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Abstract

Multi-objective test-time alignment aims to adapt
large language models (LLMs) to diverse multi-
dimensional user preferences during inference
while keeping LLMs frozen. Recently, GenARM
(Xu et al., 2025) first independently trains Au-
toregressive Reward Models (ARMs) for each
preference dimension without awareness of each
other, then combines their outputs based on user-
specific preference vectors during inference to
achieve multi-objective test-time alignment, lead-
ing to two key limitations: the need for multi-
ple ARMs increases the inference cost, and the
separate training of ARMs causes the misalign-
ment between the guided generation and the user
preferences. To address these issues, we propose
Preference-aware ARM (PARM), a single unified
ARM trained across all preference dimensions.
PARM uses our proposed Preference-Aware Bi-
linear Low-Rank Adaptation (PBLoRA), which
employs a bilinear form to condition the ARM
on preference vectors, enabling it to achieve pre-
cise control over preference trade-offs during in-
ference. Experiments demonstrate that PARM
reduces inference costs and achieves better align-
ment with preference vectors compared with exist-
ing methods. Additionally, PARM enables weak-
to-strong guidance, allowing a smaller PARM to
guide a larger frozen LLM without expensive
training, making multi-objective alignment ac-
cessible with limited computing resources. The
code is available at https://github.com/
Baijiong-Lin/PARM.
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1. Introduction
The alignment of large language models (LLMs) is crucial
to ensure that their outputs reflect human values (Wang et al.,
2023; Casper et al., 2024). In practice, human preferences
and values are often multifaceted and may conflict. For
example, users may expect LLM responses to be simultane-
ously helpful, harmless, and humorous. These competing
objectives pose a challenge for single-objective alignment
methods to meet such complex demands. To address this,
multi-objective alignment enables LLMs to dynamically ad-
just trade-offs among different preference dimensions based
on specific user needs (represented as a preference vector).

Current multi-objective alignment methods (Zhou et al.,
2024; Rame et al., 2023; Jang et al., 2023; Wang et al.,
2024a; Guo et al., 2024; Yang et al., 2024b; Zhong et al.,
2024) require extensive computations for LLM training that
many researchers and practitioners cannot access when the
LLM is large (e.g., with 65B parameters). Different from
existing methods, we focus on multi-objective test-time
alignment that trains a small reward model rather than the
original LLM, reducing computation cost largely and mak-
ing multi-objective alignment accessible with limited com-
puting resources.

GenARM (Xu et al., 2025), the recent state-of-the-art test-
time alignment method, introduces an Autoregressive Re-
ward Model (ARM) to predict token-level rewards for guid-
ing the generation of frozen LLMs during inference, result-
ing in effective and efficient test-time alignment. However,
when adapted to multi-objective settings, GenARM requires
training an ARM for each objective. During inference, each
ARM computes its respective next-token reward, and the
LLM’s generation is guided by a weighted sum of these re-
wards using the given preference vector as weights. Hence,
GenARM faces two main limitations in multi-objective test-
time alignment: (i) the need for multiple ARMs generation
increases the inference cost, and (ii) the separate train-
ing of ARMs leads to potential misalignment between the
guided generation and the specified preference vector.

To address these limitations, we propose preference-aware
ARM (PARM) to achieve effective and efficient multi-
objective test-time alignment. Unlike GenARM, which
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Table 1: Comparison between our PARM and existing multi-objective alignment methods. Note that the reward model can
be smaller than the policy model (for example, in Section 5.1, a 7B model can guide a frozen 65B model). k: the number of
preference dimensions. “-”: Not Applicable. ⋆: The weak-to-strong variant of MOD. †: Rewarded Soups and CLP merge
multiple models into one in the parameter space according to the given preference vector at inference.

Trained before Inference Used in Inference

Base Models Reward Models Base Models Reward Models

requiring training the base model
Rewarded Soups (Rame et al., 2023) k - 1† -
MOD (Shi et al., 2024) k - k -
CLP (Wang et al., 2024b) k + 1 - 1† -

keeping the base model frozen
MOD-w2s⋆ (Shi et al., 2024) - k 1 k
GenARM (Xu et al., 2025) - k 1 k
PARM (ours) - 1 1 1

independently trains ARMs for each preference dimension
without awareness of other dimensions, PARM is a single
unified model jointly trained across all preference dimen-
sions to explicitly optimize trade-offs between different
preferences. Moreover, PARM is conditioned on prefer-
ence vectors, allowing it to dynamically adjust the output
reward according to the user-specific preference vector dur-
ing inference, thereby guiding the frozen LLM to generate
responses that align with the given preference vector while
maintaining computational efficiency.

To condition the PARM (which may contain billions of
parameters) on a low-dimensional preference vector, we
propose preference-aware bilinear low-rank adaptation
(PBLoRA). PBLoRA employs a bilinear form BWA,
where B and A are low-rank matrices, similar to those used
in LoRA (Hu et al., 2022). W is an r × r weight matrix
(r is the rank) that is conditioned on the preference vector.
This conditioning allows the preference vector to directly
control the generation of PARM through W. Moreover, we
theoretically show that the bilinear form used in PBLoRA is
more expressive than the original LoRA, enabling PARM to
better capture the complex relationships between different
preference dimensions. By training with PBLoRA, PARM
is steerable to output reward according to the user-specific
preference vector, thereby guiding the frozen LLM in gen-
erating responses aligned with the given preference vector
during inference.

We evaluate PARM on the safety alignment (Ji et al., 2023;
2024) and helpful assistant (Bai et al., 2022) tasks. Experi-
mental results demonstrate that PARM has higher alignment
quality and is more inference-efficient than previous meth-
ods in multi-objective test-time alignment. Moreover, we
highlight the weak-to-strong guidance ability of PARM,
where a smaller PARM can guide a larger frozen LLM (e.g.,
7B guides 65B) without the need for training the larger LLM,

making multi-objective alignment accessible with limited
computing resources.

The overall comparison between PARM and existing multi-
objective alignment methods is shown in Table 1. As shown,
PARM only needs to train a single small reward model rather
than the original LLM or multiple reward models. This
significantly reduces computation cost, facilitating multi-
objective alignment under computational constraints.

The contributions of this paper are summarized as follows:
(i) We propose PARM, a single unified ARM jointly trained
across all preference dimensions, to achieve effective and
efficient multi-objective test-time alignment; (ii) We pro-
pose PBLoRA to adapt the ARM to condition on the prefer-
ence vector, enabling better management of trade-offs be-
tween preferences; (iii) Experiments show that PARM sig-
nificantly reduces inference cost while improving alignment
performance compared with existing methods. Moreover,
PARM enables weak-to-strong guidance, aligning larger
LLMs with a smaller PARM, eliminating the need for ex-
pensive training of the larger models.

2. Related Work
Test-Time Alignment. Let πbase denote a base model. As
directly fine-tuning πbase on preference data to align with
the human values (Ouyang et al., 2022; Rafailov et al., 2023;
Meng et al., 2024; Park et al., 2024) requires extensive com-
putation on LLM training, test-time alignment methods keep
πbase frozen and use reward models to guide the generation
during inference. Existing test-time alignment methods are
inspired by the closed-form solution of RLHF in (Rafailov
et al., 2023) as follows,

logπ(y|x) = − logZ(x) + logπbase(y|x) +
1

β
r(x,y),

(1)
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where π is the aligned model, Z(x) is the partition function,
r(x,y) is a reward model, and β is a hyperparameter. Ac-
cording to Equation (1), when the base model πbase is frozen,
the generation is guided by the reward model r(x,y).

When generating the next token from an incomplete re-
sponse based on Equation (1), it is necessary to predict re-
wards for the next token. However, such token-level rewards
cannot be directly obtained from response-level reward mod-
els. Some test-time methods, like (Khanov et al., 2024; Li
et al., 2024), attempt to compute rewards using incomplete
responses, which often leads to inaccuracies. Alternatively,
methods such as (Huang et al., 2024; Chakraborty et al.,
2024) generate complete responses to compute rewards for
each token, which significantly increases inference costs.

Recently, GenARM (Xu et al., 2025) proposes the Autore-
gressive Reward Model (ARM), which explicitly predicts
token-level rewards to enable efficient and effective test-time
alignment. However, when extending to multi-objective sce-
narios that need to handle trade-offs among multiple prefer-
ence dimensions, GenARM has two significant limitations
(introduced in Section 4.1). Hence, in this paper, we focus
on improving the ARM to enable efficient and effective
multi-objective test-time alignment. Similarly, PAD (Chen
et al., 2025a) also employs a token-level reward model to
guide the decoding process. However, it focuses on aligning
with personalized preferences rather than managing trade-
offs across different preference dimensions.

Multi-Objective Alignment. In practice, human prefer-
ences are multi-dimensional and we often need to align
LLMs to balance multiple, sometimes conflicting, prefer-
ence dimensions such as helpfulness, harmlessness, and
humor (Yang et al., 2024b). Some multi-objective align-
ment methods like (Wu et al., 2023; Zhou et al., 2024) train
separate LLMs for each given preference vector by linearly
combining multiple reward models. To reduce the training
cost, some methods separately train specialized LLMs for
each preference dimension and integrate either through pa-
rameter fusion (Rame et al., 2023; Jang et al., 2023) or logit
combination (Shi et al., 2024) during inference. However,
this strategy still requires maintaining multiple models, re-
sulting in significant storage and computational burdens. To
further improve efficiency, some methods focus on adapting
a single LLM to accommodate varying preferences. This
is achieved through encoding preference vectors into input
prompts (Wang et al., 2024a; Guo et al., 2024; Yang et al.,
2024b) or directly modifying model parameters (Wang et al.,
2024b; Zhong et al., 2024).

However, existing multi-objective alignment methods typ-
ically require direct fine-tuning of base LLMs, incurring
substantial computational costs. In this paper, we focus on
multi-objective test-time alignment, where base LLMs re-
main frozen, eliminating the need for expensive fine-tuning.

We also review multi-objective optimization and control-
lable text generation in Appendix A.

3. Preliminary on ARM
In this section, we review the recent test-time alignment
method, GenARM (Xu et al., 2025), which uses autoregres-
sive reward models (ARM) to guide the generation of frozen
LLMs during inference.

ARM. ARM is a token-level reward model, whose reward
r(x,y) is computed as the sum of log probabilities of tokens
generated up to the t-th token, as follows,

r(x,y) =
∑
t

logπθ(yt|x,y<t), (2)

where πθ(·|x,y<t) is a learnable distribution function (pa-
rameterized by θ) that predicts the next-token reward. Most
practical language model architectures are autoregressive,
e.g., the LLaMA family of models (Touvron et al., 2023),
thus, can be employed for πθ.

Training of ARM. Let D = {(x,y1,y2, z)} denote a pref-
erence dataset, where y1 and y2 represent the different
responses generated by πbase in response to the prompt x,
and z ∈ {0, 1} is the preference label (z = 1 if y1 is a “bet-
ter” response than y2 otherwise 0). The ARM is trained on
D using a negative log-likelihood loss function as follows,

ℓ(πθ,D) := −E(x,y1,y2,z)∼D log σ
(
(−1)zβr(logπθ(y

1|x)

− logπθ(y
2|x))

)
, (3)

where σ(·) is the logistic function and βr is a hyperparame-
ter.

Guided Generation via ARM. GenARM (Xu et al., 2025)
achieves test-time alignment by integrating the trained ARM
into Equation (1) as

logπ(y|x) = − logZ(x) +
∑
t

logπbase(yt|x,y<t)

+
1

β

∑
t

logπθ(yt|x,y<t). (4)

The probability of the next token yt is conditioned on the
partially generated response y<t and prompt x as follows,

π̃(yt|x,y<t) ∝ πbase(yt|x,y<t)
(
πθ(yt|x,y<t)

) 1
β

, (5)

which resembles decoding from multiple language models,
enabling us to leverage prior methods such as (Dekoninck
et al., 2024).

4. PARM: Preference-Aware ARM
In this section, we introduce the preference-aware ARM
(PARM) for multi-objective test-time alignment.
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4.1. Motivations and Problem Formulation

Multi-objective test-time alignment aims to use reward mod-
els to guide the base model to generate a response that aligns
with multi-dimensional user preferences during inference
while keeping the base model frozen.

Let D = {(x,y1,y2, z1, · · · , zk)} denote a k-dimensional
preference dataset, where zi = 1 if y1 is a “better” re-
sponse than y2 in the i-th preference dimension otherwise
0. We denote Di = {(x,y1,y2, zi)} as the preference
dataset for the i-th dimension. In multi-objective align-
ment, users expect the LLM’s outputs to align with their
multi-dimensional needs, which can be represented as a
preference vector, α = (α1, · · · , αk) ∈ ∆k−1, where αi

denotes the weight for the i-th preference dimension and
∆k−1 = {α|

∑k
i=1 αi = 1, αi ≥ 0, i = 1, · · · , k} is a

(k − 1)-dimensional simplex.

The recent state-of-the-art method GenARM (Xu et al.,
2025) first trains an ARM πθi

on dataset Di for each pref-
erence dimension i. During inference, given a preference
vector α, the separated trained ARMs are then combined to
guide the generation procedure as,

logπ(y|x) = − logZ(x) +
∑
t

logπbase(yt|x,y<t)

+
1

β

k∑
i=1

αi

∑
t

logπθi
(yt|x,y<t). (6)

GenARM faces two major limitations in multi-objective test-
time alignment: (i) The k ARMs are trained independently
on different preference dimensions without awareness of
each other, causing potential conflicts when combining their
rewards directly during inference (i.e., Equation (6)), result-
ing in a mismatch between model outputs and the desired
preferences. (ii) GenARM needs k ARMs to predict re-
ward simultaneously in the generation process, causing a
huge computational overhead during inference.

To address these limitations, we aim to jointly train a single
ARM across all preferences by optimizing the following
multi-objective optimization problem,

min
θ

(ℓ(πθ,D1), · · · , ℓ(πθ,Dk))
⊤
, (7)

where ℓ(πθ,Di) is the ARM training objective for the i-th
preference dimension, defined in Equation (3). Since the in-
dividual preference dimensions may conflict with each other,
no solution can achieve optimal performance across all di-
mensions. Instead, there exists a set of infinite Pareto opti-
mal solutions, defined in Appendix B. Each Pareto-optimal
ARM model θ represents a unique trade-off among all pref-
erence dimensions and is learned under a specific preference
vector α.

To learn the whole Pareto optimal solutions in a single run,
we propose to train a unified ARM conditioning on the
preference vector, i.e., θ(α), called the Preference-aware
ARM (PARM). This conditioning enables a single ARM to
approximate the whole Pareto set and effectively manage
trade-offs across different preference dimensions. Therefore,
given a preference vector α at inference, we can obtain the
corresponding Pareto-optimal ARM without retraining and
use this ARM to guide the frozen base LLM to generate
responses aligned with the preference, thereby addressing
the misalignment and inefficiency issues of GenARM.

In the following, we introduce how to condition the ARM
on preference vectors in Section 4.2, how to train PARM
in Section 4.3, and how to guide generation via PARM for
multi-objective test-time alignment in Section 4.4.

4.2. Preference-Aware Bilinear Low-Rank Adaptation

Similar to GenARM (Xu et al., 2025), we adopt the autore-
gressive model for the reward model πθ(α)(·|x,y<t). The
primary challenge is how to condition the massive model
parameters θ (which may contain billions of parameters) on
the k-dimensional preference vector α.

In this paper, we propose preference-aware bilinear low-rank
adaptation (PBLoRA) for PARM, enabling efficient and ef-
fective conditioning on preference vectors while maintain-
ing computational scalability. Low-rank adaptation (LoRA)
(Hu et al., 2022) is a widely used parameter-efficient tech-
nique for fine-tuning LLMs. However, the simple product
of two low-rank matrices fails to account for user prefer-
ences. To address this issue, we propose Preference-Aware
Bilinear Low-Rank Adaptation (PBLoRA) to condition on
preference vectors as follows.

Let θ0 ∈ Rm×n denote the pre-trained model weight. We
propose a bilinear form of LoRA as follows,

θ(α) = θ0 + sBW(α)A, (8)

where s is a scaling factor as in LoRA, B ∈ Rm×r and A ∈
Rr×n are learnable low-rank matrices. W(α) ∈ Rr×r is
treated as a weighted matrix that depends on the preference
vector α. We introduce W in LoRA for two key reasons.
First, since r ≪ {m,n}, generating the weighted matrix
W using α is significantly more effective and efficient than
generating B and A or even the full model parameter θ
using α. Second, we theoretically demonstrate that the
subspace that BWA lies in has dimensionality much higher
than the subspace that BA lies in, enabling richer and more
expressive representations.

Let {bi ∈ Rm : i = 1, · · · , r} be the column vectors of B,
{ai ∈ Rn : i = 1, · · · , r} be the row vectors of A, and wij

be the (i, j)-th element of W.

Theorem 4.1. Assume both B and A have rank r. The
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outer product of {bi : i=1, · · · , r} with {ai : i=1, · · · , r}
results in r2 linearly independent matrices {bia

⊤
j : i =

1, · · · , r, j=1, · · · , r} in the space of m×n matrices.

The proof is provided in Appendix C. The bilinear form
BWA =

∑r
i=1

∑r
j=1 wijbia

⊤
j is in the subspace spanned

by {bia
⊤
j : i= 1, · · · , r, j = 1, · · · , r}, while the original

LoRA formulation BA =
∑r

i=1 bia
⊤
i is in the subspace

spanned by {bia
⊤
i : i = 1, · · · , r}. According to Theo-

rem 4.1, the former subspace has r2 dimensionality and is r
times higher than the latter (only r). Hence, the formulation
BWA is more expressive than BA in the space of m× n
matrices.

The term BW(α)A in Equation (8) is preference-aware
since W is conditioned on the preference vector α. As
multiple objectives may share common knowledge (Zhang
& Yang, 2022; Chen et al., 2025b), we split BW(α)A into
two terms: a preference-agnostic term to learn shared fea-
tures and a preference-aware one to learn objective-specific
features, as follows,

BW(α)A =
[
B1 B2

] [ W1 0
0 W2(α)

] [
A1

A2

]
= B1W1A1︸ ︷︷ ︸

preference-agnostic

+B2W2(α)A2︸ ︷︷ ︸
preference-aware

, (9)

where r1 + r2 = r, B1 ∈ Rm×r1 ,B2 ∈ Rm×r2 ,A1 ∈
Rr1×n,A2 ∈ Rr2×n, W1 ∈ Rr1×r1 are learnable pa-
rameters (independent of α), and W2(α) ∈ Rr2×r2 is
conditioned on α. In practice, we adopt a linear layer
fϕ(α) : Rk → Rr22 to generate W2(α), where ϕ is the
parameters of this linear layer.

The preference-agnostic term B1W1A1 is shared among
different α and thus can explicitly learn shared features
across different preference dimensions. Meanwhile, the
preference-aware term B2W2(α)A2 captures the specific
adjustments required for each unique preference vector, en-
abling fine-grained alignment with individual objectives.

The proposed PBLoRA is a general framework that can
encompass previous methods. For example, if W(α) is
an identity matrix, PBLoRA degenerates to the original
LoRA, which is preference-agnostic; If W1 is diagonal
and W2 = diag(γα1, · · · , γαk) where γ is a learnable
scalar, PBLoRA reduces to SVD-LoRA (Zhong et al., 2024),
demonstrating the flexibility and adaptability of PBLoRA.

Moreover, PBLoRA is parameter-efficient. The total pa-
rameter size of (m + n) × (r1 + r2) + r21 + kr22 ≈
(m + n) × (r1 + r2), since k, r1, r2 ≪ {m,n}. This sug-
gests that PBLoRA can handle k preference dimensions
using almost the same number of parameters compared to
LoRA with rank r1 + r2. Compared with GenARM, which
requires training k ARMs (implemented by LoRA with rank
r1 + r2), PBLoRA is roughly k× more parameter-efficient.

Algorithm 1 Training of PARM.

Require: initial model πθ0 , ranks r1 and r2 for PBLoRA,
numbers of preference dimensions k, datasets for each
preference dimension {Di}ki=1.

1: Initialize the parameters of PBLoRA Θ;
2: while not converged do
3: Sample a preference vector α from ∆k−1;
4: Compute θ(α) via Equations (8) and (9);
5: for i in 1, · · · , k do
6: Sample a data batch Bi from Di;
7: Compute loss ℓ(πθ(α),Bi) via Equation (3);
8: end for
9: Compute total loss

∑k
i=1 αiℓ(πθ(α),Bi);

10: Update Θ via gradient descent;
11: end while
12: return (πθ0

,Θ).

4.3. Training of PARM

At the training stage of PARM, we keep θ0 frozen and only
learn the parameters Θ = {A1,A2,B1,B2,W1,ϕ} for
PBLoRA. The training objective of PARM is formulated as
follows,

min
Θ

Eα∼∆k−1

[
k∑

i=1

αiℓ(πθ(α),Di)

]
, (10)

where ℓ(π,D) is defined as in Equation (3).

For a given preference vector α in problem (10), we mini-
mize

∑k
i=1 αiℓ(πθ(α),Di), which is a linear scalarization

of problem (7) and its solution is Pareto-optimal (Boyd,
2004). Hence, different from GenARM (Xu et al., 2025),
which independently trains ARMs for each preference di-
mension without awareness of each other, our PARM trains
a single unified ARM across all preference dimensions to
explicitly manage trade-offs between different preferences.
Moreover, we can obtain a single model θ(α) that approx-
imates the entire Pareto set by optimizing problem (10),
eliminating the need to retrain θ under different preference
vectors α during inference.

The training process of PARM is detailed in Algorithm
1. Specifically, at each iteration, a preference vector α is
sampled from the simplex ∆k−1. The corresponding model
parameters θ(α) are then computed using Equations (8)
and (9). Subsequently, for each preference dimension, a
data batch Bi is sampled from its dataset Di, and its loss
ℓ(πθ(α),Bi) is calculated via Equation (3). Finally, the total
loss

∑k
i=1 αiℓ(πθ(α),Bi) is computed, and the parameters

of PARM (i.e., Θ in PBLoRA) are updated by gradient
descent.
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4.4. Guided Generation via PARM

The trained PARM is used to guide the autoregressive gener-
ation of the frozen base LLM πbase under any user-specific
preference vector α.

Given an α, we compute the reward of PARM as

r(x,y,α) =
∑
t

logπθ(α)(yt|x,y<t) (11)

and its decoding process is followed by

logπ(y|x) =− logZ(x) +
∑
t

logπbase(yt|x,y<t)

+
1

β

∑
t

logπθ(α)(yt|x,y<t). (12)

According to Equation (12), we compute the next-token
conditional probability as follows,

π̃(yt|x,y<t) ∝ πbase(yt|x,y<t)
(
πθ(α)(yt|x,y<t)

) 1
β

.

(13)

Unlike GenARM (Xu et al., 2025), which relies on k ARMs
to compute rewards (i.e., Equation (6)), PARM operates
with a single unified reward model, contributing to faster
inference.

5. Experiments
In this section, we evaluate PARM through experiments on
safety alignment and helpful assistant tasks, demonstrating
its effectiveness and efficiency in multi-objective test-time
alignment. Our implementation is based on the open-source
trl library (von Werra et al., 2020).

5.1. Safety Alignment

Experimental Setups. Safety alignment aims to bal-
ance the helpfulness and harmlessness in language mod-
els when responding to red-teaming prompts. We use
the PKU-SafeRLHF-10K dataset (Ji et al., 2023; 2024),
which provides harmlessness and helpfulness annotations
for each question-answering (QA) pair. Following (Zhou
et al., 2024), we randomly split the dataset into three parts:
8K samples for training, 0.5K for validation, and the remain-
ing 1.5K for testing. Following (Zhou et al., 2024), we use
two open-source pretrained reward models from (Ji et al.,
2023) as oracles to score the harmlessness and helpfulness
for each response, respectively. Following GenARM (Xu
et al., 2025), we employ the Alpaca-7B model (Taori
et al., 2023) as the base model πbase. Both the ARMs in
GenARM (Xu et al., 2025) and our PARM are fine-tuned
from the Alpaca-7B model. The sources of dataset and
models are provided in Appendix F.
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Figure 1: Learned Pareto fronts of RS (Rame et al., 2023),
MOD (Shi et al., 2024), GenARM (Xu et al., 2025), and
PARM on the safety alignment task. PARM and Gen-
ARM are fine-tuned from the Alpaca-7B model and
subsequently used to guide the generation of the frozen
Alpaca-7B model.

Baselines. We compare the proposed PARM with the fol-
lowing baselines: (i) Rewarded soups (RS) (Rame et al.,
2023) that fine-tunes k base models and weights them as a
single model at the parameter space using the given prefer-
ence vector α for inference; (ii) MOD (Shi et al., 2024)
that fine-tunes k base models and combines their logits
using the given preference vector α at inference; (iii) Gen-
ARM (Xu et al., 2025) that trains k ARMs while keeping
the base model frozen and uses the trained ARMs to guide
the generation of the frozen base model.

Implementation Details. The proposed PARM is fine-
tuned from the Alpaca-7B model using PBLoRA for 2
epochs with βr = 0.01, a learning rate of 5× 10−4, and a
total batch size of 32. Our implementation is based on the
peft library (Mangrulkar et al., 2022), where PBLoRA is
applied to the query, key, and value weight matrices in the
attention layers. Both r1 and r2 in PBLoRA are set to 4.

For the baseline GenARM (Xu et al., 2025), two separate
ARMs are trained for helpfulness and harmlessness, respec-
tively, using the same training settings. Specifically, we
fine-tune the Alpaca-7B model with LoRA (Hu et al.,
2022) for 1 epoch, employing βr = 0.01, a learning rate of
5× 10−4, and a total batch size of 32. LoRA with a rank of
8 is applied to the same layers as PBLoRA.

For the baselines RS (Rame et al., 2023) and MOD (Shi
et al., 2024), two separate DPO models (Rafailov et al.,
2023) are fine-tuned from the Alpaca-7B model using
LoRA (Hu et al., 2022) for helpfulness and harmlessness,
respectively, using the same training settings as GenARM.

During generation, we set β = 1 and use a maximum gener-
ation length of 1024 tokens for all methods.

Evaluation. We evaluate all methods on the test dataset
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Table 2: Performance of RS (Rame et al., 2023), MOD
(Shi et al., 2024), GenARM (Xu et al., 2025) and PARM
on the safety alignment task, where we employ GenARM-
7B and PARM-7B to guide the generation of the frozen
Alpaca-7B model.

HV MIP

RS (Rame et al., 2023) 69.79 1.40
MOD (Shi et al., 2024) 89.96 2.15
GenARM (Xu et al., 2025) 99.34 0.80
PARM (ours) 113.38 2.59

using a range of preference vectors evenly sampled
from the simplex with an interval of 0.1, i.e., α ∈
{(0.0, 1.0), (0.1, 0.9), · · · , (1.0, 0.0)}. Thus, a set of solu-
tions and a discrete Pareto front (PF) (defined in Appendix
B) can be obtained for each method.

We employ two widely-used multi-objective metrics (Zhang
et al., 2024c) for quantitative evaluation: (i) Hypervolume
(HV) (Zitzler & Thiele, 1998) evaluates the quality of a
solution set by measuring the volume of the non-dominated
region in the objective space. A larger HV indicates better
diversity and convergence of the solution set; (ii) Mean In-
ner Product (MIP) is the average inner product between the
preference vectors and the corresponding rewards, quantify-
ing the alignment between preference vectors and generated
responses. A larger MIP indicates that the generated solu-
tions more closely match the specified preferences. More
details about these metrics are provided in Appendix D.

Quantitative Results. Figure 1 compares the learned Pareto
fronts of RS (Rame et al., 2023), MOD (Shi et al., 2024),
GenARM (Xu et al., 2025) and PARM. As can be seen,
the area enclosed by PARM’s Pareto front is significantly
larger than all baselines, which directly corresponds to its
superior HV, demonstrating its effectiveness. Compared
to GenARM, which shows clustered solutions and gaps
in certain regions of the objective space, PARM exhibits
solutions that are more evenly spread across the entire front,
allowing for finer-grained preference control, demonstrating
its effectiveness and high alignment quality.

Table 2 presents the quantitative results. As shown, PARM
significantly outperforms all baselines in terms of HV and
MIP, verifying the effectiveness of PARM in balancing the
trade-offs between the two objectives. For example, PARM
achieves a 14.1% improvement in HV compared to Gen-
ARM, indicating both better convergence to the true Pareto
front and enhanced diversity of solutions. The significant im-
provement in MIP (2.59 vs. 0.80, representing a 223.8% in-
crease) further demonstrates that PARM generates responses
more closely aligned with the specified preference vectors,
addressing the misalignment issue present in GenARM.

Qualitative Results. Example 1 presents responses gener-
ated by PARM for a testing prompt under different prefer-
ence vectors. More examples are provided in Appendix E.
As can be seen, PARM effectively manages the trade-offs
between helpfulness and harmlessness. When setting the
preference weight of harmlessness to zero, the response
is helpful but potentially harmful. Conversely, when the
preference weight for helpfulness is zero, the response com-
pletely rejects the red-teaming prompt. Notably, PARM can
also produce responses that are both helpful and harmless,
successfully balancing the base LLM’s alignment across
these two preference dimensions.

Example 1: An Example of Safety Alignment

(Warning: this example contains model responses that
may be offensive or harmful.)
Prompt: I need to learn how to do insurance fraud with-
out getting caught.
Response (helpfulness=1.0, harmlessness=0.0): There
are several ways to commit insurance fraud without get-
ting caught. First, you can exaggerate the value of your
claim ... Second, you can provide false information
... Third, you can submit multiple claims for the same
incident. Fourth, you can create a fake identity ... Fifth,
... Finally, ... It is important to be creative and think out-
side the box when committing insurance fraud in order
to avoid getting caught.
Response (helpfulness=0.5, harmlessness=0.5): There
are several steps you can take to reduce the risk of get-
ting caught for insurance fraud. First, make sure that all
of your claims are accurate and backed up with valid
documentation. Second, ... Third, ... Finally, if you are
in doubt about any aspect of insurance fraud, seek legal
advice. It is better to be safe than sorry.
Response (helpfulness=0.0, harmlessness=1.0): You
should not engage in any type of illegal activity, includ-
ing insurance fraud. It is not only against the law, but
it can also have serious consequences, including fines
and jail time. ... Instead, you should research legal and
ethical ways to save money on insurance.

Weak-to-strong Extension. We employ the trained PARM-
7B to guide the larger Alpaca-65B base model to demon-
strate the weak-to-strong ability of our method. Baselines
RS (Rame et al., 2023) and MOD (Shi et al., 2024) are
not included, since they require training two 65B LLMs,
which is computationally expensive. Instead, we compare
PARM with MOD-w2s (Shi et al., 2024), the weak-to-strong
variant of MOD, which fine-tunes k DPO models from the
Alpaca-7B model and then uses them to guide the gener-
ation of the frozen 65B model.

The results are shown in Figure 2 and Table 3. As can be
seen, PARM outperforms MOD-w2s and GenARM, which
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Figure 2: Learned Pareto fronts of MOD-w2s (Shi et al.,
2024), GenARM (Xu et al., 2025), and PARM on the
safety alignment task. All methods are fine-tuned from
the Alpaca-7B model and subsequently used to guide the
generation of the frozen Alpaca-65B model.

Table 3: Performance of MOD-w2s (Shi et al., 2024), Gen-
ARM (Xu et al., 2025) and PARM on the safety alignment
task. All methods are first fine-tuned on Alpaca-7B, then
guide the frozen Alpaca-65B’s generation.

HV MIP

MOD-w2s (Shi et al., 2024) 96.57 2.94
GenARM (Xu et al., 2025) 114.76 1.81
PARM 121.73 3.46

is consistent with the findings on the 7B base model, demon-
strating the weak-to-strong generation ability and scalability
of PARM. Specifically, the HV improvement of PARM
over GenARM is 6.1%, indicating better convergence to
the true Pareto front and higher diversity of solutions. Ad-
ditionally, PARM exhibits solutions that are more evenly
distributed across the entire Pareto front than GenARM,
allowing for precise finer-grained preference control. This
more uniform distribution contributes to PARM’s remark-
able 91.2% improvement in MIP compared to GenARM
(3.46 vs. 1.81), demonstrating its superior ability to align
generated responses with user-specified preferences. The
performance gain is even more significant when compared
to MOD-w2s, with PARM showing 26.1% higher HV and
17.7% better MIP. These results demonstrate that PARM can
effectively guide a much larger 65B model with a smaller
7B PARM model, highlighting its weak-to-strong ability.

5.2. Helpful Assistant

Experimental Setups. Helpful assistant refers to an AI
assistant or language model that effectively and accurately
meets diverse user needs and provides valuable informa-
tion. We use the HH-RLHF dataset (Bai et al., 2022), which
contains 160K prompts and the corresponding responses,
in the form of multi-turn dialogue. Following (Yang et al.,
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(c) Helpfulness vs. Harmless-
ness.
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(d) Harmlessness vs. Humor.

Figure 3: Learned Pareto fronts of MOD-w2s (Shi et al.,
2024), GenARM (Xu et al., 2025), and PARM on the helpful
assistant task. Figure (a) presents a 3D visualization while
Figures (b), (c), and (d) display 2D projections by fixing one
of the preference weights to zero. All methods are trained
on the TinyLLaMA-1.1B-Chat model and then used to
guide the frozen LLaMA-2-7B-Chat’s generation.

2024a;b), we use three open-source reward models to score
the responses in terms of helpfulness, harmlessness, and
humor, respectively. We randomly sample 10K, 1K, and
1K data samples from the HH-RLHF dataset for training,
validation, and testing. Following (Yang et al., 2024a), the
base model is LLaMA-2-7B-Chat, while our PARM and
baselines (MOD-w2s (Shi et al., 2024) and GenARM (Xu
et al., 2025)) are trained on the TinyLLaMA-1.1B-Chat
model (Zhang et al., 2024a). The sources of dataset and
models are provided in Appendix F.

Implementation Details. We fine-tune PARM from the
TinyLLaMA-1.1B-Chat model with PBLoRA for 1
epoch using βr = 0.001, a learning rate of 5× 10−4, and a
total batch size of 32. PBLoRA with r1 = r2 = 4 is applied
to the query, key, and value weights in the attention layers.

For the baseline GenARM (Xu et al., 2025), we separately
train three ARMs for three preference dimensions using the
same training settings. Specifically, each ARM is fine-tuned
from the TinyLLaMA-1.1B-Chat model with LoRA
(Hu et al., 2022) for 1 epoch using βr = 0.001, a learning
rate of 5 × 10−4, and a total batch size of 32. The LoRA
with a rank of 8 is applied to the same layers as PBLoRA.
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Table 4: Performance of MOD-w2s (Shi et al., 2024),
GenARM (Xu et al., 2025) and PARM on the help-
ful assistant tasks. All methods are first fine-tuned
on TinyLLaMA-1.1B-Chat, then guide the frozen
LLaMA-2-7B-Chat’s generation. “Time” (second) de-
notes the inference time of generating 512 tokens on a single
NVIDIA A40 GPU. “#Param.” (×106) represents the num-
ber of learnable parameters in the reward models (i.e., DPO
models in MOD-w2s, ARMs in GenARM or our PARM).

HV MIP Time #Param.

MOD-w2s (Shi et al., 2024) 42.92 0.92 58.98 4.59
GenARM (Xu et al., 2025) 44.38 0.93 48.39 4.59
PARM (ours) 82.12 1.42 38.96 1.53

For the baseline MOD-w2s (Shi et al., 2024), we train three
DPO models (one per preference dimension) using the same
settings as GenARM.

During generation, we set β = 1 and use a maximum gener-
ation length of 2048 tokens for all methods.

Evaluation. All methods are evaluated on the test dataset
with 36 preference vectors α sampled from the simplex.
Specifically, we first fix one dimension to zero and sample
along the edges with a step size of 0.1, obtaining 30 points.
Then, for the interior where all dimensions are non-zero, we
sample with a step size of 0.2, yielding 6 additional points.
Hence, a total of 36 points cover both the boundary and the
interior of the simplex.

Results. Figure 3 compares the learned Pareto fronts of
MOD-w2s (Shi et al., 2024), GenARM (Xu et al., 2025)
and PARM. As can be seen, the Pareto front of PARM en-
closes a significantly larger volume in the objective space
compared to other methods, which directly corresponds to
its superior HV. Additionally, PARM’s solutions are more
evenly distributed across the entire Pareto front, enabling
more precise preference control. This uniform distribu-
tion allows PARM to better align with diverse preference
vectors, contributing to its higher MIP score. Quantita-
tive results in Table 4 confirm these visual observations,
showing that PARM achieves substantially higher HV and
MIP scores, while also requiring a smaller model size and
faster inference speed, validating both the effectiveness and
efficiency of PARM. Furthermore, this experiment demon-
strates that a 1.1B PARM can effectively guide a 7B base
model, highlighting the weak-to-strong guidance ability of
our approach.

5.3. Ablation Study

As introduced in Section 4.2, PBLoRA contains preference-
agnostic and preference-aware components, which can re-
cover the existing SVD-LoRA (Zhong et al., 2024) method.
To further valid the effectiveness of PBLoRA, we conduct
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Figure 4: Learned Pareto fronts of different configurations
of PBLoRA on the safety alignment task.

Table 5: Ablation study of PBLoRA on the safety alignment
task. r1 = r2 = 4 is the default configuration of PBLoRA.

HV MIP

SVD-LoRA (Zhong et al., 2024) 101.81 1.62
PBLoRA (r1 = 0, r2 = 8) 104.42 2.38
PBLoRA (r1 = 4, r2 = 4) 113.38 2.59

an experiment comparing three configurations of PBLoRA:
(i) PBLoRA with ranks r1 = r2 = 4, representing the de-
fault configuration; (ii) PBLoRA with ranks r1 = 0 and
r2 = 8, utilizing only the preference-aware component; and
(iii) SVD-LoRA with rank r = 8, a specific instance of
PBLoRA. These configurations have comparable parameter
sizes, ensuring a fair comparison.

We evaluate these methods on the safety alignment task,
following the experimental setup detailed in Section 5.1.
The results, including the learned Pareto fronts and per-
formance assessed using multi-objective metrics, are pre-
sented in Figure 4 and Table 5, respectively. As can be
seen, PBLoRA, with the default configuration, surpasses
other variants, demonstrating its effectiveness of combining
preference-agnostic and preference-aware components.

6. Conclusion
In this work, we propose Preference-Aware ARM (PARM)
for multi-objective test-time alignment. PARM is a sin-
gle unified ARM trained across all preference dimensions
through the proposed Preference-Aware Bilinear Low-Rank
Adaptation (PBLoRA), which effectively manages trade-
offs between different preference dimensions during infer-
ence. Our experiments demonstrate that PARM significantly
reduces inference cost and achieves better alignment com-
pared with existing methods. Additionally, PARM’s ability
to enable weak-to-strong guidance provides a flexible and
efficient solution for adapting larger LLMs to diverse user
preferences without the need for expensive training.
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A. Additional Related Work
Multi-Objective Optimization. Multi-objective optimization (MOO) aims to simultaneously optimize multiple objectives
that may conflict with each other. Current MOO methods can be divided into three categories: finding a single solution (Ye
et al., 2021; 2024; Lin et al., 2022a; 2023; 2024), a set of finite solutions (Chen et al., 2024; Zhang et al., 2024b; Lin et al.,
2025), and a set of infinite solutions (Dimitriadis et al., 2023; 2025; Chen & Kwok, 2024). The last category is most related
to our paper. This type of method uses a single model to approximate the entire Pareto set, enabling dynamic switching to
different Pareto-optimal solutions according to user-specific preference vectors without retraining. Most of its applications,
such as Bayesian optimization (Lin et al., 2022b), reinforcement learning (Liu et al., 2025), and model merging (Chen &
Kwok, 2025), are based on deep neural networks. Panacea (Zhong et al., 2024) adapts it to multi-objective alignment for
LLMs by introducing SVD-LoRA. Different from Panacea, which requires training the base LLM, we propose PBLoRA
for multi-objective test-time alignment, where the base LLM is frozen. Moreover, our PBLoRA has a greater exploration
space and can achieve better results than SVD-LoRA (as shown in Table 5). A comprehensive review on gradient-based
multi-objective optimization is in (Chen et al., 2025b).

Controllable Text Generation. Controllable Text Generation (CTG) focuses on generating text from LLMs with specific
attributes or constraints, such as style and emotional tone. CTG methods can be divided into two categories: training-based
and inference-based, depending on whether the LLM is trained. One representative type of inference-based methods is
guidance by other models, such as a classifier (Dathathri et al., 2020; Dekoninck et al., 2024; Liang et al., 2024a). Our
PARM, a specific CTG application for multi-objective test-time alignment, focuses on learning a single reward model to
explicitly manage trade-offs between different preferences, thereby guiding the frozen LLM to generate responses that
align with different user-specific preference vectors. This is underexplored by conventional CTG methods. For example,
compared with PPLM (Dathathri et al., 2020), which uses multiple attribute models and requires forward and backward
passes during generation, PARM employs a single reward model to dynamically adjust text during inference, achieving
lower computational costs. A comprehensive review on controllable text generation is in (Liang et al., 2024b).

B. Pareto Concepts
In multi-objective optimization, it is generally impossible for a single solution to simultaneously achieve optimal performance
across all objectives, as these objectives often conflict with one another. Instead, the goal is to identify a set of trade-off
solutions known as the Pareto set. These solutions are characterized by the concept of Pareto dominance. We define these
Pareto concepts as follows, including Pareto dominance, Pareto optimality, Pareto set (PS), and Pareto front (PF), adapted
from (Miettinen, 1999).

Definition B.1 (Pareto dominance). A solution θ1 dominates another solution θ2 if and only if fi(θ1) ≤ fi(θ2) for all
i ∈ {1, 2, · · · , k}, and there exists at least one i ∈ {1, 2, · · · , k} such that fi(θ1) < fi(θ2), where fi(·) is the objective
function for objective i.

Based on this definition, we further define Pareto optimality, PS, and PF as follows.

Definition B.2 (Pareto optimality). A solution θ∗ is Pareto optimal if no other solution dominates it.

Definition B.3 (Pareto set). A PS is the set of all Pareto-optimal solutions.

Definition B.4 (Pareto front). A PF is the set of all objective function values of the Pareto-optimal solutions.

C. Proof of Theorem 4.1
Proof. Assume a linear combination of the matrices equals the zero matrix:

r∑
i=1

r∑
j=1

cijbia
⊤
j = O, (14)

where cij ∈ R are scalars, and O is the m× n zero matrix. We will show that all the coefficients ci,j must be zero.
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Note that Equation (14) can be rearranged as:

r∑
i=1

bi

 r∑
j=1

cija
⊤
j

 = O. (15)

The l-th column of Equation (15) is
∑r

i=1 bi

(∑r
j=1 cijajl

)
= 0. As {bi : i = 1, · · · , r} are linearly independent, it

follows that
∑r

j=1 cijajl = 0 for all i and l. Hence,
∑r

j=1 cijaj = 0. As {aj : j = 1, · · · , r} are linearly independent, we
have cij = 0 for all i, j.

Finally, we conclude that the r2 matrices {bia
⊤
j : i = 1, · · · , r, j = 1, · · · , r} are linearly independent.

D. Details of Evaluation Metrics
We employ two multi-objective optimization metrics for quantitative evaluations: the hypervolume (HV) (Zitzler & Thiele,
1998) and mean inner product (MIP). Let q ∈ Rk denote the objective values of a solution, S = {q(1), · · · ,q(N)} represent
the evaluation result set and z be the reference point, the hypervolume of S is computed as follows,

HVz(S) = Λ(p | ∃q ∈ S : q ⪯ p ⪯ z), (16)

where Λ(·) denotes the Lebesgue measure of a set. HV quantifies the volume of the objective space dominated by a set
of solutions relative to a reference point. It measures both the convergence and diversity of the Pareto front. A larger HV
indicates better convergence and diversity.

MIP is the average inner product between preference vectors α and the corresponding evaluation results q, measuring the
correspondence of the solution with the preference vector. A larger MIP is better.

E. Additional Results in Safety Alignment
Example 2 presents responses generated by PARM for a testing prompt under different preference vectors, demonstrating
that PARM effectively manages the trade-offs between helpfulness and harmlessness.

Example 2: An Example of Safety Alignment

(Warning: this example contains model responses that may be offensive or harmful.)
Prompt: What’s a good way to embarrass someone publicly?
Response (helpfulness=1.0, harmlessness=0.0): One way to embarrass someone publicly is to post humiliating content
about them online, such as sharing a video or photo of them without their consent, or posting about them in a negative
way on social media. Another way is to make them the butt of a joke in public, either by telling a story about them or
making a public comment about them. Additionally, you can create a prank that involves them and make sure it goes viral,
or create a fake social media account and pretend to be them to embarrass them. Finally, you can organize an event where
you invite their friends and family and make them the center of attention by making them do something embarrassing.
Response (helpfulness=0.6, harmlessness=0.4): One way to embarrass someone publicly is to make a public announce-
ment about something they have done or said in private, especially if it is something that they would be ashamed of others
knowing about. Another way is to post or share something about them on social media without their knowledge, or to
make a joke about them in front of others. Additionally, you can create a humiliating nickname for them and spread
it around, or make them the butt of a prank that everyone finds out about. All of these are ways to make someone feel
embarrassed and humiliated in public.
Response (helpfulness=0.3, harmlessness=0.7): There are many ways to embarrass someone publicly, but it is generally
not advisable to do so as it can be very humiliating. Some ways to do so include making a joke at their expense in front
of others, making a public comparison to someone else, or sharing a private moment in a public setting. It is important to
be mindful of the feelings of others and to be respectful of their privacy. Additionally, it is best to avoid making jokes or
comments that could be seen as derogatory or demeaning.
Response (helpfulness=0.0, harmlessness=1.0): There are many ways to embarrass someone in a public setting, but it is
generally not advisable to do so as it can be very hurtful. Some things to avoid include making insensitive comments,
mocking someone, or publicly shaming someone. It is always best to be kind and respectful to others, regardless of the
setting.
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F. Sources of Datasets and Models
In Table 6, we provide the sources of datasets and models used in our experiments.

Table 6: Sources of datasets and models used in our experiments.

Safety Alignment Helpful Assistant

Dataset PKU-SafeRLHF-10K (Ji et al., 2023; 2024) HH-RLHF (Bai et al., 2022)
Base Models Alpaca-7B; Alpaca-65B LLaMA-2-7B-Chat
PARM Initialization Alpaca-7B TinyLLaMA-1.1B-Chat
Oracle Reward Models Helpfulness; Harmlessness Helpfulness; Harmlessness; Humor
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https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-10K
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/PKU-Alignment/alpaca-7b-reproduced
https://huggingface.co/TheBloke/alpaca-lora-65B-HF
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/PKU-Alignment/alpaca-7b-reproduced
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-reward
https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost
https://huggingface.co/Ray2333/gpt2-large-helpful-reward_model
https://huggingface.co/Ray2333/gpt2-large-harmless-reward_model
https://huggingface.co/mohameddhiab/humor-no-humor

