Under review as a conference paper at ICLR 2026

FOLD: FAST CORRECT SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding accelerates Large Language Model (LLM) inference by us-
ing a small, fast *draft’ model to propose tokens that a larger target’ model then
verifies in a single, parallel step. While this paradigm has become the standard
for high-throughput inference, the community’s focus has been almost entirely
on a single metric: maximizing the acceptance rate of drafted tokens. We ar-
gue this is a critical oversight. The true bottleneck is not just acceptance, but the
catastrophic computational cost of rejection. A single rejected token triggers a
cascading failure, discarding all subsequent work and nullifying potential gains.
We introduce Fast cOrrect speculLative Decoding (FOLD), a framework that fun-
damentally reframes the problem from merely avoiding rejection to instantly re-
covering from it. FOLD transforms the verification step itself. Instead of a simple
pass/fail check, our novel verifier uses an integrated Early Exit module to proac-
tively generate high-probability alternative sequences in parallel. When the pri-
mary draft fails, FOLD doesn’t discard the computation; it seamlessly pivots to a
pre-computed, correct path. This turns a catastrophic failure into a minor course
correction, salvaging the entire speculative branch. Extensive experiments show
that by treating rejection as an opportunity for correction, not a point of failure,
FOLD achieves up to a 4.09x speedup over Auto Regression decoding, setting
a new bar for inference efficiency. We anonymously open-source our project at
https://anonymous.4open.science/r/iclr26-—fold.

1 INTRODUCTION

Modern large language models (LLMs) (OpenAl et al., [2024) such as DeepSeek-V3 (DeepSeek-Al
et al., 2024), Qwen-3 (Yang et al.,|2025)), and LLaMA-3 (Grattafiori et al.,|2024)) have demonstrated
exceptional performance and are widely applied across various domains. During the Auto Regres-
sion generation process, each token is generated by invoking all model parameters, and the length
of text produced in a single dialogue can range from hundreds to thousands of tokens. As the model
parameters must be repeatedly loaded from memory during decoding, memory bandwidth limits
overall inference speed (Leviathan et al., 2023)).

Speculative decoding (Leviathan et al.,|2023)methods aim to address this issue by innovatively splits
LLM inference into two phases—drafting and verification— which rapidly generate fixed vy draft
tokens and then verify them in parallel (Li et al., 2024b). Thanks to the tiny model size compared to
the target model, it brings notable acceleration benefits, while effectively improving GPU utilization
and accelerating LLM inference.

Previous speculative decoding efforts have consistently focused on improving the effectiveness of
the draft. EAGLE series (Li et al.| [2024a) and HASS (Zhang et al., |2025) leverages features from
the Target model to design and train more advanced draft models. AdaEAGLE (Zhang et al., [2024)
leverages the LDLP module to explicitly predict the optimal number of draft tokens during inference
to guide the draft model. Meanwhile, Ouroboros (Zhao et al., 2024) only accelerates draft stages,
by caching previous draft tokens. The core idea of these approaches is that the acceleration effect of
speculative decoding improves as the acceptance rate of draft tokens increases. However, we observe
that as the draft token sequence length grows, the probability of rejection also increases. Moreover,
when rejection occurs, the subsequent sequence is discarded. This results in significant GPU com-
putation time being wasted, which negatively impacts inference acceleration. Conversely, if this
computation time can be utilized, the acceleration effect can be further enhanced. Although |Bach-

https://anonymous.4open.science/r/iclr26-fold

Under review as a conference paper at ICLR 2026

mann et al.| (2025) proposed using Judge Decoding to avoid rejection of draft tokens that are correct
but inconsistent with the target model, this leads to it not being a lossless acceleration method.

Based on this insight, we propose Fast cOrrect specuLative Decoding (FOLD), a method that
rapidly corrects erroneous draft tokens through an Early Exit Module and enables the draft model to
quickly generate subsequent sequences. Specifically, FOLD extends the traditional speculative de-
coding process from two stages (draft-verify) to four stages{Early Draft} [Early Verify] [Draft Correct]
achieving: (i) extracting the top k early verification results using the logits of the Early
Exit Module in stage Early Verify; (ii) integrating multiple potentially correct branches in stage
Draft Correct and parallelly computing the subsequent sequences of multiple potential branches us-
ing the tree-based attention mechanism (Cai et al, |2024)(i.e. Tree Attention); (iii) selecting the
longest accepted sequence branch as the correct branch during Final Verify. This approach ensures
that even when the original draft tokens are rejected, while the Early Exit Module generates correct
results, the subsequent draft token sequences do not need to be discarded, as their prefix is correct.
Furthermore, FOLD is compatible with most existing speculative decoding methods. We choose
Pearl(Liu et al., 2025)) as an example for adaptation and test it on various text generation datasets,
achieving outstanding acceleration, with up to a 4.09x improvement in inference speed.

Speculative decoding

draft [Hello I He I is I llm Inamed I FOLD I fo I make I me IbeTTerI to I draft]:Tokens ITur‘lier j
FOLD I using me [cor‘recTI wrong] [Tokens Iear‘lier I .]

I correct wrong draft token IIm accepted draft token wrong draft token

Figure 1: An overview of speculative decoding(SD) and our FOLD. SD corrects wrong draft tokens
after per draft-verify turn finish, while FOLD instantly corrects wrong draft tokens during draft
phase.

2 BACKGROUND

Notations. In this paper, we use 71 and 7y, to represent the number of forward passes performed by
the draft model during the Early Draft and Draft Correct stages respectively, while + denote farward
times of draft model per round in Speculative Decoding.

Speculative decoding. Speculative decoding is an innovative technique for enhancing the effi-
ciency of auto-regressive large language models (LLMs) without sacrificing output quality. This
approach utilizes a smaller, efficient "draft model” to predict multiple subsequent tokens, which are
then validated in parallel by the target LLM. By doing so, speculative decoding enables the gen-
eration of multiple tokens within the time typically required for a single inference. Formally, the
speculative decoding framework consists of two key stages: draft construction and draft verification
(Xu & McAuleyl 2023b)).

Early Exit techniques. Early Exit techniques use an auxiliary module to stop an LLM’s inference
at an intermediate layer for simpler inputs, avoiding unnecessary computation. This balances the
power of large models, needed for complex tasks, with the efficiency of shallower networks for
“easy” examples (Xu & McAuley, 2023a)). Bae et al.|(2023)) proposes a fast and robust early-exiting
framework for autoregressive language models, using synchronized parallel decoding to improve
inference speed and efficiency while maintaining accuracy. [Liu et al.|(2024b) proposes a speculative
decoding method for faster LLM inference using early exiting and a Thompson sampling control
mechanism to balance speed and accuracy.

Pearl PEARL (Liu et al.,|2025)) introduces a pre-verification strategy to validate the initial draft
token during the drafting phase and a post-verification approach to generate additional draft tokens

Under review as a conference paper at ICLR 2026

during the verification phase. By implementing these strategies, PEARL enables parallel execution
of the drafting and verification phases, while adaptively adjusting the draft length to suit different
scenarios. This effectively mitigates the issue of mutual waiting between phases.

3 FOLD

We delineate the core architecture of FOLD
in Section [3.1] followed by demonstrating its
seamless integration with speculative sampling
methods through the Pearl case study in Sec- [ooy Y]
tiond] where we also furnish theoretical proofs &

Final Verify . Early Verify

[1 Y2 Y Y]

[Correciis so flexible that we will present in the ri First N Decoder layers ’
following section] to show how FOLD Com-
bined with Pearl. By decomposing both draft- F Embedding]
ing and verification into alternating unit, this ar-
chitecture explicitly mitigates redundant com-
putation in draft models while reducing unnec-
essary target model verifications. The FOLD
framework, compared to traditional speculative ~Figure 2: Architecture of FOLD. The Early Exit
sampling methods, decomposes the draft stage Module uses the hidden states from the first N
into Early Draft and Draft Correct. Correspond- layers as input, where "snow” denotes parameter
ingly, in traditional speculative sampling meth- freezing and “fire” denotes trainable parameters.
ods, the v tokens generated by the draft model

in each draft stage are also split into generat-

ing 71 and -y, draft tokens, , which means draft

model forward times during Early Draft and

Draft Correct phase respectively, i.e. v = v + 2.

validating its efficacy. LM_head]
Ea : !
3.1 ARCHITECTURE ‘ Last M Decoder layers ’ '
1
FOLD splits the conventional draft-verify T :
pipeline into four distinct unit: |Early Draff [h o fs fu] '
|[Early Verifyl [Draft Correct, and |Final Verify T] MultiHead
while stage combination of [Early Verify] [Drafi] : Attention
:
1
1
1

Early Exit Module

[1 Z2 z3 T4]

Early Draft. As with conventional speculative sampling methods, Early Draft phase utilizes the
draft model to generate standard draft token sequences, while executing fewer inference steps y; in
this drafting stage compared to traditional speculative sampling approaches.

Early Verify. For unverified tokens, Early Verify performs validation during this phase. The Early
Exit Module executes only once per verification round to produce preliminary validation features,
while saving First N layers hidden state for Final Verify phase as show in Figure [2] The features
of early exit module are subsequently fed into the target model’s Im_head to generate early exit
logits. We extract the top k£ most probable tokens from these logits as candidate predictions, serving
as backup verification options during Final Verify procedures, effectively mitigating performance
degradation in cases of draft token rejection.

To simplify this work, we adopt Kangaroo’s (Liu et al., [2024a) adapter module as our early exit
module. Specifically, for target models, our observations indicate that employing excessively shal-
low decoder layers results in degraded token quality and impaired alignment with the target model.
Therefore, selecting the first N layers close to half the total layers (i.e., 221 js crucial to strike
an optimal balance between early exit token quality and the number of subsequent speculative tokens
for next verification turn.

Draft Correct. As shown in[3] during the phase, the draft model synthesizes draft
tokens from [Early Verify| with early exit tokens to generate subsequent speculative tokens. Integrat-
ing these candidate tokens with the draft model’s native output sequence, our framework constructs

Under review as a conference paper at ICLR 2026

How can I How What are can How can I How What are can do can can you I
[I } I * do
How How N do can
What can
g What N can
can
are are N\, you
you I
can can X
I

Multi branches

Draft Correct output draft branch | How | can | I | do |®

input Early Draft Early Verify

—— - 3 ; How | can | ® ;
How | can How What are | can —> do can | you i earlyexit What (g :
; branches How | are | you | ® H

L J : Y 1

M : How can | I |® H

Draft Correct input ! H

“---T

h
target result |What!| are '
[are] ;

Figure 3: Diagram of the principle during Draft Correct phase. In the Draft Correct stage, the input
is integrated from multiple branches, with attention causal masks designed based on the branches,

resulting in the output of subsequent tokens for the corresponding branches. squares represent
the current input round, blue squares represent the Early Draft, squares represent the Early
Verify, and squares represent the Draft Correct outputs.

4 x K + 1 draft branches, where 4 denotes the token length verified by Early Verify. Utilizing
tree-based attention mechanism, the draft model processes all branches concurrently, predicting v

subsequent tokens per branch for [EarTy Verify|in next round.

Specifically, within the FOLD framework, ~y; and 2 — representing the forward times of draft
models during the Early Draft and Draft Correct phases respectively — are both assigned a value of
1, and the tokens for current verification inputs are "How” and “can”. The early exit layer selects
the top k = 2 candidates from logits— specifically, candidate pairs of ("How”, ”What”) and ("are”,
“can”). Simultaneously, the draft model outputs the token I’ during the Preliminary Verification
phase. These are subsequently integrated to form v - k + 1 = 5 distinct branches with initial tokens:
”I”, ”How”, "What”, ”are”, and “can”. In this phase, the draft model employs tree-based attention
mechanism to infer sequences v, = 1 time steps, yielding subsequent tokens for all branches such
as ’do can can you I’’. Later, upon the Target model computing the full verification results of
”What” and "are”, the token "How” of draft branch is rejected. Fortunately, Early Verify obtained
the correct answer and is thus able to immediately correct the erroneous draft token, while also
obtaining subsequent draft tokens “can” during the Draft Correct phase.

Final Verify. During phase, target model resumes computation from the Early Ver-
ify’s first N layers hidden states bypassing the early-exit module, ultimately selecting the longest
draft branch as correct branch.

In summary, this architecture selects a top k candidate subset from the early exit module’s logits in
Early Verify phase. During the Draft Correct phase, it employs a tree-based attention mechanism
to simultaneously predict multiple branches—including the draft model’s original inference path
and correction paths derived from the early exit module. This approach preserves computational
efficiency when rejection occurs by dynamically recovering from rejected tokens via alternative
branches. In contrast, traditional speculative decoding methods typically discard tokens upon rejec-
tion.

4 FOLD wWITH PEARL

As a representative work in this domain, we make Pearl as our base method of choice in this chapter
to demonstrate FOLD’s adaptability within speculative sampling frameworks.

Under review as a conference paper at ICLR 2026

4.1 PEARL

Pearl designs a strategic combination of pre-verify and post-verify, achieving the parallelization of
draft-verify.

Pre-verify. When downgrade to pre-verify with rejection occuring, the degraded performance
where target model verifies merely next one token per forward pass, which ultimately bottlenecks
Pearl’s achievable speedup.

Post-verify. In optimal scenarios with all draft tokens accepted in previous verification, Pearl
achieves maximum acceleration by enabling the target model to verify « tokens per forward pass
during continuous post-verification operations.

By introducing parallelization, it supports fine-grained progressive validation of x draft tokens (z €
{Lah.
{1 mode = pre-verify
xr =

vy mode = post-verify

If any token fails verification, the entire subsequent sequence undergoes invalidation with mode
downgrading to pre-verify for only next token verification.

4.2 FOLD FIT IN PEARL

Early Draft Draft Correct

Early Draft Draft Correct

~® |

¥y) @) (@) |

E vi) | Y1

| i |
¢ 5 Dot ¢ ¢ t ¢ t
— Dy — > pB v Dy pfz pz*s — Py, pfz pf3
| ; |
Early Verify Final Verify : Early Verify Final Verify

Figure 4: FOLD with Pearl

As depicted in Figure g]: we extend Pearl’s original two-stage draft-verify paradigm to a four-stage
framework: |[Early Draft] [Early Verify| [Draft Correctl and [Final Verifyl With FOLD architecture,
Pearl’s drafting phase—which originally generated + tokens—is refactored such that the Early Draft
and Draft Correct modules yield v, and s tokens, respectively. During the stage, the
model merges multiple branches from [Early Draft|and [Early Verify] and selects the branch with the
longest accepted sequence to advance to the next round of verification based on validation in the

[Final Veriy|stage.

In cases where tokens from the draft branch do not pass verification, yet the early exit branch from
rapid correction contains the correct token output, the next verification cycle acts only on the tokens
generated during Draft Correct phase, thereby bypassing excess pre-verify owing to rejection. Im-
portantly, rejection occurs solely when the branch with the longest accepted sequence corresponds
to the original draft branch and the acceptance length falls short of .

Under review as a conference paper at ICLR 2026

4.3 ANALYZE OF FOLD WITH PEARL

4.3.1 IMPACT OF REJECTION FOR PEARL

To quantify the impact of the pre-verify strategy for Pearl on overall inference performance, we
conduct the following analysis: For a given prefix, the next token generated by the LLM are deter-
ministic with greedy sample strategy, resulting in a fixed number and pattern of rejections during
the draft-verify process. Furthermore, due to Pearl’s fine-grained verification of draft tokens, we
establish two premises:

1. The number of times Pearl enters the pre-verify phase due to rejected draft tokens is con-
stant, i.e.Cye is constant.

2. For a fixed-length response, the relationship between the number of tokens undergoing
verification (NVyerifieq) and the number of tokens accepted by the target model (Naccepted)
satisfies: Nyerificd = Naccepted + A, Where X is a constant.

Concurrently, we derive following fundamental equations:

Ctolal = Cpost + C'pre (D
Nyerified = v Cpost + Cpre)
Naccepted = Nyerified + A 3)

where - represents draft tokens generated by draft model during per target model forward; Ciyy
represents total target model forward times; Cpo represents post-verify operations which verify
tokens each; Cl. represents pre-verify operations which verify 1 token each; Nyeified represents
total tokens involved in verification; Nycceptea TEpresents total tokens accepted in verification. Both
Nyerified and Nyceeped T€Main constant.

Solving the above system yields the fundamental performance equation:

Nyeri -1
Clotal = —erfied + L : Cpre (4)
Y Y

Equation equation E] characterizes the correlation between the count of rejection Cl, and the count
of pre-verify Cr, effectively quantifying the verification burden imposed on the target model. Cru-
cially, its number of rejection serves as the primary determinant of PEARL’s acceleration perfor-
mance.

4.3.2 INCREASE OF FOLD

For comparison, with the addition of FOLD, we can derive the following fundamental equations:

Y=7+7 &)

Core = Cearty + Cire (6)

Clotat = Cpost + Cearty + Chre (7)
Nyerifiea = 7 - Cpost + 72 - Cearty + Core 3

Solving this system yields the performance equations:

Nyerified + (1 = 72)Cearty — Cpre

Chrost = 9
post v
Nyerifi 1 — v2)Cearty — Chr.
Gl = rtcd T JQ) DY P} Chre (10)
1 _
Ciotal X (12 X Oearly) (11)

where vy, represents draft tokens generated in Early Draft phase; vy, represents draft tokens gen-
erated in Draft Correct phase; Ceqy represents Early Verify operations preventing pre-verify; Cpre

Under review as a conference paper at ICLR 2026

represents actual pre-verify operations executed; and other symbols maintain consistent definitions
from the analyze of the Pearl.

From Equation [I0] we can observe that the number of model inferences has an inverse relationship
with both Ceuy and 2 (72 > 1) as shown in Equation This means that as the success rate
of Early Verify increases, the total number of inferences will be effectively reduced, ultimately
decreasing the overall inference time.

5 EXPERIMENTS

Unlike other speculative decoding methods, FOLD achieves further performance improvements by
rapidly correcting erroneous draft tokens, and it is designed to be used in combination with other
speculative decoding methods. As a result, its acceleration performance depends on the underlying
method and the model pair being used. For example, when adapting with Pearl the combination of
Llama3.1-70B and Llama3.2-1B demonstrates remarkable acceleration, even slightly outperforming
EAGLE2, whereas the model pair of Llama2-70B and Llama2-7B exhibits more modest accelera-
tion. Therefore, FOLD is only suitable for comparison with other training-free methods, instead of
approaches such as EAGLE that focus on training high-quality draft models — though we will still
provide EAGLE2’s performance metrics as reference.

Details of target model. For both the draft and target models, we keep all their parameters frozen
and train only the Early Exit Module, as illustrated in Figure 2] To simplify our implementation, we
adopt KANGAROO (Liu et al., [20244a)) as our Early Exit module.

Early Exit Module. We train the Early Exit Module with the AdamW optimizer on the ShareGPT
dataset following Medusa, while learning rate set at 5Se-5. Considering the scenario of Pearl with
FOLD, both the Early Draft & Early Verify steps and the Draft Correct & Final Verify steps require
a round of data synchronization. Therefore, it is essential for the Early Exit Module to determine
the suitable execution timing based on an appropriate speed ratio. In light of this consideration, and
to balance the performance of the Early Exit Module with the number of tokens generated during
the Draft Correct stage, we choose to execute the Early Exit Module at the stage corresponding to
‘Ota";‘ym. Specifically, executing the Early Exit Module too early allows the draft model to correct a
greater number of invalid tokens during the Draft Correct stage, but the quality of Early Exit tokens
becomes difficult to guarantee. Conversely, Higher-quality Early Exit tokens may result in the Draft
Correct stage producing too few tokens, which ultimately might compromise the overall acceleration
effect.

Models Due to implementation constraints of the Kangaroo’s open-source code, we only con-
duct experiments using the Llama series models. We use Llama2-70B (Touvron et al., 2023) and
Llama3.1-70B as the target models, while Llama2-7B, Llama3.2-1B, and Llama3.1-8B serve as the
draft models.

Baselines We adopt vanilla Auto Regression decoding as the baseline, establishing it as the refer-
ence for speedup ratios (1.00x). We select several training-free speculative decoding baselines for
comparison: Speculative Decoding (Leviathan et al., 2023):standalone SD methods, OuroborosE]
(Zhao et al., 2024)), Assisted generation (Gante, 2023)), and Pearl(Liu et al., [2025). Additionally,
we report the acceleration performance of EAGLE2 (L1 et al., [2024b) with Llama3-70B just as a
reference.

Metrics. FOLD does not modify the target model’s weights and uses strict speculative sampling
acceptance conditions, ensuring no loss in performance. Therefore, we do not evaluate generation
quality. Instead, we use the Speedup Ratio to assess the acceleration performance, where the speedup
ratio is defined as the actual test speedup ratio relative to vanilla Auto Regression decoding. No-
tably, Pearl achieves parallelization of the draft-verify process; consequently, the concept of average
acceptance length, which is measured in traditional speculative decoding experiments as the average

! Ouroboros implementation requires transformers version of 4.36.2, while Llama 3.1 requires transformers
>4.43.0

Under review as a conference paper at ICLR 2026

number of draft tokens accepted per verification, no longer accurately reflects the acceleration effect.
Therefore, the same as Pearl, we also refrain from measuring the average acceptance length.

Why is acceptance rate not included? With the introduction of Early Verify and Draft Correct,
the number of draft tokens verified by the target model varies dynamically in each round. Addition-
ally, as the draft and verify phases are executed in parallel, the average accepted length becomes
difficult to calculate and does not hold much reference value.

Table 1: Experiment results on GSM8K and HumanEval. We bold the best results for each model
combination. Ouroboros is reproduced in their official implementation with default parameters.
Assisted Generation and Speculative Decoding are reproduced in Pearl. We also list the result of
EAGLE with Llama2-70B and Llama3-70B as reference.

GSMSK HumanEval
Model Method speed(token/s) T speed(token/s) T
Auto Regression 13.77 1.00x 13.77 1.00x
Speculative Decoding 24.62 1.79 % 23.52 1.71%
Llama2-7-70B Ouroboros 29.25 2.12x 39.10 2.84x
Assisted Generation 24.39 1.77% 25.27 1.83x
Pearl 34.94 2.54% 40.92 2.97x
FOLD(Pearl) 38.80 2.82 % 43.22 3.14 %
Auto Regression 14.85 1.00x 14.85 1.00 %
Speculative Decoding 31.09 2.09x 31.63 2.13%
Llama3-8-70B Assisted Generation 29.11 1.96 x 30.71 2.06 x
Pearl 42.65 2.87% 42.38 2.85%
FOLD(Pearl) 43.43 2.92x 45.36 3.05x
Auto Regression 14.85 1.00x 14.85 1.00x
Speculative Decoding 37.73 2.54 % 46.47 3.13x
Llama3-1-70B Assisted Generation 37.44 2.52x 45.80 3.08 x
Pearl 49.04 3.30x 55.35 3.73%
FOLD(Pearl) 53.49 3.60 % 60.72 4.09 x
Llama2-70B EAGLE2 47.37 3.44x 53.98 3.92x
Llama3-70B EAGLE2 36.53 2.46x 46.48 3.13x

Table 2: Speed(token/s) results on MT-bench. We bold the best results for each model combination.

Model Method Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Average
SD 25.95 24.74 28.98 33.83 35.18 34.84 26.73 25.95 29.51
Llama2-7-70B Pearl 32.65 31.56 36.61 43.12 43.64 43.54 33.72 33.28 37.27
FOLD 32.96 31.79 39.27 44.24 37.61 30.78 42.39 41.37 37.55
SD 25.48 24.32 24.69 28.95 30.37 27.62 26.96 25.73 26.72
Llama3-8-70B Pearl 35.08 32.68 37.29 46.73 48.77 46.69 34.97 34.39 39.59
FOLD 39.97 36.39 46.55 5229 4311 32.67 51.73 51.77 44.32
SD 28.92 26.65 32.01 41.47 44.64 40.99 28.67 27.56 33.83
Llama3-1-70B Pearl 36.03 32.00 38.08 52,52 53.79 50.19 34.35 34.14 41.42

FOLD 40.15 32.47 45.50 52.10 42.11 30.92 50.70 50.65 43.09

5.1 MAIN RESULT

We performed extensive experiments on the aforementioned benchmark tests with NVIDIA H100
GPUs. As shown in Table[T} across various model combinations such as Llama3-1B&70B, Llama3-
8B-70B, and Llama2-7B-70B on the GSM8K and HumanEval datasets, FOLD consistently outper-
formed Speculative Decoding and Pearl in all configurations, achieving a maximum speedup of 4.09
times compared to standard Auto Regression methods and baseline speculative decoding.

In Table [2] using the same model combinations on the MT-bench dataset to test Speculative De-
coding, Pearl, and FOLD, FOLD generally achieved superior performance. However, in some cat-
egories, FOLD showed only marginal improvements or even slight declines compared to Pearl,
which we attribute to the following reasons: (i) certain model pairs, like Llama3 8B&70B, exhibit
high consistency in answering simple questions, resulting in fewer opportunities for the Early Exit
Module to activate; (ii) integrating FOLD with Pearl adds an extra round of inter-process data syn-
chronization during the Early Draft and Early Verify stages compared to Pearl alone, necessitating

Under review as a conference paper at ICLR 2026

mutual waiting between the draft and target models for completion of the current round or decoder
layer, thereby amplifying synchronization overhead; (iii) given the simplicity of the early exit layer
structure and limited training data, its accuracy in certain domains is inferior to that of draft models
trained on larger-scale datasets with more parameters.

Despite these challenges, FOLD demonstrated excellent overall acceleration performance, showcas-
ing significant potential and superiority for further development, and verifying the feasibility and
necessity of rapidly correcting erroneous draft tokens.

5.2 ABLATION STUDY
5.2.1 FIRST N LAYERS OF TARGET MODEL

Intuitively, using a higher top k& parameter in Early Verify to gain more early exit tokens from
logits can increase the probability of detecting and correcting erroneous draft tokens. However,
excessively high top k& values may result in increased inter-process data transmission latency and
slow down the inference speed of the draft model. Therefore, we took the Llama2-70B model and
its corresponding Early Exit Module as an example to compare the performance impact of Early
Verify with different top k parameters. Meanwhile, we control each experiment to output exactly
512 tokens while recording the inference count of the draft model. The results are presented in the
table 3l

Table 3: Ablation results of FOLD on GSM8K and HumanEval datasets.

GSMSK HumanEval
model k speed(token/s) T M count speed(token/s) T M 4 count
1 37.10 2.96 x 69444 41.04 2.98 x 79884
Llama2-7-70B 4 38.80 2.82x 67124 43.55 3.09x 76728
6 37.84 2.75% 66740 42.79 3.10 75988

From Table[3] it can be observed that parameterkindirectly improves the overall inference speed by
enhancing the success rate of Early Verify corrections. Specifically, disparities in acceleration effects
caused by differentkvalues and the draft model M count reveal that as parameterkincreases appro-
priately, the number of inferences performed by the draft model gradually decreases. Furthermore,
by comparing the performance differences on the HumanEval and GSM8K datasets, we conclude
that when the precision of the Early Exit Module is suboptimal in certain scenarios, increasingkto
improve the Early Verify accuracy provides greater speed-up benefits than the performance degra-
dation resulting from expanding the input size for single-step inference in the draft model. Thus,
it may be necessary to further increase parameter k to observe performance degradation. However,
whether an excessively large k holds practical significance remains debatable, especially compared
to further improving the accuracy of the Early Exit Module.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose FOLD to rapidly correct erroneous draft tokens, using Pearl as an example
for adaptation, demonstrating the superiority of this method and its underlying concept. Although
experiments revealed that the Early Exit Module exhibits suboptimal accuracy in certain scenarios,
thereby affecting performance, this does not detract from the validity of the overall approach. In the
future, we will explore how to enhance acceleration effects by improving the Early Exit Module as
important part of Early Verify phase. Hope that the ideas represented by FOLD can further enhance
the inference speed of large models.

We properly reference all prior methods and datasets employed in our study, using exclusively pub-
licly available data without any utilization of private information. Moreover, we carefully maintain
our developed inference acceleration techniques, ensuring their implementation remains free from
any discriminatory effects.

ACKNOWLEDGMENTS

The authors would like to thank all the anonymous reviewers for their insightful comments.

Under review as a conference paper at ICLR 2026

REFERENCES

Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom
Sanakoyeu, Yuming Du, Edgar Schonfeld, Ali Thabet, and Jonas Kohler. Judge decoding:
Faster speculative sampling requires going beyond model alignment, 2025. URL https:
//arxiv.org/abs/2501.193009.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023,
pp. 5910-5924. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
EMNLP-MAIN.362. URL https://doi.org/10.18653/v1/2023.emnlp-main.
362.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
https://arxiv.org/abs/2401.10774.

DeepSeek-Al, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi
Ge, Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu,
Panpan Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin,
A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli
Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui
Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun,
Yaofeng Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji
Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu,
Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang,
Lecong Zhang, Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang,
Chenggang Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou.
Deepseek llm: Scaling open-source language models with longtermism, 2024. URL https:
//arxiv.org/abs/2401.02954.

Joao Gante. Assisted generation: a new direction toward low-latency text generation. https:
//huggingface.co/blog/assisted—-generation, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzman, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-

10

https://arxiv.org/abs/2501.19309
https://arxiv.org/abs/2501.19309
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://huggingface.co/blog/assisted-generation
https://huggingface.co/blog/assisted-generation

Under review as a conference paper at ICLR 2026

chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shugiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-

11

Under review as a conference paper at ICLR 2026

field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
guage models with dynamic draft trees. In Empirical Methods in Natural Language Processing,
2024b.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024a.

Jiahao Liu, Qifan Wang, Jingang Wang, and Xunliang Cai. Speculative decoding via early-exiting
for faster 1lm inference with thompson sampling control mechanism, 2024b. URL https://
arxiv.orqg/abs/2406.03853.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, Winston Hu, and Xiao Sun. PEARL.:
Parallel speculative decoding with adaptive draft length. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=Q0XrVMiHGK.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.03853
https://arxiv.org/abs/2406.03853
https://openreview.net/forum?id=QOXrVMiHGK
https://openreview.net/forum?id=QOXrVMiHGK

Under review as a conference paper at ICLR 2026

Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer6én Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Canwen Xu and Julian McAuley. A survey on dynamic neural networks for natural lan-
guage processing. In Findings of the Association for Computational Linguistics: EACL
2023, pp. 2370-2381, Dubrovnik, Croatia, 2023a. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-eacl.180. URL https://aclanthology.org/2023.
findings—-eacl.180.

Canwen Xu and Julian McAuley. A survey on dynamic neural networks for natural lan-
guage processing. In Findings of the Association for Computational Linguistics: EACL
2023, pp. 2370-2381, Dubrovnik, Croatia, 2023b. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-eacl.180. URL https://aclanthology.org/2023.
findings—-eacl.180.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
for speculative sampling, 2025. URL https://arxiv.org/abs/2408.15766,

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2307.09288
https://aclanthology.org/2023.findings-eacl.180
https://aclanthology.org/2023.findings-eacl.180
https://aclanthology.org/2023.findings-eacl.180
https://aclanthology.org/2023.findings-eacl.180
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2408.15766

Under review as a conference paper at ICLR 2026

Situo Zhang, Hankun Wang, Da Ma, Zichen Zhu, Lu Chen, Kunyao Lan, and Kai Yu. Adaeagle:
Optimizing speculative decoding via explicit modeling of adaptive draft structures, 2024. URL
https://arxiv.org/abs/2412.18910.

Weilin Zhao, Yuxiang Huang, Xu Han, Wang Xu, Chaojun Xiao, Xinrong Zhang, Yewei Fang,
Kaihuo Zhang, Zhiyuan Liu, and Maosong Sun. Ouroboros: Generating longer drafts phrase by
phrase for faster speculative decoding. arXiv preprint arXiv:2402.13720, (arXiv:2402.13720),
October 2024. doi: 10.48550/arXiv.2402.13720. URL http://arxiv.org/abs/2402.
13720l arXiv:2402.13720.

A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation was involved. All datasets used, including GSM8K, HumanEval and MT-bench, were
sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have
taken care to avoid any biases or discriminatory outcomes in our research process. No personally
identifiable information was used, and no experiments were conducted that could raise privacy or
security concerns. We are committed to maintaining transparency and integrity throughout the re-
search process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of
FOLD, to assist others in reproducing our experiments.

Additionally, the public availability of resources—such as the GSM8K, HumanEval, and MT-bench
datasets and early exit modules like Kangaroo—enables consistent and reproducible evaluation re-
sults.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

14

https://arxiv.org/abs/2412.18910
http://arxiv.org/abs/2402.13720
http://arxiv.org/abs/2402.13720

	Introduction
	BACKGROUND
	FOLD
	architecture

	FOLD with Pearl
	Pearl
	FOLD fit in Pearl
	analyze of FOLD with Pearl
	impact of Rejection for Pearl
	increase of FOLD

	Experiments
	main result
	ablation study
	first N layers of target model

	CONCLUSION AND FUTURE WORK
	Ethics Statement
	Reproducibility Statement
	LLM Usage

