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Abstract

Trajectory data, which captures the movement patterns of people and vehicles over
time and space, is crucial for applications such as traffic optimization and urban
planning. However, issues such as noise and incompleteness often compromise data
quality, leading to inaccurate trajectory analyses and limiting the potential of these
applications. While Trajectory Data Preparation (TDP) can enhance data quality,
existing methods suffer from two key limitations: (i) they do not address data
privacy concerns, particularly in federated settings where trajectory data sharing is
prohibited, and (ii) they typically design task-specific models that lack generaliz-
ability across diverse TDP scenarios. To overcome these challenges, we propose
FedTDP, a privacy-preserving and unified framework that leverages the multi-task
learning capabilities of Large Language Models (LLMs) for TDP in federated envi-
ronments. Specifically, we: (i) design a trajectory privacy autoencoder for secure
data transmission to protect data privacy with theoretical analysis, (ii) introduce a
trajectory knowledge enhancer to develop TDP-oriented LLMs by improving model
learning of TDP knowledge, and (iii) propose federated parallel optimization to en-
hance training efficiency by reducing data transmission and enabling parallel model
training. Experiments on 6 real datasets and 10 mainstream TDP tasks demonstrate
that FedTDP consistently outperforms 13 state-of-the-art baselines. All code and
data are available at https://anonymous.4open.science/r/FedTDP,

1 Introduction

Trajectory data is typically represented as sequences of spatio-temporal points that describe the
movement of objects, such as people [6] and vehicles [68]. Proliferation of GPS and location-based
services has generated vast amounts of trajectory data [56} [74) I85]], enabling various analytical
applications, including route planning [89], crowd clustering [39], and traffic prediction [41]. How-
ever, trajectory data often suffers from significant quality issues due to sensor malfunctions, limited
equipment precision, and transmission interruptions, leading to inconsistent [43], noisy [17], and
missing values [9]. For instance, GPS location estimates in Uber [65] can be inaccurate by over
50 meters in densely populated, highly built-up urban areas. Such low-quality data undermines
the reliability of trajectory analyses, limiting their practical applications. To address these issues,
Trajectory Data Preparation (TDP)—which includes preprocessing and data mining such as data
imputation [47], map matching [43], trajectory-user linking [[7], anomaly detection [22]], and trajectory
recovery [44]—has become essential for improving data quality before analysis and application.

However, existing TDP methods face two key limitations that affect their privacy and generalizabil-
ity. (i) Previous studies have not addressed data privacy constraints. According to government
reports [20]] and related studies [78) 451591, trajectory data is often collected or stored across multiple
stations or organizations. Consequently, a moving trajectory may span several geographic regions,
with each region’s data collected by its respective signal station. For example, Fig.[T]illustrates the
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trajectory data from GeoLife [86], a real-world dataset collected in Beijing, which shows six distinct
colored regions, each storing its trajectory data separately. Due to legal constraints [23]4,[10], the
exchange of trajectory data across regions is prohibited. However, existing studies typically assume
centralized data, which increases the risk of privacy breaches. (ii) All previous studies are single-task
approaches. Specifically, these models are tailored to a single TDP task, such as data imputation or
anomaly detection. When addressing multiple TDP tasks, a new model must be trained for each task,
resulting in high computational cost, extended training time, and limited generalizability.

Motivated by these limitations, we pro- FeWoN . — O o~ 3
pose a privacy-aware and generalized ! @,m @ o == @ o &g Q ;}
f'rame\york for trajectory Qata prepara- | EH;;LE@@U Server  LLm |y, Ot !
tion. (i) To protect data privacy, we in- & - XN\

troduce Federated Learning (FL)[40, 31,
a privacy-preserving distributed learning
paradigm. FL has been widely applied in 1

Client @ Client Client| || Client. [ Client || Client

]

domains such as urban computing [66]] L @
and transportation management [73]] to
address privacy concerns. For example, &\‘Mg

MobiSpaces [46], a government-funded
project by the European Union, collabo-
rates with various transportation services
to support Mobility-as-a-Service using FL.
It provides a data governance platform for
processing raw trajectory data from public
transportation, traffic sensors, and maritime vessels for decentralized analysis. As shown in Fig.[T}
FL enables multiple Clients (i.e., regions) to collaboratively train a model on a Server while keeping
trajectory data decentralized, thereby preserving the data privacy of each client, a new problem
referred to as Federated Trajectory Data Preparation (F-TDP). (ii) Inspired by the powerful
capabilities of Large Language Models (LLMs) [75 42, |69]], particularly their success in multi-task
learning, we aim to develop a TDP-oriented LLM to support various TDP tasks. Overall, our goal is
to leverage LLMs to create a privacy-preserving and unified framework FedTDP for trajectory
data preparation in the federated learning environment. However, developing the FedTDP framework
presents three key technical challenges that must be addressed.

Shijingshan

Fengtai

Figure 1: Federated trajectory data preparation

Challenge 1: How to safeguard trajectory data privacy in the FedTDP framework? TDP tasks often
necessitate considering the data context [22, 47, 143], which involves the exchange and sharing of data
and demands collaborative processing across clients (i.e., cross-client TDP), raising privacy concerns.
As shown in Fig. [1} if the data p is missing, the Fengtai region needs to utilize the context of the
missing data (i.e., p; and po) for data imputation [43] [71]. However, due to data privacy constraints,
the Fengtai region cannot access p; from the Dongcheng region. Consequently, ensuring the privacy
of trajectory data thus constitutes the first challenge the FedTDP framework must address.

Challenge 2: How to develop a TDP-oriented LLM in FedTDP? Existing LLMs perform poorly on
TDP tasks due to several factors. First, they are primarily designed for text data [[16, 34]. However,
trajectory data exhibits unique spatio-temporal features [47, [18]], such as temporal regularity and
spatial dependency, which differ significantly from text data and are not inherently understood by
LLMs. Besides, their pre-training relies largely on publicly available unsupervised corpora [15} 24],
which capture only general textual knowledge. In contrast, TDP tasks involve intricate spatio-temporal
relationships and patterns [43] 29] that are not included in these corpora. As a result, effectively
training a TDP-oriented LLM represents the second challenge that FedTDP must overcome.

Challenge 3: How to improve the training efficiency of the FedTDP framework? Due to the limited
computational resources and storage capacities of clients, directly deploying and training LLMs
locally on clients is infeasible [[62,(79,26]]. As aresult, LLMs are typically hosted on servers, requiring
clients (i.e., regions) to transmit their local data to the server for TDP processing. This introduces
storage burdens on the server and wastes computational resources on the client. Additionally, LLMs
often contain a large number of parameters, and even with techniques like Parameter-Efficient Fine-
Tuning (PEFT) [28]], training a TDP-oriented LLM remains highly time- and resource-intensive.
Therefore, enhancing training efficiency represents the third challenge that FedTDP must address.

Contributions. To address the challenges outlined above, we first introduce the Small Language
Model (SLM), a compact version of the server’s LLM, which is deployed on each client for local TDP.
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This approach leverages the computational resources of clients and reduces the server’s workload,
enabling distributed computation within the FedTDP framework. To address Challenge 1, we
propose a Trajectory Privacy AutoEncoder (TPA), which encodes trajectory data into spatio-
temporal embeddings for transmission, rather than sending the raw data. This ensures data privacy
while preserving the spatio-temporal correlations essential for TDP tasks. Besides, we develop a
decentralized secret-sharing method to safeguard against trajectory data recovery or inference through
embedding [61} 8} 30] and gradient [67, 84, 87]] inversion attacks with the theoretical privacy analysis
in Appendix [C.5] To address Challenge 2, we design a Trajectory Knowledge Enhancer (TKE),
which helps both the SLM and LLM understand trajectory data and learn the specific knowledge
required for TDP tasks. This enhances the model’s ability to learn TDP-related patterns while reducing
the number of parameters. To tackle Challenge 3, we introduce Federated Parallel Optimization
(FPO) to improve training efficiency. Specifically, FPO decomposes the federated training between
the server and clients through split learning, employs alternating optimization to minimize data
transmission, and accelerates training via parallel execution. Finally, experiments on 6 real-world
datasets demonstrate that the proposed FedTDP framework outperforms 13 state-of-the-art baselines,
achieving a performance improvement from 4.84% to 45.22% across 10 mainstream TDP tasks.

2 Preliminary

The frequently used notations and descriptions in this paper are shown in Appendix [B]

Definition 1 (Spatio-Temporal Point). A spatio-temporal point is represented as p = (l, 1), where
1 = (lon, lat) is a tuple of longitude and latitude location coordinates, and t refers to the observed
time associated with this spatio-temporal point.

Definition 2 (Trajectory). A trajectory comprises chronological spatio-temporal points, denoted as
T = {p1,pa, ...}, which is typically represents the movement of a user. In addition, a trajectory can

be segmented into multiple sub-trajectories, denoted as T = {ST(I), ST(2)7 cot

Definition 3 (Data Silo). A data silo S has its own collected trajectory dataset D. In federated
learning, a data silo S is represented as a client C, typically a regional data storage platform
or institution, responsible for the collection and management of trajectory data within that region.
Specifically, a trajectory T = {p1,p2, . ..} is segmented into sub-trajectories based on the geographic
locations, denoted as T = {ST(CI) , ST(CQ)7 ...}, where sub-trajectory ST s stored in client ;.

Problem Formulation (F-TDP). Given the server’s LLM 6, and the trajectory dataset D =
{D1,Ds,...} = {T1,T5,...} of all clients C = {C4,C>,...}, where client C; holds dataset D;,
F-TDP is to employ 607, on D for performing various trajectory data preparation tasks, where
collected trajectories D; of client C; cannot be shared and exchanged to the server and other clients:

F-TDP(D) = 0,,4(T}), T; = {STSY) ST}, (1

where 071/(T;) is the result of ;7 on the trajectory T;, with different forms of output depending on
the TDP task, such as the cleaned trajectory, points, or classification result.

3 Trajectory Data Preparation Task

We demonstrate all major types of TDP tasks, with the rough processing shown in Appendix [B]

T-1: Anomaly Detection (AD). It aims to detect trajectories that deviate significantly from typical
movement behaviors. These anomalies could result from unusual user behavior, errors in data
collection, or potential malicious activities.

T-2: Trajectory Imputation (77). It aims to reconstruct a complete trajectory by estimating the
missing points based on available spatio-temporal points. This often occurs when GPS signals are
lost or data collection is interrupted.

T-3: Noise Filtering (NF). It aims to identify and remove irrelevant spatio-temporal points that
deviate from a trajectory. These noisy points can result from GPS inaccuracies, signal interference,
or sensor malfunctions.

T-4: Stay Point Detection (SPD). It aims to identify locations where a moving object remains within
an area for a certain period of time. A stay point typically represents a place of interest, such as a rest
stop, home, or office.

T-5: Map Matching (MM). It aims to map the spatio-temporal point to the most probable segment
in the road network. This is often the case when there is a deviation in the collected GPS position.
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T-6: Trajectory-User Link (TUL). It aims to link an anonymous trajectory with its corresponding
user. These trajectories are often collected without any user-identifying information.

T-7: Travel Mode Identification (TMI). It aims to identify the travel mode based on the moving
pattern of trajectory, which is walking, biking, taking the bus, or driving a car.

T-8: Trajectory Simplification (7'Sim). It aims to reduce the number of spatio-temporal points in a
trajectory while preserving its essential shape and features.

T-9: Trajectory Segmentation (7'Seg). It aims to divide a trajectory into meaningful segments based
on specific criteria such as stay points or travel modes.

T-10: Trajectory Recovery (TR). It aims to reconstruct a complete trajectory from partially observed
or incomplete spatio-temporal points. This often occurs when some parts of the trajectory are missing
or unobserved.

4 Our Approach
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Figure 2: The overview of our framework

Fig.[2|shows an overview of the FedTDP framework, which involves a server and multiple clients.
FedTDP consists of three modules, i.e., Trajectory Privacy AutoEncoder (TPA), Trajectory Knowledge
Enhancer (TKE), and Federated Parallel Optimization (FPO). To enable distributed computing of
FedTDP, we first introduce the Small Language Model (SLM), a small-scale version of the server’s
Large Language Model (LLM), which is deployed on each client for local TDP, to leverage clients’
computational resources and reduce the server’s workload. Specifically, suppose the data context of
TDP on the client’s sub-trajectory ST') does not involve data from other clients for joint processing.
In that case, the locally deployed SLM is used for local TDP, or ST must be uploaded to the server
and use the LLM for cross-client TDP. The overall process is as follows. For the local TDP, TKE
generates the TDP prompt as input for SLM (D-®@). Next, TKE enhances the TDP knowledge to get
the final result (®—®). For the cross-client TDP, TPA first encodes trajectory data and transmits the
encoded embeddings to the server (0—-@). Then, FPO freezes the data transmitted from clients (®)
and TKE generates the TDP prompt as input for LLM (@—®). Next, TPA decodes results outputted
by the server’s LLM (®-®). Finally, FPO freezes the data transmitted from the server (®) and TKE
enhances the TDP knowledge to get final results (9-@®).

4.1 Trajectory Privacy AutoEncoder

Design Motivation. As aforementioned, F-TDP involves the joint processing of data from multiple
clients, i.e., cross-client TDP, necessitating data exchange and sharing. Consequently, safeguarding
the privacy of trajectory data becomes essential. Although differential privacy [14] can be applied
to ensure data privacy, it requires adding noise to the data, which diminishes its utility and reduces
model accuracy. In contrast, FedTDP proposes a Trajectory Privacy AutoEncoder (TPA) to protect
trajectory data privacy while maintaining spatio-temporal correlations.

Specifically, the TPA module employs an encoder-decoder architecture that encodes trajectory
data T = {p1,pa,...} into embeddings F = {ej, ea, ...}, where each spatio-temporal point p; is
independently encoded as e; = Og,.(p;). Then, these clients’ embeddings are transmitted to the
server for aggregation & = J ‘gl E;, preserving both intra-client and inter-client spatio-temporal
dependencies, which helps the LLM to capture spatio-temporal relationships in the trajectory data.
Next, the server splits and distributes results E = {€1, €2, ...} outputted by the LLM to clients,
where the decoder reconstructs the estimated trajectory T = {p1, P2, ...} through p; = Dec(€&;).
Here, TPA is implemented as a lightweight three-layer MLP (Multi-Layer Perception) [S5] with
GELU [25] activation, 32 embedding dimensions, and 256 hidden dimensions, which does not
introduce significant computational overhead, as also proved in the ablation study (see Section [5.2).
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However, merely using embeddings for transmission cannot safeguard data privacy completely in FL,
as attackers can recover the raw data by embedding [61} 18, 30] and gradient [88, |84} [87]] inversion at-
tacks during TPA model aggregation. Specifically, traditional FL. model aggregation, which exchanges
client gradients and aggregated parameters, are vulnerable to these attacks. While homomorphic
encryption [54] and differential privacy [14] offer solutions, they introduce computational overhead
or degrade model accuracy. In contrast, we propose a decentralized aggregation approach based on
secret sharing [58]], achieving secure TPA aggregation without compromising efficiency or accuracy.

Initially, each client pair (C;, C;) generates a shared secret key sk;; = sk; ; stored locally, respectively.
Then, the TPA parameters are partitioned into |C| parameter blocks {P™"), P(?) ...}, For aggregation,

the client C; masks its parameter block using secret keys {sk; g, sk; s, ...} determined with the other
clients to mask parameter blocks, adding sk;; if ¢ > j or subtracting it if ¢ < j, as shown below:

) 1,i<j
P =P 4 Z aij * skij , Cli,jZ{l i>j’ ; 2

(k)

where client C; holds the parameter block Pz(-k) and P; ’ is the mask parameter block.

Theorem 1. Given the mask parameter blocks {i’(lk) , i’;k), ...} from all clients, the result of aggre-

gating them is equal to the result of aggregating raw parameter blocks {ng) , Pék), ...} for all clients
directly, as formally shown below:

I
> =3 R )
i=1 i=1

Proof. The detailed proofs of Theorem 1 are provided in Appendix [C.1] O

According to Theorem 1, the client C}; can obtain the aggregation result P of the parameter block
P by aggregating the mask parameter blocks transmitted from clients, as formally shown below:
IC| IC|

p*) _ ﬁ SR = ﬁ 3P @)
i=1 =1

Finally, the aggregated parameter block is broadcast to clients for the TPA model updates.

4.2 Trajectory Knowledge Enhancer

Design Motivation. Since existing LLMs are designed for text data and contain only general textual
knowledge [[16, 134} [15]], they cannot be directly applied to trajectory data and TDP tasks. Although a
few spatio-temporal LLMs [38] |82} 36] have been proposed, none of them have considered TDP. In
contrast, to develop a TDP-oriented LLM, FedTDP designs Trajectory Knowledge Enhancer (TKE)
that consists of trajectory prompt engineering, trajectory offsite-tuning, LoRA sparse-tuning, and
bidirectional knowledge learning, to enhance the model learning abilities on TDP knowledge.

i) Trajectory Prompt Engineering To help the SLM and LLM understand trajectory data and learn
TDP knowledge, TKE designs a trajectory instruction paradigm to generate the TDP prompt, defined
as (Task, Data, Information, Format). Specifically, Task is the textual instruction consisting of the
task name and the task description, as listed in Section (3| Data is the input trajectory data, either
as trajectory data T' = {p1, pa, ...} to the SLM for local TDP or embeddings E = {e1,ea,...} to
the LLM for cross-client TDP. Information is the optional trajectory context (e.g., road network,
weather) from public sources such as OpenStreetMap [49] and weather services [50], to enhance the
model’s ability to perform TDP tasks. Format is the task-specific output format, such as classification
results for TDP tasks including AD, TUL, and TMI, trajectories for TDP tasks including TI, NF,
TSim, TSeg, MM, and TR, and spatio-temporal points for the SPD task. A few examples of TDP
tasks using the trajectory prompt engineering are shown in Appendix C.2.

ii) Trajectory Offsite-Tuning. To enhance the learning capabilities of the SLM in clients, TKE
employs the LLM to assist it in learning trajectory knowledge by trajectory off-site tuning. Specifically,
inspired by the offsite-tuning [[70], we divide the LLM into two components, denoted as €,y =
[A, F]. Here, the adapter A is the last few layers of the LLM to specialize general features for
specific tasks, enabling task-specific feature mapping and decision making. Besides, the foundation
F is the remaining layers excluding A, to extract general data features, transforming raw inputs into
meaningful representations. Initially, it dispatches the server’s adapter .A to the client as the final few
layers to be integrated into the client’s SLM. Consequently, the SLM is composed of two components,
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denoted as Os;y = [A, F /], where F is the foundation of the SLM. Subsequently, the SLM employs
LoRA to reduce the number of parameters in the adapter and then transmits the fine-tuning adapter to
the server for aggregation and updates. Note that, rather than directly transferring the trained LLM’s
adapter to SLM, it utilizes and trains it to augment the SLM’s learning capacity during training.

iii) LoRA Sparse-Tuning. To .« Cam |
reduce the number Of training pa_ SIM Change ratio  Selected Randomly @ Training Aggregate
rameters TKE proposes LORA H @ Probability ) Not selected select §>I<§ Frozon .

) . — :
sparse-tuning, as shown in Fig.[3]
According to works on spar- [zyed ‘
sity [1, 13} 180], more signifi- T ! !
cantly varying parameters have || [frostomer] 14} =

K . layer } |
a greater contribution to model T i | =
! 1

convergence.  Therefore, we || rmmme | ! | L
only choose the layer in the fayer N\ W,

Client

+ Server
L J

SLM where the LoRA parame-
ter change rate is the top m for Figure 3: LoRA sparse-tuning

training. Specifically, the client calculates the ratio of the LoRA parameters change rate of each layer
to the global LoRA parameters change rate of all N layers (“ratio” for short), as shown below:

CR"(L;
RU(L;) = # ) 5
Z_j:l CR (Lj)
where CR(™ (L) is the LORA parameters change rate of layer L; at round 7, as shown below:
(r) (r=1)
. Ly’ —L;
CR"(L;) = |[Z———] ©)
LY

Then, we randomly select N,,, = |m * N | layers to pariicipate in the next round of the SLM training.

Theorem 2. Given the ratio R(") (L;) of layer L; in training round r and the number of layers Ny,

10 be trained, the probability Pr" 1) (Li, Ny,) of layer L; to train in the next round v + 1 is shown:
N

("(L. (L,
Pr(r+1)(Li,Nm) — R(T)(Li) + Z R 1(L21)%TriL ()Lh) +..
- J1

ji=1
N
RO(L;) * R(L s« RM(L )
T I S
=1 N, =1 INm,
JAF o FIN, F O
Proof. The detailed proofs of Theorem 2 are provided in Appendix|[C.3] O

According to Theorem 2, it chooses the training layers based on their probability at each training
round. Finally, the client uploads the LoRA parameters of the trained layers to the server for
aggregation, and the server assigns different weights to the parameters based on the number of clients
involved in training on these layers, as formally shown below:

iy S w0 )
o (Il =1c]) * e W
Wy = 8
b |C|*|C/|+1 ’ ®

(r)

where Wg)7 is the LoRA parameters of layer L; sent by client C; at training round r, W LT is the

aggregated LORA parameters, and |C / | is the number of clients that have trained layer L;.

iv) Bidirectional Knowledge Learning. To improve the model learning capabilities, TKE develops
bidirectional knowledge learning to enhance their TDP knowledge. Specifically, in order for the SLM
to learn useful TDP knowledge in the complex output space of the LLM, it aligns the SLM’s output
with LLM’s high frequency output using the inverse Kullback—Leibler (KL) divergence [33]:

P, T
InlIl DKL(PGSLM ‘ |P9LLM Z P9SLM PQALM( ) ) )
Ost OLim ( )

where Py,,,, and P,,,, are the output distribution of the SLM and LLM, respectively. Besides, since
the SLM can access raw trajectory data, it aligns the LLM’s output with the SLM’s output using the
forward KL divergence, which enables the LLM to learn the trajectory knowledge of the SLM:

. Py (T)
IOIIIIIB DKL(PGSLMHPGLLM) = ZT: PQSLM(T) log(m) (10)
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4.3 Federated Parallel Optimization

Design Motivation. Since the
proposed framework employs a
federated training process, a sig-
nificant amount of data must be
transferred between the client
and server during each training
round, resulting in substantial
communication overhead that re-
duces training efficiency. Addi-
tionally, gradient backpropaga-
tion [S7] is required between the
client and server in every train-
ing round. To improve training efficiency, FedTDP introduces Federated Parallel Optimization (FPO),
which utilizes split learning, alternating optimization, and parallel training to reduce data transmission
and enhance the training parallelism. The overall process of the FPO module is shown in Fig. ]

&3 SLM @ LLM (%Training +¥Frozen Data
Embedding Trajectory
....... Loss ----->Encoding — Data Flow

Server

Figure 4: Federated parallel optimization

First, to enable the simultaneous training of the client and server, it employs split learning [21] to
decompose the federated training process into client and server training. Specifically, the client is
responsible for the training of the TPA model (i.e., the encoder and decoder) and SLM, while the
server manages the training of the LLM. Besides, to reduce data transmission, it utilizes alternating
optimization [45] to freeze the data required by the client and server, respectively. During training,
the server freezes the embeddings uploaded by the client for the LLM training, while the client
freezes the results outputted by the server’s LLM for the TPA model and SLM training. Finally, to
enhance the training parallelism, it uses parallel training to optimize several objectives in parallel.
Specifically, the client focuses on three optimization objectives: (i) minimizing the reconstruction
loss £ of the TPA model, (ii) reducing the inverse KL loss Lo between SLM and LLM outputs, and
(iii) minimizing the loss L3 between SLM outputs and labels. On the other hand, the server has two
optimization objectives: (i) minimizing the forward KL loss £, between LLM and SLM outputs, and
(ii) reducing the loss L2 between LLM outputs and labels.

The training process and privacy analysis of FedTDP are shown in Appendices|[C.4]and

5 Experiment

Table 1: The evaluated trajectory data preparation tasks

Type Category Task Dataset
. Anomaly Detection (AD)
Data Cleaning Trajectory Imputation (TI)
Seen Data Matching Map Matching (MM)

Trajectory User Linking (TUL) Geolife
Data Annotation Travel Mode Identification (TMI)
Data Reduction Trajectory Simplification (TSim)

Data Augmentation Trajectory Recovery (TR)

Anomaly Detection

(seen in training)

Trajectory Imputation Porto
Data Cleaning Noise Filtering (NF) TDrive
Stay Point Detection (SPD)
Unseen . Map Matching Tencent
(unseen in training) Data Matching Trajectory User Linking Gowalla
Data Annotation Travel Mode Identification
. . SHL
. Trajectory Segmentation (TSeg)
Data Reduction . L .
Trajectory Simplification T-Drive

Data Augmentation Trajectory Recovery

Tasks and Datasets. We evaluate the framework by the 10 mainstream tasks and 6 datasets in
TableE], which are widely studied in TDP communities [43} 47, 27]. For the seen task, we conduct
experiments using the GeoLife [86] dataset, which was collected from April 2007 to August 2012.
It contains various quality issues such as positional inaccuracies, data noise, and lower precision,
which makes it suitable for various tasks. For the unseen task, the following datasets are used. (i)
Porto [51] was collected in Porto from July 2013 to June 2014 with 442 taxis, which contain quality
issues such as anomalies and missing data. (ii) T-Drive [76] was collected in Beijing in February
2008 with 10,357 trajectories, which contain quality issues such as noisy and incomplete points.
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(iii) Tencent [43] was collected in Beijing city for 3 months, which contains quality issues such
as inaccurate points due to the low sampling rate. (iv) Gowalla was collected in the social
network from January to June 2010 with 6,442,890 check-in data from 10,336 users. (v) SHL [60]
was collected by the University of Sussex over 7 months in 2017 from 3 users, which contains various
travel and movement modes. More details of these datasets are provided in Appendix D.1.

Baselines. We compare FedTDP with (i) none-LLM methods including ATROM [22]] (for anomaly
detection task), Kamel [47] (for trajectory imputation task), GraphMM [43]] (for map matching
task), AttnTUL [[7]] (for trajectory-user link task), Estimator (for travel mode identification task),
S3 [18]) (for trajectory simplification task), and LightTR (for trajectory recovery task), which are
the leading approaches in their respective research tasks; (ii) three SOTA LLM-based table data
preparation methods, namely FM4DP [48]], MELD [72], and TableGPT [33]; and (iii) three SOTA
LLM-based spatio-temporal data analysis methods, including PromptGAT [[12], UniST [77], and
UrbanGPT [37]]. More details of these baselines are provided in Appendix D.2.

Implementations. Synchronized Euclidean Distance (SED) is used for the trajectory simplification
task, while F; scores are used for other tasks. The lower the SED and the higher the F; score, the
better the performance. Besides, we use the running time and communication size to evaluate the
efficiency. All baselines run under their optimal settings. Besides, FedTDP can protect data privacy
with the TPA module, while other baselines do not consider data privacy in F-TDP. To solve F-TDP,
one alternative approach for baselines is to employ differential privacy [14]]. Specifically, clients
apply differential privacy to perturb local trajectory data before transmitting it to the server. Therefore,
to safeguard data privacy and ensure fairness in experiments, we extend baselines combined with
this optional approach to solve the F-TDP problem. Moreover, all experiments are conducted in the
federation with 9 nodes, one as a server and the other 8 nodes as clients, each equipped with two Intel
Xeon CPU E5-2650 12-core processors, two GeForce RTX 3090, and 100 MB/s internet.
ATROM 7z Kamel &3 GraphMM zzz2 AtnTUL 1 Estimator 1S3  —JLightTR & FedTDP
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Figure 5: The performance of FedTDP and none-LLM trajectory data preparation methods
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5.1 Overall Performance

We present the overall performance comparison between the FedTDP framework with various SOTA
baselines across different datasets and tasks. First, as shown in Fig. [5|(where the dash “— - denotes



337
338
339
340
341
342
343
344
345

346

347
348
349
350

352
353
354
355
356
357
358
359
360
361
362
363

365
366
367
368
369
370
371
372

374

375
376
377
378
379
380
381
382

tasks that are not supported), FedTDP demonstrates the best performance and robust generalization
with an improvement of at least 18.38 % compared with non-LLM TDP methods, highlighting its
effectiveness in addressing the F-TDP problem. Besides, the superior performance achieved by
FedTDP on unseen TDP tasks also demonstrates its strong generalization. Second, as shown in Fig.[6]
compared with SOTA LLM-based table data preparation, FedTDP achieves the best performance
across different datasets and tasks with an improvement of at least 32.26 %. Third, as shown in Fig.
compared with SOTA LLM-based spatio-temporal data analysis methods, FedTDP also shows the
best performance with an improvement of 4.84% to 45.22%. We attribute these improvements to the
developed TDP-oriented LLM and SLM in the FedTDP framework.

5.2 Ablation Study

[ FedTDP w/o TPA [l w/o TKE wlo FPO

Size (GB)
Time (hours)
P
=2
I = e
Size (GB)

AD I TUL S Runtime Communication Runtime 'ommunication
Task Task Efficiency Efficiency
(a) Training performance (b) Testing performance (c) Training efficiency (d) Testing efficiency

Figure 8: The ablation study

We evaluate the effectiveness of each module in the FedTDP framework by systematically removing
one at a time, with the following configurations: FedTDP without Trajectory Privacy AutoEncoder
(w/o TPA), without Trajectory Knowledge Enhancer (w/o TKE), and without Federated Parallel
Optimization (w/o FPO). The results are shown in Fig.[8] First, the performance of FedTDP is slightly
degraded compared to w/o TPA, as TPA can not fully capture the spatio-temporal information of the
trajectory data, leading to a marginal performance decline when using TPA. Besides, FedTDP has
a slight increase in runtime and communication costs because TPA transmits higher-dimensional
embedding data instead of three-dimensional spatio-temporal points, introducing greater communica-
tion size and runtime when TPA is employed. However, to safeguard data privacy, the use of TPA
in the FedTDP framework is essential. Second, the performance of FedTDP improves dramatically
compared to w/o TKE, with at least 27.52% improvement. This is because TKE enhances the model’s
learning abilities on TDP knowledge to develop the TDP-oriented LLM and SLM. Additionally,
FedTDP has lower runtime and communication costs during training, since the TKE module can
reduce the number of parameters that need to be trained and transmitted, which speeds up the model
training. Finally, the performance of FedTDP does not change significantly compared to w/o FPT,
but its training runtime and communication overhead are significantly reduced by almost 4 times less.
This reduction is because FPO can reduce data transmission and improve training efficiency.

5.3 More Experiments

We conduct more experiments to comprehensively evaluate FedTDP, in terms of model generalization,
model base, efficiency, and hyperparameter sensitivity: i) Appendix[D.3|evaluates FedTDP’s general-
ization in different numbers of training tasks, where the lower the number of seen tasks, the worse
the model accuracy is of FedTDP in TDP tasks. ii) Appendix [D.4]evaluates the impact of various
model bases on FedTDP, where Llama [64]] achieves optimal performance in most tasks for the LLM,
while GPT3-Small [5] demonstrates the best performance for the SLM. iii) Appendix [D.5]evaluates
the communication costs and running times, where FedTDP shows the superior performance in
terms of efficiency compared to other baselines. iv) Appendix [D.6|evaluates the effect of FedTDP’s
hyperparameter, where the suggested value of m is 25% or less.

6 Conclusion and Limitations

This paper introduces FedTDP, a privacy-preserving, unified framework for trajectory data preparation.
It proposes a trajectory privacy autoencoder to protect data while maintaining spatio-temporal corre-
lations, a trajectory knowledge enhancer to develop TDP-oriented LLMs, and parallel optimization
to boost efficiency. Experiments on 6 datasets and 10 TDP tasks validate its superior effectiveness,
efficiency, and robustness. There are some limitations of our work. Since this study mainly focuses
on trajectory data preparation tasks, extending the framework to support more trajectory analysis
tasks, such as clustering and pattern mining, remains an open opportunity. In addition, improving the
interpretability of using LLMs poses an important challenge for future research.
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Appendix

In the subsequent sections, we present supplementary materials to provide more details of this paper,
offering deeper insights and additional technical details for readers seeking further clarification. The
appendix is organized as follows.

In Section A, we present a systematic review of related work to help readers understand the key
development in areas relevant to this paper, including (i) the latest trajectory data preparation methods,
(ii) applications of large language models in other data preparation, and (iii) recent advancements in
large language models for spatio-temporal data analysis.

In Section B, we summary the preliminary of notations and trajectory data preparation tasks for better
understanding our work, including (i) the frequently used notations and (ii) detailed description of
trajectory data preparation tasks.

In Section C, we provide the additional methodology details to support the analysis shown in the
main body of this paper, including (i) complete theoretical proofs of Theorems 1 and 2, (ii) practical
examples of trajectory data preparation tasks using the trajectory prompt engineering of the proposed
trajectory knowledge enhancer, and (iii) the training process of FedTDP.

In Section D, we describe the extensive experimental details to provide more information about
experimental settings and further demonstrate the superiority performance of the proposed FedTDP
framework, including (i) datasets description, (ii) compared baselines introduction, and (iii) the
details experimental results of model generalization, model base, efficiency, and parameter sensitivity
studies.

A Related Work

Trajectory Data Preparation. Numerous Trajectory Data Preparation (TDP) methods have been pro-
posed to improve the quality of trajectory data for trajectory data preparation tasks. For the anomalous
detection task, ATROM [22] addresses the critical challenge of anomaly recognition in open-world
scenarios through the development of a probabilistic metric learning model, which significantly
improves the accuracy of anomaly detection in complex environments. For the trajectory imputation
task, Kamel [47] proposes a scalable architecture that incorporates additional real trajectory points
to predict the missing trajectory data, improving the accuracy of trajectory imputation. For the map
matching task, GraphMM [43]] leverages the graphical structure using a graph neural network to
effectively model the topology of road network and trajectory features, improving the accuracy of map
matching. For the trajectory-user link task, AttnTUL [7] introduces a hierarchical spatio-temporal
attention neural network, which co-encodes local trajectory transition patterns and global spatial
dependencies to establish links between trajectories and users more accurately. For the travel mode
identification task, Estimator [27] proposes an effective and scalable framework that partitions the
traffic space into disjoint spatial regions based on traffic conditions, improving the accuracy of travel
mode identification. For the trajectory simplification task, S3 [18]] presents a lightweight framework
consisting of two chained sequence-to-sequence modules, which is integrated within a graph neural
architecture, improving the accuracy and efficiency of trajectory simplification. For the trajectory
recovery task, LightTR [44] presents an efficient framework using a local trajectory embedding
module, robust feature extraction capabilities while significantly reducing computational overhead.
However, none of these studies have considered data privacy constraints. They typically assume that
the trajectory data collection is centralized, which introduces a significant risk of privacy leakage,
especially in federated learning environments. In addition, all of them are single-task methods. When
handling multiple TDP tasks, different models need to be trained for each specific task. It not only
demands substantial time and computational resources but also results in poor model generalization
ability. In contrast, we aim to propose a privacy-preserving and unified framework to support
various trajectory data preparation tasks while safeguarding trajectory data privacy.

Large Language Models for Other Data Preparation. A few works on table data preparation using
Large Language Models (LLMs) have been proposed recently. For instance, MELD [72] introduces a
general solver for low-resource table data preparation, leveraging a mixture-of-experts architecture to
support merging and augmentation of domain-specific experts trained on limited annotated examples.
Similarly, TableGPT [335]] presents a table-tuning paradigm, where LLMs are fine-tuned using various
table tasks synthesized from real tables to enhance the model’s ability to understand and process
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table-related tasks. Additionally, [48]] explores the performance of LLMs for table data preparation
tasks, which evaluates their performance on five data cleaning and integration tasks through prompt-
based methods. However, these works are specifically tailored for table data preparation and are not
directly applicable to trajectory data preparation tasks. They lack the necessary understanding of
trajectory data and do not account for the spatio-temporal characteristics and complexity of trajectory
data preparation tasks, making them unsuitable for such applications. In contrast, we aim to develop
a TDP-oriented LLM to effectively support various trajectory data preparation tasks.

Large Language Models for Spatio-Temporal Data Analysis. There are a few spatio-temporal
LLMs proposed [38, 182} 136]], which have achieved superior performance in spatio-temporal down-
stream applications. Specifically, UrbanGPT [37] integrates a spatio-temporal dependency encoder
with a command adjustment paradigm to enhance the LLMs’ understanding of complex temporal and
spatial interdependencies. Besides, UniST [77] develops a general-purpose model for urban spatio-
temporal prediction through diverse data utilization, effective pre-training, and knowledge-guided
prompts. In addition, PromptGAT [12] employs prompt-based grounded action transformations to
analyze system dynamics by leveraging reasoning capabilities of large language models to understand
environmental impacts on traffic patterns. However, none of them have considered trajectory data
quality. If the quality of trajectory data is extremely poor, the performance of spatio-temporal large
language models in downstream tasks will not be satisfactory either. In contrast, we aim to explore
the powerful capabilities of large language models for trajectory data preparation to enhance the
quality of trajectory data.

B Notation and Trajectory Data Preparation Task

Notation and Description. We first present the frequently used notations and descriptions in this
paper, as listed in Table 2]

Table 2: Notation and description

Notation Description

A spatio-temporal point consisting of location and time (I, )

A trajectory consisting of multiple spatio-temporal points {p1, pa, ...}
A sub-trajectory of the trajectory '

A data silo that represents a region

A client that represents a region

The trajectory database in a client C

A set of clients {C1, Cs, ...}

A set of trajectory datasets { D1, Do, ...}

Orim.Osiy  The large language model and small language model

DagQngSs

Trajectory Data Preparation Task. Besides, we summary the supported trajectory data preparation
tasks of the proposed FedTDP in this paper, as shown in Table[3] with the rough processing of each
task shown in Fig.[9]

Table 3: Trajectory data preparation task

Category Task Description
Anomaly Detection (AD) Detect anomalous trajectory
. Trajectory Imputation (TT) Predict missing points
Data Cleaning Noise Filtering (NF) Filter point noise
Stay Point Detection (SPD) Identify stationary points
. Map Matching (MM) Align a trajectory to road network
Data Matching Trajectory-User Linking (TUL) Associate trajectories with users
Data Annotation Travel Mode Identification (TMI) Identify transportation mode
Data Reduction Trajectory Simplification (TSim) Remove number of points
Trajectory Segmentation (TSeg) Divide a trajectory to segments
Data Augmentation Trajectory Recovery (TR) Recovery complete trajectory
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(f) Trajectory-user link (g) Travel mode identification (h) Trajectory simplification (i) Trajectory segmentation (j) Trajectory recovery

Figure 9: The supported trajectory data preparation tasks

C Additional Methodology Details

C.1 Proof of Theorem 1

We provide the complete theoretical proof of Theorem 1 proposed in this paper that provides the
correctness of the trajectory privacy autoencoder model aggregation, as detailed below.

Proof. According to Eq. we can get the result of aggregating masked parameter blocks
{Pl(k)7 P2(k)7 ol P\(ck|)} for all clients, as formally shown below:

el IC| IC] €
STEP=NTPP ST ST ay sk (11)
i=1 i=1 i=1 j=1&j#i
Here, sk;; = skj; and a;; = —a;;, thus we can get the result formally shown below:
4 Ic| [
Z Z a,;j * Sk,'yj = Z Z(ai,j * Sk,"j + aj,,» * Skj,,‘) = O (12)
i=1 j=1&j#i i=j+1j=1

The aggregation P*) of the masked parameter block is formally shown below:

el c| el c|
STEM=N"PP ST ST ayrsky =Y PP (13)
i=1 i=1 i=1 j=1&j#i i=1

C.2 Examples of Trajectory Prompt Engineering

For better understanding the trajectory prompt engineering of the proposed trajectory knowledge
enhancer, we show practical examples of noise filtering and travel mode identification tasks using the
trajectory prompt engineering in the small language model of the client.

As shown in Fig.[T0] Task shows the task name with its description listed in Section 3] Besides, Data
uses the raw trajectory data in clients, consisting of spatio-temporal points i.e., T = {p1,pa, ...}
Additionally, Information includes optional road network and weather data. Specifically, sunny
and 15 represent the weather tokens during the trajectory, id denotes the segment ID, start-lon and
start-lat indicate the segment’s longitude and latitude at the starting point, and stop-lon and stop-lat
denote the segment’s longitude and latitude at the stopping point. Specifically, we utilize the weather
data for these tasks and the road network for the travel mode identification task. Moreover, Format
refers to the expected output data of the task. We anticipate the outputs of noise filtering and travel
mode identification to be the trajectory data and travel mode, respectively. Finally, the model’s
response should return the expected results in Format. Note that, in the server Data uses embeddings
uploaded by clients, consisting of encoded spatio-temporal points i.e., E = {e1, ea,...}.
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T-3: Noise Filtering T-7: Travel Mode Identification

Task: it is a noise filtering task. It targets Task: it is a travel mode identification task. It aims
identifying and removing irrelevant spatio-temporal! || ito identify the travel mode of a trajectory based on
points that deviate from a trajectory. These noisy the moving pattern of data. The travel mode is
points can result from GPS inaccuracies, signal usually the walk, bike, bus, or car.

interference, or sensor malfunctions.

Data: the trajectory data consisting of spatio-
temporal points is {(lon;, lat,, t;), (lon,, lat,, t5), ...}.

Data: the trajectory data consisting of spatio-
temporal points is {(lon;, lat,, t;), (lon,, lat,, t5), ...}.

Information: 1t is sunny with an average
temperature of /5. The road network of the map is
{(id,, start-lon,, start-lat;, stop-lon;, stop-lat;),
(id,, start-lon,, start-lat,, stop-lon,, stop-lat,), ...}.

Informatton the weather is sunny with an average !
'temperature of /5.

iFormat: the output should be the trajectory data. i %Format: the output should be the travel mode. i

Model response: the result of noise filtering is

{(lon,, lat,, time,), (lony, laty, time,), ...}. Model response: the travel mode is car.

Figure 10: The example of trajectory prompt engineering in clients

C.3 Proof of Theorem 2

We provide the complete theoretical proof of Theorem 2 proposed in this paper that determines the
probability of parameters that need to be trained in the LoRA sparse-tuning of the proposed trajectory
knowledge enhancer, as detailed below.

Proof. To derive the probability that each layer is selected when NV, layers are chosen for the next
round of training, we first calculate the probability that each layer is selected in the first time, which
is equal to the ratio of the layer, as formally shown below:

PR (L, N,y) = RO(Ly) (14)

Then, we calculate the probability that the layer is not selected in the first time and is selected in the
second time, as formally shown below:

N
. RO(Li) + RO(Ly,) .
PA(L,, N, Z . () i) ot (15)

Then, we calculate the probability that the layer is not selected in the first two times and is selected in
the third time, as formally shown below:

(r) (M(L.
(r+1) * R (Lj,) * R (L)
Prs Li, N Z Z R(r (L;,) — R™(L;,) (16)

=1j2=
where j; # jo # i. Based on the above inductive steps, we can calculate the probability that the layer

is not selected in the first IV,,, — 1 times and is selected in the IV, time by inductive reasoning, as
formally shown below:

N
(T+1)
P 'La m = )
N, ij Z 1—RO(L;,)—...— R(T)(Lij) a7y

jN’IYLZ

Y RO(L;) * RO(Ly,) % ...« RW)(Ly,, )
1

where j; # ... # jn,, # i. Thus, the probability that layer L; is selected to train in the next round
7 + 1 can be calculated as follows:

N, N (r)(T. (" (L.
PrimtO(L;, Ny, = ;Pé’"*”(% Nin) = RO(L;) + jlz=:1 : 1(511)’%32]‘1(;:]1) al
N N RO(Ly) « RO(Ly,) % ... % R™ (Ljy,, ) (18)
where ji # ... # jn,, # 1. :
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C.4 Multi-Task Training

Due to the diverse range of trajectory data preparation tasks that need to be addressed, we propose a
multi-task training strategy to enhance the model’s learning and generalization capabilities. Specifi-
cally, we prepare a trajectory dataset applicable to most trajectory data preparation tasks and construct
labels for each task. During the training phase, we execute multiple trajectory data preparation tasks
on the same trajectory data input, calculate the loss for each task, and jointly optimize the model
formulaically shown below:

L=Lri+ Lo+ ...+ L1, (19)

where Lz; is the loss of trajectory data preparation task T-; listed in the Section [3] Note that the
proposed FedTDP framework can be easily extended to support other trajectory data preparation tasks
benefiting from its modular architecture, decoupled data processing pipeline, and variable model
base.

Training Algorithm. For convenient method reproduction, we provide a detailed training process of
the entire FedTDP framework, which can be divided into the server and client, as shown in Algorithms
1 and 2.

Algorithm 1: The training on the server

Input: the number of training rounds 7R
for roundr =0,...,TR — 1 do
f + IsFrozen(r) // Get the frozen status of this round.;
if f == Falsethen
E < Get(C) // Get the embeddings data from clients.;
E + Connect(F) // Connect into a complete embeddings.;

else
| E < GetFrozenData(r — 1) / Get the frozen data.;

prompt < TKE(FE) // Construct the prompt of the embeddings.;
0 < M (prompt) // Input the prompt data to the LLM.;
o <+ Split(o) // Split the output of the LLM.;
if f == Falsethen
for client numberi =0,...,|C| —1do
| Send(o;, C;) // Send split results to respective clients.;

Algorithm 2: The training on the client

Input: the number of training rounds 7R and server s
for roundr =0,...,TR — 1 do
D «+ GetData() // Get the local trajectory data.;
f < IsFrozen(r) // Get the frozen status of this round.;
if f == Falsethen
E + Enc(D) // Encode the trajectory into embeddings.;
L Send(E, s) // Send the embeddings data to the server.;

prompt < TKE(D) // Construct the prompt of the data.;
0" < OsLm(prompt) // Input the prompt data to the SLM.;
if f == Falsethen
o <+ Get(s) // Get the result from the server.;
L o0 + Dec(0) // Decode the server’s result.;

else
| 0+ GetFrozenData(r — 1) // Get the frozen data.;

result + TKE(0', 0) // Compute the distillation result.;

In the server (i.e., Algorithm 1), the input is the number of training rounds (line 1). For each training
round r, it begins to get the frozen state f (lines 2-3). If f is not frozen, the server gets the trajectory
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embeddings E from clients C and connects them, or it gets local £ frozen in the last training round
7 — 1 (lines 4-9). Then, the server uses TKE to construct the TDP prompt for the LLM and get the
output o (lines 10-11). Finally, the server splits it into several parts and sends them to respective
clients if f is not frozen (lines 12-18).

In the client (i.e., Algorithm 2), the input are the number of training rounds and the server (line 1).
For each training round r, it begins to get the trajectory data D and frozen state f (lines 2-4). If f is
not frozen, clients encode D into embeddings and send them to the server (lines 5-8). Then, clients
use TKE to construct the TDP prompt for the SLM and get the output o (lines 9-10). If f is not
frozen, clients get the LLM’s output o from the server and decode it, or it gets local o frozen in the
last round 7 — 1 (lines 11-16). Finally, clients use TKE to compute the final result between o and o
(lines 17-18).

Complexity Analyses. We also give complexity analyses for Algorithms 1 and 2. Specifically, given
the number of trajectory embeddings data |E| from all clients, the complexity of Algorithm 1 is
O(|E| * TR « MC), where MC is the model complexity of the LLM. Given the number of trajectories

| D] in the client, the complexity of Algorithm 2 is O(|D| * TR * MC/), where MC' is the model
complexity of the SLM.

C.5 Theoretical Privacy Analysis

The privacy protection mechanism of the proposed FedTDP framework is built upon the Trajectory
Privacy Autoencoder (TPA), which protects trajectory data privacy while maintaining spatio-temporal
correlations. Besides, it develops a decentralized aggregation approach based on secret sharing [58]]
that ensures the parameters of the TPA model remain confidential against trajectory data recovery or
inference through embedding [61! 18, [30]] and gradient [67, 84, |87]] inversion attacks. To rigorously
analyze the privacy-preserving capability of TPA, we first define the threat model as follows.

Threat Model. Following prior works [81} 163, |83] in federated learning, we assume the server
acts as a semi-honest adversary who will honestly execute required operations (e.g., aggregation)
but also remains curious about the private client data. In the F-TDP problem, the server seeks to
reconstruct clients’ raw trajectory data using adversary’s knowledge, which includes the client model
architecture, including the client model architecture, the privacy-preserving mechanism, and the
encoded embeddings uploaded by clients.

Based on this, we use mutual information [32] to quantify the upper bound of privacy leakage, i.e.,
I(T; E), which measures the information about original trajectory data T that can be inferred from
encoded embeddings F transmitted to the server, as shown below:

I(T;E)=H(T)—- H(T|E), (20)
where H (-) denotes the entropy. Since E is derived from 7' through the encoder g, the conditional
entropy H(T|E) can be decomposed as:

H(T|E) = Egy~Po [H(T\E, eEnC)] + H(GEHC|E)7 (21)
where 0p, is drawn from a prior distribution Pg and O is the parameter space. Besides, both
H(T\|E, 0g,) and H (0p,.|E) are large because 0, is private and inaccessible to the server. Conse-
quently, the conditional entropy H (T'|E) remains high, leading to minimal privacy leakage I(T'; E).
Furthermore, leveraging Bayes’ theorem [3]] and Fano’s inequality [19]], the probability P. of the
attacker recovering T incorrectly satisfies:

H(P.)+ P.log|T| > H(T|E), (22)
where T denotes the trajectory data space. The large H(T'|E) results in a correspondingly high P,
indicating a low likelihood of successful reconstruction of the original trajectory data, which further
underscores the effectiveness of TPA in protecting trajectory privacy.

D Experimental Details

D.1 Datasets
We evaluate the proposed FedTDP framework using 6 datasets, including GeoLife [86], Porto [51],

T-Drive [[76], Tencent [43]], Gowalla [11]], and SHL [60], with their statistics shown in Table ] as
detailed below.
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Table 4: The statistics of dataset

Dataset  # trajectories  # points Quality Issue Task
. Positional inaccuracies, AD, TI, MM, TUL,
GeoLife 182 24,876,978 data noise, and lower precision ~ TMI, TSim, and TR
Porto 442 83,409,386 Anomalies and missing data AD and TI
. . . . NF, TR,
T-Drive 10,336 17,662,984 Noisy and incomplete points SPD, and TSim
Tencent 40,966 1,610,216 Inaccurate points MM
Gowalla 107,092 6,442,890  Sparse and non-continuous data TUL
SHL 3 109,390 Duplicate records TSeg and TMI

* GeoLife [86]]. It collected 182 trajectories with 24,876,978 spatio-temporal points, used for the
training tasks, including Anomaly Detection (AD), Trajectory Imputation (TI), Map Matching
(MM), Trajectory-User Link (TUL), Travel Mode Identification (TMI), Trajectory Simplification
(TSim), and Trajectory Recovery (TR) tasks. It contains various quality issues such as positional in-
accuracies, data noise, and lower precision due to irregular sampling intervals and sensor limitations,
which make it suitable for various trajectory data preparation tasks.

* Porto [S1]. It collected 442 trajectories with 83,409,386 spatio-temporal points, which contains
quality issues such as anomalies and missing data, used for AD and TI testing tasks.

* T-Drive [76]]. It collected 10,336 trajectories with 17,662,984 spatio-temporal points, which
contains quality issues such as noisy and incomplete points, used for NF, TR, SPD, and TSim
testing tasks.

* Tencent [43]. It collected 40,966 trajectories with 1,610,216 spatio-temporal points, which contains
quality issues such as inaccurate points due to the low sampling rate, used for the MM testing task.

* Gowalla [11]. It collected 107,092 trajectories with 6,442,890 spatio-temporal points, which
contains quality issues such as sparse and non-continuous data, used for the TUL testing task.

* SHL [60]. It collected 3 trajectories with 109,390 spatio-temporal points, which contain quality
issues such as duplicate records, used for TSeg and TMI testing tasks.

D.2 Baselines
We compare the proposed FedTDP framework with state-of-the-art baselines, as shown in Table[5]

Table 5: The compared baselines

Category Task Method Year

Anomaly Detection ATROM 2023

Trajectory Imputation Kamel 2023

Map Matching GraphMM 2024

S-TDP Trajectory-User Linking AttnTUL 2024

Travel Mode Identification ~ Estimator 2024

Trajectory Simplification S3 2023

Trajectory Recovery LightTR 2024

FM4DP 2022

Large Language Models for Table Data Preparation MELD 2024

TableGPT 2024
PromptGAT 2024
Large Language Models for Spatio-Temporal Data Analysis UniST 2024
UrbanGPT 2024

All tasks for evaluation

First, we compare FedTDP with various Trajectory Data Preparation (TDP) methods in a single
TDP task (referred to S-TDP), including ATROM [22] for the AD task, Kamel [47] for the TI task,
GraphMM [43]] for the MM task, AttnTUL [[7] for the TUL task, Estimator [27]] for the TMI task,
S3 [18]] for the TSeg task, and LightTR [44] for the TR task, as detailed below.

* ATROM [22]. It solves the anomaly detection task in open-world scenarios and introduces a new
probabilistic metric learning model.

» Kamel [47]. It proposes a scalable system that inserts additional real trajectory points to improve
the accuracy of the trajectory imputation task.
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* GraphMM [43]. It develops the graphical nature of the map matching task to exploit the road
network and trajectory graphical topology.

» AttnTUL [7]. It proposes a hierarchical trajectory attention neural network for co-encoding local
trajectory transition patterns and global spatial dependencies to solve the trajectory-user link task.

» Estimator [27]]. It partitions the entire traffic space into disjoint spatial regions based on the traffic
conditions for the travel mode identification task.

» S3 [18]. It presents a lightweight trajectory segmentation task framework to augment the trajectory
representation paradigm with geo-semantics.

» LightTR [44]. It develops a local trajectory embedding module that provides higher computational
efficiency for the trajectory recovery task.

Besides, we compare FedTDP with three methods using Large Language Models (LLMs) for table
data preparation, including FM4DP [48]], MELD [72], and TableGPT [35], as detailed below.

* FM4DP [48]]. It helps LLMs understand table DP tasks, which uses 5 data cleaning and integration
table DP tasks as prompt tasks and evaluates the performance of LLMs on these tasks.

* MELD [72]]. It employs the mixture-of-experts architecture to support the merging and augmenta-
tion of experts trained on the domain-specific experts trained on limited annotated examples.

» TableGPT [35]. It proposes a table-tuning paradigm using various table tasks synthesized from
real tables as the training data to help LLMs understand the table data and perform table tasks.

Moreover, we compare FedTDP with three LLM-based models for spatio-temporal data analysis,
including PromptGAT [12], UniST [77], and UrbanGPT [37], as detailed below.

* PromptGAT [12]]. It uses the LLM to analyze system dynamics, leveraging the context and
spatio-temporal data to understand how weather, traffic, and road conditions affect traffic dynamics.

» UniST [77]. It proposes a general-purpose model, which is designed for urban spatio-temporal
prediction in various urban scenarios to capture the complex spatio-temporal relationship.

* UrbanGPT [37]. It integrates a spatio-temporal dependency encoder with a command adjustment
paradigm, which enables LLMs to understand complex spatio-temporal interdependencies.

D.3 Model Generalization Study

To evaluate the proposed FedTDP framework

. . . . .. —-AD TI =A-MM TUL NF SPD TR TS
generalization in different numbers of training < - DR S

tasks, we systematically remove the training task " B=—8—&—=8& | o 2o
from back to front based on their order in Table[ll £ s A/A——A/A £ a0 o
As illustrated in Fig. the results indicate <, /V/V_—V 20 ‘
that the performance of FedTDP across various o .1

. o . 1 2 4 7 1 2 4 7
tasks declines as the number of training tasks # Seen Tasks # Seen Tasks
decreases. This decline is primarily attributed (a) Training performance (b) Testing performance

to the reduced acquisition of TDP knowledge,
which adversely affects generalization. Notably,
when the number of tasks is reduced to one (i.e., training FedTDP solely on the anomaly detection
task using GeoLife), the performance also falls below that of S-TDP in Fig.[5]

Figure 11: Scalability study

D.4 Model Base Study

To evaluate the impact of various model bases on the proposed FedTDP framework, we choose
widely used model bases for the LLM (Llama-8B [64], GPT3-7B [5], and Qwen-7B [2]) and SLM
(GPT3-Small-125M [3]], GPT2-Small-137M [52]], and T5-Small-60M [53]]). Besides, to evaluate the
impact of different LLMs on FedTDP, we use GPT3-Small as the client’s SLM while we use Llama
as the server’s LLM to evaluate the impact of different SLMs on FedTDP. The results are shown in
Fig.[T2] As observed, Llama achieves optimal performance in most TPD tasks for the server’s LLM,
followed by GPT3 and then Qwen. In contrast, GPT3-Small demonstrates the best performance for
the client’s SLM, succeeded by T5-Small and then GPT2-Small. Consequently, we adopt Llama and
GPT3-Small as the default server’s LLM and client’s SLM in other experiments, respectively.
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Figure 12: Large language model and small language model base study

D.5 Efficiency Study

Fig. [[3]shows the communication costs (in GB)

. . . . S-TDP FM4DP B2 MELD [ TableGPT
and running times (in hours) of various methods (T PrompGAT EE UnisT [ UrbanGPT [ FedTDP
across all TDP tasks. During the training pro-

cess, the proposed framework incurs the largest % g %

communication size because it must transfer em- E 'Og ;

beddings and model parameters, whereas LLM- ~ 1 7 o, 7
based methods (i.e., LLMs for table table data T cieny e neney
preparation and spatio-temporal LLMs) transmit (@) Training (b) Testing

all perturbed data, generated through differen-
tial privacy, to the server in the first round of
training and do not require data transmission in the following rounds of training. Furthermore, the
runtime of FedTDP is reduced by a factor of 11.3 to 14.2 compared to other LLM-based methods,
demonstrating its efficiency in the F-TDP context. In the testing phase, the communication size of
FedTDP is nearly identical to that of S-TDP and 1.4 to 1.8 times less than that of other LLM-based
methods, which require transferring all data to the server, whereas FedTDP only transmits the data
necessary for cross-client TDP. Additionally, the runtime of FedTDP is 2.6 to 4.8 times lower than
that of other LLM-based methods, further underscoring its efficiency.

Figure 13: Efficiency study

D.6 Parameter Sensitivity Study

We evaluate the effects of hyperparameters of

the proposed FedTDP framework (i.e., the train-  -g-a-o-1 A-wv-g-100
ing layers ratio m of LoRA sparse-tuning in the =~ ~-N\-<Esp-H-18 -©-1sim
TKE module), as shown in Fig. @, where we  sw| B—E—8—4d p1 s
change the m from 25% to 100%. We can ob- £
serve that as m increases, the performance of <,
FedTDP improves slightly. However, this im- — ——
provement comes at the cost Qf increased train- ® flayers ® Tr;h’n{;rgﬂiciemy
ing time and communication size, as the number

of parameters that need to be trained and trans-
mitted also rises when m is increased. There-
fore, the suggested value of m is 25% or less, as long as the model performance with the value of m
is acceptable.

-'A‘— Runtime —e— Communication

70

(hours)

1.9 60%

SED
<
a
Size (GB)

ime

50%

Ti

1.7 40%

£

Figure 14: Parameter sensitive study
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction cover the contributions and scope of the paper
regarding building a federated trajectory data preparation framework

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in Section[6l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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932 Justification: We provide the proofs of theorem and theoretical privacy analysis in Ap-
933 pendix [C|

934 Guidelines:

935 * The answer NA means that the paper does not include theoretical results.

936  All the theorems, formulas, and proofs in the paper should be numbered and cross-
937 referenced.

938 * All assumptions should be clearly stated or referenced in the statement of any theorems.
939 * The proofs can either appear in the main paper or the supplemental material, but if
940 they appear in the supplemental material, the authors are encouraged to provide a short
941 proof sketch to provide intuition.

942 * Inversely, any informal proof provided in the core of the paper should be complemented
943 by formal proofs provided in appendix or supplemental material.

944 * Theorems and Lemmas that the proof relies upon should be properly referenced.

945 4. Experimental Result Reproducibility

946 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
947 perimental results of the paper to the extent that it affects the main claims and/or conclusions
948 of the paper (regardless of whether the code and data are provided or not)?

949 Answer: [Yes]

950 Justification: We have detailed the experimental settings in Section[5] All code and data are
951 available at https://anonymous . 4open.science/r/FedTDP.

952 Guidelines:

953 * The answer NA means that the paper does not include experiments.

954 * If the paper includes experiments, a No answer to this question will not be perceived
955 well by the reviewers: Making the paper reproducible is important, regardless of
956 whether the code and data are provided or not.

957 * If the contribution is a dataset and/or model, the authors should describe the steps taken
958 to make their results reproducible or verifiable.

959 * Depending on the contribution, reproducibility can be accomplished in various ways.
960 For example, if the contribution is a novel architecture, describing the architecture fully
961 might suffice, or if the contribution is a specific model and empirical evaluation, it may
962 be necessary to either make it possible for others to replicate the model with the same
963 dataset, or provide access to the model. In general. releasing code and data is often
964 one good way to accomplish this, but reproducibility can also be provided via detailed
965 instructions for how to replicate the results, access to a hosted model (e.g., in the case
966 of a large language model), releasing of a model checkpoint, or other means that are
967 appropriate to the research performed.

968 * While NeurIPS does not require releasing code, the conference does require all submis-
969 sions to provide some reasonable avenue for reproducibility, which may depend on the
970 nature of the contribution. For example

971 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
972 to reproduce that algorithm.

973 (b) If the contribution is primarily a new model architecture, the paper should describe
974 the architecture clearly and fully.

975 (c) If the contribution is a new model (e.g., a large language model), then there should
976 either be a way to access this model for reproducing the results or a way to reproduce
977 the model (e.g., with an open-source dataset or instructions for how to construct
978 the dataset).

979 (d) We recognize that reproducibility may be tricky in some cases, in which case
980 authors are welcome to describe the particular way they provide for reproducibility.
981 In the case of closed-source models, it may be that access to the model is limited in
982 some way (e.g., to registered users), but it should be possible for other researchers
983 to have some path to reproducing or verifying the results.

984 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We share all code and data at https://anonymous.4open.science/r/
FedTDP.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have detailed the experimental settings in Section 3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: All experiments are repeated five times and we have reported the average
results, but error bars are not included.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided detailed information about the computer resources in Section

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: No NeurIPS code of ethics were violated.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impacts of federated trajectory data preparation
in Section[l

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We ensure that the assets we use are credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human

Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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