
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GROKKING AT THE EDGE OF NUMERICAL STABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Grokking, or sudden generalization that occurs after prolonged overfitting, is a
surprising phenomenon that has challenged our understanding of deep learning.
While a lot of progress has been made in understanding grokking, it is still not
clear why generalization is delayed and why grokking often does not happen with-
out regularization. In this work we argue that without regularization, grokking
tasks push models to the edge of numerical stability, introducing floating point
errors in the Softmax that we refer to as Softmax Collapse (SC). We show that SC
prevents grokking and that mitigating SC leads to grokking without regularization.
Investigating the root cause of SC, we find that beyond the point of overfitting, the
gradients strongly align with what we call the naı̈ve loss minimization (NLM) di-
rection. This component of the gradient does not change the predictions of the
model but decreases the loss by scaling the logits, usually through the scaling of
the weights along their current direction. We show that this scaling of the log-
its explains the delay in generalization characteristic of grokking, and eventually
leads to SC, stopping learning altogether. To validate these hypotheses, we in-
troduce two key contributions that mitigate the issues faced in grokking tasks:
(i) StableMax, a new activation function that prevents SC and enables grokking
without regularization, and (ii) ⊥Grad, a training algorithm that leads to quick
generalization in grokking tasks by preventing NLM altogether. These contribu-
tions provide new insights into grokking, shedding light on its delayed generaliza-
tion, reliance on regularization, and the effectiveness of known grokking-inducing
methods.

1 INTRODUCTION

Deep learning has been transformative for a variety of fields such as natural language process-
ing (Devlin et al., 2019), computer vision (Krizhevsky et al., 2012), geometry processing (Qi et al.,
2017), and 3D vision (Deng et al., 2018). This rapid proliferation has brought with it surprising
phenomena that defy the predictions of classical statistical learning theory.

In this paper we explore one such recently observed phenomenon known as grokking, first described
by Power et al. (2022) as a sudden and unexpected generalization occurring after prolonged overfit-
ting. Although predominantly studied in algorithmic tasks like modular addition or multiplication,
recent findings suggest that grokking may be a more pervasive phenomenon, also manifesting in
more complex tasks involving vision and language (Lv et al., 2024; Humayun et al., 2024).

Prior research has consistently observed grokking in settings that involve some form of regulariza-
tion, such as weight decay (Barak et al., 2022; Power et al., 2022; Nanda et al., 2023). This pattern
has motivated investigations into the implicit biases introduced by weight decay, suggesting it may
be critical to triggering delayed generalization. For instance, Liu et al. (2023a) argued that weight
norms need to be in a narrow range or “Goldilocks Zone” for generalization. Similarly, Varma et al.
(2023) highlighted weight efficiency of generalizing solutions, and Nanda et al. (2023) argued that
weight decay favors simpler, more generalizable solutions. However, recent works have argued that
regularization may not be necessary for grokking, at least on shallow networks with Mean Squared
Error (MSE) loss (Kumar et al., 2023; Lyu et al., 2024; Gromov, 2023). These works tie grokking to
a transition from lazy training (Chizat et al., 2018) to feature learning. Despite this ongoing work,
several aspects in this framing of grokking remain unclear. These include why grokking tasks induce
lazy training and why weight decay is often needed to enter the feature learning regime when using
deeper models or cross-entropy (CE) loss.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

due to logit-scaling
NLM (Sec. 3)

due to numerical errors
SC (Sec. 2)

(Sec. 4.2) (Sec. 2.4)

(a) Generalization (b) Grokking (c) Over�tting

Figure 1: Our contributions demonstrated through results obtained in addition modulo 113 task. We
show that the delay in generalization induced by NLM can be reversed using the proposed⊥AdamW
((a) and (b)) and that the numerical errors that lead to overfitting instead of grokking can be avoided
by using the proposed StableMax ((b) and (c)).

Here we propose a novel account of grokking, outlined in Fig. 1, that explains several of the main
unanswered questions in the grokking literature. We start by showing that without regularization,
grokking is prevented by absorption errors in the Softmax, which we call Softmax Collapse (SC).
These errors result in zero terms in the gradient and put an end to learning, sometimes before any
progress is made in the test performance, resulting in complete overfitting (Fig. 1, c). We then
argue that SC is caused by what we call Naı̈ve Loss Minimization (NLM), as the gradient becomes
aligned with a direction that corresponds to scaling up the logits by a constant. While scaling up all
the logits does not change the model predictions, it does reduce the CE loss for a network that has
reached 100% training accuracy, with the downside that this eventually leads to numerical errors in
Softmax. Our findings provide explanations for several key aspects of grokking, including (i) the
delayed onset of generalization, (ii) why grokking is often absent without regularization, and (iii)
why existing methods designed to induce grokking are effective.

To validate our hypothesis that SC is responsible for the absence of grokking without regularization,
we introduce StableMax as a more numerically stable replacement to Softmax in CE loss. This
simple change takes models from complete overfitting to grokking (Fig. 1, c to b) without regular-
ization, in settings where it is normally not observed without it. Similarly, we validate that NLM
is responsible for delaying generalization (Fig. 1, a to b) and leading to SC by introducing a new
optimizer ⊥Grad, which only preserves the part of the gradient that is orthogonal to the NLM di-
rection. By doing this, ⊥Grad quickly leads to generalization without the initial overfitting phase
that defines grokking (Fig. 1, b to a).

Our primary contributions are as follows:

• We observe that cases of overfitting without grokking are due to floating point errors caused by
extreme values in the Softmax function, which we term Softmax Collapse (SC; Sec. 3).

• We show that interventions to avoid SC, like greater floating point precision or a new, numerically
stable version of Softmax (StableMax), cause grokking in settings where it was previously absent
without regularization (Sec. 3.3).

• We observe that models move towards SC because overfitting and cross-entropy loss push the
model in a direction of uncontrolled logit growth, which we refer to as Naı̈ve Loss Minimization
(NLM; Sec. 4).

• We demonstrate that NLM can be avoided through a novel optimizer, ⊥Grad, which removes the
delay in generalization (Sec. 5).

2 SETUP

2.1 DATASETS

We show our findings on the most commonly studied grokking datasets, outlined in this section.

I. Modular Arithmetic. The main results in this paper are shown on arithmetic modulo 113 (Power
et al., 2022; Nanda et al., 2023). This is a family of supervised learning tasks where two one-hot
encoded inputs representing integers a, b < p are used to predict the target y = a ∗ b mod p, where
∗ is some binary operation and p is a prime number. In most of our results, the binary operation is
addition, but we show additional results with multiplication and subtraction.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Modular arithmetic tasks are characterized by a binary operation and a dataset size, with different
behaviours being observed for different dataset sizes on the same binary operation. In these settings,
we describe the dataset sizes as the percentage of the 1132 possible pairs that are used for training,
with the rest of the data being used for testing as in Nanda et al. (2023) and Power et al. (2022).
Our main results use a 40%/60% train/test split but we also include results using 60%/40% and
70%/30%. The input integers are represented as one-hot vectors.

II. Sparse Parity. We also validate some of our results on the Sparse Parity task outlined in Barak
et al. (2022). This is a supervised learning setting where the target is the parity of k bits out of a
binary vector of length n, with k ≪ n. In this work we use 2000 samples, split evenly between train
and test data and we describe instances of this task by specifying the values of n and k.

III. MNIST. Finally, we provide some results on a subset the classic image classification dataset
MNIST (Deng, 2012). For our experiments, we use a subset of 200 training samples from the
training set as in Liu et al. (2023b), with evaluation on the full test set.

2.2 MODELS

We study the grokking phenomenon on these datasets using a 2-hidden layer multi-layer perceptron
(MLP) of width 200 as in Liu et al. (2023a) and a one-layer transformer with 4 attention heads as
Nanda et al. (2023) and Power et al. (2022). We train both of these models in a full batch setting,
using ReLU activations and cross-entropy loss with AdamW and SGD, as well as our own variants
of these optimizers, ⊥AdamW and ⊥SGD. Unless specified otherwise we set the weight decay
parameter λ = 0. For modular arithmetic datasets, inputs are concatenated as the input of the MLP
resulting in a 226 dimensional vector, and treated as separate tokens in the case of the transformer.

3 SOFTMAX COLLAPSE: FLOATING POINT ERRORS PREVENT GROKKING

Given our current understanding of grokking, it is surprising that it happens without regularization
for some dataset sizes, but regularization becomes crucial as dataset size decreases (Power et al.,
2022). In this section we highlight that looking at datasets at the boundary of these two regimes
reveals that without weight decay, grokking sometimes starts before abruptly stopping (Fig. 2). We
show that this is caused by floating point errors in the Softmax that lead the gradients from a large
fraction of the samples to become zero. We refer to this phenomenon as Softmax Collapse.

3.1 SOFTMAX COLLAPSE

In modern neural network implementations, Floating Point (FP) arithmetic is ubiquitous for repre-
senting and computing parameters, activations, and gradients. While FP numbers enable efficient
decimal computations, they introduce numerical inaccuracies. This section focuses on absorption
errors, as a specific class of FP arithmetic failure. We will use the symbol .

= to refer to equality
under FP arithmetic.
Definition 1 (Absorption Errors). Let a, b ∈ R \ {0} be floating point numbers in a system with
base β and p significand bits. Denote their exponents by ea and eb, respectively. An absorption error
occurs in the computation of a+ b (denoted a+ b

.
= a) if

ea − eb ≥ p.

In this case, after exponent alignment, the significand of b is shifted right by at least p digits, and b
cannot be represented in the available precision, resulting in a+ b

.
= a.

Intuitively, absorption errors can occur during FP addition when operands have significantly differ-
ent magnitudes. For float32 the base β is 2 and p = 24 bits, meaning that adding any number
smaller than 2−24 to 1 will leave 1 unchanged. 2−24 is the machine epsilon for float32.

Absorption Errors in the Softmax. The Softmax function is a fundamental component in nu-
merous deep learning architectures, serving as an activation function or a key element in attention
mechanisms. In this case, we focus on its application within the Softmax Cross-Entropy (SCE) loss:
Definition 2 (Softmax Cross-Entropy (SCE) loss). For a neural network f and a data point x with
label y, we define z := f(x) and zy as the logit corresponding to the true class y . We express the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 5k 10k 15k
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Test acc. - float16
Test acc. - float32
Test acc. - float64
Test acc. -
 stable sum fp64
Train accuracies
50% Softmax
 Collapse

(a) 40% training data

0 5k 10k 15k
Epoch

(b) 60% training data

0 5k 10k 15k
Epoch

(c) 70% training data

Figure 2: As dataset size increases (subplots a to c), MLPs trained on modular addition begin
to generalize without regularization until this is stopped by SC making the gradient from a large
fraction of the samples equal to zero. This stopping point comes earlier for float32 than float64 and
with small enough datasets it comes before the model makes any progress on test accuracy. Since
the absorption errors happen in the sum, a more numerically stable sum substantially postpones the
point of SC where grokking stops.

SCE loss as well as its equivalent numerically more stable formulation as:

LSCE(f(x), y) = − log

(
ezy∑n
k=1 e

zk

)
= −zy +max(z) + log

(
n∑

k=1

ezk−max(z)

)
(1)

Unfortunately, even the rightmost (comparatively more stable) variant does not address this problem,
since the kind of FP errors discussed in this work appear in the sum. While the Softmax function
outputs are bounded between 0 and 1, the intermediate calculations involve summing exponentials
of both positive and negative logits. These values can span several orders of magnitude, particularly
in scenarios with large logits where the loss approaches zero. This wide range of values creates
conditions that lead to absorption errors – leading to the phenomenon we call Softmax Collapse.
Definition 3 (Softmax Collapse (SC)). A specific case of absorption error occurs when, for a given
sample x, the logit from the correct class zy is significantly larger than the logits for all other classes.
This floating-point absorption of smaller terms, which we call Softmax Collapse, occurs when:

n∑
k=1

ezk
.
= ezy , (2)

in which case the SCE loss becomes:

LSCE(f(x), y)
.
= − log

(
ezy

ezy

)
= 0 . (3)

Thus, during SC the loss becomes identical to zero. Furthermore, for the correct class, the gradients
become zero as well:

∂LSCE

∂zc
=

ezc∑n
k=1 e

zk
− 1{c=y}

.
= 1− 1{c=y} . (4)

While weights that contribute to the wrong classes can still get negative updates, we show that
disappearance of the gradients from the correct classes is enough to inhibit grokking (Fig. 2). We
validate this in App. B.1 with an explicit intervention, showing that artificially setting the gradients
from the correct class to zero stops generalization in a very similar way to what we observe in Fig. 2.

3.2 EVIDENCE OF SOFTMAX COLLAPSE IN GROKKING TASKS

Grokking is often studied using dataset sizes for which the delay in generalization is significant,
which is usually when the dataset is small but just large enough that generalization is possible. In
this regime, regularization seems necessary for grokking and no improvement in test performance
is observed without it (Nanda et al., 2023). However, a fact that has received less attention is that
grokking can happen without regularization if the dataset is large enough (Power et al., 2022).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Here we hypothesize that as the size of the dataset decreases, overfitting becomes easier and Softmax
Collapse (SC) happens earlier. To quantify this, we train an MLP without regularization on modular
addition using different levels of FP precision, and calculate at every training epoch the fraction of
samples that result in SC as per Eq. (2). The results support our hypothesis that SC is responsible
for the model’s failure to generalize (Fig. 2). Specifically, we see that generalization stops when SC
begins – and that this happens earlier under float32 than under float64 (Fig. 2b). Furthermore, this
point is reached earlier as the dataset size decreases until it is reached before making any progress in
the test accuracy, resulting in the common picture of no grokking without regularization (Fig. 2a).

3.3 PREVENTING SOFTMAX COLLAPSE LEADS TO GROKKING

To validate the importance of FP errors in stopping grokking, we show that methods to avoid SC lead
to generalization on all the common grokking tasks on both MLPs and transformers. We introduce
the following methods to postpone the appearance of FP errors.

Increasing floating point precision. The simplest way to avoid SC is to extend the FP precision
from float32 to float64 for the Softmax calculation. We see in Fig. 2 that networks trained using
float64 in the Softmax face SC later in training which allows for a further increase in test perfor-
mance. Conversely, using float16 leads to SC earlier in training, leading to lower test performance.
While this approach works as expected, FP precision cannot be extended indefinitely to allow for
generalization as seen in the lack of grokking in Fig. 2a.

Algorithm 1 Kahan sum.

Require: Sequence x and
its length n.

Ensure: The sum s.
s← x[1] and e← 0
for i← 2 to n do

y ← fperr(x[i] + e)
[s, e] = fpsum(s, y)

end for

Stable sum. Simply summing n numbers in a sequence has a worst-
case error of O(ϵn), where ϵ denotes the machine FP precision. As
shown in Alg. 1 1 , keeping a separate variable to accumulate small er-
rors, Kahan summation compensates for the loss of precision, achiev-
ing O(1) error growth2 (Goldberg, 1991). Results show that using
Kahan summation in the Softmax extends generalization, and does
so substantially in some cases (Figs. 2b and 2c). Note that Kahan
summation has been previously used to train deep networks in limited
precision (Park et al., 2018) but not in the context we present here.

StableMax Cross Entropy (StCE) Loss. As demonstrated above, SC is caused by adding the
exponentials of very large positive and negative logits in the Softmax. To avoid these extreme
summands, we propose using a softer version of Softmax to transform logits into probabilities
before calculating the CE Loss:

4 2 0 2 4
x

0

1

2

3

4

5

6

y

y = s(x)
y = ex

Figure 3: s(x) vs. ex.

Definition 4 (StableMax). We introduce a numerically stable version
of the softmax as:

StableMax(xi) :=
s(xi)∑
j

s(xj)
, (5)

where

s(x) :=

{
x+ 1 if x ≥ 0,
1

1−x if x < 0
. (6)

As seen in Fig. 3, s(·) is a simple ramp function that scales linearly instead of exponentially when
x ≥ 0 and also approaches 0 more slowly than the exponential function when x < 0. This is similar
to the Softplus function (Dugas et al., 2000) but approaches 0 more slowly with negative logits,
further reducing the risk of absorption errors.
Proposition 1. StableMax is a modified Softmax, i.e. StableMax (xi) = Softmax (g (xi)) where

g(x) =

{
log(x+ 1) if x ≥ 0,

− log(−x+ 1) if x < 0
. (7)

1fperr(·) computes the floating-point approximation error and fpsum(·) is Dekker’s error-free transforma-
tion (Ogita et al., 2005, Alg. 1.1).

2The actual relative error, O(nϵ2), grows linearly with n. Yet, this term becomes negligible when rounding
the result to machine precision ϵ, rendering the error independent of n for reasonable values of n, e.g. n < 1016.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 20k 40k 60k 80k
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Test acc. -
 addition
 mod 113
Test acc. -
 product
 mod 113
Test acc. -
 sparse parity
 (n=40, k=3)
Train acc.

0 20k 40k 60k 80k
Epoch

0

10k

20k

30k

40k

W
ei

gh
t n

or
m

 (L
2)

addition mod 113 L2 norm
product mod 113 L2 norm
Sparse parity L2 norm

0 200 400 600 800 1000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Test accuracy - 2-hot input
Test accuracy - random
 binary input
Training accuracies
50% Softmax Collapse

Figure 4: (left) Grokking with StCE loss and no regularization on three common grokking datasets
using an MLP with 2 hidden layers of width 200. We use 40% of all pairs modulo 113 which is
the same setting as Fig. 2a where regular SCE gets stuck at random level performance (random
level is 50% for sparse parity). (middle) Evolution of model weight norms during training for the
same models and tasks. This shows that grokking induced without weight decay does not follow
the commonly observed trend of rapidly decreasing weight norm during generalization. (right)
Changing input representations turns modular addition into regular machine learning tasks with
train and test accuracy increasing in tandem, see Sec. 4.

The proof of this Proposition is presented in App. A. We then define the numerically stable analogue
of LSCE as LStCE(f(x), y) = − log(StableMax(zy)), where zy again corresponds to the logit of
the true class y.

To show that StCE indeed addresses the problems posed by SC, we repeat our experiments
in Sec. 3.2 by replacing Softmax with StableMax. Our results, presented in Fig. 4, indeed show
that StableMax leads to grokking in commonly studied settings without regularization. Notably,
this happens while the norm of the weights increases substantially (Fig. 4, middle). This suggests
that while weight decay may lead to both grokking and a decreasing weight norm, the decreasing
weight norm is not necessary for grokking. Overall, these results i) provide additional evidence for
the importance of SC in preventing grokking, ii) suggest a novel activation function to address this
problem, and iii) show that regularization or weight norm modification is not necessary for grokking.

4 DIAGNOSING THE CAUSES OF SOFTMAX COLLAPSE

In the previous section we have shown that FP errors arise due to a combination of low losses and
large logits, and shown that when FP errors are mitigated, grokking can be observed in conditions
where it previously was not. In this section, we dive deeper and ask why extremely low losses and
large logits appear in the first place in grokking tasks. We identify two main causes for this tendency:
(i) easiness of overfitting in grokking tasks, and (ii) a training dynamic that sees gradients align with
what we call naı̈ve loss minimization direction. After diagnosing the causes, the following section
will use these insights to develop an optimization algorithm that avoids NLM in the first place.

4.1 EASE OF OVERFITTING IN GROKKING TASKS

The first important characteristic of grokking tasks that lead to SC is their ease of overfitting. It has
been observed that as grokking datasets get larger, overfitting becomes harder, eventually leading
to a regime where train and test performances increase in tandem (Power et al., 2022; Nanda et al.,
2023; Varma et al., 2023). It has also been shown that generalization can be delayed in the Sparse
Parity task by increasing the amount of noise in the input, which makes overfitting easier (Barak
et al., 2022). Here we investigate the opposite effect: that by decreasing the dimensionality of the
input the data becomes harder to memorize, removing the delay in generalization.

To do this, we investigate the common grokking task of modular addition, but instead of the high-
dimensional one-hot representations of the input integers, we use a more compact binary. More
specifically, we assign each integer a distinct random binary vector of dimension 14.

Results confirm our hypothesis, showing that as input representations are decreased in dimension,
overfitting is prevented and models generalize without need for regularization (Fig. 4, right). This
also shows that modular addition only induces grokking depending on the choice of representation.
These findings highlight the importance of understanding the training dynamics beyond the point of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 200 400 600 800
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

(W
, -

L)

layers.0.weight
layers.1.weight
layers.2.weight
100% Train accuracy

(a) MLP without bias terms

0 200 400 600 800
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

(W
, -

L)

layers.0.weight
layers.0.bias
layers.1.weight
layers.1.bias
layers.2.weight
layers.2.bias
100% Train accuracy

(b) MLP with bias terms

0 200 400 600 800
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

(W
, -

L)

embed.W_E
blocks.0.mlp.W_in
blocks.0.mlp.W_h
blocks.0.mlp.W_out
unembed.W_U
100% Train accuracy

(c) Transformer with bias terms

Figure 5: MLPs with (a) and without (b) bias terms trained on modular addition receive updates that
are significantly aligned with the direction of NLM beyond the point of overfitting. In (c) we show
these results for a selection of parameters for our one layer transformer. We highlight the embed
and unembed matrices as well as the weights of the MLP. These are highlighted in the plot using the
notation from Elhage et al. (2021).

overfitting (i.e. point of achieving 100% training accuracy), rather than focusing on the specifics of
the modular arithmetic tasks as the key to explaining the delay in generalization.

4.2 NAÏVE LOSS MINIMIZATION

We next identify a crucial training dynamic that commonly occurs in grokking tasks as a central
cause for increasing logits and SC. We find that after reaching 100% training accuracy, gradient
updates are dominated by an update direction we term naı̈ve loss minimization (NLM). This direction
does not change the model’s decision boundary, but still decreases loss by simply scaling the logits of
the predictions, in most cases through scaling of parameters (see below). This means that the logits
will continue to increase until they inevitably lead to SC and zero terms in the training gradient.
This stops the parameter updates in any direction, including NLM and any other useful component
that would have been included in the overall gradient. We now define NLM formally, and proceed
to discuss why it might commonly be observed to deteriorate training in grokking tasks. Given the
input x ∈ X , output y ∈ Y , a predictor f parametrized by θ ∈ Rm that outputs logits z = f(θ;x) ∈
R|Y|, and a loss function L, we now define Naı̈ve Loss Minimization.
Definition 5 (Naı̈ve Loss Minimization (NLM)). A function dNLM : Rm → Rm specifies a direction
of naı̈ve loss minimization if it decreases the loss,

L(f(θ + dNLM(θ); ·)) < L(f(θ; ·)), (8)

while satisfying for some c > 1:

f(θ + dNLM(θ);x) = cf(θ;x), ∀x ∈ X , (9)

whereX denotes the input space andL(f(θ+dNLM(θ); ·)) is the total loss over the training dataset.

We find that under a large class of models, namely those that demonstrate positive homogeneity,
when training beyond 100% training accuracy the direction of the weights is an NLM direction.
Definition 6 (Positive Homogeneity (Lyu & Li, 2019)). A function f is positively homogeneous of
degree L > 0 if for all weights θ, inputs x, and scalars c > 0, it satisfies:

f(cθ; x) = cLf(θ; x) . (10)

When f is a homogeneous neural network, L corresponds to the number of layers.

In the case of homogeneous networks, training beyond 100% training accuracy, scaling the logits
always leads to a decrease in the training loss. Therefore, dNLM(θ) = αθ for α > 0 is an NLM
direction, as it results in f(θ + dNLM(θ);x) = f((1 + α)θ;x) = (1 + α)Lf(θ;x), where the
second equality follows from Eq. (10).

Many neural network architectures, such as ReLU MLPs and transformers without bias terms, are
positively homogeneous or approximately homogeneous in the case of transformers (Merrill et al.,
2020). While more complex deep learning models with skip connections and bias terms are not

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Test acc. - AdamW
Test acc. - AdamW
Test acc. - AdamW
 + weight decay
Train accuracies

(a) Transformer, subtract. mod 113

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Test acc. - AdamW
Test acc. - SGD
Test acc. - AdamW
Train accuracies

(b) MLP, addition mod 113

102 103 104

Log Epoch
5

4

3

2

1

0

1

Lo
g

Lo
ss

Classification Loss
L2 Loss

(c) Trade-off between L2 and SCE

Figure 6: Comparing ⊥AdamW and ⊥SGD with baseline optimizers and AdamW with weight
decay on (a) a transformer trained on subtraction mod 113 and (b) an MLP trained on addition
modulo 113. In (c) we highlight the trade-off between L2 regularization and SCE loss, initially
SCE loss is reduced at the cost of increasing the L2 loss but eventually the two losses decrease
simultaneously (Sec. 5.2).
homogeneous, they have been shown to be quasi-homogeneous (Kunin et al., 2023) and in most
cases – including all of the models in this work, the last layer is homogeneous. This means that for
non-homogeneous models scaling the weights of the last layer corresponds to a direction of NLM.

The fact that the gradients converge to the direction of the weights has been studied in previous works
(Ji & Telgarsky, 2020; 2019; 2018; Lyu & Li, 2019) to prove that homogeneous networks converge
in direction under gradient flow and gradient descent and perform normalized margin maximization
even beyond the point of 100% training accuracy (Lyu & Li, 2019). However, we argue that gra-
dient alignment also results in scaling of the logits which can lead to SC and put and end to the
margin maximization process described in Lyu & Li (2019), when working with limited floating
point precision.

Evidence of Naı̈ve Loss Minimization. In practice, we observe that in MLPs and transformers with
and without bias terms, the gradients quickly become aligned with the direction of the weights after
the point of overfitting (Fig. 5). Particularly for the later layers of the models, the cosine similarity
between the parameter updates and the NLM direction goes up to 0.9 for the output layers. While
models with bias terms are not homogeneous and there is no theoretical guarantee that scaling the
weights will reduce the SCE loss, in practice, we observe very similar behaviour in MLPs with
(Fig. 5b) and without (Fig. 5a) bias terms. In the case of a one-layer transformer, the alignment is
stronger for the embed and unembed matrices but also substantial for the MLP weights (Fig. 5c).

5 MITIGATING NAÏVE LOSS MINIMIZATION LEADS TO GROKKING

While we have shown in Sec. 3 that avoiding numerical instabilities eventually leads to generaliza-
tion, we can also target the NLM process that causes these numerical issues. To do this, we design
an optimizer that only preserves the part of the gradient orthogonal to the direction of the weights.

5.1 ⊥Grad: AN OPTIMIZER TO PREVENT NLM

We propose a new optimizer, ⊥Grad (read “ortho-grad”), that updates the weights based only on
the part of the gradient that is orthogonal to the current direction of the weights:
Definition 7 (⊥Grad). We propose the following update rule for a given iteration t ∈ N:

θt+1 = θt − η∇⊥L(θt), (11)

where the orthogonal component of the gradient, ∇⊥L(θt), is obtained by projection onto the hy-
perplane orthogonal to the current weight vector:

∇⊥L(θt) = ∇L(θt)−
(
θ⊤
t ∇L(θt)
θ⊤
t θt

)
θt. (12)

Proposition 2. Assuming∇⊥L(θt) ̸= 0, ∃ β > 0 such that for any learning rate 0 < η < β, taking
the step η∇⊥L(θt) reduces the loss. In other words, any nonzero∇⊥L(θt) is a descent direction.

Sketch of the proof. We show that any∇⊥L(θt) ∈ Rm\{0} is a descent direction by demonstrating
that ⟨−∇⊥L(θt),∇L(θt)⟩ < 0. For a full proof we refer the reader to App. A.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

10000 5000 0 5000 10000 15000 20000 25000

Principal Component #1

6000

5000

4000

3000

2000

1000

0

1000

2000

Pr
in

cip
al

 C
om

po
ne

nt
 #

2

NLM direction

Start

SGD
SGD + weight decay

SGD + StableMax
NLM direction

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

Tr
ai

n
Lo

ss

(a) Training loss landscape

10000 5000 0 5000 10000 15000 20000 25000

Principal Component #1

6000

5000

4000

3000

2000

1000

0

1000

2000

Pr
in

cip
al

 C
om

po
ne

nt
 #

2

NLM direction

Start

SGD
SGD + weight decay

SGD + StableMax
NLM direction

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Te
st

 L
os

s

(b) Test loss landscape
Figure 7: Model trajectories in in parameter space projected to 2D over the SCE loss landscape.
SGD with weight decay starts along the same trajectory as SGD decreasing the training loss (a) but
increasing the test loss (b).

This projection of the gradient can be incorporated into different optimizers. In Fig. 6a, we show
results for ⊥AdamW and ⊥SGD, the ⊥Grad versions of AdamW and SGD respectively. These
results show that ⊥Grad optimizers lead to generalization without a phase of initial overfitting, in
contexts where no improvement in test performance is usually observed without weight decay. We
note that similar projections of the gradients have been used in other settings to mitigate the effects of
momentum in invariant layers (Heo et al., 2020), stabilize training Wang et al. (2024) or as one part
in a more complex optimizer (Kosson et al., 2024). We design⊥Grad as a more precise intervention
that direcly prevents scaling along the NLM direction.

In Fig. 7, we compare the trajectories of models using SGD with and without weight decay to our
new ⊥SGD optimizer. SGD models start on a similar trajectory, reducing the training loss but
increasing the test loss, until the model with weight decay changes direction and starts minimizing
both the train and test loss. In contrast, the model using ⊥SGD moves directly in a direction that
minimizes both the train and test loss. While SGD with weight decay eventually reaches a point
of lower loss, note that ⊥SGD reaches 100% test accuracy within 400 iterations (Fig. 6a). Beyond
showing how ⊥SGD prevents NLM, Fig. 7 also suggests that weight decay induces grokking by
avoiding NLM. In the following, we highlight that the success of several methods to induce grokking
can be explained from this perspective.

5.2 EXPLAINING THE SUCCESS OF EXISTING METHODS FOR GROKKING

In light of our findings, we are able to explain the success of several previously proposed methods to
induce grokking. We find that these methods also lead to grokking by mitigating NLM and avoiding
the FP errors that come with extremely low losses.

Weight decay. We have argued that the problem faced in grokking is that the ease of overfitting
leads to NLM, which corresponds to scaling up the weights for homogeneous networks. Since
weight decay corresponds to pulling back the weights along this same direction at every step during
training, it is unsurprising, given our findings, that it is the most reliable way to induce grokking.

To explain why generalization tends to be delayed when using weight decay, as opposed to ⊥Grad,
we look at it from the perspective of L2 regularization which is equivalent to weight decay for SGD.
In Fig. 6c, we see an initial phase where classification loss decreases, at the cost of the L2 loss.
Eventually, the decrease in classification loss from NLM stops outweighing the increase in L2 loss,
meaning that only updates that are not aligned with the NLM direction are followed. This explains
why weight decay leads to generalization in grokking tasks but this is delayed until scaling along
the NLM direction no longer decreases the overall loss.

We argue that the main roles of weight decay are preventing floating point errors and preventing
NLM. This is in line with recent findings about the role of weight decay in deep learning (An-
driushchenko et al., 2023) which point to the fact that it increases the effective learning rate and
avoids floating point issues when using mixed-precision training in LLMs.

MSE loss on shallow networks. While cross-entropy loss can be reduced indefinitely by scaling
the logits through NLM, this is not the case with MSE loss. When using MSE loss the logits can
overshoot the target, meaning that larger logits often do not lead to a lower MSE loss. This explains
why Barak et al. (2022), Kumar et al. (2023), and Lyu et al. (2024) observed grokking with MSE loss

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

without regularization. Interestingly, networks with more than one hidden layer do not generalize in
these same settings (Fig. 13).

Delaying generalization by scaling the weights. While the lazy training dynamics described in
Kumar et al. (2023) explain an important part of why scaling the weights delays generalization,
we show that the reason that regularization is often needed to exit this lazy training regime is that
scaling the weights or the logits facilitates SC. In App. D.2, we show that the setting used in Liu et al.
(2023b) to induce grokking on MNIST with SCE also induces SC which prevents further learning
in the absence of weight decay.

6 RELATED WORK

Grokking. Power et al. (2022) introduced grokking and showed that weight decay can consistently
induce it in algorithmic tasks. Nanda et al. (2023) were able to reverse engineer the inner work-
ings of a grokked transformer and found progress measures for grokking induced by weight decay.
Chughtai et al. (2023) generalized the findings from Nanda et al. (2023) and showed grokked net-
works use group representations to solve group composition tasks, although some of these findings
were disputed in Stander et al. (2023) which propose that grokked networks learn a coset based
algorithm for these same tasks. Mallinar et al. (2024) has shown that grokking is not specific to
neural networks or gradient-based optimization and cannot be predicted from the training or test
loss. Varma et al. (2023) argued that grokking is driven by weight decay favoring more efficient
solutions and Liu et al. (2023b) hypothesized that the weight norm of the models needs to be in a
“Goldilock’s zone” to generalize. Kumar et al. (2023) and Lyu et al. (2024) connected grokking to a
transition between “lazy training” (Chizat et al., 2018) and feature learning, and Kumar et al. (2023)
showed that this can happen without regularization in the case of shallow networks with MSE loss.
Grokking has also been described as a phase transition by Žunkovič & Ilievski (2024), Lyu et al.
(2024) and Rubin et al. (2024). Humayun et al. (2024) show that in many settings, neural networks
undergo grokking-like transitions in their adversarial robustness. This aligns with the findings of
Lyu & Li (2019) which attributed this increased robustness to a bias of SGD towards a max-margin
solution which was proven for homogeneous models.

Numerical instability in deep learning. Numerical instability is a common issue in deep learning
Kloberdanz et al. (2022), especially when dealing with mixed precision training Andriushchenko
et al. (2023). It is known that the Softmax function is particularly prone to numerical stability
problems although this often comes in the form of overflow in the exponential (Kloberdanz et al.,
2022) and not from absorption errors in the sum as observed in this case. In the grokking setting,
Nanda et al. (2023) showed that the slingshots observed in Thilak et al. (2022) can be explained
by a very similar mechanism to the one involved in SC, although they do not use it to explain any
grokking phenomena beyond these spikes that sometimes appear in the training process in grokking
tasks. Issues with numerical instability when training beyond overfitting with increasing learning
rates were also observed in Lyu & Li (2019).

7 CONCLUSION AND DISCUSSION

In this work, we show that naı̈ve loss minimization (NLM) and floating point errors can explain why
generalization is delayed in grokking and why it often does not happen without regularization. Using
this insight, we are able to explain the success of existing methods to induce grokking. Motivated
by our findings, we further design a simple modification to the Softmax that induces grokking by
avoiding floating point errors and an optimizer that avoids the delay in generalization in grokking
by preventing NLM.

Limitations & future work. While this work explains several surprising aspects of grokking set-
tings, several questions remain. Notably, we focus our study of NLM on homogeneous or approx-
imately homogeneous models. A a formal characterization quasi-homogenous models could shed
light on this kind of dynamics for models including skip connections and bias terms. Additionally,
our explanation for why weight decay causes grokking could be enhanced by an analysis of the im-
pact of weight decay on the effective learning rate as a potential explanation for the sudden nature
of grokking.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Maksym Andriushchenko, Francesco D’Angelo, Aditya Varre, and Nicolas Flammarion. Why do
we need weight decay in modern deep learning?, 2023. URL https://arxiv.org/abs/
2310.04415.

B Barak, Benjamin L Edelman, Surbhi Goel, S Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: SGD learns parities near the computational limit. Adv. Neural Inf.
Process. Syst., abs/2207.08799, July 2022.

Lénaı̈c Chizat, Edouard Oyallon, and F. Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, pp. 2933–2943, December 2018. ISSN 1049-
5258.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering
how networks learn group operations. In International Conference on Machine Learning, pp.
6243–6267. PMLR, 2023.

Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet: Global context aware local features for
robust 3d point matching. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 195–205, 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
and Thamar Solorio (eds.), Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186.
Association for Computational Linguistics, June 2019.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incor-
porating second-order functional knowledge for better option pricing. In T. Leen, T. Diet-
terich, and V. Tresp (eds.), Advances in Neural Information Processing Systems, volume 13.
MIT Press, 2000. URL https://proceedings.neurips.cc/paper_files/paper/
2000/file/44968aece94f667e4095002d140b5896-Paper.pdf.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
computing surveys (CSUR), 23(1):5–48, 1991.

Andrey Gromov. Grokking modular arithmetic, 2023. URL https://arxiv.org/abs/
2301.02679.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Youngjung Uh, and
Jung-Woo Ha. Slowing down the weight norm increase in momentum-based optimizers. CoRR,
abs/2006.08217, 2020. URL https://arxiv.org/abs/2006.08217.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
and here is why. arXiv preprint arXiv:2402.15555, 2024.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. CoRR,
abs/1803.07300, 2018. URL http://arxiv.org/abs/1803.07300.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=HJflg30qKX.

11

https://arxiv.org/abs/2310.04415
https://arxiv.org/abs/2310.04415
https://proceedings.neurips.cc/paper_files/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf
https://arxiv.org/abs/2301.02679
https://arxiv.org/abs/2301.02679
https://arxiv.org/abs/2006.08217
http://arxiv.org/abs/1803.07300
https://openreview.net/forum?id=HJflg30qKX
https://openreview.net/forum?id=HJflg30qKX

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 17176–17186. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/c76e4b2fa54f8506719a5c0dc14c2eb9-Paper.pdf.

Eliska Kloberdanz, Kyle G. Kloberdanz, and Wei Le. Deepstability: A study of unstable numerical
methods and their solutions in deep learning. CoRR, abs/2202.03493, 2022. URL https:
//arxiv.org/abs/2202.03493.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay bal-
ances learning across neural networks, 2024. URL https://openreview.net/forum?
id=Kr7KpDm8MO.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, volume 25, pp.
1097–1105, 2012.

Tanishq Kumar, Blake Bordelon, Samuel J Gershman, and Cengiz Pehlevan. Grokking as the tran-
sition from lazy to rich training dynamics. arXiv [stat.ML], October 2023.

Daniel Kunin, Atsushi Yamamura, Chao Ma, and Surya Ganguli. The asymmetric maximum margin
bias of quasi-homogeneous neural networks, 2023. URL https://arxiv.org/abs/2210.
03820.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
In The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=zDiHoIWa0q1.

Ziming Liu, Ziqian Zhong, and Max Tegmark. Grokking as compression: A nonlinear complexity
perspective. arXiv preprint arXiv:2310.05918, 2023b.

Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and Rui Yan. Language models” grok” to copy.
arXiv preprint arXiv:2409.09281, 2024.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv [cs.LG], June 2019.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D. Lee, and Wei Hu. Dichotomy of
early and late phase implicit biases can provably induce grokking. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=XsHqr9dEGH.

Neil Mallinar, Daniel Beaglehole, Libin Zhu, Adityanarayanan Radhakrishnan, Parthe Pandit, and
Mikhail Belkin. Emergence in non-neural models: grokking modular arithmetic via average
gradient outer product. arXiv preprint arXiv:2407.20199, 2024.

William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, and Noah A. Smith. Parameter
norm growth during training of transformers. CoRR, abs/2010.09697, 2020. URL https:
//arxiv.org/abs/2010.09697.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Takeshi Ogita, Siegfried M Rump, and Shin’ichi Oishi. Accurate sum and dot product. SIAM
Journal on Scientific Computing, 26(6):1955–1988, 2005.

Hyunsun Park, Jun Haeng Lee, Youngmin Oh, Sangwon Ha, and Seungwon Lee. Training deep
neural network in limited precision. arXiv preprint arXiv:1810.05486, 2018.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/c76e4b2fa54f8506719a5c0dc14c2eb9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c76e4b2fa54f8506719a5c0dc14c2eb9-Paper.pdf
https://arxiv.org/abs/2202.03493
https://arxiv.org/abs/2202.03493
https://openreview.net/forum?id=Kr7KpDm8MO
https://openreview.net/forum?id=Kr7KpDm8MO
https://arxiv.org/abs/2210.03820
https://arxiv.org/abs/2210.03820
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=XsHqr9dEGH
https://openreview.net/forum?id=XsHqr9dEGH
https://arxiv.org/abs/2010.09697
https://arxiv.org/abs/2010.09697
https://openreview.net/forum?id=9XFSbDPmdW

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Noa Rubin, Inbar Seroussi, and Zohar Ringel. Grokking as a first order phase transition in two layer
networks. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=3ROGsTX3IR.

Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman. Grokking group multiplication with
cosets. arXiv preprint arXiv:2312.06581, 2023.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Josh Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
In NeurIPS Workshop, 2022. URL https://arxiv.org/abs/2206.04817.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency, 2023. URL https://arxiv.org/abs/2309.02390.

Mingze Wang, Zeping Min, and Lei Wu. Achieving margin maximization exponentially fast
via progressive norm rescaling, 2024. URL https://openreview.net/forum?id=
ykW3hvy6DL.

Bojan Žunkovič and Enej Ilievski. Grokking phase transitions in learning local rules with gradient
descent. Journal of Machine Learning Research, 25(199):1–52, 2024.

13

https://openreview.net/forum?id=3ROGsTX3IR
https://arxiv.org/abs/2206.04817
https://arxiv.org/abs/2309.02390
https://openreview.net/forum?id=ykW3hvy6DL
https://openreview.net/forum?id=ykW3hvy6DL

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

In support of the main paper, App. A presents the proofs for the propositions in the paper, App. B
includes additional findings that support our main results, and App. D provides further discussion
on conditions that lead to grokking.

A PROOFS

Proof of Prop. 1.

Softmax (g (xi)) =
eg(xi)∑
j e

g(xj)
(13)

=


elog(xi+1)∑
j elog(xj+1) if xi ≥ 0,

e− log(−xi+1)∑
j e− log(−xj+1) if xi < 0

(14)

=


xi+1∑
j xj+1 if xi ≥ 0,

1
−xi+1∑
j

1
−xj+1

if xi < 0
(15)

= StableMax(xi). (16)

Proof of Prop. 2. To prove that any nonzero−∇⊥L(θt) is a descent direction, we need to show that
⟨−∇⊥L(θt),∇L(θt)⟩ < 0, assuming ∇⊥L(θt) ̸= 0:〈

∇L(θt),−∇L(θt) +
(
θ⊤
t ∇L(θt)
θ⊤
t θt

)
θt

〉
≤ 0. (17)

Expanding this yields:

−∥∇L(θt)∥22 +
〈
∇L(θt),θt

θ⊤
t ∇L(θt)
θ⊤
t θt

〉
≤ 0. (18)

Since the inequality is unaffected by the scaling of the left hand side, we can, without loss of gener-
ality, assume that the gradients are normalized, leading to:〈

∇L(θt),θt
θ⊤
t ∇L(θt)
θ⊤
t θt

〉
≤1. (19)

Since θt
θ⊤
t ∇L(θt)

θ⊤
t θt

denotes the projection of the gradient onto the space spanned by the weights, ⟨·, ·⟩
will measure the acute angle of incidence and hence Eq. (19) holds, with equality iff∇⊥L(θt) = 0,
which is prevented by assumption. This proves that −∇⊥L(θt) is a descent direction while being
perpendicular to the weights.

We note that the ⊥Grad stops when ∇⊥L(θt) = 0. If ∇L(θt) ̸= 0, this corresponds to the
condition where the gradient is in the same direction with the parameter vector. ∇⊥L(θt) = 0 can
also be the case if∇L(θt) = 0, which corresponds to the loss function being at a local optimum.

B ADDITIONAL FINDINGS

B.1 FURTHER EVIDENCE THAT SC PREVENTS GROKKING

While SC leads the gradient from correctly predicted samples to be zero, it does not do this for the
incorrect classes. To validate that setting the gradients from the correct classes to zero is enough
to stop learning, we do this artificially for a model that is generalizing and show that learning stops
after this intervention. In Fig. 8 we see that the baseline model shown in geen generalizes, but this
is stopped at epoch 6000 for the model shown in blue, after we perform this intervention.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 5k 10k 15k
Epoch

Test acc. - stable_sum_fp64
 inducing SC at epoch 6000
Test acc. - stable_sum_fp64

Figure 8: Taking a model that would
normally generalize (green) and artifi-
cially inducing SC has a very similar
effect to the one observed in Fig. 2.

The intervention is implemented by multiplying the logits
for the right classes by 0 at each step after epoch 6000.

B.2 SGD WITH LEARNING RATE SCHEDULING

To show that our results are not due to the inductive bias of
adaptive moments in optimizers like AdamW, we replicate
some of the AdamW results using SGD with a learning
rate scheduler. We use a similar learning rate schduler as
the one in Lyu & Li (2019) except at each step we divide
the learning rate by the norm of the full gradient, instead
of the loss. In Fig. 9 we observe that SC also puts an end to
grokking in this setting.

0 2000 4000 6000 8000 10000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Test acc. - float32
Test acc. - float64
Test acc. - stable_sum64
Train accuracies
50% Softmax Collapse

(a) 40% training data

0 2000 4000 6000 8000 10000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Test acc. - float32
Test acc. - float64
Test acc. - stable_sum64
Train accuracies
50% Softmax Collapse

(b) 60% training data

0 2000 4000 6000 8000 10000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Test acc. - float32
Test acc. - float64
Test acc. - stable_sum64
Train accuracies
50% Softmax Collapse

(c) 70% training data

Figure 9: We show that the same dynamics observed in Fig. 2 can be observed with a learning
rate scheduler instead of AdamW. This shows that this is not due to an implicit bias of adaptive
optimizers.

C EFFECTIVE LEARNING RATE

0 200000 400000 600000 800000
Epochs

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f p
ar

am
et

er
 g

ra
di

en
ts

 (%
)

Absorbed gradients (%)
Zero gradients (%)
L2 gradient norm
L2 weight norm

10 6

10 4

10 2

100

102

L2
 n

or
m

 (L
og

)

Figure 10: Gradient absorption errors
during training on addition modulo 113.

Unexplored in the main paper, NLM also has the effect of
reducing the effective learning rate. For a gradient update
using regular gradient descent θt+1 = θt−η∇L(θt) it is
easy to see that ||θt+1−θt|| → 0 as ||∇L(θt|| → 0. This
problem has been observed before when training beyond
the point of overfitting, for example, Lyu & Li (2019) ad-
dressed it by using a loss based learning rate scheduler
to keep up with the gradient. Theoretically, an alterna-
tive could be to simply extend the duration of training.
According to our hypothesis, training for long enough
should eventually lead to generalization on grokking tasks
if we prevent SC. However, we find that another kind
of floating point error can also appears in these settings,
namely, gradient absorption errors in the weights.

For a weight w, gradient absorption errors happen when a gradient update is small enough that it
leaves the weight unchanged. Using the notation outlined in this paper this can be formalised as
w − η ∂L

∂w

.
= w. In Fig. 10 we show that this happens for an MLP trained with SGD on modular

addition using 30% of the training data. As the norm of the gradient decreases, the percenage of the
gradients that are absorbed by the weights increases substantially. Note that the number of gradients
that are exactly zero remains stable while the number of absorbed gradients increases substantially.

This issue is naturally mitigated by second order moments for adaptive optimizers like Adam and
AdamW which is why they do not frequently appear. However, they do prevent us from showing
grokking with vanilla gradient descent without any learning rate schduling.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 20k 40k 60k 80k
Epoch

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Lo
ss

Training loss
Test loss

(a) StableMax

0 1k 2k 3k 4k
Epoch

1

2

3

4

5

Lo
ss

Training loss
Test loss

(b) Logit regularization

0 1k 2k 3k 4k
Epoch

0

1

2

3

4

5

Lo
ss

Training loss
Test loss

(c) Taylor− Softmax

Figure 11: Train and test losses during grokking induced by three different interventions.

C.1 ADDITIONAL WAYS TO INDUCE GROKKING

Beyond the interventions described in the main text, we highlight two additional ways to induce
grokking that validate our hypothesis.

Logit norm regularization. Since we argue that uncontrolled scaling of the logits is responsible for
delaying grokking and leading to SC, we validate that preventing this scaling of the logits by adding
the norm of the logits to the loss, leads to grokking without additional regularization (Fig. 11b).

0 10 20 30 40 50
Frequency

0

10k

20k

30k

40k

50k
No

rm
 o

f F
ou

rie
r C

om
po

ne
nt

Figure 12: Fourier components of the
weights of the output layer of an MLP
trained on addition mod 113. Grokking
is induced via StableMax and without
weight decay.

Taylor approximation of the Softmax. We have intro-
duced StableMax as a change to the Softmax that leads
to grokking without regularization. The motivation be-
hind this is to prevent values in the sum of the Softmax
that are very large or very close to zero. To this end,
replacing the exponential with any function that is sub-
exponential beyond a certain point should have a similar
effect. To demonstrate, we perform a further experiment
using the second order Taylor approximation of the expo-
nential

ex ≈ 1 + x+ x2

2!
, (20)

replacing the exp in the Softmax. Since the Taylor ap-
proximation is decreasing for x < 0, we subtract the min-
imum logit to avoid this part of the function. We deem this version Taylor− Softmax. In Fig. 11
we see results similar to the ones in Sec. 3.3 but showing the losses instead of the accuracies as
well as results for two additional methods to induce grokking. Note that our implementation of
Taylor− Softmax (Fig. 11c) introduces an additional implicit regularization similar to the one in
Fig. 11b, due to the gradient flowing through the subtraction of the mean. While this effectively
combines the effects of Fig. 11a and Fig. 11b, leading to grokking faster than the other two meth-
ods, our main paper shows results using StableMax as a cleaner intervention that does not introduce
this additional regularization effect.

C.2 SOLUTION LEARNED DURING GROKKING WITHOUT WEIGHT DECAY

Weight decay has been identified as potentially responsible for inducing the periodic structures in
the weights studied in Nanda et al. (2023). In Fig. 12 we show that MLPs that grok without weight
decay on modular addition show a similar sparsity in Fourier space as the one observed in Nanda
et al. (2023). While these are very superficial results, they suggest that these structures can emerge
without a weight decay–induced “clean up” phase as described in Nanda et al. (2023).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train =0.1
Test =0.1
Train =1
Test =1
Train =1.5
Test =1.5
Train =2.0
Test =2.0

(a) MSE: 1 hidden layer

0 10000 20000 30000 40000 50000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train =0.1
Test =0.1
Train =1
Test =1
Train =1.5
Test =1.5
Train =2.0
Test =2.0

(b) MSE: 2 hidden layers

0 10000 20000 30000 40000 50000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
) Train =0.01

Test =0.01
Train =0.1
Test =0.1
Train =1
Test =1
Train =0.5
Test =0.5
Train =1.5
Test =1.5

(c) CE: 2 hidden layers

Figure 13: The α parameter controls generalization in settings where it happens by default. This is
the case for shallow networks with MSE loss as shown in subplot (a). However, in deeper networks
(b) or networks with CE loss and no regularization (c), α can control the time of over-fitting, but no
value of α is enough to trigger grokking.

D FURTHER DISCUSSION ON CONDITIONS THAT LEAD TO GROKKING

D.1 L1 REGULARIZATION AND GROKKING

While it has been observed that L1 regularization can lead to grokking in some settings, Nanda et al.
(2023) consistently found no grokking with L1 regularization and transformers and this setting has
received substantially less attention than weight decay.

We observe that NLM scales the weights along their current direction. This means that larger weights
are scaled more than small weights. However, while the sign of the gradient from L1 regularization
depends on the sign of the weights, the magnitude of this gradient does not depend on the magnitude
of the weights. This means that, particularly on deep networks or transformers with with large
weights, L1 can sometimes be insufficient to prevent NLM and the subsequent SC.

D.2 DELAYING GENERALIZATION BY SCALING THE WEIGHTS

Scaling the logits can delay generalization but not induce it. Liu et al. (2023a), Kumar et al.
(2023) and Lyu et al. (2024) showed that an α parameter multiplying the logits can increase or reduce
the delay in generalization. We highlight in Fig. 13 that this is true for cases where generalization
happens even without changing the scale of the logits (α = 1). However, in most cases when using
deeper networks or cross-entropy loss, models do not generalize by default without regularization
and we are unable to induce grokking for any value of α.

We argue in Sec. 5.2 that the observation in Liu et al. (2023a), Kumar et al. (2023) and Lyu et al.
(2024) of grokking without regularization are due to the inductive bias of MSE loss which prevents
NLM and leads to grokking in some settings for shallow networks.

Grokking on MNIST. We replicate the setting from Liu et al. (2023b) of grokking on MNIST with
cross-entropy loss and show that without weight decay, the scaling factor of the weights leads to
significant FP errors, preventing grokking from happening until this is alleviated by weight decay.

While SC explains why weight decay is needed to get the jump in performance observed in Fig. 14b.
It could also explain why inducing grokking by scaling the weights is less effective when using SCE.
While when using MSE loss, Liu et al. (2023a) are able to induce full grokking from random level
predictions to close to full training accuracy, the same does not seem to be possible when using SCE.
In fact, we see in Fig. 14b that since the begining of training the rate of SC approaches 100%. This
could explain why the observations with cross-entropy loss are not the ones predicted by the lazy
training theories outlined in Kumar et al. (2023) which do not take limited floating point precision
into account.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000
Epoch

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Training accuracy
Test accuracy
Softmax Collapse

(a) MLP without weight decay

0 2000 4000 6000 8000
Epoch

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Training accuracy
Test accuracy
Softmax Collapse

(b) MLP with weight decay.

Figure 14: Replicatting the grokking on MNIST for weight decay setting from Liu et al. (2023b).
We find that MLPs with weights scaled up by 100 operate at the “edge of numerical stability” and
in the absence of weight decay, SC eventually reaches 100%, preventing any further generalization.
When using weight decay, the weight norm is reduced, mittigating SC and eventually allowing for
further generalization as the SC rate drops from 100%.

E ⊥Grad AND WEIGHT DECAY

In Fig. 15, we provide a more in depth comparison of ⊥Grad and weight decay. Fig. 15a higlights
that increasing the weight decay multiplier leads to a smaller delay in generalization, but only after
a point. In this concrete setting, a weight decay multiplier of 8, prevents the model from fully
generalizing (Fig. 15a). We then compare the best value of weight decay in this setting to ⊥Grad,
which does not require any hyper-parameter tuning. Fig. 15b shows that ⊥Grad leads to faster
grokking even when compared to a tuned value of weight decay. Note that the models with weight
decay overfit immediately before grokking while ⊥Grad reaches 100% train and test accuracies
almost at the same time.

0 200 400 600 800 1000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Train acc.
Test acc. - wd=2
Test acc. - wd=4
Test acc. - wd=6
Test acc. - wd=8

(a) Sweep over values of weight decay

0 200 400 600 800 1000
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Train acc. Grad
Test acc. - Grad
Train acc. - wd=6
Test acc. - wd=6

(b) ⊥Grad vs best performing wd model

Figure 15: Increasing weight decay for an MLP trained on modular addition with AdamW reduces
the delay in generalization up to a point where weight decay prevents convergence Fig. 15a. Without
any tunable hyper-parameters and without weight decay, ⊥Grad leads to grokking faster than the
best model with weight decay Fig. 15b. The seed used in Fig. 15a are highlighted in Fig. 15b

F ALTERNATIVES TO StableMax IN PREVENTING SC

While any intervention that prevents SC should lead to grokking or generalization, Fig. 16 shows
that scaling the temperature of the softmax is not enough to prevent SC and label smoothing does

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

prevent SC and lead to some generalization, but at the cost of introducing another inductive bias that
prevents full generalization and leads to qualitatively different behavior. By comparison, the simple
change introduced in Stablemax prevents SC and leads to grokking, serving as a validation for our
hypothesis that gradient descent leads to grokking by default, unless this is stopped by SC.

G STABLEMAX AND ⊥Grad IN REALISTIC SETTINGS

0 10000 20000 30000 40000 50000 60000 70000
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Test acc. -
 Label
 smoothing
Test acc. -
 Temperature
 scaling
Test acc. -
 Stablemax
Train
 accuracies

Figure 16: We compare StableMax prevents SC
and leads to grokking while temeperature scaling
with T=1e5 only gradually delays SC, and label
smoothing does prevent SC but at the cost of keep-
ing the model from fully generalizing.

While Stablemax and ⊥Grad are dsigned as
interventions to show that preventing SC leads
to grokking and preventing NLM leads to gen-
eralization (Fig. 1), in this section we explore
if these methods are applicable in more realis-
tic settings like language modeling with GPT2-
small or resnets trained on image classification.
We train GPT2-Small for 1 epoch on WikiText-
103 using a batch size of 16, a block size of
512, a learning rate of 5e − 4 and a weight de-
cay of 0.01 using AdamW. The architecture is
the regular GPT2-Small architecture from Rad-
ford et al. (2019), trained with a cosine schedule
and 1000 steps of warmup.

For CIFAR10 and CIFAR100, our baseline is
a Resnet18 with SCE loss trained with SGD 0.9 momentum and 1e − 4 weight decay. We use
standard data transformations such as random crop and random horizontal flip and a step learning
rate scheduler every 30 epochs for a full training run of 100 epochs. With respect to this baseline we
report results replacing the Softmax with StableMax in the loss function, as well as replacing SGD
with ⊥SGD.

0 2000 4000 6000 8000 10000 12000 14000
Step

0

50

100

150

200

250

300

350

400

Va
lid

at
io

n
Pe

rp
le

xi
ty

stablemax loss
softmax baseline

Grad
stablemax attention

(a) GPT2-Small on WikiText2

0 20 40 60 80 100
Epoch

20

40

60

80

Ac
cu

ra
cy

 (%
)

Val acc. - Stablemax
Val acc. - Softmax
Val acc. - Grad
Train acc. - Stablemax
Val acc. - Softmax
Val acc. - Grad

(b) ResNet18 on CIFAR100

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Val acc. - Stablemax
Val acc. - Softmax
Val acc. - Grad
Train acc. - Stablemax
Val acc. - Softmax
Val acc. - Grad

(c) ResNet18 on CIFAR10

Figure 17: Comparing Stablemax and ⊥Grad to AdamW with SCE on text data Fig. 17a and image
data Fig. 17c. For the GPT2-small results in Fig. 17a, we also include the results of replacing the
softamx in the attention mechanism with stablemax.

Method CIFAR10 CIFAR100 ImageNet-1k WikiText-103 (Top-5)

Softmax CE 87.17%± 0.2 59.98%± 0.4 69.76% 59.58%
Stablemax CE 87.01%± 0.2 60.63%± 0.4 65.76% 52.14%
⊥Grad 87.22%± 0.2 62.69%± 0.1 68.9% 59.53%

Stablemax Attention – – – 58.37%

Table 1: Test accuracies with standard deviation across five seeds for three different tasks using the
methods introduced in this paper. We report Top-5 accuracy in the case of WikiText-103.

19

	Introduction
	Setup
	Datasets
	Models

	Softmax Collapse: Floating Point Errors Prevent Grokking
	Softmax Collapse
	Evidence of Softmax Collapse in Grokking Tasks
	Preventing Softmax Collapse Leads to Grokking

	Diagnosing the Causes of Softmax Collapse
	Ease of Overfitting in Grokking Tasks
	Naïve Loss Minimization

	Mitigating Naïve Loss Minimization Leads to Grokking
	Grad: An optimizer to prevent NLM
	Explaining the success of existing methods for grokking

	Related Work
	Conclusion and Discussion
	Proofs
	Additional Findings
	Further evidence that SC prevents grokking
	SGD with learning rate scheduling

	Effective Learning Rate
	Additional ways to induce grokking
	Solution Learned During Grokking Without Weight Decay

	Further Discussion on Conditions that Lead to Grokking
	L1 regularization and grokking
	Delaying generalization by scaling the weights

	Grad and weight decay
	Alternatives to StableMax in preventing SC
	Stablemax and Grad in realistic settings

