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Abstract

We propose DiFFPO, Diffusion Fast and Furious Policy Optimization, a unified
framework for training masked diffusion large language models (dLLMs) to reason
not only better (furious), but also faster via reinforcement learning (RL). We first
unify the existing baseline approach such as d1 [50] by proposing to train surro-
gate policies via off-policy RL, whose likelihood is much more tractable as an
approximation to the true dLLM policy. This naturally motivates a more accurate
and informative two-stage likelihood approximation combined with importance
sampling correction, which leads to generalized RL algorithms with better sample
efficiency and superior task performance. Second, we propose a new direction of
joint training efficient samplers/controllers of dLLMs policy. Via RL, we incen-
tivize dLLMSs’ natural multi-token prediction capabilities by letting the model learn
to adaptively allocate an inference threshold for each prompt. By jointly training
the sampler, we yield better accuracies with lower number of function evaluations
(NFEs) compared to training the model only, obtaining the best performance in im-
proving the Pareto frontier of the inference-time compute of dLLMs. We showcase
the effectiveness of our pipeline by training open source large diffusion language
models over benchmark math and planning tasks.

1 Introduction

Reinforcement Learning from Verifiable Rewards (RLVR, [16]) has achieved remarkable success
in enhancing the reasoning capabilities of Large Language Models (LLMs) [8, 13]. The fine-tuned
Large Reasoning Models (LRMs) show drastic improvement in solving tasks which require strong
reasoning capabilities, such as Math and Coding [17, 30]. These LRMs match, and even surpass
the performance of the best human players in math contests [4]. Despite these successes, LRMs
are notorious for long inference-time, and overthinking for easy questions [5, 34], which limit their
applicability to scenarios that have less tolerance on latencies or inference budgets. An active line of
recent research on efficient reasoning [35] proposed either training-free early stopping mechanisms,
or generation-length-aware RL (Reinforcement Learning) objectives [15, 44]. However, the resulting
RL fine-tuned models are still fundamentally bottle-necked by the left-to-right autoregressive (AR)
decoding in decoder-only transformers [38], which will inevitably suffer from quadratic inference
costs with respect to the length of reasoning traces.

Diffusion LLMs (dLLMs) [18, 19, 26, 32, 47], an emerging family of LLMs based on discrete-space
diffusion models [1, 10], have the natural premise of going beyond left-to-right generations to
any-order generations and multi-token predictions. Properiatary dLLMs like Mercury [14], Gemini
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Diffusion and Seed Diffusion [33] maintain comparable quality to the state-of-the-art AR
models while achieving up to 10 times of token throughput. In contrast with the extensive literature
on post-training AR models, the relevant study for post-training dLLMs through RL in the literature
so far remains rather limited. Whether RL can be used to enhance the reasoning capabilities of dLLMs
still remains largely open, and how to design RL algorithms catered for dLLMs to incentives the
capability of base model remains unexplored yet of crucial importance to improve frontier dLLMs.

To narrow this gap, in this work, we design scalable and effective RL algorithms for incentiving
reasoning capability of dLLMs. Our contributions in this paper can be summarized as follows:

(1) We first propose an efficient RL post-training paradigm for fine-tuning dLLMs from an off-policy
RL perspective. Concretely, we generalize recently proposed algorithms like d1 [50] by proposing to
train efficient surrogate policies with more tractable likelihood, as opposed to directly training base
dLLMs policies, which requires extensive GPU memory to estimate and is inefficient to compute
dLLM’s true likelihood. Based on our framework, we propose a new RL algorithm utilizing new
surrogate policies by conditioning on additional latents at the response-generation level for better
approximation, instead of only conditioning on prompts as in d1. Inspired by classical off-policy
RL, we also introduce an importance-sampling correction term to address the distribution mismatch
between the surrogate policies and the true dLLMs behavior policies. We provide both theoretical
guarantees and strong empirical evidence, achieving evident performance gains over the baseline
method, especially for planning tasks as in Figure 1.
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Figure 1: Benchmark results of RL post-trained models across different math and planning tasks.

(2) Secondly, we innovatively propose to adopt efficient dLLMs samplers in RL post-training. Unlike
prior work which post-trains the models based on a fixed (often inefficient) sampler, we directly
train the model upon efficiently dLLMs samplers to inventive the base model to reason better and
faster. To avoid overfitting to the utilized samplers, we propose to train a prompt-aware inference
threshold motivated by the Entropy-Bounded (EB) sampler proposed in [2] via RL as opposed to a
fixed threshold across different prompts. This approach naturally leverages the structural property
of masked dLLMs for multi-token predictions, and lets the model perform inference based on a
predicted “inference threshold” for the prompts. We enable efficient joint RL train of the model and
sampler by treating the inference threshold as an additional token, which is thus compatible with our
earlier proposed RL framework. We showcase that jointly training the model and sampler can yield
improved post-trained models with better performance/accuracy under the same or even less compute
than training the model only, unlocking a novel new direction for further research to investigate
mechanisms between model and samplers in RL post training.

We term our pipeline as DiFFPO - Diffusion Fast and Furious Policy Optimization, for training
masked dLLMs to reason not only better (furious), but also faster via RL. We demonstrate the effec-
tiveness of DiFFPO in enhancing the inference-time performance of diffusion LLMs on benchmarking
math and planning tasks, and clearly push the boundaries of designing scalable RL algorithms towards
training efficient and capable LRMs.

The rest of the paper is organized as follows: In Section 2, we review the preliminaries of masked
dLLMs, dLLMs samplers, and RL for discrete diffusion models. Section 3 presents our detailed
algorithm of DiFFPO, with experimental results provided in Section 4. In Section 5 we discuss other
relevant references and conclude with Section 6.



2 Preliminaries

In this work, we focus on masked discrete diffusion language models for simplicity, which has been
shown to achieve the best performance among different formulations of dLLMs. Our framework is
general and can be modified to other discrete diffusion models as well. For an introduction to dLLMs,
we follow the presentations in MDLM [26].

Masked Diffusion Models. Let [mask] be an extra special token additional to the token vocabulary
V), and denote by m the one-hot representation of this mask token. The forward processes of MDLM
[1, 26] interpolate between the clean data distribution & ~ pga,(-) and a target non-informative
distribution Cat(-;m) (the categorical distribution). The latent variable z; with ¢t € [0, 1] in the
forward process is:

q(z¢ | x) = Cat (z; a4 + (1 — ) M), (1

where o € [0, 1] is a strictly decreasing function in ¢, with g & 1 and a;; & 0. This process can be
viewed as a masking process, because ¢ (21 | €) &~ m. The posterior of the masking process (¢t > s)
can be explicitly computed as (see e.g., [26] for a derivation):

Cat (zs; 2¢) zy £ m,

l=ag Qs—ay _
Cat (zs, a-m + F w) Zi =m.

@

q(2s | anc):{

Since x is unknown during the forward process, MDLMs learn a function approximation (2, t),
and approximate the true posterior with py (25 | 2:) by replacing & with approximated x¢ in Equation
2 when z; = m.

dLLMs efficient samplers. For masked dLLMs, the backward process needs to choose among
unmasked positions which to unmask first. This leaves an extra degree of freedom for designing
efficient dLLMs samplers. Most existing works focus on a fixed number of multi-token predictions,
such as random sampling or Top-k sampling [19] by choosing the position based on some pre-defined
scores. The scores are generally chosen from proxy metrics like confidence s; = max, ¢y p;(v) or
negative entropy —H.(p;) of the predictive distribution of dLLMs p; € AlVI=1 on the position I.
These top-k based samplers are shown to be able to outperform randomly choosing k positions [15].

In this work, our sampling scheme mainly follows the Entropy-Bounded (EB) sampler proposed in [2],
which yields better accuracy and efficiency tradeoff than the Top-k sampler that sweeps over different
k’s. When jointly unmasking a sequence of variables X = (x!,--- ,2’), the EB-sampler computes
the entropy of the predictive distribution of dLLMs at each unmasked position as a cost of that
position ¢(1) = H(p’(x! | X)), and then unmask all positions in U with the maximum cardinality:
> e ¢(f) < v, where 7 is a predetermined threshold hyperparameter. If min;cy ¢(¢) > v, EB
sampler will only unmask the position with the smallest cost. Intuitively, small v will lead to
behaviours similar to top-1 sampling, while large v will allow unmasking of several positions at the
same time. Different ~y yields different samplers, which forms an inference-time compute frontier for
dLLM:s.

RL for dLLMs. RLVR aims at training models to maximize the expected reward of the policy
generations plus an KL-regularization term via Reinforcement Learning [36], i.e.,

Ecn.onmg(-le) [r(¢;0) = BRL(m(- | ¢), o (- | €))] ©)

where r(c, 0) is the verifiable reward of generation o with respect to the prompt ¢ (sampled from the
population D), such as correctness or unit test success rates, KL(p, ¢) denotes the Kullback-Leibler
divergence between two distributions p and ¢, and 8 > 0 is the KL penalty constant. GRPO [30],
as a variant of REINFORCE [37] and PPO [29], first samples a group of outputs {oi}f’;1 from
the behaviour (old) policy 7g,, under the same prompt ¢, and computes the normalized advantage
function A; = (r (c,0)) — & Z]G:l r (e, oj)) /o, in which o is the standard deviation of the group
rewards. Denote 0<* as tokens already generated before the kth token is decoded within completion
0, GRPO maximizes the following token level objective:

[oil

Zmin (pfAi,clip (pi—“,l —5,1+6) Ai) ) 4
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G
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where p¥ = mg (of | ¢,05%) /o (of | ¢, 05") is the token-level likelihood ratio. Notably we omit
the KL divergence term in Equation 4 onwards for simplicity, since it has been found to be less
impactful in the reasoning performance, see e.g., Magistral [24]. Since p¥ is inefficient to compute for
every token in practice, d1 [50] proposed a mean-field approximation ﬁf = Ty (02C | c) /Told (oi-C | c)
to replace p¥ in Equation 4, which is easily computable from dLLMs. In essence, the likelihood
ratio used in d1 only conditions on the prompts ¢, omitting the already unmasked tokens ofk which
dLLMs actually condition on during generation.

3 DiFFPO

In this section, we present the derivation of our Reinforcement Learning algorithm including the
optimization loss function and the update procedures.

3.1 Improved techniques in efficient model post-training

We first consider a fixed top-k confidence score sampler, which is how the completions of
prompts/questions are generated. We use k = 1 for simplicity here to derive the loss objectives.

Motivation. We first revisit the objective of d1 [50] from a likelihood approximation perspective.
The loss objective of diffu-GRPO algorithm is:

¢ [ m(oF]c) ., mg (0of | ¢)
«.7(11(0) = I]ECND70iN7r90|d Z T Z min 7147:7 Chp(iv 11— g, 1+ €>A7 )

o] Tola (0F | ¢) Toa (0F | €)
=1
)

in which 7y (oéC | c) is the approximation to true conditional token likelihood, and referred by [50] as
mean-field approximation. This approximation has its own advantage of being simple and memory-
efficient to compute, making it appealing to be utilized for update at loss optimization, especially
when fine-tuning large language models with massive scale.

However, there are two shortcomings in this approximation. Firstly, there is a clear mismatch
between this and the true likelihood, since the dLLMs need to condition on already unmasked tokens,
which is omitted in the mean-field approximation. Secondly, hardly any theoretical performance
guarantees can be made for the policy obtained from minimizing the loss in Equation 5.

To illustrate these limitations, we first change the index from token number to time index to express
our loss in a standard way in the discrete diffusion literature, which eliminates the ambiguity in the
generative process.! For notations, we denote ¢¥ to be the actual timestep when the the k™ token in
completion o; is unmasked (thus 1 < tf < |oi]), and we use zf to denote the sequence latents at time
t. For a discrete diffusion model / policy, we can write an equivalent loss to the GRPO objective [30]
for dLLM as jdLLM—GRPO (9) =

k
. k ty—1
Gyl (e

E>.

) k_1
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which is equivalent to (we now denote 6! as the difference between z! and z;
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The d1 objective can be interpreted as removing all zf_l terms in the loss objective Equation 7.
However, as shown through generated sample example in Figure 2a and average KL divergence plot
in Figure 2b, when the timesteps increase, there is growing mismatch between the true conditional
likelihood 74 (6! | ¢, 2:~') and mean-field approximation (6} | ¢). The average KL divergence
between these two distributions grows monotonicly with respect to ¢, likely due to the accumulated
effect of neglecting the latents.

'There is no such ambiguity for AR LLMs, since the generation will be always from left to right.



KL Divergence Comparison Across Datasets
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Figure 2: Generation sample and average KL divergence error at each decoding timestep (100 prompts
per dataset).

Rethinking via off-policy RL. Given the crude approximations utilized in d1 and the lack of
any theoretical guarantee, we propose to formulate the RL task for dLLMs from an off-policy RL
perspective by noticing the unique structure of the dLLMs. Since the true likelihood of dLLMs is
inefficient to compute, our aim is to bypass it by: (1) find a surrogate policy that is close to the actual
dLLM policy, while its conditional likelihood is tractable to compute; (2) optimize the surrogate
policy via off-policy RL. A visualization of our pipeline can be found in Figure 2c. Before we
discuss how we choose the surrogate policies, we highlight that our current pipeline could provide a
worst-case performance guarantee on the obtained fine-tuned models:

Theorem 1. Assume two parameterized policies by different model family yet share the same
parameters being g, Tty respectively, with 0 € ©. Further assuming that reward function is postive
and upper bounded, i.e. there exists M > 0, such that 0 < r(c,0) < M for any c and o. Then given
that maxgco KL(7g||79) < €2, we have that for any policy 6 € O:

Eomro(-e)7(C,0) > Egnirg(|oy7(c,0) — V2Me. ®)

The proof is a straightforward application of Pinsker’s inequality. Yet, a direct corollary of Theorem
1 implies that, the worst-case of the performance of ¥ can still be guaranteed if Eonio(-je)7(c,0) is
large (e.g. after RL optimization) and two policies are close. Back to the dLLM setup, if we take a
policy 7y which generates tokens on every position by conditioning only on the prompt, then this is
the exact policy d1 utilized for likelihood approximation, which we have shown to be too coarse with
a large KL-divergence. Thus we first construct better surrogate policies to make it closer to the true
dLLM policy.

Additional conditioning latents. We propose to condition on one additional latent at a randomly
sampled timestep 7 € [0,T") at each optimization step, and consider a new surrogate policy which
samples tokens according to the d1 likelihoods until ¢ = 7. When ¢ > 7, we sample tokens by
conditioning on both prompts and latents z”. Conditioning on the randomly drawn timestep 7, we

define the likelihood of the completion as 7y (! | ¢, 2] T(t)) where we define a step function s, such
that s(¢t) = 7 if t > 7, and 0 otherwise. We can interpret this as an alternative approximation to the
true dLLM likelihood. However, instead of only conditioning on prompts, when ¢ > 7 the generation
will also condition on a randomly drawn latent z”. We refer to this as Two Times Mean-Field
Approximation (abbr. as 2-MF). Compared to d1 [50], two times mean-field yields a strictly better
likelihood approximation. We theoretically characterize its benefits by the following assumptions and
theorems.



Assumption 2. Assuming that for any trajectory zt(t = 0,--- ,T) and three timesteps s < { < t,

F(sit) == KL(mo (0} | ¢,z )|mo(0f | ¢, 27)) = KL(mo(6} | ¢,z ")lImo(0f | ¢, =) = f(4:1),
)
i.e. f(7;t) is a monotonously decreasing function with respect to T € [0, t].

Assumption 2 assumes that a more recent latent on the same generation trajectory will be more
informative than older ones. It is reasonable since the older latents are closer to the non-informative
priors. Based on this assumption, we characterize the theoretical benefits of our approximation:

Theorem 3. Under Assumption 2, we have that two times mean-field approximation provides better
approximation than only conditioning on prompts, i.e. for any t, we have:

Ere KL(7g (0! | ¢, 287 )| |mo(0L | ¢, 257")) < B, KL(mp(0L | ¢, 28 Y)||mo (8 | ). (10)

Proof. The inequality could be directly obtained by tower’s rule of expectation and proving that
Ee KL(m(0} | .2 )I|mo (0} | e 27 ")) < B KL(mo(0} | .2 )l [ma (0} | €))

holds for any fixed 7. ThlS can be easily obtained from Assumption 2. O

Off-policy RL via Importance Sampling. With a better surrogate policy, we now seek to optimize
such policy using off-policy RL. Note that the generations are still sampled from the base policy. We

can thus utilize these samples to optimize 7% using importance sampling, as for any function f, we
have: o | 0
Tl | C
Eorotle) f(c,0) = Eprn(ioy——— f(c, 0). 11
e(|)f( ) 9(\)7T9(.|C)f( ) (1)

Then replacing f with the GRPO loss, our DiFFPO loss objective for training the model only is thus:

JDiFFPO-model =

o]

G 7r01d ot | e, zsf(t))
[EOIN"W a7 ~U[0,T] Z | | Z min
i=1 0i

m) min (5t A;, clip (i, 1 — £,1+€) 4;)

IS term

(12)

71'3( ‘e,z T(t)>

t
where p; = ey

( 7 is the likelihood ratio of the surrogate policy and we also impose a
Told | 0% |c,2;

maximum threshold C over the importance sampling ratio to ensure the numerical stablibity.

3.2 Unlocking better adaptive multi-token prediction via sampler post-training

Common practice of RL post training considers a fixed generative model sampler in optimization. In
this work, we however investigate on joint training the sampler together with the model weights for
achieving the best performance in enhancing the inference time compute frontier.

Unlike the EB-sampler [2] that uses a fixed threshold to decide which token(s) to unmask for all
prompts, we propose to use a parameterized function to encode prompt features and output a predicted
“inference threshold”. We obtain the dLLMs embeddings of the prompts by averaging over the hidden
dimension features fé (¢) of each position [, and train a linear mapping w on top of the embeddings
(we omit the bias term here for clarity). We also introduce an upper threshold 7,,,x, and map each
feature to the inference threshold by

L
Y (€) = Ymax sigmoid (wT (% Z fé(c)) + ﬁ) , with § =log ﬁv (13)
=1 max

where 7 € (0, Ymax) is the initial global threshold, since 7, (c) = - when the initial linear layer
weights wy are set to be all 0. For RL training, we fix a noise level o for Gaussian exploration
e ~ N (0, I) before applying sigmoid activation and use the perturbed threshold for inference:

L
~7(€) = Ymax sigmoid (wT (% Z fé(c)) + 5+ O’€> . (14)
1=1



We use 7’ to represent the sampler threshold policy which is dependent on both model weights 6 and
header weights w. To joint optimize the model and sampler, we apply a trick by treating the predicted
threshold as an additional token to unmask at time step 0. Thus, given the group completion (v;, 0;),
we have yield our final DiFFPO loss as:

G w "
1 Ty (Vi | c) g (7| ¢)
Jpittpo = Ipiiro-model FEcp »  —min | ————A;, clip(—————,1 —¢,14+¢)A4;
- PN e ey T (i [ 0)
(15)

We found that the model learns to generate shorter sequences even without the length penalty involved
as in the experiments section, which prevents sensitive hyperparameter tunings. In addition, fixing
model weights (i.e. stopgrad on #_) for the sampler loss in Equation 15 helps both stable training
and better performance.

4 Experiments

To evaluate the performance of the our proposed RL algorithms, we conducted extensive experiments
on training base dLLMs with various reasoning tasks and compared their reasoning capabilities in
terms of both accuracy and efficiency after RL post-training.

Experimental Setup. We choose LLaDA-8B-Instruct [19]? as our base model since this is the first
diffusion large language model whose performance is on par with AR LLMs (Llama3-8B). Improving
over such a capable base model is of great interest to the whole dLLMs community. We directly start
from the instruct model as opposed to the base model which has not been fine-tuned for instruction
following. This avoids any potential confounding effect of us performing additional supervised
fine-tuning (SFT) stage which can affect the performance and fair comparison of RL algorithms.

We evaluate all the methods on math and planning benchmark tasks including GSM8K, Math, Sudoku,
and Countdown. We use LoRA [11] with rank r» = 128 for parameter-efficient training — the same
hyparameter utilized as in d1 [50], along with other model generation setups for a fair comparison.
In addition, we use the same five random reeds for the baseline d1 and our proposed algorithm, and
report the best performing model among different seeds and checkpoints. For the dLLLM inference
setup, our experiments are all based on block size 32 and maximum sequence length of 256.

Improved sample efficiency and task performance. We first showcase the effectiveness of our
algorithm when training a DiFFPO model with Equation 12 using a fixed top-k sampler on math and
planning benchmarks.

SudokuReward  GSMSKRewar d MATH Reward
- - — Two Times Mean Field Appr

200 400 600 800 1k L2k

(a) Countdown (b) Sudoku (c) GSM8K (d) Math

Figure 3: Benchmark results (—: DiFFPO; —: DiFFPO without IS; —: d1 baseline).

We plot the reward as the training progresses in Figure 3. Our algorithm shows a clear margin over
d1 in all tasks, especially in planning tasks. Concretely, using two-times mean-field approximation
greatly improves the sample efficiency, and applying importance sampling correction further enhances
the performance of RL training.

We report concrete benchmark statistics in Table 1. Evidently, our proposed DiFFPO, combining both
two times mean-field approximation and importance sampling, yields the most significant performance
gain, which both components contribute to. We also compare the performance difference for the
same model checkpoint utilizing different maximum length as in Table 2 (in which we denote *’2MF’
as an abbreviation for Two Times Mean-Field Approximation, and ’IS’ for importance sampling).
We found that our DiFFPO trained models stably perform the best.

https://huggingface.co/GSAI-ML/LLaDA-8B- Instruct.
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Model Countdown Sudoku GSMSK MATHS500
Ace. A ETs Acc. t A ETs Acc. t A ETs Acc. T A ETs
LLaDA-8B-Instruct 18.36 - 214.18 737 - 22045 75.89 - 211.63  34.20 - 234.66
+d1 3438 +16.02 176.04 2451 +17.14 23342 7923 4334 143.12 3560 +1.40 228.31
+ Two Times Mean-Field 44.53 +26.17 7894  29.74 +22.37 23539 81.05 +5.16 12733 3580 +1.60 23236
+ Importance Sampling 48.83 +30.47 7498 4321 +35.84 24422 8347 +7.58 12895 36.40 +2.20 23298

Table 1: Benchmark results with statistics (Accuracy, A, Effective Tokens (ETs)) under Top &
sampler. A indicates the accuracy improvement over LLaDA-8B-Instruct; positives are highlighted

in green.

Sudoku Countdown GSMSK MATH500
Model Wce. T\SeqLen ¢ 556 s12 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct ~ 10.01 737 640 17.97 1836 21.09 68.16 7589 79.83 2620 3420 35.20
a1 2388 24.51 2598 2734 3438 37.89 72.86 7923 7892 3320 3560 37.20
2MF+IS 3643 4321 4570 58.98 48.83 56.64 7574 8347 8226 34.80 3640 38.60

Table 2: Ablations on the maximum sequence length of the model.

Training DiFFPO with efficient samplers. We also investigate the performance of RL-training on
existing efficient samplers to gain the best performance. We tested EB samplers [2], which yields a
greater trade-off between accuracy and NFEs compared to the top-k sampler that we used above. We
found that the inference threshold v = 0.1 yields the best results in achieving the highest reward, on
par with smaller +’s and top-k (Table 1, &k = 2), and better than larger ’s which will typically yield a
smaller average reward even after RL training.

Model Sudoku Countdown GSMSK
Accuracy T NFEs| Accuracy? NFEs| Accuracy! NFEs|
LLaDA-8B-Instruct 10.45 201.23 22.66 212.33 80.74 98.14
+d1 25.88 105.39 35.16 197.05 82.34 65.71
+ DiFFPO w/o sampler joint training 32.23 141.14 47.27 38.80 83.47 57.68
+ DiFFPO w/ sampler joint training 37.16 56.80 51.17 30.45 84.00 44.00

Table 3: Benchmarking planning and math tasks results on both accuracies and NFEs under EB.

Joint training of the model and the sampler. Finally we consider joint training of the model and
sampler by adding up the model and the sampler losses (Equation 15), to improve the inference-time
frontier. In Table 3, we report the optimal checkpoint performance alongside the baseline algorithms.
We observe that joint training not only improves the (optimal) correctness, but also uses even less

NFEs compared to training the model only.

Inference Time Frontier

70
e
P .
60 e w
e 1
7 i
501 ¢ !
i
2 |
- 40 !
o i
©
5 30 d
M 2
<
20 /
y
;
=
10 et
-~ DIFFPO L
ol -=- DIFFPO model only w

50 70 80

NFE

30 40

Figure 4: Inference-time frontier obtained by models by DiFFPO with or without sampler training
and EB sampler with different inference threshold.



For a more detailed comparison, we draw the inference-time compute frontier for Countdown for two
settings: 1) post-trained DiFFPO model with a fixed top-k sampler (Equation 12); and 2) the model
and sampler jointly trained by DiFFPO (Equation 15), under the same 256 maximum generation
length in Figure 4. The dots are obtained by utilizing different base inference threshold in EB sampler
on two models. The clear advantage of DiFFPO trained models (i.e. with sampler joint training)
showcases the importance of choosing proper performant samplers when training the models via RL
which is usually overloooked, and the effectiveness of our joint training mechanism in enhancing the
inference-time compute frontier.

5 Related Works

We discuss other related works on dLLMs, inference, and RL.

Discrete Diffusion Models. In our paper, we mainly focus on masked diffusion models with a
discrete-time Markov chain setup [1, 26]. Other works have pursued different formulations, e.g.,
through continuous-time Markov chains [3] or flows [6, 31]. Despite our focus on masked diffusion
models, our methodology developed in this paper is general and could benefit RL training for these
other formulations. Several works have developed unified viewpoints for diffusion models in both
discrete and continuous spaces, including [9, 25, 27]. The dLLMs family has also been expanded to
the multimodal domain, e.g., MMaDA [45] and Fudoki [40].

dLLMs inference. Most existing works on dLLMs inference have focused on developing more
performant samplers, using ideas around remasking/predictor-corrector sampling [6, 39] for inference-
time scaling and/or planning [12, 22, 46, 51]. EB-sampler [2] focuses on efficiency, which is less
studied for discrete diffusion models. Prior work like [21] also studied accelerating diffusion LLMs
via a joint dependence perspective. There are also several recent works [28, 43] on enabling KV
caches for discrete diffusion models, which will speed up both the inference and RL training processes.
Most of these ideas are orthogonal to our contributions and can be easily integrated. We leave them
as future work.

RL for dLLMs. Comparing to the extensive study on RLHF [20, 42] and RLVR [16, 49] for LLMs,
there is noticably less study on dLLMs. d1 [50] proposes diffu-GRPO, which is the first work on
training base dLLMs for reasoning with RL. Earlier work like [48] has explored policy gradient
methods on smaller scale models. [52] proposed a DPO-style [23] preference optimization method
underpinning the development of LLaDA 1.5. [45] proposed UniGRPO which utilizes random
partial masking on completions instead of full masking. DiffuCoder [7] used coupled-GRPO to
improve the base coding dLLMs. LLaDOU [12] trained a token-position aware sampler for enhanced
dLLMs reasoning performance. Concurrent to our work, TraceRL [41] also proposes to utilize
online trajectory token latents, which is similar to our two times mean-field approximation, yet our
parameterization based on time steps is more generalizable and flexible for different dLLM samplers.

6 Discussion and Future Works

In this work, we propose DiFFPO — an RL pipeline for post-training dLLMs towards efficient
reasoning. We showcase the effectiveness of our proposed algorithms in terms of better likelihood
approximation, a unified off-policy RL perspective, and sampler joint training, which achieves better
sample efficiency, superior performance, and enhancing the accuracy/efficiency tradeoff. We believe
our contributions in the paper help push the boundary of RL for dLLMs post training research which
is less explored.

There are several directions that can be pursued to improve or extend our work. It is interesting to
understand the generalization behavior of the trained inference threshold; it is also possible to adapt
our RL framework to a state (or group)-dependent inference threshold instead of being fixed for each
prompt. In addition, we only test our model on LLaDA [19], it will be complimentary to see the
performance on other open source dLLMs like Dream [47]. We leave these investigations for future
work.
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