
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0
TS2Vec

8 6 4 2 0 2 4 6
6
4
2
0
2
4
6
8

10 TS2Vec+S3

(a) DodgerLoopWeekend

20 15 10 5 0 5 10 15 20

20

10

0

10

20

TS2Vec

20 10 0 10 20

15

10

5

0

5

10 TS2Vec+S3

(b) Chinatown

Figure 2: t-SNE visualizations of the learned representations of TS2Vec and TS2Vec+S3 for 4 ran-
domly chosen test sets. Different colors represent different classes. It can be seen that representations
belonging to different classes are more separable after adding S3.

Ablation. We perform ablation studies to investigate the impact of each of the key modules of S3
and answer three questions: (1) Do we need the Segment module to divide the input into multiple
segments, or will shuffling all the time-steps individually work just as well? (2) Do we need learned
Shuffling parameters (P) to determine the optimal permutation of the time-series, or will random
permutations work just as well? (3) Do we need the Stitch module to apply a learned weighted sum
of the original sequence with the shuffled sequence, or will the shuffled sequences alone work just as
well? Table 7 shows the results of three ablation studies where we observe that the removal of each
component of S3 results in a decline in performance.

Foundation models. In order to evaluate the impact of S3 on pre-trained foundation model, we
integrate S3 at the beginning of the pre-trained MOMENT encoder [34]. We use linear probing for

7

Table 3: Multivariate forecasting results for different baselines with and without S3

Dataset H Metric
TS2Vec LaST Informer PatchTST CoST

Base +S3 Diff. Base +S3 Diff. Base +S3 Diff. Base +S3 Diff. Base +S3 Diff.

ETTh1

24 MSE 0.5360 0.5048 5.82% 0.3230 0.3249 -0.55% 0.5344 0.4928 7.79% 0.3297 0.3253 1.34% 0.3750 0.3719 0.84%
MAE 0.5026 0.4866 3.19% 0.3632 0.3654 -0.61% 0.5253 0.4939 5.97% 0.3722 0.3672 1.36% 0.4238 0.4200 0.90%

48 MSE 0.5907 0.5596 5.27% 0.3804 0.3513 7.65% 0.7471 0.6738 9.80% 0.3532 0.3520 0.33% 0.4280 0.4252 0.65%
MAE 0.5499 0.5160 6.17% 0.4064 0.3792 6.69% 0.6621 0.6228 5.92% 0.3865 0.3854 0.29% 0.4609 0.4549 1.30%

168 MSE 0.7498 0.7016 6.43% 0.5149 0.4633 10.02% 1.0853 0.9689 10.72% 0.4078 0.3989 2.18% 0.6303 0.6201 1.62%
MAE 0.6350 0.6011 6.43% 0.4906 0.4497 8.32% 0.8307 0.7828 5.77% 0.4212 0.4098 2.71% 0.5830 0.5755 1.29%

336 MSE 0.8841 0.8631 2.38% 0.7102 0.5828 17.93% 1.3561 1.0734 20.84% 0.4319 0.4254 1.51% 0.7898 0.7842 0.71%
MAE 0.7049 0.6856 2.74% 0.6182 0.5308 14.10% 0.9550 0.8339 6.61% 0.4368 0.4337 0.70% 0.6656 0.6586 1.06%

720 MSE 1.0471 1.0441 0.30% 0.9354 0.7765 16.98% 1.3860 1.2597 9.11% 0.4498 0.4367 2.90% 0.8796 0.8740 0.63%
MAE 0.7884 0.7798 1.09% 0.7470 0.6652 11.00% 0.9575 0.9031 5.87% 0.4661 0.4542 2.55% 0.7392 0.7356 0.48%

ETTh2

24 MSE 0.4106 0.3516 14.37% 0.1760 0.1745 0.83% 0.3865 0.3696 4.38% 0.1741 0.1698 2.48% 0.3688 0.3537 4.10%
MAE 0.4786 0.4352 9.07% 0.2679 0.2667 0.46% 0.4753 0.4578 3.68% 0.2674 0.2543 4.91% 0.4552 0.4423 2.83%

48 MSE 0.5969 0.5355 10.28% 0.2663 0.2242 15.80% 2.4910 2.1537 13.54% 0.2214 0.2220 -0.28% 0.6054 0.5709 5.70%
MAE 0.5952 0.5533 7.04% 0.3084 0.3018 2.11% 1.2874 1.1683 9.25% 0.2994 0.3021 -0.91% 0.5916 0.5729 3.17%

168 MSE 1.8673 1.6609 11.05% 0.7635 0.6992 8.42% 4.9837 2.8678 42.46% 0.3242 0.3219 0.71% 1.5877 1.5206 4.23%
MAE 1.0730 0.9924 7.52% 0.6082 0.5757 5.35% 1.9106 1.4202 25.67% 0.3740 0.3652 2.34% 0.9816 0.9516 3.05%

336 MSE 2.3067 1.7424 24.47% 1.2567 1.0107 19.58% 3.0175 3.1162 -3.27% 0.3302 0.3289 0.39% 1.8481 1.6036 13.23%
MAE 1.2217 1.3067 15.14% 0.7978 0.7095 11.06% 1.4438 1.4891 -3.84% 0.3801 0.3786 0.39% 1.0756 1.0324 4.02%

720 MSE 2.7273 2.2901 16.03% 1.1952 1.7197 11.92% 4.3677 3.3177 24.04% 0.3791 0.3745 1.21% 2.0718 1.9062 7.99%
MAE 1.4042 1.2268 12.64% 1.1171 1.0620 4.93% 1.8087 1.5454 14.56% 0.4216 0.4198 0.43% 1.1100 1.0850 2.25%

ETTm1

24 MSE 0.5388 0.3959 26.52% 0.1036 0.1002 3.19% 0.9264 0.4995 46.08% 0.1960 0.1962 -0.12% 0.2464 0.2401 2.57%
MAE 0.4958 0.4297 13.33% 0.2098 0.2039 2.78% 0.7183 0.5401 24.81% 0.2770 0.2782 -0.43% 0.3290 0.3231 1.81%

48 MSE 0.6498 0.4748 26.93% 0.1386 0.1331 3.92% 0.2599 0.2313 11.02% 0.2591 0.2601 -0.38% 0.3294 0.3190 3.16%
MAE 0.5580 0.4698 15.84% 0.2428 0.2358 2.86% 0.3732 0.3550 4.86% 0.3247 0.3229 0.56% 0.3853 0.3775 2.00%

96 MSE 0.6439 0.5194 19.33% 0.1823 0.1822 0.03% 1.7790 1.4871 16.41% 0.3288 0.3230 1.78% 0.3758 0.3605 4.08%
MAE 0.5677 0.5043 11.17% 0.2726 0.2714 0.41% 1.0455 0.9602 8.16% 0.3479 0.3419 1.72% 0.4196 0.4074 2.91%

228 MSE 0.7224 0.6149 14.87% 0.3062 0.2823 7.82% 6.2431 3.0455 51.22% 0.3723 0.3614 2.92% 0.4618 0.4539 1.72%
MAE 0.6231 0.5645 9.40% 0.3665 0.3477 5.13% 2.1601 1.4082 34.80% 0.3948 0.3901 1.19% 0.4798 0.4735 1.31%

672 MSE 0.7530 0.6810 9.56% 0.9525 0.8908 6.47% 7.3624 6.3159 14.21% 0.4173 0.4084 2.12% 0.6110 0.6150 -0.67%
MAE 0.6418 0.6056 5.65% 0.7232 0.6546 9.47% 2.4195 2.1142 12.62% 0.4233 0.4183 1.19% 0.5686 0.5693 -0.11%

Weather

24 MSE 0.3408 0.2547 25.26% 0.1063 0.1030 3.15% 0.1620 0.1216 24.93% 0.1476 0.1432 2.96% 0.3017 0.2984 1.10%
MAE 0.3611 0.3236 10.39% 0.1408 0.1374 2.42% 0.2350 0.1918 18.40% 0.1954 0.1945 0.46% 0.3623 0.3605 0.51%

48 MSE 0.8239 0.5103 38.05% 0.1319 0.1308 0.85% 0.3480 0.1562 55.10% 0.1229 0.1143 6.99% 0.3641 0.3532 2.98%
MAE 0.5876 0.4864 17.23% 0.1792 0.1777 0.81% 0.4000 0.2467 38.33% 0.1631 0.1602 1.77% 0.4139 0.4048 2.21%

168 MSE 1.1858 1.0399 12.31% 0.1990 0.1981 0.47% 0.4440 0.2861 35.57% 0.1850 0.1831 1.01% 0.4662 0.4589 1.57%
MAE 0.7884 0.7335 6.96% -0.2431 0.2415 0.66% 0.4630 0.3232 30.19% 0.2049 0.2019 1.46% 0.4946 0.4844 2.07%

336 MSE 1.7610 1.5445 12.29% 0.2576 0.2537 1.51% 0.5780 0.4383 24.17% 0.2479 0.2465 0.56% 0.5035 0.4910 2.48%
MAE 0.9969 0.9278 6.93% 0.2892 0.2855 1.27% 0.5230 0.4533 13.32% 0.2826 0.2801 0.87% 0.5215 0.5100 2.21%

720 MSE 2.5061 2.1811 12.97% 0.3185 0.3120 2.04% 1.0590 0.4463 57.85% 0.3193 0.3123 2.20% 0.5385 0.5297 1.62%
MAE 1.2421 1.1522 7.24% 0.3310 0.3263 1.41% 0.7410 0.4624 37.60% 0.3340 0.3278 1.86% 0.5445 0.5392 0.99%

Electricity

24 MSE 0.2960 0.2915 1.51% 0.1221 0.1215 0.49% 0.2530 0.2480 1.98% 0.0990 0.0990 0.00% 0.2420 0.2377 1.76%
MAE 0.3821 0.3793 0.73% 0.2158 0.2145 0.60% 0.3594 0.3521 2.04% 0.1775 0.1770 0.28% 0.2628 0.2585 1.66%

48 MSE 0.3186 0.3116 2.21% 0.1398 0.1394 0.29% 0.2969 0.2962 0.22% 0.1153 0.1166 -1.16% 0.2912 0.2897 0.51%
MAE 0.3982 0.3942 0.99% 0.2322 0.2312 0.43% 0.3856 0.3831 0.64% 0.2198 0.2208 -0.45% 0.2977 0.2939 1.26%

168 MSE 0.3445 0.3373 2.09% 0.1650 0.1647 0.18% 0.3258 0.3012 7.55% 0.1470 0.1419 3.47% 0.4084 0.4040 1.06%
MAE 0.4165 0.4126 0.94% 0.2536 0.2522 0.55% 0.4072 0.3931 3.46% 0.2412 0.2401 0.47% 0.3781 0.3731 1.32%

336 MSE 0.3608 0.3551 1.59% 0.1857 0.1848 0.48% 0.3872 0.3404 12.10% 0.1666 0.1631 2.10% 0.5690 0.5546 2.52%
MAE 0.4288 0.4258 0.71% 0.2739 0.2724 0.55% 0.4512 0.4186 7.23% 0.2602 0.2588 0.54% 0.4693 0.4623 1.51%

720 MSE 0.3840 0.3795 1.16% 0.2255 0.2215 1.77% 0.4083 0.3309 18.95% 0.2033 0.1955 3.84% 0.8965 0.8781 2.06%
MAE 0.4448 0.4428 0.47% 0.3103 0.3042 1.97% 0.4548 0.4093 10.00% 0.2933 0.2892 1.40% 0.6471 0.6346 1.93%

Average MSE 0.9339 0.8058 13.71% 0.4326 0.3898 9.88% 1.6475 1.2335 25.13% 0.2692 0.2648 1.62% 0.5870 0.5611 4.41%
MAE 0.6755 0.6229 7.78% 0.4004 0.3785 5.45% 0.8793 0.7491 14.82% 0.3186 0.3149 1.17% 0.5206 0.5103 1.97%

Table 4: Anomaly Detection results.

Model Yahoo KPI
F1 Prec. Rec. F1 Prec. Rec.

TS2Vec 0.7188 0.6879 0.7538 0.6643 0.9181 0.5205
TS2Vec+S3 0.7196 0.6891 0.7542 0.6852 0.9185 0.5464
SoftCLT 0.7399 0.722 0.7589 0.6890 0.9060 0.5561
SoftCLT+S3 0.7498 0.7428 0.7569 0.6892 0.9194 0.5512

Table 5: Results for time-series classifi-
cation with pre-trained MOMENT [34].

MOMENT MOMENT+S3 Diff.

PTB-XL Loss 0.8308 0.7202 13.31%
Acc 0.7176 0.7552 5.24%

Crop Loss 1.543 1.4320 7.75%
Acc 0.734 0.7591 3.41%

fine-tuning, and to ensure a fair comparison, we strictly follow the setup and experimental protocols
outlined in the original paper. In this process, the encoder is kept frozen, and only S3 and the final
linear head are fine-tuned together for the specific task and dataset. We fine-tune and evaluate the
models for classification on PTB-XL [47] and the Crop dataset from the UCR archive [44], and
the ETTh1 and ETTh2 datasets [10] for forecasting. The results for classification are presented
in Table 5, where we observe that upon adding S3, both the test loss and accuracy see significant
improvements of up to 13.31% and 5.24%, respectively. Table A3 (Appendix) shows the forecasting
results, where incorporating S3 consistently improves performance. On the ETTh1 dataset, it yields

8

0 10 20
Time Step

1.4

1.2

1.0

0.8

Va
lu

e

Ground Truth
Informer+S3
Informer

(a) H= 24

0 50 100 150
Time Step

2.0

1.5

1.0

Va
lu

e

Ground Truth
Informer+S3
Informer

(b) H= 168

Figure 3: Forecasting output by Informer and
Informer+S3 for a sample from ETTh1.

0 50 100 150 200
Iteration

5

10

15

Tr
ai

ni
ng

 lo
ss

SoftCLT+S3
SoftCLT

(a) ProximalPhalanxTW

0 50 100 150 200
Iteration

10

20

30

Tr
ai

ni
ng

 lo
ss

SoftCLT+S3
SoftCLT

(b) Symbols

Figure 4: Training loss against iterations on two
sample datasets from the UCR archive.

(a) TS2Vec (b) TS2Vec+S3

Figure 5: Visualisation of the loss landscape for
the Beef dataset from the UCR archive.

0 50 100
Number of Segments

0.985

0.990

0.995

1.000

Ac
cu

ra
cy

(a) PowerCons, t = 144

0 50 100 150 200
Number of Segments

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

(b) OliveOil, t = 570

Figure 6: Classification accuracy vs. number
of segments for two sample datasets from UCR
with different input sequence lengths t.

average improvements of 2.12% in MSE and 2.59% in MAE, and for ETTh2, the improvements are
4.96% in MSE and 3.56% in MAE.

Table 6: Range of hyper-
parameters.

Range

n [2, 4, 8, 16, 24]
ϕ [1, 2, 3]
θ [0.5, 1, 2]
λ [1, 2, 3]

Hyperparameters. Next, we investigate the impact of the number of
segments n on performance. Considering all the experiments, we observe
that no general rule of thumb can be advised for n, as its optimum
value is naturally highly dependent on factors such as dataset complexity,
length, baselines, and others. We present two examples in Figure 6
and more in Appendix A3 where we plot the accuracy vs. number of
segments for datasets of different lengths from UCR. Here we only take
into account the layer with the largest number of segments. As for the
other hyperparameters, the number of S3 layers ϕ has been set between
1, 2, or 3 across all experiments in this paper. θ, the multiplier for the
number of segments in stacked S3 layers, has been set to 0.5, 1, or 2 across all our experiments. And
finally, λ has only been set to 1, 2, or 3. The ranges of values for all the hyperparameters used in
this work are presented in Table 6. While optimizing hyperparameters is important, similar to any
other form of representation learning, we find that even sub-optimal tuning of S3 hyperparameters
still yields meaningful improvements. We perform a simple experiment where we apply a uniform
set of hyperparameters [n = 2, ϕ = 2, θ = 1, λ = 1] to all the baselines and baselines with added S3
layers. The results for this experiment are presented in Table 8 where we observe that despite not
using the optimum hyperparameters, the addition of S3 still yields considerable performance boosts.
The optimum hyperparameters used for each experiment are made available in the code.

Sensitivity to random seed. To evaluate the impact of the random seed on the performance of
S3, we perform 10 separate trials with different seed values and present the standard deviations in
Table 9. The first 4 rows show the classification baselines trained on the UCI datasets with and
without S3. Similarly, the next 3 rows show forecasting baselines trained on the multivariate ETTh1
dataset (H=24) with and without S3. From this experiment, we observe that the addition of S3 has no
considerable impact on the sensitivity of the original baselines to the random seed.

Shuffling parameters. In Figure 7, we present a visual overview of how the parameters of P update
along with the parent model during training on ETTh1 (H = 48) and ETTm1 (H = 48). Each parameter
in P corresponds to a segment of S. In both cases, we set n to 16 and ϕ to 1. The baseline used is
LaST [19]. It can be seen that the individual weights in P rearrange the corresponding segments
until they reach a stable point (the optimal order) after which the order of the segments is maintained.
Similarly, Figure A4 (Appendix) shows how w1 and w2 update during training. Finally, in Figure A5

9

Table 7: Ablation results for
classification.

Method EEG EEG2 HAR
TS2Vec+S3 0.672 0.973 0.935
TS2Vec+S3 w/o Segment 0.552 0.872 0.865
TS2Vec+S3 w/o P 0.562 0.864 0.906
TS2Vec+S3 w/o Stitch 0.584 0.871 0.901

DSN+S3 0.717 0.980 0.971
DSN+S3 w/o Segment 0.516 0.929 0.910
DSN+S3 w/o P 0.490 0.953 0.828
DSN+S3 w/o Stitch 0.550 0.934 0.856

InfoTS+S3 0.719 0.947 0.929
InfoTS+S3 w/o Segment 0.535 0.865 0.898
InfoTS+S3 w/o P 0.499 0.845 0.869
InfoTS+S3 w/o Stitch 0.515 0.821 0.887

SoftCLT+S3 0.672 0.950 0.936
SoftCLT+S3 w/o Segment 0.548 0.919 0.879
SoftCLT+S3 w/o P 0.523 0.905 0.883
SoftCLT+S3 w/o Stitch 0.600 0.913 0.921

Table 8: Classification results with
common hyperparameters.

Method EEG EEG2 HAR
TS2Vec 0.593 0.845 0.926
TS2Vec+S3 0.625 0.910 0.922
Diff. 11.11% 7.69% -0.36%

DSN 0.516 0.961 0.957
DSN+S3 0.567 0.978 0.974
Diff. 9.83% 1.78% 1.72%

InfoTS 0.515 0.822 0.876
InfoTS+S3 0.593 0.842 0.898
Diff. 15.15% 2.43% 2.45%

SoftCLT 0.500 0.893 0.918
SoftCLT+S3 0.640 0.890 0.923
Diff. 15.15% -0.33% 0.54%

Table 9: Variation to seed.
Method w/o S3 w/ S3
SoftCLT 0.0044 0.0058
TS2Vec 0.0077 0.0075
InfoTS 0.0067 0.0082
DSN 0.0041 0.0035

TS2Vec 0.0019 0.0028
Informer 0.0144 0.0142
LaST 0.0009 0.0012

Table 10: Param. count.
Method Baseline S3
TS2Vec 613k 24
SoftCLT 641k 579
InfoTS 606k 7
DSN 106k 13

TS2Vec 638k 12
Informer 11.3M 6
LaST 130k 16

0 250 500 750 1000 1250 1500
Iteration

0.59992

0.59994

0.59996

0.59998

0.60000

0.60002

0.60004

Va
lu

e
fo

r e
ac

h
pa

ra
m

et
er

 in
 P P0

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15

(a) ETTh1 (H = 48)

0 250 500 750 1000 1250 1500
Iteration

0.59996

0.59998

0.60000

0.60002

0.60004

0.60006

Va
lu

e
fo

r e
ac

h
pa

ra
m

et
er

 in
 P P0

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15

(b) ETTm1 (H = 48)

Figure 7: The progression of the shuffling parameters during training for LaST+S3.

(Appendix), we show sample visualizations of how S3 segments, shuffles, and stitches a time-series
once the optimal shuffling parameters are obtained.

Computation overhead. Our proposed network layer adds very few learnable parameters to the
baseline models, which stem from a learnable shuffling vector P along with w1 and w2, per each S3
layer. To emphasize the negligible computation overhead of S3 in comparison to the baseline models,
we show the total number of parameters in the baseline and the total learnable parameters that S3
adds, in Table 10 for classification on the EEG2 dataset and forecasting on the multivariate ETTh1
dataset (H = 24).

6 Conclusion
Summary. We propose S3, a simple plug-and-play neural network component that rearranges the
time-series in three steps: Segment the time-series, Shuffle the segments, and Stitch the shuffled
time-series by concatenating the segments and performing a learned sum with the original time-
series. Through extensive experiments on time-series classification and forecasting with state-of-
the-art methods, we show that S3 improves the learning capabilities of the baseline with negligible
computation overhead. We also show empirically that S3 helps in faster and smoother training leading
to better performance.

Limitations. While we present the effectiveness of S3 on a diverse set of baselines on classification,
forecasting, and anomaly detection tasks, we acknowledge that the evaluation of other time-series
tasks such as imputation remain for future work. Additionally applying S3 to learning representations
from other forms of time-series such as videos is an interesting direction for future research.

Broader impact. Since S3 is a plug-and-play network layer with negligible added parameters, it
allows researchers from various domains related to time-series such as health signal processing,
biometrics, climate analysis, financial markets, and others to use this module in their existing models
without the need for redesign. The low computation overhead also makes S3 a suitable choice for
edge-devices.

10

Acknowledgements

This research was partially supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) through the Discovery Grant program.

References
[1] Dani Kiyasseh, Tingting Zhu, and David A Clifton. Clocs: Contrastive learning of cardiac

signals across space, time, and patients. In International Conference on Machine Learning,
pages 5606–5615. PMLR, 2021. 1

[2] Anubhav Bhatti, Behnam Behinaein, Paul Hungler, and Ali Etemad. Attx: Attentive cross-
connections for fusion of wearable signals in emotion recognition. ACM Transactions on
Computing for Healthcare, 5(3):1–24, 2024. 1

[3] Debaditya Shome, Pritam Sarkar, and Ali Etemad. Region-disentangled diffusion model for
high-fidelity ppg-to-ecg translation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 15009–15019, 2024. 1

[4] Debaditya Shome and Ali Etemad. Speech emotion recognition with distilled prosodic and
linguistic affect representations. In IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 11976–11980, 2024. 1

[5] Pritam Sarkar and Ali Etemad. Self-supervised ecg representation learning for emotion recogni-
tion. IEEE Transactions on Affective Computing, 13(3):1541–1554, 2022. 1

[6] Pritam Sarkar, Ahmad Beirami, and Ali Etemad. Uncovering the hidden dynamics of video
self-supervised learning under distribution shifts. Advances in Neural Information Processing
Systems, 36, 2024. 1

[7] Hyeokhyen Kwon, Catherine Tong, Harish Haresamudram, Yan Gao, Gregory D. Abowd,
Nicholas D. Lane, and Thomas Plötz. Imutube: Automatic extraction of virtual on-body
accelerometry from video for human activity recognition. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 4(3), September 2020. 1

[8] Sijie He, Xinyan Li, Timothy DelSole, Pradeep Ravikumar, and Arindam Banerjee. Sub-
seasonal climate forecasting via machine learning: Challenges, analysis, and advances. In AAAI
Conference on Artificial Intelligence, volume 35, pages 169–177, 2021. 1

[9] Haitao Lin, Zhangyang Gao, Yongjie Xu, Lirong Wu, Ling Li, and Stan Z Li. Conditional local
convolution for spatio-temporal meteorological forecasting. In AAAI Conference on Artificial
Intelligence, volume 36, pages 7470–7478, 2022. 1

[10] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
AAAI Conference on Artificial Intelligence, volume 35, pages 11106–11115, 2021. 1, 2, 5, 8, 21

[11] Seok-Jun Bu and Sung-Bae Cho. Time series forecasting with multi-headed attention-based
deep learning for residential energy consumption. Energies, 13(18):4722, 2020. 1

[12] Zhiyuan Wang, Xovee Xu, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Fan Zhou.
Pref: Probabilistic electricity forecasting via copula-augmented state space model. In AAAI
Conference on Artificial Intelligence, volume 36, pages 12200–12207, 2022. 1

[13] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional
recurrent network for traffic forecasting. Advances in Neural Information Processing Systems,
33:17804–17815, 2020. 1

[14] Razvan-Gabriel Cirstea, Bin Yang, Chenjuan Guo, Tung Kieu, and Shirui Pan. Towards spatio-
temporal aware traffic time series forecasting. In IEEE International Conference on Data
Engineering, pages 2900–2913, 2022. 1

11

[15] Dawei Cheng, Fangzhou Yang, Sheng Xiang, and Jin Liu. Financial time series forecasting
with multi-modality graph neural network. Pattern Recognition, 121:108218, 2022. 1

[16] Qiao Xiao, Boqian Wu, Yu Zhang, Shiwei Liu, Mykola Pechenizkiy, Elena Mocanu, and
Decebal Constantin Mocanu. Dynamic sparse network for time series classification: Learning
what to “see”. Advances in Neural Information Processing Systems, 35:16849–16862, 2022. 1,
2, 5

[17] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In AAAI Conference on
Artificial Intelligence, volume 36, pages 8980–8987, 2022. 1, 3, 5, 6

[18] Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. Tapnet: Multivariate time
series classification with attentional prototypical network. In AAAI Conference on Artificial
Intelligence, volume 34, pages 6845–6852, 2020. 1

[19] Zhiyuan Wang, Xovee Xu, Weifeng Zhang, Goce Trajcevski, Ting Zhong, and Fan Zhou.
Learning latent seasonal-trend representations for time series forecasting. Advances in Neural
Information Processing Systems, 35:38775–38787, 2022. 1, 3, 5, 9, 20

[20] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021. 1, 3

[21] Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu.
Scinet: Time series modeling and forecasting with sample convolution and interaction. Advances
in Neural Information Processing Systems, 35:5816–5828, 2022. 1, 2

[22] Qingxiong Tan, Mang Ye, Baoyao Yang, Siqi Liu, Andy Jinhua Ma, Terry Cheuk-Fung Yip,
Grace Lai-Hung Wong, and PongChi Yuen. Data-gru: Dual-attention time-aware gated recurrent
unit for irregular multivariate time series. In AAAI Conference on Artificial Intelligence,
volume 34, pages 930–937, 2020. 1

[23] Donghui Chen, Ling Chen, Youdong Zhang, Bo Wen, and Chenghu Yang. A multiscale
interactive recurrent network for time-series forecasting. IEEE Transactions on Cybernetics,
52(9):8793–8803, 2021. 1

[24] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-
Alain Muller. Deep learning for time series classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963, 2019. 1

[25] Patrick Schäfer. The boss is concerned with time series classification in the presence of noise.
Data Mining and Knowledge Discovery, 29:1505–1530, 2015. 1

[26] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. Time-series classification with
cote: the collective of transformation-based ensembles. IEEE Transactions on Knowledge and
Data Engineering, 27(9):2522–2535, 2015. 1

[27] Aosong Feng and Leandros Tassiulas. Adaptive graph spatial-temporal transformer network
for traffic forecasting. In ACM International Conference on Information and Knowledge
Management, pages 3933–3937, 2022. 2

[28] Junwoo Park, Daehoon Gwak, Jaegul Choo, and Edward Choi. Self-supervised contrastive
learning for long-term forecasting. In International Conference on Learning Representations,
2024. 2, 3

[29] Ali Salehi and Madhusudhanan Balasubramanian. Ddcnet: Deep dilated convolutional neural
network for dense prediction. Neurocomputing, 523:116–129, 2023. 2

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017. 2

12

[31] Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. Advances in Neural Information
Processing Systems, 36, 2024. 3

[32] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference
on Learning Representations. 3, 5, 21

[33] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI Conference on Artificial Intelligence, volume 37, pages 11121–11128,
2023. 3

[34] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024. 3, 5, 7, 8

[35] Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu,
Xuchao Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, et al. Time series contrastive
learning with information-aware augmentations. In AAAI Conference on Artificial Intelligence,
volume 37, pages 4534–4542, 2023. 3, 5

[36] Seunghan Lee, Taeyoung Park, and Kibok Lee. Soft contrastive learning for time series. In The
International Conference on Learning Representations, 2024. 3, 5, 6, 21

[37] Renfei He, Limao Zhang, and Alvin Wei Ze Chew. Modeling and predicting rainfall time
series using seasonal-trend decomposition and machine learning. Knowledge-Based Systems,
251:109125, 2022. 3

[38] Robert B Cleveland, William S Cleveland, Jean E McRae, Irma Terpenning, et al. Stl: A
seasonal-trend decomposition. Journal of Official Statistics, 6(1):3–73, 1990. 3

[39] Shuai Liu, Xiucheng Li, Gao Cong, Yile Chen, and Yue Jiang. Multivariate time-series
imputation with disentangled temporal representations. In International Conference on Learning
Representations, 2022. 3

[40] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. CoST: Con-
trastive learning of disentangled seasonal-trend representations for time series forecasting. In
International Conference on Learning Representations, 2022. 3, 5

[41] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using
optimal transport. Advances in Neural Information Processing Systems, 32, 2019. 4

[42] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable
sorting and ranking. In International Conference on Machine Learning, pages 950–959, 2020.
4

[43] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank: optimizing non-
smooth rank metrics. In International Conference on Web Search and Data Mining, pages
77–86, 2008. 4

[44] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu,
Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series
archive. IEEE Journal of Automatica Sinica, 6(6):1293–1305, 2019. 5, 8

[45] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom,
Paul Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018.
ArXiv Preprint arXiv:1811.00075, 2018. 5

[46] Dheeru Dua and Casey Graff. Uc irvine machine learning repository, 2017. 5

[47] Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze,
Wojciech Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available electrocardiography
dataset. Scientific Data, 7(1):1–15, 2020. 5, 8

13

[48] Max Planck Institute for Biogeochemistry. Jena climate and weather data. https://www.
bgc-jena.mpg.de/wetter/. 5

[49] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and scalable framework for automated
time-series anomaly detection. In ACM International Conference on Knowledge Discovery and
Data Mining, pages 1939–1947, 2015. 5

[50] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing,
Mao Yang, Jie Tong, and Qi Zhang. Time-series anomaly detection service at microsoft. In
ACM International Conference on Knowledge Discovery & Data Mining, pages 3009–3017,
2019. 5

[51] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in Neural Information Processing Systems, 31, 2018. 6, 19

[52] Xiyuan Zhang, Ranak Roy Chowdhury, Jingbo Shang, Rajesh Gupta, and Dezhi Hong. Towards
diverse and coherent augmentation for time-series forecasting. In International Conference on
Acoustics, Speech, and Signal Processing, pages 1–5, 2023. 21

[53] Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data augmentation for time series
classification with neural networks. Plos One, 16(7):e0254841, 2021. 21

[54] Anh Tong, Thanh Nguyen-Tang, Toan Tran, and Jaesik Choi. Learning fractional white noises
in neural stochastic differential equations. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. 21

14

https://www.bgc-jena.mpg.de/wetter/
https://www.bgc-jena.mpg.de/wetter/

A Appendix

A.1 Additional results

We show the full results for all baselines with and without S3 on 128 UCR datasets in Table A1 and
on 30 UEA datasets in Table A2. In Figure A1 we show 2 more t-SNE plots for TS2Vec trained on 2
randomly chosen UCR datasets. A better clustering of different classes can be observed in the learned
representations after S3 is incorporated. In Table A4 we compare the standard deviation values for
the training loss of SoftCLT and SoftCLT+S3. From this table we observe that after incorporating S3,
the training becomes much more stable with significantly less variations. Figure A2 shows 2 more
comparisons of the loss landscape of TS2Vec trained with and without S3. In Figure A3 we present 6
more samples for the impact of n on the performance of the model.

Table A1: Per-dataset breakdown of results for the UCR archive.

Dataset TS2Vec TS2Vec+S3 DSN DSN+S3 InfoTS InfoTS+S3 SoftCLT SoftCLT+S3

ACSF1 0.778 0.830 0.790 0.810 0.800 0.800 0.800 0.860
Adiac 0.737 0.785 0.767 0.859 0.703 0.621 0.772 0.795
AllGestureWiimoteX 0.773 0.790 0.710 0.753 0.117 0.211 0.743 0.794
AllGestureWiimoteY 0.779 0.797 0.704 0.797 0.146 0.406 0.777 0.786
AllGestureWiimoteZ 0.723 0.773 0.744 0.753 0.160 0.203 0.740 0.746
ArrowHead 0.834 0.886 0.800 0.926 0.846 0.851 0.823 0.863
BME 0.987 1.000 0.827 0.950 0.993 1.000 1.000 1.000
Beef 0.700 0.967 0.433 0.500 0.700 0.833 0.733 0.967
BeetleFly 0.900 0.950 0.800 0.950 0.800 0.950 0.850 0.900
BirdChicken 0.800 1.000 0.900 1.000 0.750 0.900 0.800 1.000
CBF 1.000 1.000 0.968 1.000 1.000 1.000 0.968 0.999
Car 0.733 0.900 0.900 0.933 0.717 0.750 0.767 0.900
Chinatown 0.965 0.991 0.959 0.980 0.971 0.977 0.980 0.985
ChlorineConcentration 0.815 0.836 0.833 0.894 0.754 0.750 0.754 0.820
CinCECGTorso 0.817 0.935 0.796 0.981 0.801 0.857 0.824 0.954
Coffee 1.000 1.000 1.000 1.000 0.964 1.000 1.000 1.000
Computers 0.628 0.680 0.800 0.808 0.664 0.660 0.640 0.688
CricketX 0.795 0.808 0.800 0.828 0.700 0.718 0.785 0.810
CricketY 0.764 0.785 0.808 0.836 0.733 0.721 0.769 0.756
CricketZ 0.800 0.805 0.831 0.828 0.751 0.715 0.790 0.808
Crop 0.755 0.758 0.740 0.730 0.752 0.750 0.761 0.759
DiatomSizeReduction 0.984 0.997 0.915 0.997 0.961 0.990 0.974 0.990
DistalPhalanxOutlineAgeGroup 0.727 0.770 0.788 0.845 0.741 0.741 0.748 0.755
DistalPhalanxOutlineCorrect 0.732 0.793 0.772 0.833 0.757 0.772 0.728 0.797
DistalPhalanxTW 0.676 0.719 0.750 0.790 0.683 0.727 0.676 0.705
DodgerLoopDay 0.563 0.650 0.413 0.435 0.625 0.513 0.500 0.575
DodgerLoopGame 0.848 0.920 0.768 0.779 0.783 0.797 0.862 0.877
DodgerLoopWeekend 0.964 0.986 0.986 0.986 0.978 0.971 0.949 0.986
Earthquakes 0.748 0.748 0.710 0.829 0.748 0.770 0.748 0.748
ECG200 0.910 0.960 0.840 0.930 0.880 0.890 0.890 0.950
ECG5000 0.933 0.940 0.945 0.944 0.941 0.942 0.939 0.943
ECGFiveDays 1.000 1.000 0.986 1.000 0.866 0.984 1.000 1.000
ElectricDevices 0.519 0.724 0.723 0.723 0.723 0.684 0.711 0.709
EOGHorizontalSignal 0.503 0.514 0.503 0.583 0.500 0.544 0.561 0.564
EOGVerticalSignal 0.500 0.508 0.412 0.497 0.525 0.539 0.525 0.525
EthanolLevel 0.420 0.626 0.644 0.676 0.306 0.630 0.658 0.659
FaceAll 0.768 0.818 0.792 0.789 0.756 0.769 0.820 0.823
FaceFour 0.852 0.841 0.966 0.966 0.920 0.943 0.932 0.875
FacesUCR 0.926 0.947 0.965 0.979 0.893 0.873 0.940 0.935
FiftyWords 0.771 0.815 0.826 0.822 0.767 0.763 0.793 0.809
Fish 0.931 0.931 0.989 0.967 0.800 0.840 0.937 0.846
FordA 0.935 0.933 0.947 0.954 0.815 0.801 0.917 0.926
FordB 0.796 0.806 0.933 0.940 0.606 0.673 0.788 0.795
FreezerRegularTrain 0.985 0.990 0.996 0.991 0.982 0.981 0.991 0.996
FreezerSmallTrain 0.868 0.941 0.796 0.928 0.740 0.781 0.972 0.981
Fungi 0.957 0.968 1.000 1.000 1.000 1.000 0.973 0.957
GestureMidAirD1 0.615 0.715 0.638 0.746 0.077 0.092 0.723 0.700
GestureMidAirD2 0.469 0.608 0.577 0.610 0.085 0.092 0.562 0.615
GestureMidAirD3 0.308 0.431 0.300 0.423 0.077 0.108 0.392 0.477
GesturePebbleZ1 0.907 0.872 0.837 0.924 0.314 0.238 0.913 0.872
GesturePebbleZ2 0.848 0.892 0.778 0.804 0.310 0.437 0.861 0.892
GunPoint 0.980 0.993 0.993 0.993 0.980 0.987 0.993 0.993
GunPointAgeSpan 0.965 0.994 0.981 1.000 0.956 0.978 0.956 1.000
GunPointMaleVersusFemale 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Ham 0.733 0.810 0.752 0.790 0.781 0.638 0.771 0.819
HandOutlines 0.924 0.919 0.852 0.848 0.908 0.916 0.850 0.849
Haptics 0.516 0.545 0.565 0.594 0.403 0.438 0.503 0.512
Herring 0.594 0.688 0.672 0.734 0.578 0.594 0.641 0.688
HouseTwenty 0.908 0.966 0.924 0.983 0.891 0.874 0.933 0.941
InlineSkate 0.407 0.420 0.431 0.480 0.333 0.345 0.429 0.402
InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
InsectEPGSmallTrain 1.000 1.000 0.474 1.000 1.000 1.000 1.000 1.000
InsectWingbeatSound 0.634 0.641 0.581 0.636 0.647 0.637 0.625 0.638
ItalyPowerDemand 0.924 0.971 0.959 0.965 0.945 0.965 0.964 0.972
LargeKitchenAppliances 0.867 0.864 0.880 0.928 0.821 0.827 0.827 0.867
Lightning2 0.852 0.885 0.770 0.803 0.721 0.787 0.836 0.852
Lightning7 0.849 0.836 0.808 0.890 0.822 0.849 0.822 0.808

15

Table A1 – continued from previous page
Dataset TS2Vec TS2Vec+S3 DSN DSN+S3 InfoTS InfoTS+S3 SoftCLT SoftCLT+S3

Mallat 0.922 0.940 0.961 0.972 0.912 0.944 0.915 0.946
Meat 0.950 1.000 0.867 0.950 0.933 0.917 0.950 0.983
MedicalImages 0.788 0.801 0.753 0.770 0.770 0.745 0.793 0.792
MelbournePedestrian 0.957 0.961 0.948 0.949 0.945 0.946 0.961 0.963
MiddlePhalanxOutlineAgeGroup 0.636 0.656 0.720 0.790 0.649 0.649 0.630 0.675
MiddlePhalanxOutlineCorrect 0.818 0.821 0.793 0.828 0.735 0.759 0.821 0.838
MiddlePhalanxTW 0.571 0.623 0.581 0.639 0.610 0.610 0.578 0.610
MixedShapesRegularTrain 0.920 0.926 0.977 0.983 0.916 0.920 0.925 0.939
MixedShapesSmallTrain 0.846 0.882 0.939 0.950 0.856 0.877 0.894 0.884
Motestrain 0.858 0.884 0.907 0.851 0.885 0.882 0.874 0.876
NonInvasiveFetalECGThorax1 0.928 0.944 0.926 0.926 0.904 0.904 0.933 0.937
NonInvasiveFetalECGThorax2 0.932 0.948 0.916 0.892 0.926 0.913 0.946 0.965
OliveOil 0.900 0.933 0.467 0.967 0.867 0.933 0.833 0.856
OSULeaf 0.851 0.839 0.979 0.992 0.603 0.612 0.818 0.831
PhalangesOutlinesCorrect 0.793 0.817 0.832 0.837 0.801 0.800 0.801 0.825
Phoneme 0.304 0.298 0.325 0.341 0.197 0.319 0.299 0.304
PickupGestureWiimoteZ 0.820 0.840 0.820 0.843 0.320 0.400 0.880 0.900
PigAirwayPressure 0.644 0.663 0.471 0.889 0.139 0.163 0.332 0.361
PigArtPressure 0.966 0.962 0.320 0.284 0.337 0.418 0.966 0.962
PigCVP 0.793 0.817 0.269 0.254 0.139 0.188 0.832 0.798
PLAID 0.553 0.547 0.214 0.203 0.067 0.179 0.512 0.538
Plane 0.990 1.000 1.000 1.000 0.981 0.981 0.981 1.000
PowerCons 0.961 1.000 0.928 0.967 0.989 0.994 0.994 0.994
ProximalPhalanxOutlineAgeGroup 0.829 0.868 0.868 0.878 0.859 0.859 0.854 0.863
ProximalPhalanxOutlineCorrect 0.883 0.900 0.911 0.924 0.845 0.873 0.869 0.911
ProximalPhalanxTW 0.800 0.829 0.828 0.825 0.790 0.824 0.824 0.820
RefrigerationDevices 0.589 0.608 0.528 0.584 0.579 0.571 0.603 0.584
Rock 0.740 0.740 0.500 0.600 0.500 0.700 0.857 0.740
ScreenType 0.416 0.448 0.597 0.645 0.440 0.469 0.453 0.445
SemgHandGenderCh2 0.947 0.948 0.618 0.574 0.937 0.963 0.937 0.958
SemgHandMovementCh2 0.862 0.876 0.431 0.436 0.831 0.858 0.841 0.864
SemgHandSubjectCh2 0.951 0.920 0.656 0.456 0.869 0.929 0.947 0.936
ShakeGestureWiimoteZ 0.940 0.960 0.940 0.914 0.400 0.600 0.920 0.960
ShapeletSim 0.989 1.000 0.767 0.872 0.528 0.600 1.000 0.994
ShapesAll 0.903 0.905 0.903 0.905 0.780 0.808 0.898 0.893
SmallKitchenAppliances 0.733 0.733 0.821 0.835 0.739 0.731 0.712 0.752
SmoothSubspace 0.980 0.987 0.947 0.912 0.987 0.940 0.993 0.980
SonyAIBORobotSurface1 0.890 0.930 0.965 0.972 0.839 0.895 0.884 0.864
SonyAIBORobotSurface2 0.872 0.923 0.929 0.892 0.794 0.851 0.876 0.813
StarLightCurves 0.968 0.939 0.981 0.983 0.959 0.960 0.968 0.965
Strawberry 0.962 0.968 0.972 0.984 0.957 0.962 0.954 0.962
SwedishLeaf 0.939 0.938 0.979 0.981 0.936 0.934 0.947 0.938
Symbols 0.973 0.948 0.927 0.922 0.939 0.946 0.960 0.967
SyntheticControl 0.993 0.993 0.993 0.997 0.980 0.987 0.997 0.993
ToeSegmentation1 0.934 0.912 0.974 0.978 0.741 0.825 0.934 0.952
ToeSegmentation2 0.900 0.900 0.946 0.962 0.846 0.900 0.877 0.938
Trace 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TwoLeadECG 0.987 0.990 0.996 0.999 0.753 0.910 0.977 0.994
TwoPatterns 1.000 0.994 0.949 1.000 0.999 1.000 1.000 1.000
UMD 0.993 1.000 0.979 0.934 1.000 1.000 1.000 1.000
UWaveGestureLibraryAll 0.929 0.956 0.902 0.906 0.959 0.963 0.950 0.970
UWaveGestureLibraryX 0.790 0.817 0.833 0.833 0.806 0.824 0.829 0.811
UWaveGestureLibraryY 0.719 0.739 0.771 0.776 0.723 0.730 0.736 0.746
UWaveGestureLibraryZ 0.764 0.780 0.784 0.788 0.732 0.754 0.772 0.769
Wafer 0.996 0.997 0.992 0.999 0.989 0.996 0.999 0.998
Wine 0.870 0.944 0.556 0.722 0.759 0.815 0.519 0.981
WordSynonyms 0.680 0.708 0.724 0.732 0.687 0.687 0.701 0.718
Worms 0.649 0.805 0.619 0.663 0.649 0.610 0.714 0.779
WormsTwoClass 0.701 0.870 0.751 0.779 0.597 0.727 0.766 0.818
Yoga 0.872 0.885 0.882 0.919 0.829 0.841 0.881 0.890

Average 0.819 0.851 0.794 0.833 0.733 0.760 0.825 0.845

16

Table A2: Per-dataset breakdown of classification results for the UEA dataset.
Dataset TS2Vec TS2Vec+S3 DSN DSN+S3 InfoTS InfoTS+S3 SoftCLT SoftCLT

ArticularyWordRecognition 0.987 0.983 0.980 0.993 0.983 0.993 0.993 0.997
AtrialFibrillation 0.200 0.400 0.267 0.533 0.266 0.400 0.200 0.400
BasicMotions 0.975 0.983 1.000 0.975 1.000 1.000 0.975 1.000
CharacterTrajectories 0.995 0.996 0.994 0.994 0.683 0.701 0.984 0.997
Cricket 0.986 1.000 0.986 0.944 0.958 0.986 0.972 0.986
DuckDuckGeese 0.500 0.500 0.620 0.660 0.560 0.580 0.500 0.420
EigenWorms 0.832 0.878 0.336 0.383 0.720 0.748 0.856 0.864
Epilepsy 0.964 0.964 1.000 0.884 0.957 1.000 0.935 0.971
ERing 0.874 0.848 0.907 0.956 0.926 0.944 0.911 0.937
EthanolConcentration 0.300 0.312 0.221 0.680 0.259 0.304 0.281 0.304
FaceDetection 0.498 0.516 0.638 0.652 0.525 0.564 0.534 0.534
FingerMovements 0.480 0.590 0.500 0.660 0.500 0.570 0.600 0.600
HandMovementDirection 0.270 0.338 0.297 0.649 0.408 0.541 0.419 0.486
Handwriting 0.519 0.476 0.353 0.306 0.529 0.534 0.493 0.480
Heartbeat 0.663 0.756 0.766 0.741 0.756 0.780 0.683 0.761
InsectWingbeat 0.466 0.437 0.322 0.483 0.466 0.469 0.485 0.478
JapaneseVowels 0.984 0.986 0.992 0.970 0.962 0.992 0.984 0.992
Libras 0.867 0.889 0.961 0.894 0.833 0.878 0.878 0.911
LSST 0.543 0.563 0.550 0.579 0.543 0.559 0.516 0.563
MotorImagery 0.510 0.540 0.490 0.640 0.580 0.610 0.530 0.560
NATOPS 0.922 0.956 0.961 0.983 0.928 0.950 0.967 0.983
PEMS-SF 0.694 0.723 0.786 0.861 0.740 0.844 0.682 0.746
PenDigits 0.990 0.989 0.987 0.982 0.983 0.987 0.987 0.988
PhonemeSpectra 0.240 0.240 0.315 0.114 0.233 0.282 0.223 0.231
RacketSports 0.855 0.868 0.868 0.865 0.895 0.914 0.862 0.855
SelfRegulationSCP1 0.785 0.850 0.700 0.911 0.843 0.870 0.820 0.867
SelfRegulationSCP2 0.578 0.578 0.506 0.583 0.567 0.606 0.494 0.589
SpokenArabicDigits 0.990 0.990 0.987 0.803 0.808 0.823 0.950 0.985
StandWalkJump 0.467 0.533 0.400 0.533 0.400 0.467 0.333 0.600
UWaveGestureLibrary 0.909 0.919 0.925 0.903 0.906 0.928 0.925 0.934

Average 0.695 0.720 0.687 0.737 0.691 0.727 0.699 0.734

Table A3: Forecasting results for MOMENT with and without S3.
Dataset H Metric PatchTST DLinear TimesNet FEDFormer Stationary LightTS MOMENT MOMENT+S3 Diff.

ETTh1

96 MSE 0.370 0.375 0.384 0.376 0.513 0.424 0.413 0.407 2.90%
MAE 0.399 0.399 0.402 0.419 0.491 0.432 0.437 0.422 3.28%

192 MSE 0.413 0.405 0.436 0.420 0.534 0.475 0.415 0.398 3.77%
MAE 0.421 0.416 0.429 0.448 0.504 0.462 0.487 0.464 4.60%

336 MSE 0.422 0.439 0.491 0.459 0.588 0.518 0.426 0.425 0.06%
MAE 0.436 0.443 0.469 0.465 0.535 0.488 0.432 0.432 0.00%

720 MSE 0.447 0.472 0.521 0.506 0.643 0.547 0.423 0.411 1.90%
MAE 0.466 0.490 0.500 0.507 0.616 0.533 0.431 0.423 1.82%

ETTh2

96 MSE 0.274 0.289 0.340 0.358 0.476 0.397 0.378 0.348 7.80%
MAE 0.336 0.353 0.374 0.397 0.458 0.437 0.411 0.390 4.98%

192 MSE 0.339 0.383 0.402 0.429 0.512 0.520 0.382 0.372 2.42%
MAE 0.379 0.418 0.414 0.439 0.493 0.504 0.414 0.400 3.33%

336 MSE 0.329 0.448 0.452 0.496 0.552 0.626 0.379 0.360 4.95%
MAE 0.380 0.465 0.452 0.487 0.551 0.559 0.407 0.392 3.65%

720 MSE 0.379 0.605 0.462 0.463 0.562 0.863 0.373 0.357 4.25%
MAE 0.422 0.551 0.468 0.474 0.560 0.672 0.404 0.396 1.94%

17

Table A4: Comparison of the measured standard deviation of the training loss for TS2Vec and
TS2Vec+S3, over the first 75 UCR datasets.

Dataset TS2Vec TS2Vec+S3 Diff.

ACSF1 2.39 1.56 34.65%
AllGestureWiimoteX 1.19 0.88 26.38%
AllGestureWiimoteZ 1.43 1.35 5.71%
BME 23.59 21.24 10.00%
BirdChicken 1.66 2.45 -47.43%
CBF 4.26 1.16 72.83%
ChlorineConcentration 11.05 9.16 17.03%
Computers 10.93 9.85 9.92%
CricketX 2.82 1.51 46.49%
CricketY 19.42 13.91 28.35%
CricketZ 4.66 3.34 28.44%
DistalPhalanxOutlineAgeGroup 13.17 0.92 93.00%
DistalPhalanxOutlineCorrect 4.03 0.92 77.10%
DistalPhalanxTW 4.32 0.95 77.98%
DodgerLoopWeekend 557.35 798.64 -43.29%
ECG200 1.85 1.67 9.64%
ECG5000 1.83 1.30 29.05%
EOGHorizontalSignal 3.58 3.14 12.16%
EOGVerticalSignal 2.83 1.66 41.09%
Earthquakes 12.54 9.73 22.40%
EthanolLevel 1.60 1.48 7.27%
FaceAll 12.12 10.66 12.03%
FaceFour 4.64 1.62 65.14%
FiftyWords 5.10 4.47 12.31%
FordA 2.94 2.55 13.13%
FordB 1.41 1.31 7.24%
GestureMidAirD3 6.49 4.68 27.83%
HAR 2.40 1.32 45.06%
Haptics 1.42 1.06 25.90%
Herring 2.60 2.64 -1.77%
HouseTwenty 9.22 8.35 9.38%
InlineSkate 6.10 5.71 6.50%
InsectEPGRegularTrain 11.61 4.14 64.37%
InsectEPGSmallTrain 12.35 4.71 61.89%
ItalyPowerDemand 13.87 0.86 93.83%
LargeKitchenAppliances 13.10 7.66 41.51%
Lightning2 94.45 6.31 93.32%
Lightning7 2.13 1.37 35.46%
Meat 4.75 4.31 9.19%
MedicalImages 1.23 1.43 -16.47%
MelbournePedestrian 1.62 0.88 45.67%
MiddlePhalanxOutlineAgeGroup 4.11 0.92 77.71%
MiddlePhalanxOutlineCorrect 4.21 0.93 77.95%
MiddlePhalanxTW 4.09 0.93 77.39%
MixedShapesRegularTrain 2.48 2.38 4.17%
MixedShapesSmallTrain 4.13 2.50 39.49%
MoteStrain 8.07 0.98 87.92%
NonInvasiveFetalECGThorax1 2.75 2.48 9.83%
NonInvasiveFetalECGThorax2 3.20 2.80 12.73%
OSULeaf 1.72 1.52 11.90%
OliveOil 19.02 11.44 39.84%
PLAID 4.67 2.98 36.09%
PhalangesOutlinesCorrect 2.82 2.01 28.72%
Phoneme 2.30 1.87 18.91%
PickupGestureWiimoteZ 4.54 0.88 80.67%
PigAirwayPressure 6.32 5.59 11.57%
PigArtPressure 1.57 1.50 4.11%
PigCVP 1.89 1.22 35.55%
Plane 15.28 10.49 31.31%
PowerCons 13.83 7.09 48.78%
ProximalPhalanxOutlineAgeGroup 13.26 0.95 92.85%
ProximalPhalanxOutlineCorrect 12.95 0.94 92.72%
ProximalPhalanxTW 1.40 0.92 34.04%
RefrigerationDevices 6.66 4.45 33.25%
Rock 8.27 9.23 -11.55%
ScreenType 9.70 5.49 43.44%
SemgHandGenderCh2 9.78 7.59 22.44%
SemgHandMovementCh2 19.03 17.21 9.59%
SemgHandSubjectCh2 8.78 7.93 9.68%
ShakeGestureWiimoteZ 2.41 0.83 65.65%
ShapeletSim 3.32 1.12 66.18%
ShapesAll 1.32 1.07 19.19%
SmallKitchenAppliances 84.86 47.19 44.39%
SmoothSubspace 1.58 0.85 46.46%
SonyAIBORobotSurface1 12.81 1.47 88.50%

18

8 6 4 2 0 2 4 6
10

8
6
4
2
0
2
4

TS2Vec

8 6 4 2 0 2 4 6 8
6
4
2
0
2
4
6
8

TS2Vec+S3

(a) HouseTwenty

150 100 50 0 50 100 150
150

100

50

0

50

100
TS2Vec

26.5 26.0 25.5 25.0 24.5 24.0 23.54.8

4.6

4.4

4.2

4.0

3.8
TS2Vec+S3

(b) BasicMotions

Figure A1: t-SNE visualizations of the learned representations for TS2Vec and TS2Vec+S3 for 2
randomly chosen test sets. Different colors represent different classes, where we observe better
grouping of representations belonging to each class after the addition of S3.

TS2Vec
 TS2Vec+S3

(a) ShakeWiimoteZ

TS2Vec
 TS2Vec+S3

(b) Symbols

Figure A2: Visualisation of the loss landscape following [51], for TS2Vec and TS2Vec+S3 on two
UCR datasets. It can be observed that the loss landscape with S3 is considerably smoother than the
baseline without S3.

0 50 100 150 200
Number of Segments

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

(a) BeetleFly (t = 512)

5 10 15 20 25
Number of Segments

0.70

0.75

0.80

Ac
cu

ra
cy

(b) RacketSport (t = 30)

0 50 100 150 200
Number of Segments

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

(c) Rock (t = 2844)

0 50 100 150 200
Number of Segments

2.40

2.45

2.50

2.55

2.60

2.65

M
SE

(d) ETTh2 (H= 720)

0 50 100 150 200
Number of Segments

2.2

2.4

2.6

M
SE

(e) ETTh2 (H= 336)

0 50 100 150 200
Number of Segments

1.2

1.4

1.6

1.8

M
SE

(f) ETTh2 (H= 48)

Figure A3: Performance vs. number of segment. In (a), (b), and (c), 3 UCR datasets for classification
were used, and in (d), (e), and (f) the ETTh2 dataset for forecasting was used with 3 different horizon
lengths. A higher value for accuracy is better, and a lower value MSE is better.

19

A.2 Weighted average parameters during training

In Figure A4, we present a visual overview of how the weighted average parameters w1 and w2

update along with the rest of the model during training on ETTh1 (H = 24) and ETTh2 (H = 720) in
multivariate settings. We use LaST [19] as the baseline. It is observed that the weights converge to
their final values at the end of training.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Iteration ×104

0.4

0.6

0.8

1.0

1.2

1.4

W
ei

gh
t w1

w2

(a) ETTh2(M) H = 720

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Iteration ×104

0.0

0.5

1.0

1.5

2.0

W
ei

gh
t w1

w2

(b) ETTh1(M) H = 24

Figure A4: The progression of the weighted average parameters w1 and w2.

A.3 Visualisation of the segments

Figure A5 visualizes three sample time-series and how their respective segments are rearranged using
S3. The figure depicts the original sequence, the shuffled sequence, and the final output.

1 2 3 4 5 6 7 8

Input

5 2 3 1 8 7 6 4

Shuffled

Output

1 2 3 4 5 6 7 8

Input

4 5 6 7 1 3 2 8

Shuffled

Output

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

13 16 2 10 14 3 12 6 4 7 11 8 1 9 5 15

Shuffled

Output

Figure A5: Sample visualizations of S3 on two UCI datasets (left and middle) and the ETTh1 dataset
(right) with TS2Vec as the baseline. We have 8 segments for the UCI datasets, and 16 for the ETTh1.

A.4 Comparison with data augmentation methods

The proposed S3 layer is fundamentally different from data augmentation techniques, in that unlike
traditional augmentation methods, S3 introduces learnable parameters that are jointly optimized with
the rest of the model, allowing S3 to adapt dynamically throughout the training process. To further
explore the differences between S3 and data augmentation, we conduct an experiment where, before
training on the ETTm1 multivariate dataset, we apply the following augmentations: (1) shuffling
augmentation with varying numbers of segments, (2) shuffling augmentation combined with mixup,
(3) noise augmentation with zero mean, variance of 1, and a magnifying coefficient of 0.01, and (4)

20

Table A5: Comparison of S3 with different
data augmentation techniques on the ETTm1
multivariate dataset. All values are MSE.

Model TS2Vec LaST

Baseline 0.6616 0.3366
Baseline + shuffle (seg = 8) 0.6170 0.3670
Baseline + shuffle (seg = 8) + mixup 0.6105 0.3556
Baseline + shuffle (seg = 16) 0.6245 0.3652
Baseline + shuffle (seg = 16) + mixup 0.6203 0.3523
Baseline + noise 0.6302 0.3294
Baseline + noise + mixup 0.6064 0.3352
Baseline + [52] 0.6600 0.3349
Baseline + S3 0.3959 0.1002

0 500 1000 1500 2000 2500
No. of training samples

0.0

2.5

5.0

7.5

Di
ffe

re
nc

e
(%

)

Figure A6: Dataset size vs. improvement due
to S3. Here, different subsets of the LSST
dataset from the UEA archive are randomly
selected to create different sized variants. The
results are averaged over three runs.

noise augmentation combined with mixup. The results are presented in Table A5 where we observe
that S3 outperforms such data augmentation strategies. Additionally, data augmentation techniques
typically have a stronger impact on smaller datasets, often due to the lack of variation and diversity,
but their effect is less pronounced on larger datasets [53]. To evaluate this, we use the LSST dataset
from UEA and create 10 different subsets by randomly dropping varying amounts of data, ranging
from 20% to 99%. We then retrain SoftCLT [36], both with and without S3, on these subsets as well
as on the original dataset. The results, averaged over three runs, are presented in Figure A6. These
results show no clear trend in performance gain relative to dataset size, indicating that S3 benefits
datasets regardless of their size.

A.5 Case-study on factors influencing the improvement by S3

To investigate the scenarios where S3 is most effective, we conduct additional experiments considering
three key factors: (1) the length of time-series sequences, (2) the degree of non-linearity, and (3)
the presence of long-term temporal dependencies. For (1), we examine the percentage difference
relative to sequence length. For (2), we consider the percentage difference relative to the mean of
squared residuals from a linear model. Lastly, for (3), we analyze the percentage difference in relation
to the Hurst exponent [54]. We use PatchTST [32] for experiments (2) and (3), while Informer
[10] is used for experiment (1) since PatchTST cannot be used due to its reliance on equal-length
inputs. We conduct all three experiments on the ETT, Weather, and Electricity datasets. The results
of this analysis are shown in Table A6, where m represents the slope of the linear relationship,
and R is Pearson’s correlation coefficient. We observe direct positive relationships between the
percentage difference upon adding S3 and both sequence length and long-term temporal dependency,
while non-linearity in the time-series shows no considerable relationship. For sequence length, the
moderate correlation suggests that while the effect is not very strong, it is consistent, indicating that
sequence length is likely a relevant factor for percentage difference. Long-term temporal dependency
has a strong impact on percentage difference, as indicated by the steep slope. However, the lower
correlation suggests that other factors in the data may also influence this relationship. We hypothesize
that when long-term temporal dependencies are simple to learn or highly repetitive, the impact of S3
will be less pronounced, as re-ordering may not be necessary to learn such simple dynamics. On the
other hand, for more complex long-term dependencies, S3 has a much stronger impact, as reflected
by the high slope.

Table A6: Linear analysis between three factors (sequence length, non-linearity, and long-term
temporal dependency) and percentage difference.

Factor m R

Sequence length +0.04 +0.55
Non-linearity 0.00 +0.05
Long-term temporal dependency +2.89 +0.26

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, see Section 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

22

Justification: This paper has no theoretical assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details are detailed in Section 4, and the full documented
code is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23

Answer: [Yes]

Justification: The code is provided with sufficient documentation to be able to run it in few
simple steps.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to unders tand the
results?

Answer: [Yes]

Justification: We use the same experimental settings as the baselines that we have incorpo-
rated S3 into, except for experiments on PatchTST and LaST with the electricity dataset
where we use a batch size of 8. We have clarified this in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Table 9 we show the standard deviation in performance metric for all base-
lines on a single dataset for both classification and forecasting by repeating the experiments
for 10 different seed values, observing very small sensitivity to seed values. We do not
perform this for each experiment in our main paper, as it would be computationally too
expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources is presented Section 4. Additionally we have a separate
study in Table 10 in which we analyze the exact computational overhead w.r.t. the baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See section. 6

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

25

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

26

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Apart from our code, that is well documented, we do not release any assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

27

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

