
Plug-and-play Feature Causality Decomposition for
Multimodal Representation Learning

Ye Liu Zihan Ji Hongmin Cai∗
School of Future Technology

South China University of Technology
Guangzhou, China 511442

{yliu03, hmcai}@scut.edu.cn ftjizihan@mail.scut.edu.cn

Abstract

Multimodal representation learning is critical for a wide range of applications,
such as multimodal sentiment analysis. Current multimodal representation learning
methods mainly focus on the multimodal alignment or fusion strategies, such
that the complementary and consistent information among heterogeneous modali-
ties can be fully explored. However, they mistakenly treat the uncertainty noise
within each modality as the complementary information, failing to simultaneously
leverage both consistent and complementary information while eliminating the
aleatoric uncertainty within each modality. To address this issue, we propose a
plug-and-play feature causality decomposition method for multimodal represen-
tation learning from causality perspective, which can be integrated into existing
models with no affects on the original model structures. Specifically, to deal
with the heterogeneity and consistency, according to whether it can be aligned
with other modalities, the unimodal feature is first disentangled into two parts:
modality-invariant (the synergistic information shared by all heterogeneous modali-
ties) and modality-specific part. To deal with complementarity and uncertainty, the
modality-specific part is further decomposed into unique and redundant features,
where the redundant feature is removed and the unique feature is reserved based
on the backdoor-adjustment. The effectiveness of noise removal is supported by
causality theory. Finally, the task-related information, including both synergistic
and unique components, is further fed to the original fusion module to obtain the
final multimodal representations. Extensive experiments show the effectiveness of
our proposed strategies.

1 Introduction

Multimodal representation learning is the basis of the downstream tasks, such as multimodal sentiment
analysis [39; 13; 9; 15] and text-image classification [18; 11]. Due to the feature heterogeneity among
different modalities [36], the consistent and complementary information among modalities [12]
are crucial for effective multimodal representation learning. The consistent information refers to
common features that present in multiple modalities, facilitating alignment of modalities within
a common representation space. On the other hand, the complementary information refers to
distinctive features presenting in only one modality but is still useful for the overall understanding. It
enriches multimodal models, enabling them to learn more comprehensive and nuanced representations.
Numerous existing methods have been proposed to effectively explore them. For example, [13]
captures the consistent information via maximizing mutual information among different modalities,
thereby improving multimodal fusion performances. [20] applies the contrastive learning to enhance
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the feature representation capability of consistent information on both label-level and instance-level.
[5] performs dynamic late fusion by predicting the generalization error upper bound of each modality,
exploiting the heterogeneous complementary information in each modality.
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Figure 1: Structural causal model
for the n-th multimodal data of the
m-th modality. T : task-related
factor. M: modality uncertainty
noise factor. smn : synergistic fea-
ture. hm

n : modality-specific infor-
mation. um

n : unique feature. rmn :
modality-specific task-agnostic in-
formation. yn: task annotation.

However, due to the variations in data acquisition processes
and sensor characteristics, multimodal data contain distinct
types of uncertainty noise in each modality. We carry out a
qualitative analysis with the help of structural causal model
(SCM) [25] to explain it. Figure 1 describes the SCM of
multimodal data of a single modality. The consistent and
complementary information are gathered from the task-related
factor, from where the synergistic and unique features are to be
constructed respectively. The synergistic feature is the shared
consistent information among different modalities, which is
modality-invariant. And the unique feature is the complemen-
tary information that is modality-specific. However, due to the
modality uncertainty noise factor resulted from the aforemen-
tioned cues, the redundant task-agnostic information is also
mixed in the modality-specific feature, which would affect the
construction of unique feature. For example, in image-text
task, the task-related parts are the ones that contribute to the
final task prediction. The synergistic parts are both included in
the image and the text modalities, which jointly contribute to
the final task prediction. The unique parts are the semantic con-
tents that only appear in image modality (or text modality) and don’t appear in text modality (or image
modality). Both synergistic and unique factors are task-related and derived from the task-related
factor. The redundant part is the uncertainty noise within one modality, such as the typos in text
modality or quality of image, which is derived from the noise factor. The multimodal data store these
information in their different format (the specific factor), but they are still associated in high-level
semantic (the synergistic factor). Existing methods often overlook this unimodal uncertainty noise,
mistakenly treating it as complementary information, which hampers multimodal fusion performance
[11]. Moreover, several researches have shown that removing uncertainty in unimodal features helps
to obtain more accurate and robust multimodal representations. For example, [11] assumes the
unimodal features are sampled from a multivariate Gaussian distribution and tries to remove the
aleatoric uncertainty by estimating their latent distributions. [38] applies causal intervention on the
amplitude information after the Fourier transformation of different modality samples, and enforces
model on high-level semantic information. Nevertheless, these methods typically focus solely on
consistent, complementary, or uncertain information, or a combination of two of these aspects, with
very few approaches effectively capturing all three types simultaneously.

Inspired by [24; 45], we propose a plug-and-play Feature Causality Decomposition (FCD) method
to address the heterogeneity and aleatoric uncertainty of multimodal data. Ideally, the task-related
information within each modality should be fully utilized to perform the multimodal representation
learning, whilst the task-agnostic information should be eliminated. Thus, FCD is designed to take
the original unimodal features as inputs and decompose them into their synergistic, unique and
redundant components. To achieve this, FCD first employs Causality Components Decomposition
(CCD) module on each unimodal feature to decompose it into the modality-invariant and modality-
specific parts. The modality-invariant part plays a role of synergistic component, which is capable of
capturing the consistent information shared across heterogeneous modalities. FCD employs another
module named Synergistic Distribution Alignment (SDA) to narrow the space difference and align
the synergistic component from all modalities via a parameter-sharing MLP constrained by Sinkhorn
divergence [10]. Then, CCD further extracts the unique component from the modality-specific
part based on the backdoor-adjustment [25]. We theoretically [16; 25] prove that the unimodal
uncertainty noise mixed in the modality-specific part can be removed via the backdoor-adjustment
under some specific conditions. Moreover, contrastive loss among the redundant components from
different modalities is utilized to constrain the modality-specific characteristic, effectively handling
the uncertainties that vary across modalities. Different from existing multimodal learning methods
[9; 13; 44; 45], FCD is plug-and-play that is more generalized and achieves the theoretical support
from causality and probability perspectives. Extensive experiments on 9 existing multimodal methods
and 5 multimodal datasets prove the effectiveness of FCD.
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(a) Intermediate Fusion Pipeline (b) Intermediate Fusion Pipeline with FCD
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Figure 2: Take image and text modalities as examples. “Enc” and “Dec” stand for encoder and
prediction head, respectively. Arrows are the forward paths. (a) The original pipeline of multimodal
intermediate fusion model. (b) The multimodal intermediate fusion pipeline involving FCD module,
which takes unimodal features as inputs and outputs the synergistic (pink double-line shaft arrows),
unique (green triple-line shaft arrows) and redundant (gray dashed arrows) components.

2 Related Works

2.1 Multimodal Representation Learning

Multimodal representation learning has gained increasing attention with the rapid advancement of
social media and multimedia technologies [31; 11]. Moreover, feature extraction plays a crucial
role in multimodal representation learning, and numerous studies have been conducted. Recent
efforts have explored various strategies for effective multimodal learning. [11] mitigate aleatoric
uncertainty within each modality via latent distribution modeling, followed by dynamic integration
and VIB-based fusion [1]. [20] performs token-level fusion with contrastive learning to align cross-
modal representations. [13] reduce modality discrepancy via mutual information minimization and
introduce CPC [28] to preserve modality-invariant features. [9] treat fusion as a progressive process
and employ a hierarchical contrastive framework to retain semantic consistency across fusion stages.
These works hardly considered the heterogeneity and aleatoric uncertainty of the multimodal data
simultaneously. In addition to these works, many works on other tasks, such as multimodal learning
with miss-modality [35], semantic segmentation [44] and multimodal domain generalization [8],
focused on the modality-specific/-invariant features but ignored the unimodal uncertainty noise.
Recently, [45] noticed the uncertainty noise within each modality and proposed to remove it through
cross-attention mechanism. Unlike [45], we provide a simpler yet more generalized plug-and-play
module whose effectiveness is also supported by causality and probability theory.

2.2 Causal Inference in Deep Learning

Causal inference [25] has attracted massive attention in multimodal tasks, where causality is defined
as the relation between an event and the cause that gives rise to it [38]. It improves the robustness
and generalization of models by debiasing the specific spurious correlation [6; 15; 23]. [23] used
the backdoor and frontdoor causal intervention to eliminate the noise and the spurious correlation
between input multimodal data and the ground truth in visual question answering task. [6] proposed
to remove the influence of word frequency in textual modality by backdoor-adjustment. Besides,
they also argued that the authenticity of the news should not be inferred only based on image
features, and proposed to utilize the indirect effect of the image feature via counterfactual inference.
[38] considered the modality-specific characteristic as the amplitude information of the Fourier
transformation, and proposed to remove the modality noise by perturbing the amplitude component
and generate a counterfactual sample to perform counterfactual inference.

3 Preliminaries

Given a multimodal dataset D with N samples in M modalities, and each sample pair is denoted
as (Xm

n , yn), where Xm
n is the n-th data sample in the m-th modality, yn is the label of the n-th

sample. yn ∈ R is a real-valued number in regression tasks, while it is a discrete number, i.e.,
yn ∈ {1, · · · ,K} with K being the number of clusters in classification tasks. In this paper, we
specifically focus on multimodal intermediate fusion model, an example with visual and textual
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modalities is shown in Figure 2 (a). Multimodal intermediate fusion usually involves three steps,
which can be formulated as follows.

ŷn = G(zn; θDec), zn = FFuse(z
1
n, · · · , zMn ; θFuse) ∈ Rd

s.t. zmn = Em(Xm
n ; θmEnc) ∈ Rdm

,m = {1, · · · ,M}
(1)

where Em(·; θmEnc) is the encoder for the m-th modality with parameter θmEnc, FFuse(·; θFuse) is the
fusion function with parameters θFuse, and G(·; θDec) is the predictive function with parameters θDec.
The optimization function of the regression and classification tasks is usually represented as:

Regression tasks: L = Ltask + Lreg =
1

N

N∑
n=1

|yn − ŷn|+ Lreg

Classification tasks: L = Ltask + Lreg = − 1

N

N∑
n=1

K∑
k=1

Iyn=k log ŷnk + Lreg

(2)

where the indicator function Iyn=k = 1 if and only if yn equals to k, otherwise Iyn=k = 0. ŷn is the
prediction of the n-th sample. ŷnk is the predicted probability that the n-th sample belongs to the k-th
category, and Lreg is the regularization term. Different Lreg is employed in different existing works.
For example, a series of contrastive learning loss terms at different fusion phases are proposed in [9].

4 Methodology

The overview of our proposed method, Feature Causality Decomposition (FCD), is shown in Figure 2
(b). FCD is a plug-and-play module, which can be integrated into any intermediate fusion model
for multimodal learning defined in Section 3. It is located between the unimodal encoder and the
original fusion module, which takes the unimodal features {zmn }Mm=1 as input and feeds the processed
features {z̃mn }Mm=1 to the original fusion module.

FCD contains two main submodules for each modality, i.e., Causality Components Decomposition
(CCD) and Synergistic Distribution Alignment (SDA). CCD first separates the unimodal feature zmn
into three aforementioned components, one of which can be aligned with the same part from other
modalities (i.e., the synergistic component, pink double-line shaft arrows in Figure 2 (b), denoted
as smn ). The modality-specific task-related unique component is illustrated as green triple-line shaft
arrows in Figure 2 (b) and denoted as um

n . The last one is the redundant component (the gray dashed
arrows in Figure 2 (b), denoted as rmn ), which is the modality uncertainty noise. Then, smn is aligned
by the SDA module. Finally, FCD aggregates the two task-related component, i.e., synergistic and
unique features, and feeds the aggregated feature z̃mn to the original fusion module FFuse.

4.1 Causality Components Decomposition Module

The illustration of CCD is shown in Figure 3. Inspired by [45], CCD first disentangles zmn in
Equation (1) to the modality-specific part hm

n and the modality-invariant part smn via two MLPs Fm
h

and Fm
s :

hm
n = Fm

h (zmn ; θmh ), smn = Fm
s (zmn ; θms ) (3)

where θmh and θms are parameters of the Fm
h : Rdm → Rdm

and Fm
s : Rdm → Rdm

, respectively.
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Figure 3: The illustration of the pro-
posed Causality Components Decomposi-
tion (CCD) module.

As discussed in Section 1, current methods may mis-
takenly treat features with uncertainty noise as the part
of modality-specific information hm

n . In other words,
hm
n contains both modality-specific task-related com-

ponent um
n (complementary information) and redun-

dant component rmn . Therefore, the core problem is
how to reserve um

n and eliminate rmn from the hm
n

simultaneously. From the causality perspective, um
n

is confounded by hm
n . As shown in Figure 1, there

exists a backdoor path between um
n and yn, which

is confounded by the modality-specific feature hm
n :

um
n ← hm

n → rmn → yn. To eliminate the causal
effect of the redundant component rmn in the backdoor
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path, backdoor-adjustment is commonly used [25; 23; 15], which is usually formed as the do(·). It
performs causal intervention on the confounder factor to remove its spurious causal effect. In CCD,
backdoor-adjustment is also employed to remove the causal effect of the confounder in backdoor
path.
Theorem 4.1. Given hm

n extracted by Fm
h , the conditional mutual information (CMI) between um

n
and yn is defined as I(um

n ; yn|hm
n ). Assuming um

n is extracted from hm
n by a measure-preserving

bijective function Fm
mb, then maximizing the expectation of conditional mutual information for

all possible hm
n , i.e., EP (hm

n )[I(u
m
n ; yn|hm

n )], is equivalent to maximizing the mutual information
I(do(um

n ); yn), where do-operator do(·) is the employed backdoor-adjustment, E is the expectation,
and P is the probability distribution function.

The proof [16; 25; 21] of Theorem 4.1 can be found in Appendix Section A. Theorem 4.1 indicates
that if the extraction function Fm

mb is measure-preserving bijective, then effectively extracting the task-
related feature um

n from the modality-specific feature hm
n while separating out the modality noise rmn

via backdoor adjustment is equivalent to maximizing the mutual information between the annotation
and um

n after causal intervention. When um
n is extracted from hm

n by Fm
mb, i.e., um

n = Fm
mb(h

m
n ),

CCD is able to extract um
n from hm

n by optimizing the following:

minLCMI
def.
=

−1

NM

N∑
n=1

M∑
m=1

EP (hm
n )[I(u

m
n ; yn|hm

n )]

s.t. I(um
n ; yn|hm

n ) = EP (um
n ,yn,hm

n )

[
log

P (um
n , yn|hm

n )

P (um
n |hm

n )P (yn|hm
n )

] (4)

However, the true distribution of hm
n is not assessable, which impedes the calculation of Equation (4).

More importantly, directly optimizing Equation (4) without adjustment ignores the existing backdoor
path, which would spuriously bring task-agnostic information towards annotation prediction. Based
on Theorem 4.1, we can transform Equation (4) to Equation (5) when Fm

mb is a measure-preserving
bijective function and backdoor-adjustment is applied to ensure the mixed uncertainty noise can be
removed.

minLMI
def.
=
−1
NM

N∑
n=1

M∑
m=1

I(do(um
n ); yn)

=
−1
NM

N∑
n=1

M∑
m=1

EP (do(um
n ),yn)

[
log

P (do(um
n ), yn)

P (do(um
n ))P (yn)

] (5)

According to [28; 22; 9], CCD applies InfoNCE loss as its lower bound in practice. Hence, we can
transform Equation (5) to Equation (6) to perform the backdoor-adjustment and reserve deconfounded
modality-specific task-related feature do(um

n ).

LMI ≈ LInfoNCE =
1

NM

N∑
n=1

M∑
m=1

LInfoNCE(ũ
m
n , ỹn)

=
−1

2NM

N∑
n=1

M∑
m=1

[
log

ecos(ũ
m
n ,ỹn)/τ∑Nc

n′=1 e
cos(ũm

n ,ỹn′ )/τ
+ log

ecos(ũ
m
n ,ỹn)/τ∑Nc

n′=1 e
cos(ũm

n′ ,ỹn)/τ

] (6)

where ũm
n ∈ Rd and ỹn ∈ Rd are linearly projected from do(um

n ) and yn with normalization,
respectively. τ is the temperature parameter. And cos(·, ·) is the cosine between two vectors.

On the basis of Theorem 4.1, effective extraction of um
n from hm

n whilst separating rmn apart requires
that the extraction function Fm

mb is a measure-preserving bijective function. According to [46; 45],
we propose a binary disentangle module Unique Redundant Decompose (URD), which is guaranteed
to satisfy the measure-preserving bijective condition.

um
n = Fm

URD-f

(
3∑

k=1

wm
k um

n(k); θ
m
URD-f

)
, rmn = hm

n − um
n

s.t. um
n(k) = F

m
URD-d(h

m
n(k); θ

m
URD-d)

(7)

where the scaler wm
k ∈ R is linearly projected from the dimensional concatenation of rmn(k) and hm

n(k).
Fm

URD-d : Rdm → Rdm

is a MLP for decomposition with parameter θmURD-d. Fm
URD-f : Rdm → Rdm

is
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a feed foward net with parameter θmURD-f and hm
n(k) is recursively deduced as:

hm
n(k) =


hm
n , k = 1

hm
n −

k−1∑
i=1

wm
i um

n(i), k > 1
(8)

Practically, we apply SVD on the weight matrices of Fm
URD-f and Fm

URD-d, where the 0 diagonal
elements of the singular value matrix Σ are set to 10−5. The pseudo code is in Appendix Section B.

On the other hand, the modality-specific task-agnostic component rmn should have significant dif-
ference with rm

′

n (m′ ̸= m) to constrain the modality discrimination of hm
n . To achieve it, we

employ InfoNCE [28] to perform contrastive learning between the redundant features from different
modalities of the same sample as an unsupervised optimization target.

minLDis
def.
=
−1
NM

N∑
n=1

M∑
m=1

log
ecos(r̃

m
n ,r̃mn )/τ∑M

m′=1 e
cos(r̃mn ,r̃m′

n )/τ
(9)

where r̃mn ∈ Rd is linearly projected from rmn with normalization. By applying LMI and LDis, the
extraction of modality-specific feature hm

n mixed with unique and redundant features is constrained.
With the optimizing of LMI and LDis, the unimodal uncertainty noise mixed in the modality-specific
feature can be effectively removed.

4.2 Synergistic Distribution Alignment Module
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Figure 4: The illustration of Synergistic
Distribution Alignment (SDA) module.

In order to ensure that the synergistic component smn
captures the shared and consistent knowledge across
modalities, Synergistic Distribution Alignment (SDA)
module is proposed to perform the feature space align-
ment, which is illustrated in Figure 4.

To achieve the alignment, SDA first linearly projects
smn ∈ Rdm

to a subspace with d dimension shared by
all modalities:

s̆mn = Fm
proj(s

m
n ; θmproj) ∈ Rd

s.t. m = {1, · · · ,M}
(10)

where θmproj is the parameter of the m-th modality pro-
jection function Fm

proj : Rdm → Rd. With all modalities
in the same dimension, s̆mn of each modality is able to
propagate forward to the parameter-sharing MLP FSDA : Rd → Rd to achieve the space alignment:

s̃mn = FSDA(s̆
m
n ; θSDA) s.t. m = {1, · · · ,M} (11)

where θSDA is the parameter of MLP FSDA. To preserve the original model’s structure and dimension-
ality, SDA linearly projects s̃mn back to the original space as:

ŝmn = Fm
r-proj(s̃

m
n ; θmr-proj) s.t. m = {1, · · · ,M} (12)

where θmr-proj is the parameter of projection layer Fm
r-proj : Rd → Rdm

in the m-th modality. To reduce
the impact of back propagation on the gradient of model and the original semantic information
shift[14; 33], we apply shortcut between smn and ŝmn with layer normalization:

ẑmn = LayerNorm(ŝmn + smn ) s.t. m = {1, · · · ,M} (13)

The key target of SDA module is to effectively constrain the extracted smn contains the shared
information among different modalities. However, the true distributions of smn are unreachable.
Although there have been works assuming them to be multivariate Gaussian distributions and trying
to meet this assumption by applying Kullback-Leibler (KL) divergence [11; 19], [2] has pointed out
the poor stability of KL-divergence for gradient descent. Inspired by [10; 26; 17], we employ the
Sinkhorn-divergence defined in Equation (15), a variant of the optimal transport distance, to measure
the difference between the distribution of latent embeddings from two modalities.
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Definition 4.1 (Bi-modalities Batch Discrete Probability). Given a batch size Nc, the latent feature
vectors in the m1-th and m2-th modalities are {s̃m1

i }
Nc
i=1 and {s̃m2

j }
Nc
j=1 respectively. Let ∆Nc

denotes the probability simplex of RNc , and a = [a1, · · · , aNc
] ∈ ∆Nc

, b = [b1, · · · , bNc
] ∈ ∆Nc

.
δs̃∗i refers to a point mass located at coordinate s̃∗i ∈ Rd, We have the bi-modalities batch discrete
probability:

α =

Nc∑
i=1

aiδs̃m1
i

, β =

Nc∑
j=1

bjδs̃m2
j

s.t. m1,m2 ∈ {1, · · · ,M} and m1 ̸= m2 (14)

Based on Definition 4.1, according to [10; 26; 17], the Sinkhorn-divergence based term is defined:

minLSDA
def.
=

2

M(M − 1)

∑
m1,m2∈{1,··· ,M}

m1<m2

Ldiv(m1,m2)

s.t. Ldiv(m1,m2) = OT(α, β)− 0.5(OT(α, α) + OT(β, β))

(15)

Here, OT(·, ·) is the total optimal transport cost between two distributions solved by the regular
optimal transport defined as OT(α, β) = minT∈Π(α,β) < T,M >F, where M ∈ RNc×Nc is the
cost matrix with each element calculated with cosine similarity, i.e., Mi,j = 1 − cos(s̃m1

i , s̃m2
j ).

< ·, · >F is the Frobenius dot-product. The constrain Π(α, β) := {T ∈ RNc×Nc
+ |

∑Nc

i Ti,j =

bj ,
∑Nc

j Ti,j = ai} enforces T to have α, β as its marginals. T is the transport plan matrix to be
optimized by Sinkhorn algorithm [7].

By minimizing Equation (15), the shared and consistent information across modalities can be retained.
Finally, the two task-related components um

n and ẑmn are aggregated by:

z̃mn = ẑmn + um
n (16)

4.3 Training Loss Function

To sum up, the optimization target of our proposed FCD can be formed as:

LFCD = λ1LMI + λ2LDis + λ3LSDA (17)

By combining the original loss function (Equation (2)) and Equation (17), the total loss of an effective
multimodal representation learning model with plug-and-play FCD without changing model structure
is:

Loverall = L+ LFCD = Ltask + Lreg︸ ︷︷ ︸
Original Loss

+λ1LMI + λ2LDis + λ3LSDA︸ ︷︷ ︸
FCD Loss

(18)

5 Experiments

5.1 Datasets and Evaluation Metrics

Datasets. We design and conduct our experiments on 5 widely used multimodal datasets, i.e., CMU-
MOSI [41], CMU-MOSEI [42], MSVA-Single [27], UPMC-Food101 [3], and HFM [4]. Please refer
to Appendix Section C for more descriptions about these datasets.

Evaluation Metrics. Following [9], we report our experimental results on CMU-MOSI and
CMU-MOSEI datasets with the mean absolute error (MAE), Pearson correlation (Corr), binary
classification accuracy (Acc-2) and weighted F1 score (F1). Following [11], we report the results on
the remaining datasets with accuracy (Acc) and weighted F1 score (F1). Please refer to Appendix
Section C for more details about these metrics.

5.2 Experimental Settings and Implementation Details

Our experiments are conducted on 4 NVIDIA RTX 4090 24GB GPUs with PyTorch [29] framework.
We control the system environment for all experiments to be consistent and reproduced all the base
comparison experiments using the hyper-parameters reported in their original papers. Please refer to
Appendix for more experiments, including sensitive analysis and computational overhead analysis.
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Table 1: Quantitative results of SOTA methods. The left side of “/” in Acc-2 and F1 is computed as
“negative/non-negative (non-exclude 0)” and the right side is computed as “negative/positive (exclude
0)”. All results are scaled (×100). Better results in each compared method are highlighted in bold.

DATASETS CMU-MOSI CMU-MOSEI

METHODS MAE↓ CORR↑ ACC-2↑ F1↑ MAE↓ CORR↑ ACC-2↑ F1↑

SELF-MM
BASE 72.51 79.44 82.80/84.30 82.78/84.33 54.04 75.65 83.26/85.20 83.40/84.98
OURS 68.29 80.62 84.95/87.09 84.93/87.11 52.49 76.98 85.19/86.08 85.12/85.77

MMIM
BASE 73.81 78.17 83.24/85.06 83.21/85.09 55.34 75.18 82.14/84.76 82.49/84.66
OURS 69.86 80.91 84.55/85.98 84.56/86.03 54.41 76.83 83.97/85.72 83.98/85.74

MCL-MCF
BASE 70.05 79.59 83.97/86.13 83.75/85.99 54.21 76.68 80.83/84.95 81.40/84.96
OURS 69.29 80.29 84.99/87.04 84.84/86.96 53.68 77.82 84.40/85.53 84.41/85.27

ATCAF
BASE 72.80 79.57 83.67/85.06 83.61/85.04 53.96 75.99 82.98/84.40 83.09/84.17
OURS 69.65 80.32 84.11/86.13 84.01/86.09 53.13 77.38 84.78/85.58 84.73/85.28

MMML
BASE 61.11 86.83 85.86/88.11 85.75/88.06 51.95 80.74 85.46/87.01 85.49/86.81
OURS 59.86 87.55 88.48/90.24 88.44/90.23 50.01 81.78 86.63/88.08 86.63/87.98

The main hyper-parameters in this paper consist of two parts, i.e., the hyper-parameters in each
multi-modal intermediate fusion method (e.g., learning rate, batch size) and the ones of FCD (λ1,
λ2, λ3). The hyper-parameters of FCD and their sensitive analysis are summarized in Appendix
Section E, and please refer to the original papers for other hyper-parameters of each base model.
Moreover, we report the computational overhead and complexity analysis in Appendix Section F. We
fix the temperature parameter τ = 0.07 in InfoNCE loss for the most common cases.

5.3 Quantitative Studies

To evaluate the effectiveness of our proposed FCD, we select 5 recently proposed state-of-the-art
(SOTA) multimodal sentiment analysis methods as our evaluation baseline on CMU-MOSI and
CMU-MOSEI datasets, i.e., Self-MM [39], MMIM [13], MCL-MCF [9], AtCAF [15], and MMML
[37]. And 4 multimodal fusion methods on the remaining 3 datasets are compared: MMBT [18],
CLMLF [20], MVCN [36], and URMF [11]. All these methods are intermediate fusion methods and
please refer to Appendix Section D for more details.

Table 2: Quantitative results of SOTA methods
on MVSA-Single (MVSA-S), UPMC-Food101
(Food101), and HFM datasets. All results are
scaled (×100). Better results in each compared
method are highlighted in bold.

DATASETS MVSA-S FOOD101 HFM

METHODS ACC F1 ACC F1 ACC F1

MMBT
BASE 74.76 74.76 91.22 91.22 - -
OURS 76.30 76.30 91.72 91.72 - -

CLMLF
BASE 70.67 69.03 - - 84.77 84.76
OURS 72.22 71.62 - - 85.55 85.52

MVCN
BASE 72.44 71.25 - - 84.89 84.90
OURS 75.33 74.78 - - 85.31 85.32

URMF
BASE 72.25 71.11 92.27 92.26 - -
OURS 74.57 74.22 92.94 92.96 - -

The results on CMU-MOSI and CMU-MOSEI
datasets are shown in Table 1, and the results
on the other 3 datasets are reported in Table 2.
The Base experiments are conducted on the
corresponding datasets using the official imple-
mentations and the hyper-parameters reported
in their papers. Then we add FCD to each
method and reproduce them again with the orig-
inal hyper-parameters fixed, which are repre-
sented by “Ours”. By doing so, we are able to
control the uniqueness that affects the experi-
mental results and improve their credibility.

From Table 1 and Table 2, we can find that
our proposed FCD is able to improve the per-
formance among various evaluation metrics on
all tested regression tasks and classification
tasks. This indicates that the heterogeneity and
aleatoric uncertainty of the multimodal data
should be considered simultaneously to generate
valid multimodal representation. Specifically,
MMML achieves the best performances on both CMU-MOSI and CMU-MOSEI datasets after ap-
plying FCD, which may be caused by the superior behavior and complexity of MMML. It has the
longest training overhead per epoch (see Appendix Section F). On the other hand, MMBT has the
highest Acc and F1 on MVSA-S dataset. URMF performs better than MMBT on Food101 dataset
on both Acc and F1 metrics. CLMLF shows the better performance than MVCN on HFM dataset
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on both tested metrics. The improvements of methods are various. This may be caused by the
different unimodal encoding approaches, which directly determines the quality and semantic richness
of unimodal features and thereafter affect the effectiveness of FCD.

There exists a significant difference with other methods that Self-MM considered both consistent and
complementary information in multimodal data. It took the heterogeneity of multimodal feature space
into consideration and proposed to shift annotations in their unimodal feature space. This proves
that the consistent and complementary information within multimodal data should be effectively
excavated at the same time, which also coincides with our idea.

Besides, compared with other methods, the Corr of MCL-MCF with FCD has less improvement on
both CMU-MOSI and CMU-MOSEI datasets. This may be caused by the assumption of MCL-MCF
where the fusion is considered as a progressive process. In this situation, the consistent information
plays the dominant role and the aggregated complementary information is gradually weakened as the
fusion process progresses.

5.4 Ablation Studies

Table 3: Ablation studies results on CMU-MOSI dataset with
Self-MM. The ablation terms are marked as “✓” if they are not
ablated, otherwise they are marked as “-”.

LMI LDIS LSDA EQ. (16) EQ. (13) MAE CORR ACC-2 F1

Base 72.51 79.44 82.80/84.30 82.78/84.33

- ✓ ✓ ✓ ✓ 70.76 79.65 82.94/84.91 82.85/84.88
✓ - ✓ ✓ ✓ 68.83 80.21 84.42/86.53 84.39/86.38
✓ ✓ - ✓ ✓ 68.66 80.47 83.38/85.98 83.15/85.84
✓ ✓ ✓ - ✓ 69.45 80.33 83.24/84.91 83.19/84.91
✓ ✓ ✓ ✓ - 68.92 80.17 84.02/86.13 83.94/86.07
✓ ✓ ✓ ✓ ✓ 68.29 80.62 84.95/87.09 84.93/87.11

To evaluate each component used
in FCD, ablation studies are con-
ducted. Specifically, we conduct
ablation experiments on term
LMI, LDis and LSDA by setting
λ1 = 0, λ2 = 0 and λ3 = 0,
respectively. Besides, we also
evaluate the effectiveness of in-
volving unique component um

n in
Equation (16), where only syn-
ergistic feature ẑmn is used for
fusion. And the shortcut Equa-
tion (13), where ŝmn is directly
fused with um

n . The results can
be seen in Table 3 and the results
of Base and Ours are also shown in the first line and the last line, respectively.

When λ1 = 0, the mutual information loss between um
n and yn would not be added to the total

loss function. In other words, the backdoor-adjustment is not applied to effectively decompose the
redundant feature rmn and the unique feature um

n . The unimodal uncertainty noise may be still mixed
in the complementary information. Meanwhile, since the unique feature is modality-specific, the
task-related information may be also mixed in rmn , resulting in the worst performance in all ablation
cases. This case proves that CCD can extract task-related information from the mixed features.

When λ2 = 0, the discriminative information between rmn is neglected. In this case, hm
n extracted

by Fh may be not modality-specific. In this case, the complementary information may not be fully
exploited, resulting in task-related information loss.

When λ3 = 0, there is no constrains on the synergistic information alignment. It means there is no
supervision on the aligned feature space, which means the features are probably not modality-invariant
and contains modality-specific information.

When removing the unique component um
n Equation (16), i.e., z̃mn = ẑmn , compared with the full

FCD, the performance is worse due to the complementary information loss. Therefore, the unique
component is significant for multimodal representation learning.

When the shortcut between smn and ŝmn is removed, the gradient information and original semantic
knowledge may be lost. Thus, the shortcut path is able to retain the original information.

5.5 Case Study

To validate the corresponding parts of task-related components smn and um
n in the original data and

the interpretability of FCD, we employ Grad-CAM [30] to visualize the decomposition results of
CLMLF on MVSA-S dataset. The results is shown in Figure 5.
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Figure 5: The Grad-CAM of task-related components smn
and um

n extracted by CLMLF trained on MVSA-S. The
upper part of the figure is the original, synergistic and
unique data of visual modality. And the lower half of
the figure is the synergistic and unique data of textual
modality.

From Figure 5, we can find that there is
a correlated semantic similarity shared
by the synergistic components of differ-
ent modalities (e.g., building collapse).
On the other hand, the scattered bricks
on the ground from visual modality and
“fire” from textual modality provide the
unique information, which is related to
the annotation Negative. This indicates
that FCD is able to capture the synergis-
tic and unique information. Besides, for
both modalities, there may exist impor-
tance overlap between synergistic and
unique information, such as the word
“building” is both more important in tex-
tual modality and both more attentions
are paid on the buildings in the distance
of the visual modality. For synergistic
information, it focuses on the semantic
consistency to construct the semantic cor-
respondence between different modali-
ties. For unique information, it focuses on the unimodal contextual information learned from the
whole dataset. Taking the “building” in textual modality as an example, it may experience more
concurrent together with negative words like “disasters” or “collapse”. This also proves the necessity
of simultaneously excavating the consistency and complementary information.

5.6 Sensitivity of Batch Size

Table 4: The sensitivity of batch size on
Self-MM (with FCD) on CMU-MOSI dataset.

BATCH SIZE MAE CORR ACC-2 F1

8 67.83 80.34 84.74/86.96 84.74/87.01
16 68.02 79.86 84.43/86.27 84.48/86.31
32 68.29 80.62 84.95/87.09 84.93/87.11
64 68.11 80.27 85.15/87.41 85.16/87.42

128 67.94 80.57 85.74/87.85 85.71/87.83

Since the LMI and LDis loss functions used in the
FCD are essentially contrastive learning, whose ef-
fectiveness may be affected by the number of nega-
tive samples provided by the batch size, we validate
the sensitivity of batch size. We conduct this exper-
iment on Self-MM equipped with FCD on CMU-
MOSI dataset. Practically, the batch size doubles
from 8 to 128.

The results are shown in Table 4. The results show
that as the batch size increases, the model achieves
consistently better performance across various met-
rics. One possible reason is that a larger batch pro-
vides a wider range of negative samples for the contrastive loss, which makes the optimization of
LMI and LDis more effective. With more diverse negatives, the model can better separate similar but
distinct representations, leading to stronger feature discrimination and better overall performance.

6 Conclusion

In this paper, we propose a plug-and-play module, Feature Causality Decomposition (FCD), to solve
the existence of heterogeneity and aleatoric uncertainty within multimodal data by decomposing the
unimodal feature into its synergistic, unique and redundant components from causality perspective.
Based on whether it can be aligned with other modalities, FCD first uses Causality Components
Decomposition (CCD) module to disentangle the unimodal feature into two parts: modality-specific
and modality-invariant components, which contains the synergistic information shared by various
heterogeneous modalities. Then backdoor-adjustment is applied to remove the redundant information
and retain the task-related component in the modality-specific part, it is optimized by maximizing
the mutual information between the unique component and the annotation. Besides, the Sinkhorn
divergence is employed to narrow the difference of synergistic embeddings among modalities.
Extensive experiments prove the effectiveness of FCD.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The main claims are made in the abstract and introduction accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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and how they scale with dataset size.
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address problems of privacy and fairness.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will make the code public after acceptance.
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• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will make the code public after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details are given.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experimental results don’t contain error bars etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We give the computational platform.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed in the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t have these contents.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the works in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We don’t provide new assets with human.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem 4.1

We first give the following lemma, which describes the probability distribution between two variables
X and Y .
Lemma A.1. For two variables X , Y defined on the measurable sets X , Y with the same measure,
and the probability distributions are P (X), P (Y ). If Y = F(X), where F is a measure-preserving
bijective funcion, we have P (X) = P (Y ).

Proof. Since F is a measure-preserving bijective function, we have:

P (X ∈ X ) = P (F−1(Y ) ∈ X ) = P (Y ∈ F(X )) = P (Y ∈ Y) (19)

Corollary A.1. For two variables X , Y from measurable sets X , Y with their measures µ(X ) and
µ(Y). If Y = F(X) and F is a measure-preserving bijective function, there exists:

P (X,Y ) = P (X)δ(Y −F(X)) = P (Y )δ(Y −F(X)) (20)

when µ(X ) = µ(Y).

where δ(t) is the standard Dirac delta function which has the following properties for t ∈ R:

1. δ(t) = 0 for all t ̸= 0

2.
∫ +∞
−∞ δ(t)dt = 1.

Proof. Based on Bayes’ theorem, we have:

P (X,Y ) = P (X)P (Y |X) (21)

Since F is a bijective function, Y is uniquely determined by X , according to [16], P (Y |X) =
δ(Y −F(X)). Based on Lemma A.1, we have:

P (X,Y ) = P (X)P (Y |X) = P (X)δ(Y −F(X)) = P (Y )δ(Y −F(X)) (22)

Corollary A.2. For three variables X , Y and Z defined on the measurable sets X , Y and Z , and
the joint probability distributions are P (X,Z), P (Y, Z). If Y = F(X), where F is a measure-
preserving bijective function, X is independent with Z, and Y is also independent with Z, we have
P (X,Z) = P (Y, Z).

Proof. Let µ(X ) is the measure of X . Since Y = F(X), where F is a measure-preserving bijective
function, then X and Y have the same measure, i.e., µ(X ) = µ(Y). Besides, the measures of the
joint domains X ×Z , Y ×Z can be formed as µ(X ×Z) and µ(Y ×Z), respectively. Based on the
Fubini’s Theorem, we have:

µ(X × Z) = µ(X )µ(Z) = µ(Y)µ(Z) = µ(Y × Z) (23)

Thus, the measures of joint domains X ×Z and Y×Z are the same. Since F is a measure-preserving
bijective function, X is independent with Z, and Y is also independent with Z, based on Lemma A.1,
we have:

P ((X,Z) ∈ (X × Z)) = P (X ∈ X )P (Z)

= P (F−1(Y ) ∈ X )P (Z) = P (Y ∈ F(X ))P (Z) = P ((Y, Z) ∈ (Y × Z))
(24)

Corollary A.3. For three variables X , Y , Z from measurable sets X , Y , Z , where X is independent
with Z and Y is also independent with Z. If Y = F(X) and F is a measure-preserving bijective
function, there exists:

P (X,Y, Z) = P (X,Z)δ(Y −F(X)) = P (Y, Z)δ(Y −F(X)) (25)

when µ(X ) = µ(Y).
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Proof. Based on Bayes’ theorem, we have:

P (X,Y, Z) = P (X,Z)P (Y |X,Z) (26)

Since F is a bijective function, Y is uniquely determined by X . Thus, X is independent with Z and
Y is also independent with Z, then we have:

P (Y |X,Z) =
P (Y,X,Z)

P (X,Z)
=

P (Y,X)P (Z)

P (X)P (Z)
=

P (Y,X)

P (X)
= P (Y |X)

According to Corollary A.1 and Corollary A.2, and P (Y |X) is a Dirac delta function δ(Y −F(X)),
we have:

P (X,Y, Z) = P (X,Z)P (Y |X,Z)

= P (X,Z)P (Y |X) = P (X,Z)δ(Y −F(X)) = P (Y, Z)δ(Y −F(X))
(27)

Based on Corollary A.1 and Corollary A.3, we can prove the Theorem 4.1 as follows.

Proof. For the hidden features hm
n , um

n and the ground truth yn, we are seeking to maximizing the
expectation of the conditional mutual information between um

n and the ground truth yn, when hm
n is

given. From the probability perspective, the hm
n and um

n are both independent with the given ground
truth yn. Based on the definition of conditional mutual information and the Bayes’ theorem, we have:
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Note that the distribution of the ground truth P (yn) doesn’t change with hm
n , thus we have

P (yn|hm
n ) = P (yn). Besides, based on the core idea of backdoor-adjustment that causal inter-

vention is applied for the confounder to cut off the causal relation between the treatment and the
confounder [25], we apply the causal intervention on hm

n to turn it into its counterfactual form hm′
n ,

and cut off the causal relation between hm
n and um

n . From Corollary A.1 and Corollary A.3, the
Equation (28) can be further transformed to Equation (29).
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where Fm
mb(·; θmmb) is the bijective decomposition function with parameter θmmb (the URD module in

our paper). do(·) is do-operator for causal intervention in backdoor-adjustment. hm′
n is the hm

n after
causal intervention. From Equation (28) and Equation (29), Theorem 4.1 holds.
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B Pseudo Code for Training Process

We first give the training process to show the reversibility of Fm
URD-d and Fm

URD-f.

Algorithm 1: Enforce Full Rank in PyTorch style
Input: Multimodal model with FCD Model

1 for m← 1 to M do
// Get parameters of linear layers in URD

2 θmURD-d, θmURD-f ← get (Model.CCD.URD, Linear);
// SVD

3 Um
URD-d, Σm

URD-d, V m
URD-d ← SVD (θmURD-d.weight);

4 Um
URD-f, Σ

m
URD-f, V

m
URD-f ← SVD (θmURD-f.weight);

// Enforce Full Rank (Invertible)
5 Σm

URD-d ← torch.maximum (Σm
URD-d, 1e

−5);
6 Σm

URD-f ← torch.maximum (Σm
URD-f, 1e

−5);
// Reconstruct

7 θmURD-d.weight←nn.Parameter
(
Um

URD-dΣ
m
URD-dV

m⊤
URD-d

)
;

8 θmURD-f.weight←nn.Parameter
(
Um

URD-fΣ
m
URD-fV

m⊤
URD-f

)
;

9 end

Algorithm 2: Training process of our process method in PyTorch style
Input: Multimodal dataset D, Multimodal model with FCD Model, Optimizer opt, Number of

epochs Ne.
1 for e in {1, · · · , Ne} do
2 Loverall ← Model.forward(D);
3 Loverall.backward ();
4 opt.step ();
5 Apply Algorithm 1 with model as input;
6 end

Besides, to achieve measure-preserving, we apply the following constraint on the weight matrix
of Fm

URD-d and Fm
URD-f. Note that the nesting of two measure-preserving functions is still measure-

preserving [34].

Algorithm 3: Measure-preserving Linear Layer Forward
Input: Feature vector x
Output: Forward output vector x′

// Get weight matrix and bias
1 W← θm∗ .weight;
2 b← θm∗ .bias;
// Construct skew symmetric matrix

3 A←W −W⊤;
4 W′ ←torch.matrix_exp (A);
// Linear forward

5 x′ ← xW′⊤ + b;

C Introduction to Datasets and Evaluation Metrics in Our Experiments

CMU-MOSI and CMU-MOSEI are popularly used in Multimodal Semantic Analysis task [9; 13]
with 3 modalities. Each sample from both of these datasets is annotated with a sentiment value
ranging from −3 (strongly negative) to +3 (strongly positive), indicating the polarity and relative
strength of the expressed sentiment within each sample. The former one contains 2199 utterance
video segments taken from 93 YouTube, and the latter one contains 22,856 utterance video segments
[11]. Table 5 summarizes the training, validation and test subset splits following [15; 43].
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Table 5: Datasets splits (train, validation (val), and test) in our experiments.

DATASET TRAIN VAL TEST OVERALL

CMU-MOSI 1284 229 686 2199
CMU-MOSEI 16326 1871 4659 22856

MVSA-SINGLE 1555 518 519 2592
UPMC FOOD101 62971 5000 22715 90686

HFM 19816 2410 2409 24635

MSVA-Single, UPMC Food101, and HFM datasets only have two modalities. MVSA-Single is a
commonly used text-image sentiment dataset collected from Twitter. It has 3 categories: positive,
neutral and negative with 1398, 724 and 470 samples, respectively [27]. UPMC Food101 dataset
is usually used for multimodal image classification [11], which has 101 categories with about 100k
images. HFM has two categories, i.e., positive and negative.

We report our results with the mean absolute error (MAE), which is calculated by averaging the
absolute value between the predicted and ground truth; Pearson correlation (Corr) quantifies the
extent to which predictions deviate from a linear relationship; binary classification accuracy (Acc-
2) and weighted F1 scores (F1) are computed for both the negative/non-negative (non-exclude 0)
[40] and negative/positive (exclude 0) [32], which is achieved by filtering our the samples whose
annotation is 0. Following [11], we report the results on the remaining datasets with accuracy (Acc)
and weighted F1 score (F1).

D Introduction to Quantitative Experiment Methods

Due to the page limit, we introduce the methods incorporated in our quantitative experiment here.

• Self-MM [39] focused on restricted ability in capturing differentiated information within
each modality due to the unified multimodal annotation, and proposed a self-supervised
multi-task learning method to generate unimodal annotation. Besides, Self-MM shifts the
generated annotation according to the relative distance to the class center in each modality
space.

• MMIM [13] designed an MI based method to preserve critical task-related information that
flows from the original input to the fusion representation. It employed a tight lower bound
of MI and estimated the lower bound via likelihood maximization and Gaussian Mixture
Model (GMM). Then a Contrastive Predictive Coding (CPC) loss was employed to retain
the modality-invariant information in fused represetation.

• MCL-MCF [9] considered that fusion is a progressive process, and provided a hierarchical
structure to maximize the maintenance of semantic information during different fusion level
via contrastive learning. Besides, MCL-MCF used 1-D convolutional layers to fuse features
at different level.

• AtCAF [15] started from casual inference perspective. It blocked the back-door path between
text modality and target annotation via front-door adjustment. Then it applied counterfactual
reasoning to the attention matrix integrated in cross-attention fusion process to improve the
fusion robustness.

• MMML [37] proposed a Multimodal Multi-Loss Fusion Network that integrates pretrained
audio and text encoders, cross- and self-attention mechanisms, and multi-loss training to
enhance sentiment analysis. The model achieved state-of-the-art performance on various
datasets, demonstrating the effectiveness of multimodal fusion and contextual modeling.

• MMBT [18] proposed a multimodal fusion method for text-image classification based on
bitransformer. It jointly finetuned the pretrained unimodal encoders by mapping image
embeddings to textual token space.

• CLMLF [20] focused on the token level multimodal fusion and employ contrastive learning
to align the representations from different modalities.
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• MVCN [36] focused on the challenge of modality heterogeneity in multimodal tasks, and
proposed to filter redundant visual features based on sparsemax mechanism. Besides, it
calibrated feature shift in representation space by minimizing the intra-class discrepancy.

• URMF [11] adopted a multivariate Gaussian distribution to represent spotty semantic
instances in a noisy latent space and tried to eliminate the impact of unimodal aleatoric
uncertainty to perform robust multimodal fusion via estimiting the Gaussian distribution
behind features.

E Hyper-parameter Setting and Sensitive Analysis

The hyper-parameters setting of FCD used in different base methods are reported in Table 6. Since
FCD can be integrated into any multi-modal intermediate fusion method, the hyper-parameters may
be different with each other. We search the appropriate hyper-parameters with two steps: 1) scale
search: ranging each hyper-parameter in {0.5, 0.05, 0.005, 0.0005, 0.00005}, 2) fine-grained search:
ranging each hyper-parameter in the scale that achieves the best performance in step 1). For example,
if λ1 = 0.05 achieves the best performance in step 1), we then range λ1 from 0.01 to 0.09 in step 2).

Table 6: Hyper-parameters (λ1, λ2 and λ3) settings in our experiments.

METHOD DATASET λ1 λ2 λ3 METHOD DATASET λ1 λ2 λ3

SELF-MM
CMU-MOSI 0.08 0.05 0.005

MMBT
MVSA-S 0.005 0.5 0.05

CMU-MOSEI 0.003 0.009 0.08 FOOD101 0.5 0.005 0.5

MMIM
CMU-MOSI 0.08 0.07 0.9

CLMLF
MVSA-S 0.02 0.0004 0.02

CMU-MOSEI 0.6 0.04 0.0003 HFM 0.5 0.5 0.005

MCL-MCF
CMU-MOSI 0.01 0.3 0.09

MVCN
MVSA-S 0.05 0.05 0.005

CMU-MOSEI 0.007 0.0003 0.8 HFM 0.5 0.0005 0.1

ATCAF
CMU-MOSI 0.09 0.0005 0.3

URMF
MVSA-S 0.5 0.07 0.09

CMU-MOSEI 0.02 0.0004 0.007 FOOD101 0.05 0.0005 0.05

MMML
CMU-MOSI 0.005 0.05 0.05

-
- - - -

CMU-MOSEI 0.05 0.0005 0.05 - - - -

Additionally, we report the sensitive analysis of several methods: Self-MM, MMIM, MCL-MCF
and AtCAF on CMU-MOSI dataset. We fix other hyper-parameters to the value in Table 6 when a
specific hyper-parameter are ranging in the corresponding scale of magnitude.

Figure 6 shows the variation tendencies of FCD’s prediction performance with the changing of values
for the hyper-parameters in Equation (17), i.e., (1) λ1: the weight for LMI which supervises the
extraction of unique feature without redundant information, (2) λ2: the weight for Ldis which keeps
the discriminative information between redundant features and further constrains the modality-specific
feature extraction, and (3) λ3: the weight for LSDA which controls the quality of modality-invariant
information extraction and synergistic feature alignment. From Figure 6, there seems to be no
obvious common trend among different methods for each hyper-parameter. This may be caused by
the way how FCD cooperates with each method. Generally, MAE shows an opposite trend of change
compared to other metrics. For most cases, there exists a significant peak (or valley for MAE) of each
metric, representing the suitable value. When MAE reaches a valley, other metrics reach peaks and
vice versa. However, for λ3 of AtCAF, there exists a peak for MAE and valleys for other metrics,
which is significantly different with other cases. This may be caused by an inappropriate amplitude
of change, where a more fine-grained hyper-parameter search is required. Therefore, FCD needs
careful hyper-parameter searching to achieve its greatest potential.

F Computational Overhead Analysis

To further analysis the effectiveness of FCD, we give the following computational overhead analysis
to discover training time cost brought by FCD. We conduct this experiment employing Self-MM,
MMIM, MCL-MCF, AtCAF, and MMML as the base models to calculate the training overhead per
epoch (seconds). The results are shown in Table 7.
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Figure 6: Sensitive analysis of hyper-parameters λ1, λ2 and λ3 with Self-MM, MMIM, MCL-MCF
and AtCAF. The horizontal coordinate axis denotes the hyper-parameter rangings and the vertical
coordinate axis denotes the evaluation metrics. "n0" in F1(n0) and Acc(n0) stands for the exclusion
of 0 when these two metrics are calculated.

Table 7: The computational time overhead per epoch (seconds) of Self-MM, MMIM, MCL-MCF,
AtCAF, and MMML.

METHOD DATASET BASE (W/O FCD) OURS (W/ FCD)

SELF-MM
CMU-MOSI 3.92±0.40 5.12±0.47

CMU-MOSEI 37.14±3.72 51.13±4.37

MMIM
CMU-MOSI 18.73±1.30 24.98±1.90

CMU-MOSEI 97.74±4.61 131.57±8.09

MCF-MCL
CMU-MOSI 21.19±1.43 27.45±2.39

CMU-MOSEI 242.30±7.87 327.76±10.84

ATCAF
CMU-MOSI 17.26±1.69 21.95±1.70

CMU-MOSEI 200.61±9.15 250.68±9.97

MMML
CMU-MOSI 228.52±1.37 239.12±1.85

CMU-MOSEI 2558.47±107.74 2570.14±90.25

In Table 7, we report the average value and the standard deviation of duration to train one epoch on
CMU-MOSI and CMU-MOSEI datasets when FCD is applied (Ours (w/ FCD)) or not (Base (w/o
FCD)). From Table 7, we can find that the training time of each epoch is different between different
methods. This may be caused by the original structure and computation complexity of each base
method. When FCD is applied, the increment is also different. This may be caused by the various
hidden dimensions, the default batch sizes and the number of modalities (e.g., MMML only has two
modalities).

G Broader Impacts and Future Works

FCD is a plug-and-play module that can be integrated into any existing intermediate multimodal
models to handle the unimodal uncertain noise whilst makes full use of the task-related information.
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We believe that FCD can bring more attentions to current multimodal representation learning commu-
nity about handling both of the task-related features (i.e. the synergistic and unique features) and
the unimodal uncertainty noise. However, the quality and semantic richness of unimodal feature
is not fully explored. In the training phase of Self-MM and MMML, we find that the prediction
performance of each unimodal is quite different. Although there have been researches, such as [43; 5],
that engage on estimating the reliability of unimodal prediction, it still remains to be excavated
when unimodal uncertain noise is removed for better intermediate fusion. In this case, how much
task-related information can unimodal features provide should be considered. In the future, we will
make our effort toward this situation to overcome the issues that the quality and semantic richness of
unimodal features are various.
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