
CATEGORICAL MODEL OF NEURAL NETWORKS

ABSTRACT

Neural networks are modeled as categorical systems, the theory of which is de-
veloped by the author, which is useful not only from the conceptual point of view
of identifying the systemic nature of neural networks, but also for specific issues.
In particular, the work provides a categorical justification for the well-known for-
mulas of S. Osovsky used in the method of backpropagation of error. The theory
of categorical systems allows one to naturally model (which is done in the work)
not only traditional artificial neural networks of arbitrary topology, but also net-
works of living neurons, which in addition to spike communication have several
dozen other types of cellular communication, and also allows one to model net-
work structures similar to higher categories. Polycategories were introduced in
1975 by Szabo as a set of polyarrows, the composition of which is defined sim-
ilarly to the composition of arrows and multiarrows in categories and multicat-
egories. For modeling neural networks such a connection of polyarrows is not
enough, to some extent this is removed in PROP, introduced by MacLane (and in
their varieties in the form of dioperads and others). We replace compositions of
polyarrows (including compositions in higher categories) with a new more gen-
eral type of connections called convolutions, introduce and use categorical splices,
from which polycategories are built with an explicit assignment of the history of
obtaining polyarrows (analogous to a nerve in categories). Models of categori-
cal gluings are categories, algebraic systems, double categories, PROP and other
higher categories, which are considered in the work. A number of new definitions
and results are given and some review of works on categorical topics in the theory
of systems and neural networks is given.

1 INTRODUCTION

The categorical model of neural networks arises naturally in attempts to identify the systemic as-
pect in them or to consider neural networks from a systemic point of view. It can be considered a
generally accepted view that systems theory as a science of sciences (see, for example, [1]), which
seems natural if physics is considered a theory of physical systems, biology is considered a theory of
biological systems, sociology is considered a theory of social systems, and so on. Neural networks
are also modeled as corresponding systems, which is useful not only from the conceptual point of
view of identifying the systemic nature of neural networks. Such modeling turns out to be useful
for specific issues, in particular, the substantiation of the well-known formulas of S. Osovsky, used
in the backpropagation method [2], considered in the work. The attempts at substantiation given in
[2] at the engineering level of rigor can now be replaced by a strictly mathematical substantiation
of the said formulas within the framework of the categorical model of neural networks in the form
of convolutional polycategories. For convolutional polycategories there are three types of duality
(unlike ordinary categories), two of which, when applied to a neural network, yield an object that
S. Osovsky called a “conjugate graph”. Moreover, the categorical theory of systems that we are de-
veloping [4] allows us to naturally model not only traditional artificial neural networks of arbitrary
topology, but also networks of living neurons, which, in addition to spiking communication, have
several dozen other types of cellular communication (the accounting of non-spiking communication
of neurons in artificial neural networks began, for example, in [3]), and also allows us to model net-
work structures similar to higher categories [5]. The theory of functional systems by P.K. Anokhin
[6] has a categorical nature [4], which is reflected even in the name (in contrast, for example, to the
systems according to Mesarovich, which are relations on the Cartesian product of a set of inputs and
a set of outputs [7]). In the postulates of P.K. Anokhin [6], the construction of a system goes from
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the whole (the system-forming factor) to the parts, therefore, it is the categorical language that is ad-
equate to the theory of systems, and not the traditional set-theoretic language, which does not cover,
for example, the fact that the set of functional systems is not a set, but a topos, and a non-classical
one at that [4]. Another important postulate consists in the requirement to construct a system and
its theory, proceeding exclusively from the system-forming factor, which is also one of several basic
postulates of the categorical theory of systems, which serves as a formalization and development of
the general theory of functional systems by P.K. Anokhin. The systemic view of science that we
propose is as follows. Science is a system with a system-forming factor in the form of the task of
”building a theory of the subject of science”, that is, a set of true (in some sense) statements about
the subject of science. Initially, there is nothing except the subject of science and the researchers
themselves who have undertaken to build the said theory. Relying only on the system-forming fac-
tor, researchers (how they do it is of no interest to us) build an alphabet, words in it, a language with
statements, the concept of the truth of statements, tools for determining the truth of statements, and
logic for proving the truth of those statements (for example, statements of community) for which
the tools are insufficient. In other words, the object of study dictates everything, including the logic
of the theory, while excluding, for example, the use of classical logic that is in no way justified
based on the object. Thus, there are as many logics as there are objects... A brilliant example of a
systematic, in our sense, construction of a theory is the actual construction of a theory of words in
alphabets in the book by A.A. Markov [8] (words in alphabets and constructive operations used to
write out words are an object, constructive logic without the law of the excluded middle, constructed
in [8] at an informal level, including, in particular, several negations and implications, also arose on
the basis of reliance on the specified object of study). Our systemic approach is consistent with
an important methodological principle of science, formulated in [9]: not to make such a ”serious
mistake... as adjusting the formulation of a problem to conventional methods of solution, rather than
searching for methods corresponding to the original substantive problem.” In the terminology of
P.K. Anokhin’s functional systems, ”formulation of the original substantive problem” is a conscious
formulation of a system-forming factor. ”The search for methods corresponding to the original sub-
stantive problem” as a system-forming factor includes, in our interpretation, also a search for logic
appropriate to the subject of study (rather than using ad hoc, for example, classical logic) to build a
theory of this subject of study. We use the systemic approach in our sense further when discussing
constructivity in algebra. In the categorical theory of systems, the generally accepted set-theoretic
paradigm, in which objects of the objective world, virtual reality, etc., are modeled by sets and
subsets, is replaced by a systems paradigm, according to which the modeling of the said objects
is carried out by systems and their collections. Thus, a neural network is initially considered as a
system (in our case, a categorical system), for which a number of categorical system properties are
fulfilled, which are considered in this paper. Polycategories were introduced in 1975 by Szabo [10]
as a set of polyarrows, the composition of which is defined similarly to the composition of arrows
and multiarrows in categories and multicategories. Polyarrows have inputs and outputs, and it is
natural to model neurons with them. However, the connections of neurons observed in the brain
[11] are significantly richer than the possibilities that the composition in Szabo’s polycategories can
provide. Szabo’s theory of polycategories finds applications [12], but is very complex, and working
with them ”manually”, as Szabo does according to R. Garner, encounters problems [13]. For the
case of symmetric polycategories, R. Garner constructed their representation in the form of monads
in a suitable two-sided Kleisli bicategory. The representation constructed by G. Garner generalizes
a similar well-known representation of multicategories in the form of monoids in the special cate-
gories [14-16]. An attempt at such a generalization for arbitrary polycategories in [17] did not lead
to the final construction of the indicated representation of polycategories. Szabo introduced poly-
categories for problems of logic, where the inference rules are polyarrows in Gentzen’s approach
(conjunctions of premises are translated into disjunctions of formulas) and their connections can be
reduced [13] to connections between themselves using one output of the first and one input of the
other polyarrow. This limitation in the methods of connecting polyarrows is to some extent removed
in PROPs introduced by MacLane [18] (and in their varieties, dioperads, etc., see [19], as well as
the review by Markl M. Operads and PROPs, 2006, arXiv:math/0601129v3), which are used in the
categorical approach to networks in [20]. In our approach, we proceed from the needs of modeling
the connections of neurons in the brain, for which there are not enough connections in the form of
the studied compositions of polyarrows in the Szabo and PROP polycategories, and systems theory,
when it is necessary not only to assemble a system from future subsystems, but also to decompose it
into subsystems. To this end, we replace polyarrow compositions (including compositions in higher
categories) with a new, more general type of connections called convolutions, and introduce and
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use categorical splices, from which polycategories are constructed with an explicit specification of
the history of obtaining polyarrows (analogous to a nerve in categories) [4, 21–25]. The concept
of a system in many systems approaches is associated with the concept of a whole; the transition
from a whole to parts, as we have already noted, requires the language of category theory during
formalization. This idea is discussed in [26] and developed in [27]. However, the cited approaches
use traditional category theory; as noted above, categorical splices and convolutional polycategories
provide more opportunities for modeling systems. The paper presents a number of new definitions
and results, provides proofs of previously announced theorems, and also provides a brief overview
of works on categorical topics in systems theory and neural networks.

2 CATEGORICAL SPLICES

Let us consider a language that, with additional requirements, can be part of the language of predi-
cate calculus or first-order theory with classical logic. We emphasize that this language can be used
in a similar way, for example, for constructive mathematics according to A.A. Markov and in the
general system constructive case considered below.

Let us construct an alphabet with variables and, accordingly, functional symbols of projections xk(i),
C(j) , i, j, k - here and below natural numbers, the choice of i or j means the choice of the type of
variable. In the constructive case, natural numbers can be realized, as usual, by a set of dashes. In
the usual way, we introduce terms t(i), v(j), u(k), ... constructed from the indicated variables and
projections.

We introduce functional symbols ξij of the type (i→j) with properties ξij ξji t(i)=t(i). . We
introduce predicate letters of equality for each sort =i , as well as equalities between sorts, as des-
ignations t(i)=ijv(j) =def (t(i)=i ξij v(j)). Predicate letters, when interpreted in classical logic, turn
into ordinary predicates, and when considering constructive logic, into constructive predicates that
correspond to only one truth value ”true”. For each i we denote Ci(j) = ξij C(j) ξji and introduce
the axiomsCi (k) Ci(j) =i Ci(l). Thus, the functional symbols form an algebra with a multiplication
table corresponding to the last axioms. We call basic formulas expressions of the form t(i)=ijv(j) .

We introduce the conjunction sign into the alphabet as a binary functional sign. We call formulas
expressions obtained by applying conjunction to basic formulas and any expressions obtained by
such application. In order to cover the constructive case, we do not use the concept of the set of
all formulas and other concepts where it is necessary to refer to the actual infinity. We postulate
the property of commutativity and associativity in conjunction, which is achieved by the absence of
brackets in formulas with conjunctions in the usual notation. We also introduce variables a(i)k with
the property a(i)k =i C

(i)x
(i)
k .

For each sort, we introduce a set of functional symbols µ(i)
l , ν

(l)
l , ..., l = 1, 2, ... , as symbols of n-

ary operations, n=0,1,2,3,... and a set of identities t(i)m =i t
(i)
k , as terms of the same sort constructed

with these symbols in mind.

A signature is a set of functional letters of projections and operations C(i), µ
(i)
l .

A category is a set of arrows (if objects are identified, as is often done, with single arrows),
which have a visual image of directed segments. Similarly, categorical splice has as its ele-
ments visually depicted rows of vertical lines, which we will call combs, as well as the for-
mulas corresponding to them. Thus, the comb of categorical splice defined below consists of
an external comb, an external convolution, an internal comb, and an internal convolution. For
a given set x(i,α)k , C(i,α), µ

(i,α)
l , ...,=i,α,i′,α′ , ξ

(α)
ij that is used for the outer combs, we enter

three copies of it. The set x′(i,α)k , C ′(i,α), µ′
(i,α)
l , ...,=′i,α,i′,α′ , ξ′

(α)
ij is used for outer convolu-

tions. The set x̄′(i,α)k , C̄ ′(i,α), µ̄′
(i,α)
l , ..., =̄′i,α,i′,α′ , ξ̄′

(α)
ij is used for inner combs . The set

x̄
(i,α)
k , C̄(i,α), µ̄

(i,α)
l , ..., =̄i,α,i′,α′ , ξ̄

(α)
ij is used for the inner convolutions.

Definition. A complete base comb is a formula composed of conjunctions of formulas

a
(i.α)
k =i,α C

(i,α)(x
(i.α)
k ), a′

(i.α)
k =′ i,αC

′(i,α)(x′
(i.α)
k ),
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ā
(i.α)
k =̄i,αC̄

(i,α)(x̄
(i.α)
k ), ā′

(i.α)
k =̄′i,αC̄

′(i,α)(x̄′
(i.α)
k )

and equalities η(i,α)k = θ
(j,β)
m , η

(i,α)
k , θ

(j,β)
m can be any of the symbols present in the previous formu-

las, the equal sign has the corresponding indices omitted here.

Definition. We distribute the conjunctions for each formula of complete combs across four cells of
the 2x2 table. In cell (1,1) we place the subformulas of the outer combs. In cell (1,2) we place
the subformulas of the outer convolutions containing letters with strokes. In cell (2,1) we place
the subformulas of the inner combs containing letters with overlining and in cell (2,2) we place the
subformulas of the inner convolutions containing letters with overlining and strokes:

When placing a formula in a table, strokes and overlinings can be omitted; they can be restored
in an obvious way if necessary According to the construction of full comb formulas, the equality
subformulas contain only those letters of the variables that were encountered in subformulas of the
form a = C(x) . This allows the equal signs (formulas with equalities of variables) to be excluded
from the table, replacing the equality formulas with dotted lines connecting the letters of the vari-
ables included in the equalities. Let us define constructive operations Mt,Mr,Ml,Mb specific to
categorical splices that transform some full comb formulas into others by moving formulas between
the cells of the full comb table.

Mb moves those conjunctions from formulas that have connections (one of which is on the left, the
other on the right) to the lower cells from the upper ones

when moving, a change in sorts is set that corresponds to the definition Mb .

Mt moves those formulas that have connections (one of which is on the left, the other on the right)
to the upper cells from the lower ones

when moving, a change in sorts is set that corresponds to the definition Mt.

Ml moves vertically and internally connected pairs from right cells to left cells (movement direction
to the left)

when moving, a change in sorts is set that corresponds to the definition Ml .
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Mr moves connected pairs from left cells to right cells (movement to the right)

when moving, a change in sorts is set that corresponds to the definition Mr.

The constructive operation Ev is introduced, and its inverse Ev−1 based on the functional symbols
of the operations µ(i,α)

l and the placement of equal signs in the appropriate places. The application
of the convolution present in the cell (1,2) of the comb table consists of successive application of the
operationsMb, Ml, Ev. The inverse operation of the indicated one consists of successive application
of the operations Ev−1, Mr, Mt .

We introduce the operations Pk,l, k, l = 1, 2, which project the full comb into its parts, translates
the full base comb into the contents of the (k, l)-cell of the table.

Definition. A complete comb is obtained from a complete base comb in which the variables x (with
indices) are replaced by terms of the formal language of the signature from the functional letters,
operations and projections. A categorical splice is a set of all possible combs.

Note. In the constructive case, it is not possible to talk about a set of all possible combs of one kind
or another; here, they usually mean a property written out as a suitable formula. The constructive
set is understood to mean the specified formula, and belonging to the set is thought of as a synonym
for the presence of a given property in a constructive object.

Definition. The procedure of applying the convolution, given above for complete base combs, is
literally applicable to complete combs and gives an inductive construction of formula terms :

a complete base comb and its Pk,l-projections are formula terms;

if there is a formula term, then applying the convolution to it is also a formula term, as are its
Pk,l-projections, and there are no other formula terms.

A formula term, like a complete comb, is decomposed into an outer term, an outer convolution term,
an inner convolution term, and an inner term. A formula a(i)k = C(i)x

(i)
k is called an elementary

external comb, respectively, formulas a′(i)k = C ′(i)x′
(i)
k , ā′(i)k = C̄ ′(i)x̄′

(i)
k , ā(i)k = C̄(i)x̄

(i)
k are

called an elementary external convolution, an elementary internal comb, an elementary internal
convolution.

Let a complete comb be given. The outer and inner combs, outer and inner convolutions ( Pk,l-
projections of the complete comb) are called connected comb and convolutions if the elementary
combs and convolutions that make them up are connected by dotted lines. The dotted lines of the
complete comb that connect different cells of the table are not taken into account in this case.

Following Hatcher, we introduce graphic notations similar to those used in his book [28], for exam-
ple, for the formula C(1)(x

(1)
i ) = a

(1)
i ∧ C(2)(x

(2)
j ) = a

(2)
j ∧ x

(1)
i = x

(2)
j we have
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In the bottom row of the comb table, we will mirror the graphic images of formulas (together with
the dotted lines of equalities) from bottom to top, for example:

For clarity, we will depict different names or areas connected by equality closer to each other on the
graph (for the figures provided, this agreement is taken into account due to x(1)i = x

(2)
j , x

(1)
2 = x

(3)
1

).

The considered constructive operations on formulas define a certain formal predicate, which with a
suitable modification can be reduced to a three-place or multi-place predicate K(x, y, z, t, ...). In it,
the variables run through connected combs and convolutions. We will consider specific examples
for convolution polycategories and multicategories below.

Let us construct a categorical splice for the traditional category theory; the use of convolutions will
give in the gluing a ”history” of its implementation, which is important for systems theory, since it
models the formation of a system from subsystems. For the case of small categories C, the specified
”history” for different combs turns out to be the nerve of category C.

To represent the composition of category arrows by combs of categorical splice, we will
need an eight-base theory. We introduce variables x(1)i , x

(2)
i , x

(3)
i , ..., x

(8)
i , functional letters

C(1), C(2), C(3), ..., C(8), , functional symbols ξi,j , i 6= j, i, j = 1, 2, ..., 8 of bijections, respec-
tively, of the form (j → i) , equality predicates =1,=2, ...,=8 in each sort and the equality predicate
= for different sorts. We will assign varieties to the cells of the table as follows

When moving sorts from right to left (and vice versa), the replacement of sorts has the form 3 ⇔
1, 4 ⇔ 2, 7 ⇔ 5, 8 ⇔ 6 , when moving sorts from top to bottom (and vice versa), we have the
following replacement of sorts 1 ⇔ 5, 2 ⇔ 6, 3 ⇔ 7, 4 ⇔ 8 . In the letter designations we will
retain the strokes and overlines, which are convenient for determining in which cell of the table the
letter is located.

We introduce variables a(i)k , k = 1, 2, ... with the property a
(i)
k =i C

(i)x
(i)
k , k = 1, 2, .... The

predicate corresponding to the partial operation of composition µx(1)i x
(1)
j = x

(1)
i ◦ x

(1)
j (first-sort

variables are multiplied) is denoted by P = P (1,1,1)(x
(1)
i , x

(1)
j , x

(1)
k ) , using this predicate and bijec-

tions one can define a predicate P (a,b,c)(x
(a)
i , x

(b)
j , x

(c)
k , a, b, c = 1, 2, 3, ..., 8) for any combination

of sorts. For example, P (1,2,4)(x
(1)
i , x

(2)
j , x

(4)
k ) = P (1,1,1)(x

(1)
i , ξ1,2x

(2)
j , ξ1,4x

(4)
k ) , in particular,

P (2,2,2)(x
(2)
i , x

(2)
j , x

(2)
k ) = P (1,1,1)(ξ2,1x

(1)
i , ξ2,1x

(1)
j , ξ2,1x

(1)
k ) .
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External base combs consist of formulas of the form C(1)(x
(1)
k ) = a

(1)
k ∧C(2)(x

(2)
m ) = a

(2)
m ∧x(1)k =

x
(2)
m . Their graphic notation (the dotted line indicates the presence of an equal sign in the atomic

formula x(1)k = x
(2)
m , sometimes it is convenient to replace the dotted line with an equal sign or to

explicitly indicate formulas from the conjunctions) has the form

The necessary external compositions have the form a′
(3)
i = C ′(3)(x′

(3)
i ) ∧ a(4)j = C ′(4)(x′

4)
j ) ∧

x′
(3)
i = x′

(4)
j ∧ a′

(3)
i = a′

(4)
j , i, j = 1, 2, ...

or in graphic notations

When interpreted in Set or another category, xi, xj will go into the arrow names, for compositions
in the case of categories, arrows id with xi = Cxi = ai, xj = Cxj = aj should be taken, this
option is shown in the diagram on the right. Let us proceed to the formulation of the procedure for
carrying out the convolution corresponding to the composition of the category arrows.

Let there be two connected combs (they correspond to two arrows), their product is defined by
the convolution procedure, we define equalities according to the table and graphic notation given
below (re-designations are introduced to shorten a1 = a

(1)
1 , b2 = a

(2)
2 , b3 = a

(1)
3 , c4 = a

(2)
4 , b5 =

a
(3)
5 , b6 = a

(4)
6 . When postulating the convolution and the equalities involved in the procedure

of its application (dashed lines in the graphic notations), subformulas a(2)2 = a′
(3)
5 , a

(1)
3 = a′

(4)
6

appear that lead to the requirement (reflects the cases of the possibility of applying the composition)
a
(2)
2 = a

(1)
3 . The equality C(1)x

(1)
1 = C ′(2)x′

(2)
2 gives C(a)

j C
(a)
k x′

(a)
i = C

(a)
k x′

(a)
i , a, j, k = 1, 2 ,

that is, we obtain an algebra for (the upper indices of C are the same)

As a result, we have everything necessary to carry out the convolution procedure, we write out the
following complete comb of the considered categorical splice
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We will immediately consider the convolutions for k combs (representing individual arrows for the
category). We will introduce the notation aixi for a(j)i =j C

(j)x
(j)
i , j=1,5 and xiai for a(j)i =j

C(j)x
(j)
i for j=2,6.

The k-1 available external convolutions of the form aix
(3)
i ∧x

(3)
i+1 can be applied to the comb (implied

x2m−1 = x2m )

which we will do.

We apply the first convolution.

We apply the operation Mb, we get

We apply the operation , we get

Now we apply the operation Ml, we get
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It remains to apply the operation Ev. With the help of the predicate corresponding to the composition
, the constructive operation Ev transforms the previous formula into the following .

Note. When interpreting a formula, in addition to choosing a composition predicate, it is necessary
to determine the choice of a function name for x̄(5)2k+1 = x̄

(6)
2k+2 , for the case of categories, this

choice is unambiguous in the form of an identity function (unit arrow) id. We will make this choice
at the last step of applying folds.

At the second step, we supplement the resulting comb with another convolution a2k+3x2k+3 ∧
x2k+4a2k+4 and apply the convolution.

Applying the operations Mb , Ml , and Ev similarly, we obtain

9

Published as a conference paper at MathAI 2025



After performing k-1 convolutions we obtain

The above derivation contains, in particular, the corresponding derivation for the case of ordinary
categories, which can be seen by narrowing it down as follows. We include the language under
consideration in the language of predicate calculus with the axioms of category theory given by
Hatcher [28].

The choice of the function name for for m=1, 3, ... , as indicated in the note, for the case of categories
is reduced to the name id - the identity function (unit arrow). Thus, for the case of categories we
obtain a comb obtained from the previous one by replacing with id and redesignating into the usual
notation of the composition operation. The calculation carried out without changes is also carried
out for this case. Taking the P1,1 -projection of the full comb as the final result, we obtain exactly the
composition of k arrows of the category. The interior of the obtained comb, obviously, corresponds
one-to-one to the appropriate element of the nerve of the category. If a model of formal category
theory is given, for example, a specific category, then the above calculations are also carried out in
this case without changes. Summarizing the calculations and reasoning, we obtain the following
theorem.

Theorem. Let an arbitrary category be given as a model of a first-order formal category theory, then
there exists an explicitly defined categorical splice, the outer part of each comb of which defines
the composition of a certain set of arrows of the category, and the inner part of the specified comb
defines the corresponding element of the nerve of the category.

In the axiomatics of category theory given by Hatcher [28], the operation of composition is intro-
duced by the predicate K(x,y,z) (”z is a composition of x and y”). A similar formal predicate can be
introduced for the operations performed K(s,x,y,z) = ”z is the result of applying the convolution s to
connected combs x and y”. Due to the limited space of the article, we omit the clarification of this
procedure.

For the theory of categorical systems, it is the categorical splice that gives in the form of a suit-
able comb not only the type of the system, but also the ”history” of its formation from subsystems,
contained in the inner part of the specified comb of the splice, while there is an unambiguous pro-
cedure for dividing the system into subsystems. In algebra (theory of algebraic systems [27], model
theory), models are understood as interpretations of formal theories of the first and other orders in
sets or objects of other categories besides the category of sets. Such models may use logic differ-
ent from classical logic, such as models in toposes with intuitionistic logic. In our case, we have
interpretations of the theory of splices in formal theories with a further transition to the indicated
models.

We will call the indicated interpretations of the theory of splices in formal theories formal models.
In this terminology, the first part of the given theorem states that there exists a categorical splice for
which the first-order category theory according to Hatcher [28] is a formal model.

10

Published as a conference paper at MathAI 2025



3 CONSTRUCTIVITY IN ALGEBRA

Systematic study of constructive algebras was started by A.I. Mal’tsev [29] with the introduction of
this concept itself in the form of numbered algebras: ”The concept of constructivity needs to be clar-
ified, and this clarification can be done in a variety of ways, starting with the classical clarifications
of Gödel-Church-Kleene and ending with the newer ones of A.A. Markov,... A.N. Kolmogorov ... .
Accordingly, the concept of constructive algebra allows for a number of possible clarifications.” A.I.
Mal’tsev himself chose (”A.I. Mal’tsev’s constructivism in algebra”) the approach outlined by A.N.
Kolmogorov with one of the initial tasks of describing all possible numberings with the properties
of Gödel numbering and relying on recursive functions within the framework of classical logic and
set theory (”... it would be interesting to study in some sense all numberings of partially recursive
functions...” [29]). In the Siberian mathematical school of academicians Yu. L. Ershov and S. S.
Goncharov, the approach received impressive development [30-33]. However, the approach of A.
A. Markov (A. A. Markov’s constructivism), mentioned by A. I. Maltsev, which does not use the
concept of a set, turns out to be in demand in connection with the acute practical problem of arti-
ficial intelligence modeling elements of the phenomenon of consciousness on a computer. When
designing, manufacturing (and loading programs) computing devices, we are forced to do without
the physical implementation of infinity, such a powerful tool of our consciousness in mathematics.
In this fundamental problem, it is necessary to follow, among other things, the important method-
ological principle of science [9] mentioned in the introduction, which is consistent with our systemic
approach: do not adjust the formulation of the problem to the usual methods of solution, but carry
out a ”search for methods corresponding to the original substantive problem”. Methodological de-
tails of our systemic approach can be found in [34], and here, speaking of algebra, we can limit
ourselves to the following. For the sake of certainty, we will rely on the definition of algebra by
generators and defining relations.

The presentation we are conducting allows us to distinguish each of the three types of constructivity
in algebra: general system constructivity: a finite alphabet is specified, a finite set of rules for
constructing words (it is possible to construct individual elements of algebra from generators, use
corelations) and statements, a set of tools used by researchers for direct establishment (graphic
equality of letters or graphic difference of letters, etc.) of the truth of statements, other truth values,
except for ”true”, are not introduced, the concept of the totality of all elements of algebra, logic
is not considered; constructivity according to A.A. Markov: constructive logic, constructed in [8],
is added to general system constructivity to prove the truth of a number of statements, the theory
of a particular algebra is constructed within the framework of the theory of words in alphabets,
developed in [8]; constructivity according to A.I. Maltsev: to the general system constructivity are
added the elements of the theory of recursive functions, classical logic and set theory, which includes
the concept of infinity, necessary for numbered algebras (which are constructed using generators and
corelations). Our presentation is carried out in the usual language accepted in category theory, but it
is easy to single out the part related to the general system constructivity, which will allow the work
to be used in possible modeling for physical computing devices.

4 CATEGORICAL SPLICES AND HIGHER CATEGORIES

The formalism of categorical splices is quite general, since theorems similar to the above hold (see
[25], where the corresponding categorical splices are constructed) for the simplicial category and a
number of higher categories based on globular sets, for categorical objects in the category of small
categories Cat (double categories) and a number of higher categories based on cubic sets, as well as
for a number of other various higher categories (week multiple categories) studied in [5]. A category
is by definition a partial algebra with a binary associative operation of multiplication; in addition to
categories, suitable categorical splices are constructed for an arbitrary universal algebra, which was
done in [25] immediately for the algebraic theory according to Lawvere [35]. By definition, this is
a small category with finite products, each object of which is represented as a power of an object ,
and the equality holds . By a usual algebraic theory we mean a first-order theory with equality, a
signature of function letters (n-ary operations) and several axioms or identities (atomic formulas s=t
with terms s,t). The well-known ambiguity of defining an algebraic theory by identities and oper-
ations (for example, a group can be defined in addition to the usual three operations of associative
multiplication, taking the inverse element and unity, by two operations of double division and unity,
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or even by just one operation of division with identities) is overcome in Lawvere’s approach. For an
algebraic theory T, its syntactic category ST is constructed, which is a category with finite products
and an algebraic theory according to Lawvere. Thus, universal algebras in the above sense are mod-
els of the corresponding categorical splices. A generalization of Lawvere’s theory are the PROPs
introduced by MacLane [18], which by definition are symmetric strict monoidal categories whose
objects are integers, the tensor product of which on objects coincides with their sum. Lawvere’s
algebraic theories are props. As indicated in the introduction, props are used for categorical models
of a number of networks (electrical, Petri nets, neural networks) [36], [37]. In our approach, as is
clear from the above, they represent a special case of models of suitable categorical splices.

5 MODELING NEURAL NETWORKS WITH CATEGORICAL SPLICES AND
CATEGORICAL SYSTEMS

By neurons and their networks we mean interacting living neurons, as well as their tradi-
tional models in the form of artificial neural networks of arbitrary topology. In addition to
the above-mentioned modeling of neural networks with props, there are categorical models that
use ordinary categories with objects in the form of neurons [38], a similar representation of
a neural network is common among neurobiologists (see K.V. Anokhin’s questions to the au-
thor during the author’s report at the Academic Council of the P.K. Anokhin Institute of Nor-
mal Physiology of the Russian Academy of Sciences, February 2017, 57th minute of the video
https://www.youtube.com/watch?v=s3oTaSt4w0E , apparently, the author proposed to model neu-
rons with polyarrows for the first time). Definition. Let a categorical splice be given with a set of
convolutions available for it. A formal categorical system is any comb of this categorical gluing. If
a comb has no internal part, then the system is called simple. If there is an internal comb, the system
is represented as a corresponding convolution of other combs, called subsystems of this categori-
cal system, which in this case is called a composite system. Let us emphasize that the concept of
a simple and composite system reflects the natural procedure of constructing a system from other
systems (they become subsystems) using convolution. This differs from the concepts of, for exam-
ple, a simple group and a group with subgroups. The Mesarovich system corresponds to a simple
categorical system with two types of sorts (inputs and outputs). For this systems it is sufficient to
consider a special case of categorical gluings called convolutional polycategories. The combs of a
convolutional polycategory, as a categorical splice, correspond to sets of polyarrows. In this sec-
tion, we will define convolutional polycategories and consider the representation of artificial neural
networks of arbitrary topology as convolutional polycategories with crown-type convolutions. We
will also extend the neuron model that uses convolutional polycategories to a splice-based neuron
model, which makes it possible to take into account non-spike communications of neurons among
themselves and with other cells.

Definition. A categorical splice is called a convolution polycategory if it has exactly two types of
variable sorts (”inputs” and ”outputs”), a projection algebra of the formCiCj = Cj , i, j = 1, 2, 3, ...
with convolutions connecting outputs to inputs. If the generators of a categorical splice are con-
nected combs with one output and several inputs with convolutions having one input and several
outputs, then such a categorical splice is called a convolution multicategory. Convolution multicat-
egories generalize ordinary multicategories [14-16], and are also used to model neural networks, as
indicated below.

We will briefly touch upon the issue of dualities in categorical splices, which we will need when
constructing a precise concept for the ”conjugate graph” introduced by S. Osovsky for artificial
neural networks. Duality of mutual replacement of sorts. A classic example of this duality is the
transition from a category to a dual category, carried out (in an intuitive sense) by the operation of
replacing the direction of arrows. If in each comb of this categorical splise we replace two different
sorts in the outercomb with each other and replace the corresponding sorts in the convolutions and
the inner comb, then we will obtain a new comb, we will call this operation the duality operation
by sorts. A new categorical splice consists of such combs, called a dual by sorts categorical splice
to the original categorical splice. For the case of convolutional polycategories, the transition to a
polycategory dual to sorts, as in ordinary categories, is reduced (in an intuitive sense) to replacing
the directions of polyarrows or replacing inputs with outputs and vice versa. Categorical reasoning
is very cumbersome, we will consider duality by sorts for the categorical splices already discussed
above, modeling ordinary categories. We will write out in graphic form the external comb, consisting
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of two connected combs corresponding to the arrows, and the convolution corresponding to the
composition

We apply the duality operation, replacing in the full comb obtained from the external combs and the
convolution the types 1 and 2, as well as 3 and 4, while leaving the projections unchanged, we have

or

Denoting the convolution predicate s by K(s, f, g, h), we obtain that the duality operation with the
projections unchanged led to a change of places of connected combs in their ordered pair and a new
formal predicate K ′(s, f, g, h) = K(s, g, f, h).

In the general case, the formal predicate K(s, f, h) for two combs s and f connected by equalities of
projections, under the duality operation goes over to another predicate K ′(s, f, h) = K(s, gf, h),
where g is an appropriate permutation of connected external combs of the comb f. Duality of mutual
replacement of combs and convolutions of a complete comb. A new comb can be constructed
from a given complete comb of a categorical splice by mutual replacement of the outer and inner
convolutions with the outer and inner combs of the complete comb. With such a replacement,
a corresponding (as in the operations Ml,Mr,Mb) change of sorts occurs. The complete combs
transformed in this way constitute a new categorical splice, called a categorical splice dual to the
original categorical splice in combs and convolutions.

For a convolutional multicategory, the following theorem is true. Theorem. Let a convolutional
multicategory and its full ridge be given. Then performing the duality operation on sorts and the
duality operation on combs and convolutions transforms the specified full ridge into another full
ridge of a new convolutional multicategory, in which each connected outer ridge transforms into a
connected outer convolution and vice versa.

Ordinary multicategories are studied for the case of associativity of the composition of multiarrows,
a convolutional polycategory may not satisfy the analog of the associativity condition, it should be
introduced additionally if necessary, as well as the condition on convolutions, for their compliance
with the usual composition. Models of formal theory with such conditions (the formulation of which
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is very cumbersome) on convolutions are called associative compositional convolutional multicat-
egories. As is known [15], for multicategories, changing the directions of arrows does not lead to
duality similar to the duality of categories. The given theorem gives a natural version of duality for
multicategories. The construction of dual categorical splices plays no less an important role in their
theory than in ordinary category theory. One of the key theorems of category theory, justifying the
duality principle [39], has the form (see [28]) Theorem. Let A be any well-formed formula prov-
able in formal category theory, then the dual formula for A is also provable. If we embed categorical
splices in a suitable first-order theory with classical logic, then a similar theorem will be true as well.
Theorem. Let A be any well-formed formula provable in the formal theory of categorical splices,
then the dual by sorts and dual by ridges and convolutions formulas for A are also provable.

Let us move on to defining a new splice model of neurons and their networks. The polycategori-
cal model neuron was introduced by the author. The inputs and outputs of polyarrows representing
neurons model the spike propagation paths. However, intercellular communications are much richer
than spike activity. Many studies have found that other types of connections between neurons influ-
ence spiking activity. Models of neurons have emerged [3] that take into account such interactions.
Definition. Let a categorical splice be given, having two sorts of variables, which we will call inputs
(in) and outputs (out), and n sorts of variables, which we will call sorts of non-spike communication
channels. Then a neuron is called each connected comb of the categorical splice, and the categorical
splice itself with the existing convolutions is called a categorical splice neural network.

Further we will talk about formal categorical neural networks within the framework of first-order
formal theories with classical logic and with interpretation in sets. Since categorical splices include,
as special cases, convolutional polycategories and higher categories, this definition, taking into ac-
count the presence of corresponding convolutions in the combs, is of a very general nature and has
a rich toolkit for modeling highly complex connections between neurons interacting not only by
spikes. Next, we consider the modeling of traditional artificial neural networks with convolutional
multicategories. One of the main existing generally accepted approaches in the theory of neural
networks, namely, PDP (Parallel Distributed Processing), was developed in the 1980s by a group
of scientists - physiologists, psychologists, mathematicians, computer scientists, whose members
included Nobel laureate Francis Crick. The PDP neural network model contains three types of ele-
ments, a neuron or soma (the processing element, now it is a processor or transputer), an axon (the
transmission line of signals coming from the soma) and a synapse (a ”junction” that converts the
signal from the axon into a suitable signal for the soma). The neural PDP network in its simplest
version forms a ”graph” with nodes in the form of neurons with the following properties: (a) only
one line approaches each synapse; (b) lines from different neurons approach different synapses on a
given neuron; (c) transmission lines do not branch and are ordinary arcs of the graph. Property (c),
taken from [39] p.274, actually requires that a neuron have multiple outputs, this is wrong not only
because further in the text [39] a neuron produces only one signal, but also because it obscures the
most important property of living neural networks, when one output is connected to several inputs
of other neurons. Here, a variant of convolution is clearly used, which differs from the method of
connecting arrows using compositions known in category theory. In the graphical notations from
[40], where the PDP model is described, point (c) is intended to replace

which fails; in the example from [39] p.275 in the figure below, branching of lines appears again.

In our approach, we associate a neuron in this PDP model with a polyarrow with inputs in the form
of synapses and an output in the form of a line, which, like an axon, splits into several lines going
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to other neurons. The concept of a graph includes, by definition, two sets, a set of vertices and a
set of pairs of vertices. Usually, neural network engineers continue to talk about a neural network
as a graph, but when they are presented with a branch point from a neural network along with the
definition of a graph (with which they agree!) that is not included in the graph, they get into a
difficult situation: a neural network is not a graph in the usual sense, as this corresponds to the
given definition. And the attempt (in the figure) to ”remove” this branch point into a neuron is not
accidental. The main modern standard of neuroinformatics (see [41]) is formed by neurons that
calculate the value

, .

Neurons in a neural network are connected to each other in such a way that from a single neuron
output (axon), the connection branches out to several inputs of other neurons. Thus, a neuron n
is represented as a function of many variables n : 0, 1k → 0, 1 . For a neural network, the con-
nections of neurons can be modeled by a convolution in an associative compositional convolutional
multicategory according to the following theorem.

Theorem. (modeling neural networks) Let there be an artificial neural network with neurons n :
0, 1k → 0, 1 having several inputs (k=1,2,3, ... ) and one output, with its own activation function for
each neuron, with signals coming to the input of the neuron’s synapses from a set b. The connections
of neurons are carried out by the existing output, which branches into a finite numberm=1,2,3, ... of
lines connecting with the inputs of other neurons. Then the neural networks built from the specified
neurons form an associative compositional convolutional multicategory.

The specified categorical representation of a neural network helps to eliminate a number of inaccura-
cies in their theory. For example , relying on the properties and concept of duality of polycategories,
we present correct schemes of the intuitive method of S. Osovsky [2] popular among engineers for
calculating partial derivatives used in the method of backpropagation of error. Let us consider a
general unidirectional multilayer artificial neural network in the notations from [2] (p. 55).

According to the theorem on the representation of a neural network by a convolutional multicategory,
there is a categorical model of the specified neural network, by applying duality operations to which
one can construct the following dual full comb of the dual convolutional multicategory.
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6 CONCLUSION

In the categorical theory of systems developed by the author, three levels of constructivism naturally
arise that are important for the development of artificial intelligence: general system constructivism,
constructivism according to A.A. Markov, and constructivism according to A.I. Maltsev. According
to the system paradigm of the categorical theory of systems, neural networks, both artificial neural
networks and networks of living neurons and other cells, are systems modeled by categorical splices
and convolutional polycategories. The presented models are not only adequate to the systemic nature
of traditional neural networks of arbitrary topology, but also offer a formalism for higher-order
networks that correspond to analogs of higher categories, and for taking into account the non-spike
activity of neurons both among themselves and with other types of cells. In addition to the duality
known in category theory (construction of a dual category), categorical splices has another type of
duality, which is considered in the paper. The combination of these types of duality provides a
natural solution to the problem of constructing duality for multicategories. The proposed transition
from a convolutional multicategory to its dual multicategory formalizes (as described in the paper)
the intuitive construction of a “conjugate graph” for the well-known formulas of S. Osovsky used in
calculating the gradient in the backpropagation method.

We obtain the exact object that S. Osovsky built intuitively. He called it a ”conjugate graph”. Note
that our scheme introduces additional neurons compared to Osovsky’s scheme ([2] Fig. 3.7., p. 55),
into which the convolutions are translated according to duality transformations.
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