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Abstract

Trajectory data, which captures the movement patterns of people and vehicles over1

time and space, is crucial for applications such as traffic optimization and urban2

planning. However, issues such as noise and incompleteness often compromise data3

quality, leading to inaccurate trajectory analyses and limiting the potential of these4

applications. While Trajectory Data Preparation (TDP) can enhance data quality,5

existing methods suffer from two key limitations: (i) they do not address data6

privacy concerns, particularly in federated settings where trajectory data sharing is7

prohibited, and (ii) they typically design task-specific models that lack generaliz-8

ability across diverse TDP scenarios. To overcome these challenges, we propose9

FedTDP, a privacy-preserving and unified framework that leverages the multi-task10

learning capabilities of Large Language Models (LLMs) for TDP in federated envi-11

ronments. Specifically, we: (i) design a trajectory privacy autoencoder for secure12

data transmission to protect data privacy with theoretical analysis, (ii) introduce a13

trajectory knowledge enhancer to develop TDP-oriented LLMs by improving model14

learning of TDP knowledge, and (iii) propose federated parallel optimization to en-15

hance training efficiency by reducing data transmission and enabling parallel model16

training. Experiments on 6 real datasets and 10 mainstream TDP tasks demonstrate17

that FedTDP consistently outperforms 13 state-of-the-art baselines. All code and18

data are available at https://anonymous.4open.science/r/FedTDP.19

1 Introduction20

Trajectory data is typically represented as sequences of spatio-temporal points that describe the21

movement of objects, such as people [6] and vehicles [68]. Proliferation of GPS and location-based22

services has generated vast amounts of trajectory data [56, 74, 85], enabling various analytical23

applications, including route planning [89], crowd clustering [39], and traffic prediction [41]. How-24

ever, trajectory data often suffers from significant quality issues due to sensor malfunctions, limited25

equipment precision, and transmission interruptions, leading to inconsistent [43], noisy [17], and26

missing values [9]. For instance, GPS location estimates in Uber [65] can be inaccurate by over27

50 meters in densely populated, highly built-up urban areas. Such low-quality data undermines28

the reliability of trajectory analyses, limiting their practical applications. To address these issues,29

Trajectory Data Preparation (TDP)—which includes preprocessing and data mining such as data30

imputation [47], map matching [43], trajectory-user linking [7], anomaly detection [22], and trajectory31

recovery [44]—has become essential for improving data quality before analysis and application.32

However, existing TDP methods face two key limitations that affect their privacy and generalizabil-33

ity. (i) Previous studies have not addressed data privacy constraints. According to government34

reports [20] and related studies [78, 45, 59], trajectory data is often collected or stored across multiple35

stations or organizations. Consequently, a moving trajectory may span several geographic regions,36

with each region’s data collected by its respective signal station. For example, Fig. 1 illustrates the37
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trajectory data from GeoLife [86], a real-world dataset collected in Beijing, which shows six distinct38

colored regions, each storing its trajectory data separately. Due to legal constraints [23, 4, 10], the39

exchange of trajectory data across regions is prohibited. However, existing studies typically assume40

centralized data, which increases the risk of privacy breaches. (ii) All previous studies are single-task41

approaches. Specifically, these models are tailored to a single TDP task, such as data imputation or42

anomaly detection. When addressing multiple TDP tasks, a new model must be trained for each task,43

resulting in high computational cost, extended training time, and limited generalizability.44
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Figure 1: Federated trajectory data preparation

Motivated by these limitations, we pro-45

pose a privacy-aware and generalized46

framework for trajectory data prepara-47

tion. (i) To protect data privacy, we in-48

troduce Federated Learning (FL)[40, 31],49

a privacy-preserving distributed learning50

paradigm. FL has been widely applied in51

domains such as urban computing [66]52

and transportation management [73] to53

address privacy concerns. For example,54

MobiSpaces [46], a government-funded55

project by the European Union, collabo-56

rates with various transportation services57

to support Mobility-as-a-Service using FL.58

It provides a data governance platform for59

processing raw trajectory data from public60

transportation, traffic sensors, and maritime vessels for decentralized analysis. As shown in Fig. 1,61

FL enables multiple Clients (i.e., regions) to collaboratively train a model on a Server while keeping62

trajectory data decentralized, thereby preserving the data privacy of each client, a new problem63

referred to as Federated Trajectory Data Preparation (F-TDP). (ii) Inspired by the powerful64

capabilities of Large Language Models (LLMs) [75, 42, 69], particularly their success in multi-task65

learning, we aim to develop a TDP-oriented LLM to support various TDP tasks. Overall, our goal is66

to leverage LLMs to create a privacy-preserving and unified framework FedTDP for trajectory67

data preparation in the federated learning environment. However, developing the FedTDP framework68

presents three key technical challenges that must be addressed.69

Challenge 1: How to safeguard trajectory data privacy in the FedTDP framework? TDP tasks often70

necessitate considering the data context [22, 47, 43], which involves the exchange and sharing of data71

and demands collaborative processing across clients (i.e., cross-client TDP), raising privacy concerns.72

As shown in Fig. 1, if the data p is missing, the Fengtai region needs to utilize the context of the73

missing data (i.e., p1 and p2) for data imputation [43, 71]. However, due to data privacy constraints,74

the Fengtai region cannot access p1 from the Dongcheng region. Consequently, ensuring the privacy75

of trajectory data thus constitutes the first challenge the FedTDP framework must address.76

Challenge 2: How to develop a TDP-oriented LLM in FedTDP? Existing LLMs perform poorly on77

TDP tasks due to several factors. First, they are primarily designed for text data [16, 34]. However,78

trajectory data exhibits unique spatio-temporal features [47, 18], such as temporal regularity and79

spatial dependency, which differ significantly from text data and are not inherently understood by80

LLMs. Besides, their pre-training relies largely on publicly available unsupervised corpora [15, 24],81

which capture only general textual knowledge. In contrast, TDP tasks involve intricate spatio-temporal82

relationships and patterns [43, 29] that are not included in these corpora. As a result, effectively83

training a TDP-oriented LLM represents the second challenge that FedTDP must overcome.84

Challenge 3: How to improve the training efficiency of the FedTDP framework? Due to the limited85

computational resources and storage capacities of clients, directly deploying and training LLMs86

locally on clients is infeasible [62, 79, 26]. As a result, LLMs are typically hosted on servers, requiring87

clients (i.e., regions) to transmit their local data to the server for TDP processing. This introduces88

storage burdens on the server and wastes computational resources on the client. Additionally, LLMs89

often contain a large number of parameters, and even with techniques like Parameter-Efficient Fine-90

Tuning (PEFT) [28], training a TDP-oriented LLM remains highly time- and resource-intensive.91

Therefore, enhancing training efficiency represents the third challenge that FedTDP must address.92

Contributions. To address the challenges outlined above, we first introduce the Small Language93

Model (SLM), a compact version of the server’s LLM, which is deployed on each client for local TDP.94
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This approach leverages the computational resources of clients and reduces the server’s workload,95

enabling distributed computation within the FedTDP framework. To address Challenge 1, we96

propose a Trajectory Privacy AutoEncoder (TPA), which encodes trajectory data into spatio-97

temporal embeddings for transmission, rather than sending the raw data. This ensures data privacy98

while preserving the spatio-temporal correlations essential for TDP tasks. Besides, we develop a99

decentralized secret-sharing method to safeguard against trajectory data recovery or inference through100

embedding [61, 8, 30] and gradient [67, 84, 87] inversion attacks with the theoretical privacy analysis101

in Appendix C.5. To address Challenge 2, we design a Trajectory Knowledge Enhancer (TKE),102

which helps both the SLM and LLM understand trajectory data and learn the specific knowledge103

required for TDP tasks. This enhances the model’s ability to learn TDP-related patterns while reducing104

the number of parameters. To tackle Challenge 3, we introduce Federated Parallel Optimization105

(FPO) to improve training efficiency. Specifically, FPO decomposes the federated training between106

the server and clients through split learning, employs alternating optimization to minimize data107

transmission, and accelerates training via parallel execution. Finally, experiments on 6 real-world108

datasets demonstrate that the proposed FedTDP framework outperforms 13 state-of-the-art baselines,109

achieving a performance improvement from 4.84% to 45.22% across 10 mainstream TDP tasks.110

2 Preliminary111

The frequently used notations and descriptions in this paper are shown in Appendix B.112

Definition 1 (Spatio-Temporal Point). A spatio-temporal point is represented as p = ⟨l, t⟩, where113

l = (lon, lat) is a tuple of longitude and latitude location coordinates, and t refers to the observed114

time associated with this spatio-temporal point.115

Definition 2 (Trajectory). A trajectory comprises chronological spatio-temporal points, denoted as116

T = {p1, p2, . . .}, which is typically represents the movement of a user. In addition, a trajectory can117

be segmented into multiple sub-trajectories, denoted as T = {ST(1), ST(2), . . .}.118

Definition 3 (Data Silo). A data silo S has its own collected trajectory dataset D. In federated119

learning, a data silo S is represented as a client C, typically a regional data storage platform120

or institution, responsible for the collection and management of trajectory data within that region.121

Specifically, a trajectory T = {p1, p2, . . .} is segmented into sub-trajectories based on the geographic122

locations, denoted as T = {ST(C1), ST(C2), . . .}, where sub-trajectory ST(Ci) is stored in client Ci.123

Problem Formulation (F-TDP). Given the server’s LLM θLLM and the trajectory dataset D =124

{D1, D2, . . .} → {T1, T2, . . .} of all clients C = {C1, C2, . . .}, where client Ci holds dataset Di,125

F-TDP is to employ θLLM on D for performing various trajectory data preparation tasks, where126

collected trajectories Di of client Ci cannot be shared and exchanged to the server and other clients:127

F-TDP(D) = θLLM(Ti), Ti = {ST(C1)
i , ST(C2)

i , . . .}, (1)

where θLLM(Ti) is the result of θLLM on the trajectory Ti, with different forms of output depending on128

the TDP task, such as the cleaned trajectory, points, or classification result.129

3 Trajectory Data Preparation Task130

We demonstrate all major types of TDP tasks, with the rough processing shown in Appendix B.131

T-1: Anomaly Detection (AD). It aims to detect trajectories that deviate significantly from typical132

movement behaviors. These anomalies could result from unusual user behavior, errors in data133

collection, or potential malicious activities.134

T-2: Trajectory Imputation (TI). It aims to reconstruct a complete trajectory by estimating the135

missing points based on available spatio-temporal points. This often occurs when GPS signals are136

lost or data collection is interrupted.137

T-3: Noise Filtering (NF). It aims to identify and remove irrelevant spatio-temporal points that138

deviate from a trajectory. These noisy points can result from GPS inaccuracies, signal interference,139

or sensor malfunctions.140

T-4: Stay Point Detection (SPD). It aims to identify locations where a moving object remains within141

an area for a certain period of time. A stay point typically represents a place of interest, such as a rest142

stop, home, or office.143

T-5: Map Matching (MM). It aims to map the spatio-temporal point to the most probable segment144

in the road network. This is often the case when there is a deviation in the collected GPS position.145
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T-6: Trajectory-User Link (TUL). It aims to link an anonymous trajectory with its corresponding146

user. These trajectories are often collected without any user-identifying information.147

T-7: Travel Mode Identification (TMI). It aims to identify the travel mode based on the moving148

pattern of trajectory, which is walking, biking, taking the bus, or driving a car.149

T-8: Trajectory Simplification (TSim). It aims to reduce the number of spatio-temporal points in a150

trajectory while preserving its essential shape and features.151

T-9: Trajectory Segmentation (TSeg). It aims to divide a trajectory into meaningful segments based152

on specific criteria such as stay points or travel modes.153

T-10: Trajectory Recovery (TR). It aims to reconstruct a complete trajectory from partially observed154

or incomplete spatio-temporal points. This often occurs when some parts of the trajectory are missing155

or unobserved.156

4 Our Approach157
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Figure 2: The overview of our framework

Fig. 2 shows an overview of the FedTDP framework, which involves a server and multiple clients.158

FedTDP consists of three modules, i.e., Trajectory Privacy AutoEncoder (TPA), Trajectory Knowledge159

Enhancer (TKE), and Federated Parallel Optimization (FPO). To enable distributed computing of160

FedTDP, we first introduce the Small Language Model (SLM), a small-scale version of the server’s161

Large Language Model (LLM), which is deployed on each client for local TDP, to leverage clients’162

computational resources and reduce the server’s workload. Specifically, suppose the data context of163

TDP on the client’s sub-trajectory ST(C) does not involve data from other clients for joint processing.164

In that case, the locally deployed SLM is used for local TDP, or ST(C) must be uploaded to the server165

and use the LLM for cross-client TDP. The overall process is as follows. For the local TDP, TKE166

generates the TDP prompt as input for SLM (①–②). Next, TKE enhances the TDP knowledge to get167

the final result (③–④). For the cross-client TDP, TPA first encodes trajectory data and transmits the168

encoded embeddings to the server (①–②). Then, FPO freezes the data transmitted from clients (③)169

and TKE generates the TDP prompt as input for LLM (④–⑤). Next, TPA decodes results outputted170

by the server’s LLM (⑥–⑦). Finally, FPO freezes the data transmitted from the server (⑧) and TKE171

enhances the TDP knowledge to get final results (⑨–④).172

4.1 Trajectory Privacy AutoEncoder173

Design Motivation. As aforementioned, F-TDP involves the joint processing of data from multiple174

clients, i.e., cross-client TDP, necessitating data exchange and sharing. Consequently, safeguarding175

the privacy of trajectory data becomes essential. Although differential privacy [14] can be applied176

to ensure data privacy, it requires adding noise to the data, which diminishes its utility and reduces177

model accuracy. In contrast, FedTDP proposes a Trajectory Privacy AutoEncoder (TPA) to protect178

trajectory data privacy while maintaining spatio-temporal correlations.179

Specifically, the TPA module employs an encoder-decoder architecture that encodes trajectory180

data T = {p1, p2, . . .} into embeddings E = {e1, e2, . . .}, where each spatio-temporal point pi is181

independently encoded as ei = θEnc(pi). Then, these clients’ embeddings are transmitted to the182

server for aggregation E =
⋃|C|

i=1 Ei, preserving both intra-client and inter-client spatio-temporal183

dependencies, which helps the LLM to capture spatio-temporal relationships in the trajectory data.184

Next, the server splits and distributes results Ẽ = {ẽ1, ẽ2, . . .} outputted by the LLM to clients,185

where the decoder reconstructs the estimated trajectory T̃ = {p̃1, p̃2, . . .} through p̃i = Dec(ẽi).186

Here, TPA is implemented as a lightweight three-layer MLP (Multi-Layer Perception) [55] with187

GELU [25] activation, 32 embedding dimensions, and 256 hidden dimensions, which does not188

introduce significant computational overhead, as also proved in the ablation study (see Section 5.2).189
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However, merely using embeddings for transmission cannot safeguard data privacy completely in FL,190

as attackers can recover the raw data by embedding [61, 8, 30] and gradient [88, 84, 87] inversion at-191

tacks during TPA model aggregation. Specifically, traditional FL model aggregation, which exchanges192

client gradients and aggregated parameters, are vulnerable to these attacks. While homomorphic193

encryption [54] and differential privacy [14] offer solutions, they introduce computational overhead194

or degrade model accuracy. In contrast, we propose a decentralized aggregation approach based on195

secret sharing [58], achieving secure TPA aggregation without compromising efficiency or accuracy.196

Initially, each client pair (Ci, Cj) generates a shared secret key ski,j = skj,i stored locally, respectively.197

Then, the TPA parameters are partitioned into |C| parameter blocks {P(1),P(2), . . .}. For aggregation,198

the client Ci masks its parameter block using secret keys {ski,0, ski,1, ...} determined with the other199

clients to mask parameter blocks, adding ski,j if i > j or subtracting it if i < j, as shown below:200

P̃
(k)

i = P(k)
i +

|C|∑
j=1&j ̸=i

ai,j ∗ ski,j , ai,j =

{
1, i < j

−1, i > j
, (2)

where client Ci holds the parameter block P(k)
i and P̃

(k)

i is the mask parameter block.201

Theorem 1. Given the mask parameter blocks {P̃(k)

1 , P̃
(k)

2 , . . .} from all clients, the result of aggre-202

gating them is equal to the result of aggregating raw parameter blocks {P(k)
1 ,P(k)

2 , . . .} for all clients203

directly, as formally shown below:204
|C|∑
i=1

P̃
(k)

i =

|C|∑
i=1

P(k)
i (3)

Proof. The detailed proofs of Theorem 1 are provided in Appendix C.1.205

According to Theorem 1, the client Ck can obtain the aggregation result P(k) of the parameter block206

P(k) by aggregating the mask parameter blocks transmitted from clients, as formally shown below:207

P(k)
=

1

|C|

|C|∑
i=1

P̃
(k)

i =
1

|C|

|C|∑
i=1

P(k)
i (4)

Finally, the aggregated parameter block is broadcast to clients for the TPA model updates.208

4.2 Trajectory Knowledge Enhancer209

Design Motivation. Since existing LLMs are designed for text data and contain only general textual210

knowledge [16, 34, 15], they cannot be directly applied to trajectory data and TDP tasks. Although a211

few spatio-temporal LLMs [38, 82, 36] have been proposed, none of them have considered TDP. In212

contrast, to develop a TDP-oriented LLM, FedTDP designs Trajectory Knowledge Enhancer (TKE)213

that consists of trajectory prompt engineering, trajectory offsite-tuning, LoRA sparse-tuning, and214

bidirectional knowledge learning, to enhance the model learning abilities on TDP knowledge.215

i) Trajectory Prompt Engineering To help the SLM and LLM understand trajectory data and learn216

TDP knowledge, TKE designs a trajectory instruction paradigm to generate the TDP prompt, defined217

as (Task,Data, Information,Format). Specifically, Task is the textual instruction consisting of the218

task name and the task description, as listed in Section 3. Data is the input trajectory data, either219

as trajectory data T = {p1, p2, . . .} to the SLM for local TDP or embeddings E = {e1, e2, . . .} to220

the LLM for cross-client TDP. Information is the optional trajectory context (e.g., road network,221

weather) from public sources such as OpenStreetMap [49] and weather services [50], to enhance the222

model’s ability to perform TDP tasks. Format is the task-specific output format, such as classification223

results for TDP tasks including AD, TUL, and TMI, trajectories for TDP tasks including TI, NF,224

TSim, TSeg, MM, and TR, and spatio-temporal points for the SPD task. A few examples of TDP225

tasks using the trajectory prompt engineering are shown in Appendix C.2.226

ii) Trajectory Offsite-Tuning. To enhance the learning capabilities of the SLM in clients, TKE227

employs the LLM to assist it in learning trajectory knowledge by trajectory off-site tuning. Specifically,228

inspired by the offsite-tuning [70], we divide the LLM into two components, denoted as θLLM =229

[A,F ]. Here, the adapter A is the last few layers of the LLM to specialize general features for230

specific tasks, enabling task-specific feature mapping and decision making. Besides, the foundation231

F is the remaining layers excluding A, to extract general data features, transforming raw inputs into232

meaningful representations. Initially, it dispatches the server’s adapter A to the client as the final few233

layers to be integrated into the client’s SLM. Consequently, the SLM is composed of two components,234
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denoted as θSLM = [A,F ′
], where F ′

is the foundation of the SLM. Subsequently, the SLM employs235

LoRA to reduce the number of parameters in the adapter and then transmits the fine-tuning adapter to236

the server for aggregation and updates. Note that, rather than directly transferring the trained LLM’s237

adapter to SLM, it utilizes and trains it to augment the SLM’s learning capacity during training.238
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Figure 3: LoRA sparse-tuning

iii) LoRA Sparse-Tuning. To239

reduce the number of training pa-240

rameters, TKE proposes LoRA241

sparse-tuning, as shown in Fig. 3.242

According to works on spar-243

sity [1, 13, 80], more signifi-244

cantly varying parameters have245

a greater contribution to model246

convergence. Therefore, we247

only choose the layer in the248

SLM where the LoRA parame-249

ter change rate is the top m for250

training. Specifically, the client calculates the ratio of the LoRA parameters change rate of each layer251

to the global LoRA parameters change rate of all N layers (“ratio” for short), as shown below:252

R(r)(Li) =
CR(r)(Li)∑N
j=1 CR(r)(Lj)

, (5)

where CR(r)(Li) is the LoRA parameters change rate of layer Li at round r, as shown below:253

CR(r)(Li) = |
L
(r)
i − L

(r−1)
i

L
(r−1)
i

| (6)

Then, we randomly select Nm = ⌊m ∗N⌋ layers to participate in the next round of the SLM training.254

Theorem 2. Given the ratio R(r)(Li) of layer Li in training round r and the number of layers Nm255

to be trained, the probability Pr(r+1)(Li, Nm) of layer Li to train in the next round r + 1 is shown:256

Pr(r+1)(Li, Nm) = R(r)(Li) +

N∑
j1=1

R(r)(Li) ∗R(r)(Lj1)

1−R(r)(Lj1)
+ . . .

+

N∑
j1=1

. . .

N∑
jNm=1

R(r)(Li) ∗R(r)(Lj1) ∗ . . . ∗R(r)(LjNm
)

1−R(r)(Lj1)− . . .−R(r)(LjNm
)

,

j1 ̸= . . . ̸= jNm
̸= i ,

(7)

Proof. The detailed proofs of Theorem 2 are provided in Appendix C.3.257

According to Theorem 2, it chooses the training layers based on their probability at each training258

round. Finally, the client uploads the LoRA parameters of the trained layers to the server for259

aggregation, and the server assigns different weights to the parameters based on the number of clients260

involved in training on these layers, as formally shown below:261

W
(r)

Li
=

(|C| − |C′ |) ∗
∑|C

′
|

j=1 nj∗W (r)
Li,j∑|C′ |

j=1 nj

+W
(r−1)

Li

|C| − |C′ |+ 1
, (8)

where W
(r)
Li,j

is the LoRA parameters of layer Li sent by client Cj at training round r, W
(r)

Li
is the262

aggregated LoRA parameters, and |C′ | is the number of clients that have trained layer Li.263

iv) Bidirectional Knowledge Learning. To improve the model learning capabilities, TKE develops264

bidirectional knowledge learning to enhance their TDP knowledge. Specifically, in order for the SLM265

to learn useful TDP knowledge in the complex output space of the LLM, it aligns the SLM’s output266

with LLM’s high frequency output using the inverse Kullback–Leibler (KL) divergence [33]:267

min
θSLM

DKL(PθSLM ||PθLLM) =
∑
T

PθSLM(T ) log(
PθSLM(T )

PθLLM(T )
) (9)

where PθSLM and PθLLM are the output distribution of the SLM and LLM, respectively. Besides, since268

the SLM can access raw trajectory data, it aligns the LLM’s output with the SLM’s output using the269

forward KL divergence, which enables the LLM to learn the trajectory knowledge of the SLM:270

min
θLLM

DKL(PθSLM ||PθLLM) =
∑
T

PθSLM(T ) log(
PθSLM(T )

PθLLM(T )
) (10)
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4.3 Federated Parallel Optimization271
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Figure 4: Federated parallel optimization

Design Motivation. Since the272

proposed framework employs a273

federated training process, a sig-274

nificant amount of data must be275

transferred between the client276

and server during each training277

round, resulting in substantial278

communication overhead that re-279

duces training efficiency. Addi-280

tionally, gradient backpropaga-281

tion [57] is required between the282

client and server in every train-283

ing round. To improve training efficiency, FedTDP introduces Federated Parallel Optimization (FPO),284

which utilizes split learning, alternating optimization, and parallel training to reduce data transmission285

and enhance the training parallelism. The overall process of the FPO module is shown in Fig. 4.286

First, to enable the simultaneous training of the client and server, it employs split learning [21] to287

decompose the federated training process into client and server training. Specifically, the client is288

responsible for the training of the TPA model (i.e., the encoder and decoder) and SLM, while the289

server manages the training of the LLM. Besides, to reduce data transmission, it utilizes alternating290

optimization [45] to freeze the data required by the client and server, respectively. During training,291

the server freezes the embeddings uploaded by the client for the LLM training, while the client292

freezes the results outputted by the server’s LLM for the TPA model and SLM training. Finally, to293

enhance the training parallelism, it uses parallel training to optimize several objectives in parallel.294

Specifically, the client focuses on three optimization objectives: (i) minimizing the reconstruction295

loss L1 of the TPA model, (ii) reducing the inverse KL loss L2 between SLM and LLM outputs, and296

(iii) minimizing the loss L3 between SLM outputs and labels. On the other hand, the server has two297

optimization objectives: (i) minimizing the forward KL loss L1 between LLM and SLM outputs, and298

(ii) reducing the loss L2 between LLM outputs and labels.299

The training process and privacy analysis of FedTDP are shown in Appendices C.4 and C.5.300

5 Experiment301

Table 1: The evaluated trajectory data preparation tasks

Type Category Task Dataset

Seen
(seen in training)

Data Cleaning Anomaly Detection (AD)

Geolife

Trajectory Imputation (TI)

Data Matching Map Matching (MM)
Trajectory User Linking (TUL)

Data Annotation Travel Mode Identification (TMI)
Data Reduction Trajectory Simplification (TSim)

Data Augmentation Trajectory Recovery (TR)

Unseen
(unseen in training)

Data Cleaning

Anomaly Detection PortoTrajectory Imputation
Noise Filtering (NF) T-DriveStay Point Detection (SPD)

Data Matching Map Matching Tencent
Trajectory User Linking Gowalla

Data Annotation Travel Mode Identification SHL
Data Reduction Trajectory Segmentation (TSeg)

Trajectory Simplification T-DriveData Augmentation Trajectory Recovery

Tasks and Datasets. We evaluate the framework by the 10 mainstream tasks and 6 datasets in302

Table 1, which are widely studied in TDP communities [43, 47, 27]. For the seen task, we conduct303

experiments using the GeoLife [86] dataset, which was collected from April 2007 to August 2012.304

It contains various quality issues such as positional inaccuracies, data noise, and lower precision,305

which makes it suitable for various tasks. For the unseen task, the following datasets are used. (i)306

Porto [51] was collected in Porto from July 2013 to June 2014 with 442 taxis, which contain quality307

issues such as anomalies and missing data. (ii) T-Drive [76] was collected in Beijing in February308

2008 with 10,357 trajectories, which contain quality issues such as noisy and incomplete points.309
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(iii) Tencent [43] was collected in Beijing city for 3 months, which contains quality issues such310

as inaccurate points due to the low sampling rate. (iv) Gowalla [11] was collected in the social311

network from January to June 2010 with 6,442,890 check-in data from 10,336 users. (v) SHL [60]312

was collected by the University of Sussex over 7 months in 2017 from 3 users, which contains various313

travel and movement modes. More details of these datasets are provided in Appendix D.1.314

Baselines. We compare FedTDP with (i) none-LLM methods including ATROM [22] (for anomaly315

detection task), Kamel [47] (for trajectory imputation task), GraphMM [43] (for map matching316

task), AttnTUL [7] (for trajectory-user link task), Estimator [27] (for travel mode identification task),317

S3 [18] (for trajectory simplification task), and LightTR [44] (for trajectory recovery task), which are318

the leading approaches in their respective research tasks; (ii) three SOTA LLM-based table data319

preparation methods, namely FM4DP [48], MELD [72], and TableGPT [35]; and (iii) three SOTA320

LLM-based spatio-temporal data analysis methods, including PromptGAT [12], UniST [77], and321

UrbanGPT [37]. More details of these baselines are provided in Appendix D.2.322

Implementations. Synchronized Euclidean Distance (SED) is used for the trajectory simplification323

task, while F1 scores are used for other tasks. The lower the SED and the higher the F1 score, the324

better the performance. Besides, we use the running time and communication size to evaluate the325

efficiency. All baselines run under their optimal settings. Besides, FedTDP can protect data privacy326

with the TPA module, while other baselines do not consider data privacy in F-TDP. To solve F-TDP,327

one alternative approach for baselines is to employ differential privacy [14]. Specifically, clients328

apply differential privacy to perturb local trajectory data before transmitting it to the server. Therefore,329

to safeguard data privacy and ensure fairness in experiments, we extend baselines combined with330

this optional approach to solve the F-TDP problem. Moreover, all experiments are conducted in the331

federation with 9 nodes, one as a server and the other 8 nodes as clients, each equipped with two Intel332

Xeon CPU E5-2650 12-core processors, two GeForce RTX 3090, and 100 MB/s internet.333
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Figure 5: The performance of FedTDP and none-LLM trajectory data preparation methods

AD

GeoLife Porto T-Drive Tencent Gowalla

Dataset

1.0

2.0

3.0

S
E

D

TI MM TUL TMI TSim TR TUL TMI TSeg

30%

60%

90%

F
1 

sc
or

e

AD TI NF SPD TSim TR MM

SHL

FM4DP MELD TableGPT FedTDP

Figure 6: The performance of FedTDP and LLM-based table data preparation methods
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Figure 7: The performance of FedTDP and LLM-based spatio-temporal data analysis methods

5.1 Overall Performance334

We present the overall performance comparison between the FedTDP framework with various SOTA335

baselines across different datasets and tasks. First, as shown in Fig. 5 (where the dash “– –” denotes336
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tasks that are not supported), FedTDP demonstrates the best performance and robust generalization337

with an improvement of at least 18.38% compared with non-LLM TDP methods, highlighting its338

effectiveness in addressing the F-TDP problem. Besides, the superior performance achieved by339

FedTDP on unseen TDP tasks also demonstrates its strong generalization. Second, as shown in Fig. 6,340

compared with SOTA LLM-based table data preparation, FedTDP achieves the best performance341

across different datasets and tasks with an improvement of at least 32.26%. Third, as shown in Fig. 7,342

compared with SOTA LLM-based spatio-temporal data analysis methods, FedTDP also shows the343

best performance with an improvement of 4.84% to 45.22%. We attribute these improvements to the344

developed TDP-oriented LLM and SLM in the FedTDP framework.345

5.2 Ablation Study346

Figure 8: The ablation study

We evaluate the effectiveness of each module in the FedTDP framework by systematically removing347

one at a time, with the following configurations: FedTDP without Trajectory Privacy AutoEncoder348

(w/o TPA), without Trajectory Knowledge Enhancer (w/o TKE), and without Federated Parallel349

Optimization (w/o FPO). The results are shown in Fig. 8. First, the performance of FedTDP is slightly350

degraded compared to w/o TPA, as TPA can not fully capture the spatio-temporal information of the351

trajectory data, leading to a marginal performance decline when using TPA. Besides, FedTDP has352

a slight increase in runtime and communication costs because TPA transmits higher-dimensional353

embedding data instead of three-dimensional spatio-temporal points, introducing greater communica-354

tion size and runtime when TPA is employed. However, to safeguard data privacy, the use of TPA355

in the FedTDP framework is essential. Second, the performance of FedTDP improves dramatically356

compared to w/o TKE, with at least 27.52% improvement. This is because TKE enhances the model’s357

learning abilities on TDP knowledge to develop the TDP-oriented LLM and SLM. Additionally,358

FedTDP has lower runtime and communication costs during training, since the TKE module can359

reduce the number of parameters that need to be trained and transmitted, which speeds up the model360

training. Finally, the performance of FedTDP does not change significantly compared to w/o FPT,361

but its training runtime and communication overhead are significantly reduced by almost 4 times less.362

This reduction is because FPO can reduce data transmission and improve training efficiency.363

5.3 More Experiments364

We conduct more experiments to comprehensively evaluate FedTDP, in terms of model generalization,365

model base, efficiency, and hyperparameter sensitivity: i) Appendix D.3 evaluates FedTDP’s general-366

ization in different numbers of training tasks, where the lower the number of seen tasks, the worse367

the model accuracy is of FedTDP in TDP tasks. ii) Appendix D.4 evaluates the impact of various368

model bases on FedTDP, where Llama [64] achieves optimal performance in most tasks for the LLM,369

while GPT3-Small [5] demonstrates the best performance for the SLM. iii) Appendix D.5 evaluates370

the communication costs and running times, where FedTDP shows the superior performance in371

terms of efficiency compared to other baselines. iv) Appendix D.6 evaluates the effect of FedTDP’s372

hyperparameter, where the suggested value of m is 25% or less.373

6 Conclusion and Limitations374

This paper introduces FedTDP, a privacy-preserving, unified framework for trajectory data preparation.375

It proposes a trajectory privacy autoencoder to protect data while maintaining spatio-temporal corre-376

lations, a trajectory knowledge enhancer to develop TDP-oriented LLMs, and parallel optimization377

to boost efficiency. Experiments on 6 datasets and 10 TDP tasks validate its superior effectiveness,378

efficiency, and robustness. There are some limitations of our work. Since this study mainly focuses379

on trajectory data preparation tasks, extending the framework to support more trajectory analysis380

tasks, such as clustering and pattern mining, remains an open opportunity. In addition, improving the381

interpretability of using LLMs poses an important challenge for future research.382
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Appendix589

In the subsequent sections, we present supplementary materials to provide more details of this paper,590

offering deeper insights and additional technical details for readers seeking further clarification. The591

appendix is organized as follows.592

In Section A, we present a systematic review of related work to help readers understand the key593

development in areas relevant to this paper, including (i) the latest trajectory data preparation methods,594

(ii) applications of large language models in other data preparation, and (iii) recent advancements in595

large language models for spatio-temporal data analysis.596

In Section B, we summary the preliminary of notations and trajectory data preparation tasks for better597

understanding our work, including (i) the frequently used notations and (ii) detailed description of598

trajectory data preparation tasks.599

In Section C, we provide the additional methodology details to support the analysis shown in the600

main body of this paper, including (i) complete theoretical proofs of Theorems 1 and 2, (ii) practical601

examples of trajectory data preparation tasks using the trajectory prompt engineering of the proposed602

trajectory knowledge enhancer, and (iii) the training process of FedTDP.603

In Section D, we describe the extensive experimental details to provide more information about604

experimental settings and further demonstrate the superiority performance of the proposed FedTDP605

framework, including (i) datasets description, (ii) compared baselines introduction, and (iii) the606

details experimental results of model generalization, model base, efficiency, and parameter sensitivity607

studies.608

A Related Work609

Trajectory Data Preparation. Numerous Trajectory Data Preparation (TDP) methods have been pro-610

posed to improve the quality of trajectory data for trajectory data preparation tasks. For the anomalous611

detection task, ATROM [22] addresses the critical challenge of anomaly recognition in open-world612

scenarios through the development of a probabilistic metric learning model, which significantly613

improves the accuracy of anomaly detection in complex environments. For the trajectory imputation614

task, Kamel [47] proposes a scalable architecture that incorporates additional real trajectory points615

to predict the missing trajectory data, improving the accuracy of trajectory imputation. For the map616

matching task, GraphMM [43] leverages the graphical structure using a graph neural network to617

effectively model the topology of road network and trajectory features, improving the accuracy of map618

matching. For the trajectory-user link task, AttnTUL [7] introduces a hierarchical spatio-temporal619

attention neural network, which co-encodes local trajectory transition patterns and global spatial620

dependencies to establish links between trajectories and users more accurately. For the travel mode621

identification task, Estimator [27] proposes an effective and scalable framework that partitions the622

traffic space into disjoint spatial regions based on traffic conditions, improving the accuracy of travel623

mode identification. For the trajectory simplification task, S3 [18] presents a lightweight framework624

consisting of two chained sequence-to-sequence modules, which is integrated within a graph neural625

architecture, improving the accuracy and efficiency of trajectory simplification. For the trajectory626

recovery task, LightTR [44] presents an efficient framework using a local trajectory embedding627

module, robust feature extraction capabilities while significantly reducing computational overhead.628

However, none of these studies have considered data privacy constraints. They typically assume that629

the trajectory data collection is centralized, which introduces a significant risk of privacy leakage,630

especially in federated learning environments. In addition, all of them are single-task methods. When631

handling multiple TDP tasks, different models need to be trained for each specific task. It not only632

demands substantial time and computational resources but also results in poor model generalization633

ability. In contrast, we aim to propose a privacy-preserving and unified framework to support634

various trajectory data preparation tasks while safeguarding trajectory data privacy.635

Large Language Models for Other Data Preparation. A few works on table data preparation using636

Large Language Models (LLMs) have been proposed recently. For instance, MELD [72] introduces a637

general solver for low-resource table data preparation, leveraging a mixture-of-experts architecture to638

support merging and augmentation of domain-specific experts trained on limited annotated examples.639

Similarly, TableGPT [35] presents a table-tuning paradigm, where LLMs are fine-tuned using various640

table tasks synthesized from real tables to enhance the model’s ability to understand and process641
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table-related tasks. Additionally, [48] explores the performance of LLMs for table data preparation642

tasks, which evaluates their performance on five data cleaning and integration tasks through prompt-643

based methods. However, these works are specifically tailored for table data preparation and are not644

directly applicable to trajectory data preparation tasks. They lack the necessary understanding of645

trajectory data and do not account for the spatio-temporal characteristics and complexity of trajectory646

data preparation tasks, making them unsuitable for such applications. In contrast, we aim to develop647

a TDP-oriented LLM to effectively support various trajectory data preparation tasks.648

Large Language Models for Spatio-Temporal Data Analysis. There are a few spatio-temporal649

LLMs proposed [38, 82, 36], which have achieved superior performance in spatio-temporal down-650

stream applications. Specifically, UrbanGPT [37] integrates a spatio-temporal dependency encoder651

with a command adjustment paradigm to enhance the LLMs’ understanding of complex temporal and652

spatial interdependencies. Besides, UniST [77] develops a general-purpose model for urban spatio-653

temporal prediction through diverse data utilization, effective pre-training, and knowledge-guided654

prompts. In addition, PromptGAT [12] employs prompt-based grounded action transformations to655

analyze system dynamics by leveraging reasoning capabilities of large language models to understand656

environmental impacts on traffic patterns. However, none of them have considered trajectory data657

quality. If the quality of trajectory data is extremely poor, the performance of spatio-temporal large658

language models in downstream tasks will not be satisfactory either. In contrast, we aim to explore659

the powerful capabilities of large language models for trajectory data preparation to enhance the660

quality of trajectory data.661

B Notation and Trajectory Data Preparation Task662

Notation and Description. We first present the frequently used notations and descriptions in this663

paper, as listed in Table 2.664

Table 2: Notation and description

Notation Description
p A spatio-temporal point consisting of location and time ⟨l, t⟩
T A trajectory consisting of multiple spatio-temporal points {p1, p2, . . .}
ST A sub-trajectory of the trajectory T
S A data silo that represents a region
C A client that represents a region
D The trajectory database in a client C
C A set of clients {C1, C2, . . .}
D A set of trajectory datasets {D1, D2, . . .}

θLLM,θSLM The large language model and small language model

Trajectory Data Preparation Task. Besides, we summary the supported trajectory data preparation665

tasks of the proposed FedTDP in this paper, as shown in Table 3, with the rough processing of each666

task shown in Fig. 9.667

Table 3: Trajectory data preparation task

Category Task Description

Data Cleaning

Anomaly Detection (AD) Detect anomalous trajectory
Trajectory Imputation (TI) Predict missing points

Noise Filtering (NF) Filter point noise
Stay Point Detection (SPD) Identify stationary points

Data Matching Map Matching (MM) Align a trajectory to road network
Trajectory-User Linking (TUL) Associate trajectories with users

Data Annotation Travel Mode Identification (TMI) Identify transportation mode

Data Reduction Trajectory Simplification (TSim) Remove number of points
Trajectory Segmentation (TSeg) Divide a trajectory to segments

Data Augmentation Trajectory Recovery (TR) Recovery complete trajectory
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(g) Travel mode identification

(a) Anomaly detection (b) Trajectory imputation

(h) Trajectory simplification (i) Trajectory segmentation

(c) Noise filtering (d) Stay point detection

(j) Trajectory recovery

(e) Map matching

Abnormal or normal?

Bus?Bike? Car?Walk?

(f) Trajectory-user link

Link

U3?U2? U4?U1?

Detect Filter outPredict Detect

Identify Simplify Segment Recover

Map

Figure 9: The supported trajectory data preparation tasks

C Additional Methodology Details668

C.1 Proof of Theorem 1669

We provide the complete theoretical proof of Theorem 1 proposed in this paper that provides the670

correctness of the trajectory privacy autoencoder model aggregation, as detailed below.671

Proof. According to Eq. 2, we can get the result of aggregating masked parameter blocks672

{P̃ (k)
1 , P̃

(k)
2 , . . . , P̃

(k)
|C| } for all clients, as formally shown below:673

|C|∑
i=1

P̃
(k)
i =

|C|∑
i=1

P
(k)
i +

|C|∑
i=1

|C|∑
j=1&j ̸=i

ai,j ∗ ski,j (11)

Here, ski,j = skj,i and ai,j = −aj,i, thus we can get the result formally shown below:674

|C|∑
i=1

|C|∑
j=1&j ̸=i

ai,j ∗ ski,j =

|C|∑
i=j+1

|C|∑
j=1

(ai,j ∗ ski,j + aj,i ∗ skj,i) = 0 (12)

The aggregation P̃ (k) of the masked parameter block is formally shown below:675

|C|∑
i=1

P̃
(k)
i =

|C|∑
i=1

P
(k)
i +

|C|∑
i=1

|C|∑
j=1&j ̸=i

ai,j ∗ ski,j =

|C|∑
i=1

P
(k)
i (13)

676

C.2 Examples of Trajectory Prompt Engineering677

For better understanding the trajectory prompt engineering of the proposed trajectory knowledge678

enhancer, we show practical examples of noise filtering and travel mode identification tasks using the679

trajectory prompt engineering in the small language model of the client.680

As shown in Fig. 10, Task shows the task name with its description listed in Section 3. Besides, Data681

uses the raw trajectory data in clients, consisting of spatio-temporal points i.e., T = {p1, p2, . . .}.682

Additionally, Information includes optional road network and weather data. Specifically, sunny683

and 15 represent the weather tokens during the trajectory, id denotes the segment ID, start-lon and684

start-lat indicate the segment’s longitude and latitude at the starting point, and stop-lon and stop-lat685

denote the segment’s longitude and latitude at the stopping point. Specifically, we utilize the weather686

data for these tasks and the road network for the travel mode identification task. Moreover, Format687

refers to the expected output data of the task. We anticipate the outputs of noise filtering and travel688

mode identification to be the trajectory data and travel mode, respectively. Finally, the model’s689

response should return the expected results in Format. Note that, in the server Data uses embeddings690

uploaded by clients, consisting of encoded spatio-temporal points i.e., E = {e1, e2, . . .}.691
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Task: it is a noise filtering task. It targets 
identifying and removing irrelevant spatio-temporal 
points that deviate from a trajectory. These noisy 
points can result from GPS inaccuracies, signal 
interference, or sensor malfunctions.

Data: the trajectory data consisting of spatio-
temporal points is {(lon1, lat1, t1), (lon2, lat2, t2), ...}.

Information: the weather is sunny with an average 
temperature of 15. 

Format: the output should be the trajectory data.

T-3: Noise Filtering

Model response: the result of noise filtering is 
{(lon1, lat1, time1), (lon2, lat2, time2), ...}.

Task: it is a travel mode identification task. It aims 
to identify the travel mode of a trajectory based on 
the moving pattern of data. The travel mode is 
usually the walk, bike, bus, or car.

Data: the trajectory data consisting of spatio-
temporal points is {(lon1, lat1, t1), (lon2, lat2, t2), ...}.

Format: the output should be the travel mode.

T-7: Travel Mode Identification

Model response: the travel mode is car.

Information: It is sunny with an average 
temperature of 15. The road network of the map is 
{(id1, start-lon1, start-lat1, stop-lon1, stop-lat1), 
(id2, start-lon2, start-lat2, stop-lon2, stop-lat2), ...}. 

Figure 10: The example of trajectory prompt engineering in clients

C.3 Proof of Theorem 2692

We provide the complete theoretical proof of Theorem 2 proposed in this paper that determines the693

probability of parameters that need to be trained in the LoRA sparse-tuning of the proposed trajectory694

knowledge enhancer, as detailed below.695

Proof. To derive the probability that each layer is selected when Nm layers are chosen for the next696

round of training, we first calculate the probability that each layer is selected in the first time, which697

is equal to the ratio of the layer, as formally shown below:698

Pr(r+1)
1 (Li, Nm) = R(r)(Li) (14)

Then, we calculate the probability that the layer is not selected in the first time and is selected in the699

second time, as formally shown below:700

Pr(r+1)
2 (Li, Nm) =

N∑
j1=1

R(r)(Li) ∗R(r)(Lj1)

1−R(r)(Lj1)
, j1 ̸= i (15)

Then, we calculate the probability that the layer is not selected in the first two times and is selected in701

the third time, as formally shown below:702

Pr(r+1)
3 (Li, Nm) =

N∑
j1=1

N∑
j2=1

R(r)(Li) ∗R(r)(Lj1) ∗R(r)(Lj2)

1−R(r)(Lj1)−R(r)(Lj2)
, (16)

where j1 ̸= j2 ̸= i. Based on the above inductive steps, we can calculate the probability that the layer703

is not selected in the first Nm − 1 times and is selected in the Nm time by inductive reasoning, as704

formally shown below:705

Pr(r+1)
Nm

(Li, Nm) =

N∑
j1=1

. . .

N∑
jNm=1

R(r)(Li) ∗R(r)(Lj1) ∗ . . . ∗R(r)(LjNm
)

1−R(r)(Lj1)− . . .−R(r)(LjNm
)

, (17)

where j1 ̸= . . . ̸= jNm
̸= i. Thus, the probability that layer Li is selected to train in the next round706

r + 1 can be calculated as follows:707

Pr(r+1)(Li, Nm) =

Nm∑
j=1

Pr(r+1)
j (Li, Nm) = R(r)(Li) +

N∑
j1=1

R(r)(Li) ∗R(r)(Lj1)

1−R(r)(Lj1)
+ . . .+

N∑
j1=1

. . .

N∑
jNm=1

R(r)(Li) ∗R(r)(Lj1) ∗ . . . ∗R(r)(LjNm
)

1−R(r)(Lj1)− . . .−R(r)(LjNm
)

,

(18)

where j1 ̸= . . . ̸= jNm
̸= i.708
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C.4 Multi-Task Training709

Due to the diverse range of trajectory data preparation tasks that need to be addressed, we propose a710

multi-task training strategy to enhance the model’s learning and generalization capabilities. Specifi-711

cally, we prepare a trajectory dataset applicable to most trajectory data preparation tasks and construct712

labels for each task. During the training phase, we execute multiple trajectory data preparation tasks713

on the same trajectory data input, calculate the loss for each task, and jointly optimize the model714

formulaically shown below:715

L = LT-1 + LT-2 + . . .+ LT-10 , (19)

where LT-i is the loss of trajectory data preparation task T-i listed in the Section 3. Note that the716

proposed FedTDP framework can be easily extended to support other trajectory data preparation tasks717

benefiting from its modular architecture, decoupled data processing pipeline, and variable model718

base.719

Training Algorithm. For convenient method reproduction, we provide a detailed training process of720

the entire FedTDP framework, which can be divided into the server and client, as shown in Algorithms721

1 and 2.722

Algorithm 1: The training on the server
Input: the number of training rounds TR

1 for round r = 0, . . . ,TR− 1 do
2 f ← IsFrozen(r) // Get the frozen status of this round.;
3 if f == False then
4 E ← Get(C) // Get the embeddings data from clients.;
5 E ← Connect(E) // Connect into a complete embeddings.;
6 else
7 E ← GetFrozenData(r − 1) // Get the frozen data.;
8 prompt← TKE(E) // Construct the prompt of the embeddings.;
9 o← θLLM(prompt) // Input the prompt data to the LLM.;

10 o← Split(o) // Split the output of the LLM.;
11 if f == False then
12 for client number i = 0, . . . , |C| − 1 do
13 Send(oi, Ci) // Send split results to respective clients.;

Algorithm 2: The training on the client
Input: the number of training rounds TR and server s

1 for round r = 0, . . . ,TR− 1 do
2 D ← GetData() // Get the local trajectory data.;
3 f ← IsFrozen(r) // Get the frozen status of this round.;
4 if f == False then
5 E ← Enc(D) // Encode the trajectory into embeddings.;
6 Send(E, s) // Send the embeddings data to the server.;
7 prompt← TKE(D) // Construct the prompt of the data.;
8 o′ ← θSLM(prompt) // Input the prompt data to the SLM.;
9 if f == False then

10 o← Get(s) // Get the result from the server.;
11 o← Dec(o) // Decode the server’s result.;
12 else
13 o← GetFrozenData(r − 1) // Get the frozen data.;
14 result← TKE(o′, o) // Compute the distillation result.;

In the server (i.e., Algorithm 1), the input is the number of training rounds (line 1). For each training723

round r, it begins to get the frozen state f (lines 2–3). If f is not frozen, the server gets the trajectory724
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embeddings E from clients C and connects them, or it gets local E frozen in the last training round725

r − 1 (lines 4–9). Then, the server uses TKE to construct the TDP prompt for the LLM and get the726

output o (lines 10–11). Finally, the server splits it into several parts and sends them to respective727

clients if f is not frozen (lines 12–18).728

In the client (i.e., Algorithm 2), the input are the number of training rounds and the server (line 1).729

For each training round r, it begins to get the trajectory data D and frozen state f (lines 2–4). If f is730

not frozen, clients encode D into embeddings and send them to the server (lines 5–8). Then, clients731

use TKE to construct the TDP prompt for the SLM and get the output o
′

(lines 9–10). If f is not732

frozen, clients get the LLM’s output o from the server and decode it, or it gets local o frozen in the733

last round r − 1 (lines 11–16). Finally, clients use TKE to compute the final result between o
′

and o734

(lines 17–18).735

Complexity Analyses. We also give complexity analyses for Algorithms 1 and 2. Specifically, given736

the number of trajectory embeddings data |E| from all clients, the complexity of Algorithm 1 is737

O(|E| ∗ TR ∗MC), where MC is the model complexity of the LLM. Given the number of trajectories738

|D| in the client, the complexity of Algorithm 2 is O(|D| ∗ TR ∗ MC
′
), where MC

′
is the model739

complexity of the SLM.740

C.5 Theoretical Privacy Analysis741

The privacy protection mechanism of the proposed FedTDP framework is built upon the Trajectory742

Privacy Autoencoder (TPA), which protects trajectory data privacy while maintaining spatio-temporal743

correlations. Besides, it develops a decentralized aggregation approach based on secret sharing [58]744

that ensures the parameters of the TPA model remain confidential against trajectory data recovery or745

inference through embedding [61, 8, 30] and gradient [67, 84, 87] inversion attacks. To rigorously746

analyze the privacy-preserving capability of TPA, we first define the threat model as follows.747

Threat Model. Following prior works [81, 63, 83] in federated learning, we assume the server748

acts as a semi-honest adversary who will honestly execute required operations (e.g., aggregation)749

but also remains curious about the private client data. In the F-TDP problem, the server seeks to750

reconstruct clients’ raw trajectory data using adversary’s knowledge, which includes the client model751

architecture, including the client model architecture, the privacy-preserving mechanism, and the752

encoded embeddings uploaded by clients.753

Based on this, we use mutual information [32] to quantify the upper bound of privacy leakage, i.e.,754

I(T ;E), which measures the information about original trajectory data T that can be inferred from755

encoded embeddings E transmitted to the server, as shown below:756

I(T ;E) = H(T )−H(T |E), (20)
where H(·) denotes the entropy. Since E is derived from T through the encoder θEnc, the conditional757

entropy H(T |E) can be decomposed as:758

H(T |E) = EθEnc∼PΘ
[H(T |E, θEnc)] +H(θEnc|E), (21)

where θEnc is drawn from a prior distribution PΘ and Θ is the parameter space. Besides, both759

H(T |E, θEnc) and H(θEnc|E) are large because θEnc is private and inaccessible to the server. Conse-760

quently, the conditional entropy H(T |E) remains high, leading to minimal privacy leakage I(T ;E).761

Furthermore, leveraging Bayes’ theorem [3] and Fano’s inequality [19], the probability Pe of the762

attacker recovering T incorrectly satisfies:763

H(Pe) + Pelog|T | ≥ H(T |E), (22)
where T denotes the trajectory data space. The large H(T |E) results in a correspondingly high Pe,764

indicating a low likelihood of successful reconstruction of the original trajectory data, which further765

underscores the effectiveness of TPA in protecting trajectory privacy.766

D Experimental Details767

D.1 Datasets768

We evaluate the proposed FedTDP framework using 6 datasets, including GeoLife [86], Porto [51],769

T-Drive [76], Tencent [43], Gowalla [11], and SHL [60], with their statistics shown in Table 4, as770

detailed below.771
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Table 4: The statistics of dataset

Dataset # trajectories # points Quality Issue Task

GeoLife 182 24,876,978 Positional inaccuracies,
data noise, and lower precision

AD, TI, MM, TUL,
TMI, TSim, and TR

Porto 442 83,409,386 Anomalies and missing data AD and TI

T-Drive 10,336 17,662,984 Noisy and incomplete points NF, TR,
SPD, and TSim

Tencent 40,966 1,610,216 Inaccurate points MM

Gowalla 107,092 6,442,890 Sparse and non-continuous data TUL

SHL 3 109,390 Duplicate records TSeg and TMI

• GeoLife [86]. It collected 182 trajectories with 24,876,978 spatio-temporal points, used for the772

training tasks, including Anomaly Detection (AD), Trajectory Imputation (TI), Map Matching773

(MM), Trajectory-User Link (TUL), Travel Mode Identification (TMI), Trajectory Simplification774

(TSim), and Trajectory Recovery (TR) tasks. It contains various quality issues such as positional in-775

accuracies, data noise, and lower precision due to irregular sampling intervals and sensor limitations,776

which make it suitable for various trajectory data preparation tasks.777

• Porto [51]. It collected 442 trajectories with 83,409,386 spatio-temporal points, which contains778

quality issues such as anomalies and missing data, used for AD and TI testing tasks.779

• T-Drive [76]. It collected 10,336 trajectories with 17,662,984 spatio-temporal points, which780

contains quality issues such as noisy and incomplete points, used for NF, TR, SPD, and TSim781

testing tasks.782

• Tencent [43]. It collected 40,966 trajectories with 1,610,216 spatio-temporal points, which contains783

quality issues such as inaccurate points due to the low sampling rate, used for the MM testing task.784

• Gowalla [11]. It collected 107,092 trajectories with 6,442,890 spatio-temporal points, which785

contains quality issues such as sparse and non-continuous data, used for the TUL testing task.786

• SHL [60]. It collected 3 trajectories with 109,390 spatio-temporal points, which contain quality787

issues such as duplicate records, used for TSeg and TMI testing tasks.788

D.2 Baselines789

We compare the proposed FedTDP framework with state-of-the-art baselines, as shown in Table 5.790

Table 5: The compared baselines

Category Task Method Year

S-TDP

Anomaly Detection ATROM 2023
Trajectory Imputation Kamel 2023

Map Matching GraphMM 2024
Trajectory-User Linking AttnTUL 2024

Travel Mode Identification Estimator 2024
Trajectory Simplification S3 2023

Trajectory Recovery LightTR 2024

Large Language Models for Table Data Preparation

All tasks for evaluation

FM4DP 2022
MELD 2024

TableGPT 2024

Large Language Models for Spatio-Temporal Data Analysis
PromptGAT 2024

UniST 2024
UrbanGPT 2024

First, we compare FedTDP with various Trajectory Data Preparation (TDP) methods in a single791

TDP task (referred to S-TDP), including ATROM [22] for the AD task, Kamel [47] for the TI task,792

GraphMM [43] for the MM task, AttnTUL [7] for the TUL task, Estimator [27] for the TMI task,793

S3 [18] for the TSeg task, and LightTR [44] for the TR task, as detailed below.794

• ATROM [22]. It solves the anomaly detection task in open-world scenarios and introduces a new795

probabilistic metric learning model.796

• Kamel [47]. It proposes a scalable system that inserts additional real trajectory points to improve797

the accuracy of the trajectory imputation task.798
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• GraphMM [43]. It develops the graphical nature of the map matching task to exploit the road799

network and trajectory graphical topology.800

• AttnTUL [7]. It proposes a hierarchical trajectory attention neural network for co-encoding local801

trajectory transition patterns and global spatial dependencies to solve the trajectory-user link task.802

• Estimator [27]. It partitions the entire traffic space into disjoint spatial regions based on the traffic803

conditions for the travel mode identification task.804

• S3 [18]. It presents a lightweight trajectory segmentation task framework to augment the trajectory805

representation paradigm with geo-semantics.806

• LightTR [44]. It develops a local trajectory embedding module that provides higher computational807

efficiency for the trajectory recovery task.808

Besides, we compare FedTDP with three methods using Large Language Models (LLMs) for table809

data preparation, including FM4DP [48], MELD [72], and TableGPT [35], as detailed below.810

• FM4DP [48]. It helps LLMs understand table DP tasks, which uses 5 data cleaning and integration811

table DP tasks as prompt tasks and evaluates the performance of LLMs on these tasks.812

• MELD [72]. It employs the mixture-of-experts architecture to support the merging and augmenta-813

tion of experts trained on the domain-specific experts trained on limited annotated examples.814

• TableGPT [35]. It proposes a table-tuning paradigm using various table tasks synthesized from815

real tables as the training data to help LLMs understand the table data and perform table tasks.816

Moreover, we compare FedTDP with three LLM-based models for spatio-temporal data analysis,817

including PromptGAT [12], UniST [77], and UrbanGPT [37], as detailed below.818

• PromptGAT [12]. It uses the LLM to analyze system dynamics, leveraging the context and819

spatio-temporal data to understand how weather, traffic, and road conditions affect traffic dynamics.820

• UniST [77]. It proposes a general-purpose model, which is designed for urban spatio-temporal821

prediction in various urban scenarios to capture the complex spatio-temporal relationship.822

• UrbanGPT [37]. It integrates a spatio-temporal dependency encoder with a command adjustment823

paradigm, which enables LLMs to understand complex spatio-temporal interdependencies.824

D.3 Model Generalization Study825

Figure 11: Scalability study

To evaluate the proposed FedTDP framework826

generalization in different numbers of training827

tasks, we systematically remove the training task828

from back to front based on their order in Table 1.829

As illustrated in Fig. 11, the results indicate830

that the performance of FedTDP across various831

tasks declines as the number of training tasks832

decreases. This decline is primarily attributed833

to the reduced acquisition of TDP knowledge,834

which adversely affects generalization. Notably,835

when the number of tasks is reduced to one (i.e., training FedTDP solely on the anomaly detection836

task using GeoLife), the performance also falls below that of S-TDP in Fig. 5837

D.4 Model Base Study838

To evaluate the impact of various model bases on the proposed FedTDP framework, we choose839

widely used model bases for the LLM (Llama-8B [64], GPT3-7B [5], and Qwen-7B [2]) and SLM840

(GPT3-Small-125M [5], GPT2-Small-137M [52], and T5-Small-60M [53]). Besides, to evaluate the841

impact of different LLMs on FedTDP, we use GPT3-Small as the client’s SLM while we use Llama842

as the server’s LLM to evaluate the impact of different SLMs on FedTDP. The results are shown in843

Fig. 12. As observed, Llama achieves optimal performance in most TPD tasks for the server’s LLM,844

followed by GPT3 and then Qwen. In contrast, GPT3-Small demonstrates the best performance for845

the client’s SLM, succeeded by T5-Small and then GPT2-Small. Consequently, we adopt Llama and846

GPT3-Small as the default server’s LLM and client’s SLM in other experiments, respectively.847
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Figure 12: Large language model and small language model base study

D.5 Efficiency Study848

Figure 13: Efficiency study

Fig. 13 shows the communication costs (in GB)849

and running times (in hours) of various methods850

across all TDP tasks. During the training pro-851

cess, the proposed framework incurs the largest852

communication size because it must transfer em-853

beddings and model parameters, whereas LLM-854

based methods (i.e., LLMs for table table data855

preparation and spatio-temporal LLMs) transmit856

all perturbed data, generated through differen-857

tial privacy, to the server in the first round of858

training and do not require data transmission in the following rounds of training. Furthermore, the859

runtime of FedTDP is reduced by a factor of 11.3 to 14.2 compared to other LLM-based methods,860

demonstrating its efficiency in the F-TDP context. In the testing phase, the communication size of861

FedTDP is nearly identical to that of S-TDP and 1.4 to 1.8 times less than that of other LLM-based862

methods, which require transferring all data to the server, whereas FedTDP only transmits the data863

necessary for cross-client TDP. Additionally, the runtime of FedTDP is 2.6 to 4.8 times lower than864

that of other LLM-based methods, further underscoring its efficiency.865

D.6 Parameter Sensitivity Study866

Figure 14: Parameter sensitive study

We evaluate the effects of hyperparameters of867

the proposed FedTDP framework (i.e., the train-868

ing layers ratio m of LoRA sparse-tuning in the869

TKE module), as shown in Fig. 14, where we870

change the m from 25% to 100%. We can ob-871

serve that as m increases, the performance of872

FedTDP improves slightly. However, this im-873

provement comes at the cost of increased train-874

ing time and communication size, as the number875

of parameters that need to be trained and trans-876

mitted also rises when m is increased. There-877

fore, the suggested value of m is 25% or less, as long as the model performance with the value of m878

is acceptable.879
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