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Abstract
Diffusion models are the current state-of-the-art
in image generation, synthesizing high-quality
images by breaking down the generation pro-
cess into many fine-grained denoising steps. De-
spite their good performance, diffusion models
are computationally expensive, requiring many
neural function evaluations (NFEs). In this work,
we propose an anytime diffusion-based method
that can generate viable images when stopped at
arbitrary times before completion. Using existing
pretrained diffusion models, we show that the gen-
eration scheme can be recomposed as two nested
diffusion processes, enabling fast iterative refine-
ment of a generated image. We use this Nested
Diffusion approach to peek into the generation
process and enable flexible scheduling based on
the instantaneous preference of the user. In exper-
iments on ImageNet and Stable Diffusion-based
text-to-image generation, we show, both qualita-
tively and quantitatively, that our method’s inter-
mediate generation quality greatly exceeds that of
the original diffusion model, while the final slow
generation result remains comparable.1

1. Introduction
The sampling process of modern diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019)
can be computationally expensive (Salimans & Ho, 2022;
Song et al., 2020; Lu et al., 2022), due to the large networks
used and the iterative nature of the reverse diffusion process.
During sampling, it is possible to monitor the diffusion mod-
els by examining the intermediate predictions, denoted as
x̂0, at various time steps. However, these predictions do
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not align with the learned image manifold and often exhibit
a smooth or blurry appearance (Kawar et al., 2021). To
address this issue, we propose Nested Diffusion, a novel
technique that leverages a pretrained diffusion model to
iteratively refine generated images, acting as an anytime
generation algorithm. With Nested Diffusion, intermediate
predictions are of better quality, and users have the ability
to observe the generated image during the sampling process
and can choose to terminate the generation if the intermedi-
ate result is satisfactory. Furthermore, in the setting where
multiple images are generated concurrently, the user has
the option to select the leading candidate and guide the
sampling process towards the preferred image.

2. Preliminaries: Diffusion Models
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019) are the state-of-the-art genera-
tive models (Dhariwal & Nichol, 2021), relying on the capa-
bilities of deep neural networks (DNN) in removing Gaus-
sian noise. The forward diffusion process is defined as a
degradation of a data point x0 in a dataset D with accumulat-
ing Gaussian noise using a series of noise amplitudes βt and
q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI) for all timesteps

t = 1, . . . , T . During training, the reverse diffusion process
pθ(xt−1|xt) is learned by minimizing the evidence lower
bound (ELBO) on the training dataset. The ELBO can
be written as a sum of Kullback Leibler divergence terms
between q(xt−1|x0,xt) and pθ(xt−1|xt), which have a sim-
ple closed-form target when pθ(xt−1|xt) is modeled as a
Gaussian distribution. The trained DNN gradually removes
noise from a random initialization xT ∼ N (0, I), sampling
iteratively from the learned distributions pθ(xt−1|xt), and
finally outputting a generated image x0 ∼ q(x0).

3. Nested Diffusion
3.1. Formulation

In DDPM (Ho et al., 2020), pθ(xt−1|xt) is assumed to
follow a Gaussian distribution, with its mean defined us-
ing the expectation E[x0|xt] yielded by the DNN, and its
variance defined as a constant. Thus, we can sample from
pθ(xt−1|xt) in closed-form. However, we can reinterpret
this sampling by marginalizing the distribution pθ(xt−1|xt)
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Figure 1. Results of intermediate predictions of Stable Diffusion from a reverse diffusion process of 100 steps (top) and 80 steps (bottom).

as a convolution of two others (Xiao et al., 2022) – the
closed-form distribution q(xt−1|x0,xt), and a DNN-based
approximation pθ(x0|xt), as follows:

pθ(xt−1|xt) =
∫

q(xt−1|x0,xt)pθ(x0|xt)dx0. (1)

In DDPM, pθ(x0|xt) would correspond to a Dirac
delta function around the DNN-estimated E[x0|xt],
and q(xt−1|x0,xt) would be a fixed Gaussian.
More generally, sampling from the joint distribution
pθ(xt−1,x0|xt) = q(xt−1|x0,xt)pθ(x0|xt) can be done
sequentially, by first sampling x̂0 ∼ pθ(x0|xt) and then
sampling xt−1 ∼ q(xt−1|x̂0,xt), resulting in xt−1 that
follows Equation 1. The generalized reverse diffusion
process, following this interpretation, is presented in
Algorithm 1.

Algorithm 1 Sampling from Reverse Diffusion Process
xT ∼ N (0, I)
for t in {T . . . 1} do
x̂0 ∼ pθ(x0|xt)
xt−1 ∼ q(xt−1|x̂0,xt)

end for
return x0

Note that after training pθ(x0|xt) for a certain

q(xt−1|x0,xt), it is possible to utilize the same DNN model
for different distributions q. For instance, DDIM (Song
et al., 2020) utilizes a deterministic q(xt−1|x0,xt)
(equivalent to a Dirac delta function) for faster generation.
Interestingly, by sampling using Algorithm 1, the Gaussian
assumption on pθ(xt−1|xt) is no longer required, and can
be generalized beyond DDPM sampling. In this setting,
pθ(x0|xt) may be any learned distribution, and is not
restricted to a delta function or a Gaussian form.

3.2. Method

We suggest that many valid choices of q(xt−1|x0,xt) and
an accurate DNN-based approximation pθ(x0|xt) can gener-
ate high quality samples using Equation 1 and Algorithm 1.
This could allow us to harness many different generative
models into the diffusion process, for instance as done with
GANs (Goodfellow et al., 2014) by Xiao et al. (2022). In
this section, we suggest that even complete diffusion pro-
cesses may be used as a good approximation for pθ(x0|xt).

We propose a Nested Diffusion process, where an outer
diffusion process would utilize the generative sampler
pψ(x0|xt) – itself an inner diffusion process. As shown in
Algorithm 2, for each sampling step in the outer diffusion,
the inner diffusion would use an unaltered (vanilla) diffu-
sion model to generate a plausible image x̂0, which would
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Algorithm 2 Sampling from Nested Diffusion
Outer diffusion denoted in blue
Inner diffusion denoted in purple
xT ∼ N (0, I)
for t in {T . . . 1} do
x′
T ′ = xt

for t′ in {T ′ . . . 1′} do
x̂′
0′ ∼ pθ(x

′
0′ |x′

t′)
x′
t′−1 ∼ q′(x′

t′−1|x̂′
0′ ,x

′
t′)

end for
x̂0 = x′

0′

xt−1 ∼ q(xt−1|x̂0,xt)
end for
return x0

than be used to calculate xt−1 in the outer diffusion. We
emphasize that only the inner diffusion uses a DNN. The
inner diffusion becomes the outer diffusion’s abstraction for
a generative model.

Unlike vanilla diffusion processes, Nested Diffusion yields
a more detailed x̂0 at the termination of each outer step.
This is because x̂0 is a sample generated from the multi-
step inner diffusion process, and not the mean yielded by a
single denoising step. These x̂0 estimations hint at the final
algorithm result while being closer to the manifold. Using
Nested Diffusion, the sampling process becomes an anytime
algorithm, in which a valid image may be returned if the
algorithm is terminated prematurely.

Nested Diffusion requires |outer steps|× |inner steps| NFEs
for a complete image genration process. For a given
number of NFEs, Nested Diffusion may support any ratio
RND = |outer steps|

|inner steps| . This ratio represents a tradeoff between
fast updates to the predicted image, and the intermediate
image quality (see Appendix A). Additionally, the ratio
influences the number of NFEs needed before Nested Dif-
fusion produces its initial intermediate prediction, which
occurs at the conclusion of the first inner process. In the ex-
tremes, where the number of either outer steps or inner steps
is one, the process reverts to vanilla diffusion sampling.

The computation devoted to each outer step is not required
to be the same – i.e. different ratio per outer step. As
the number of inner steps corresponds to the number of
NFEs, changing the length of each outer steps determines
the amount of computations devoted to this step. In our
experiments, we use the same number of inner steps for
each outer step for simplicity. We hope that future work
could fine-tune the inner step allocation for each outer step
and achieve better results.

Figure 2. 50K FID evaluation of intermediate predictions from
Nested (ND) and vanilla (Van) diffusion processes.

4. Experiments
We evaluate Nested Diffusion as an anytime image gener-
ator using a DiT model (Peebles & Xie, 2022) trained on
256× 256-pixel ImageNet (Deng et al., 2009) images, as
well as Stable Diffusion (Rombach et al., 2022) V1.5. To
ensure a fair comparison, we compare Nested Diffusion
against the unaltered sampling algorithm (vanilla) using the
same models, hyperparameters, and total number of NFEs
used.

All experiments use deterministic DDIM (Song et al., 2020)
sampling for the outer diffusion. The inner diffusion hy-
perparameters are chosen according to the best practices of
each model used.

4.1. Class-Conditional ImageNet Generation

The denoising DNN from DiT (Peebles & Xie, 2022) uses
a VAE (Kingma & Welling, 2013) based architecture to
decode generated latent samples (Vahdat et al., 2021; Rom-
bach et al., 2022), thus enabling the appliciation of the dif-
fusion model in a smaller latent space. The DNN is trained
using Kullback Leibler divergence to yield both the mean
and variance of a Gaussian distribution pθ(x0|xt)2. In ad-
dition, the DNN has been trained with class-labels, using
Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) to
generate class-conditional samples. When using this DNN
for Nested Diffusion, both the inner diffusion and the outer
are conducted in the latent space. The variance prediction
is used only in the inner diffusion, while the outer diffusion

2The model directly predicts the conditional mean of the Gaus-
sian noise in xt and the variance of pθ(xt−1|xt), but we can use
a change of variables to view these as the mean and variance of
pθ(x0|xt), conforming with our notation.
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Figure 3. Samples of ImageNet generation, comparing vanilla diffusion model against Nested Diffusion.

remains deterministic DDIM sampling. CFG is regarded as
part of the DNN, and therefore applied in the inner diffusion
only. We set the CFG value to 1.5 similar to Peebles & Xie
(2022). In Figure 3 we compare samples generated using
250 vanilla diffusion steps against Nested diffusion with 5
outer steps with 50 inner steps each (totaling 250 NFEs).
The latents from the intermediate steps are decoded using
the VAE decoder.

In Figure 2 we compare the FID (Heusel et al., 2017) of
intermediate estimations of Nested Diffusion with the in-
termediate estimations of vanilla diffusion models, for the
same number of NFEs3. We note that the intermediate
FID scores for Nested Diffusion are much better than their
vanilla counterparts, while the final result FID (without pre-
mature interruption) of Nested Diffusion is comparable to
the vanilla diffusion. Exact FID values can be found in
Table 1 in Appendix B.

3FID for vanilla diffusion DiT reflect results reproduced by us,
which are slightly better than reported in the original paper (Peebles
& Xie, 2022).

4.2. Text-to-Image Generation

Stable Diffusion is a large text-to-image model capa-
ble of generating photo-realistic images for any textual
prompt (Rombach et al., 2022). We use Stable Diffusion to
test Nested Diffusion for text-to-image generation. Similar
to subsection 4.1, Stable Diffusion’s process runs in a latent
space, and uses CFG for text-conditional sampling. We
implement Nested Diffusion using non-deterministic DDIM
with η = 0.85 for the inner diffusion, and treat the CFG
as we did in subsection 4.1, setting it to the default value
of 7.5. In Figure 1, we present intermediate results from
Nested Diffusion and compare them to their counter parts
from vanilla Stable Diffusion, decoding intermediate latents
using the VAE decoder. The Nested Diffusion sampling
process previews satisfactory outputs, highly similar to the
end result. The finer details in the images improve with
the accumulation of more NFEs. Based on the figure, it
is apparent that the intermediate latents obtained from the
vanilla diffusion model do not correspond to valid latents.
As a result, when these latents are decoded, they produce
“fracture patterns“ instead of natural-looking images. More
examples for generated images can be found in Appendix B.
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Figure 4. 50K FID evaluation of intermediate predictions of Nested Diffusion’s inner and outer diffusion process, compared against a
vanilla diffusion process. FID is measured every 10 NFEs for Nested Diffusion’s inner diffusion process and for the vanilla one, whereas
the Nested Diffusion outer process’s FID scores correspond to every fourth inner diffusion measurement, i.e., every 40 NFEs.

Table 1. 50K FID evaluation of Nested (ND) and vanilla (Van) diffusion processes when stopped at different percentages of the full
algorithm runtime (100, 150, 250 NFEs).

TOTAL 100 NFES TOTAL 150 NFES TOTAL 250 NFES

% NFES VAN ND NFES VAN ND NFES VAN ND

20% 20 282.89 13.03 30 282.05 6.57 50 284.13 3.57
40% 40 202.34 9.20 60 199.74 4.99 100 197.74 3.08
60% 60 65.22 5.97 90 62.37 3.58 150 60.19 2.61
80% 80 8.10 4.00 120 7.67 2.82 200 7.57 2.36
100% 100 2.44 3.18 150 2.24 2.50 250 2.16 2.28

A. Outer Steps – Inner Steps Trade-off
In Figure 4 we visualize the sample quality trend for intermediate inner samples x̂′

0′ using FID. The graph shows five
distinct drops, corresponding to the five outer diffusion steps. Within each outer step, the inner diffusion’s intermediate
prediction’s quality improves quickly until yielding its final x′

0′ , which (as shown in Algorithm 2) is also the outer diffusion’s
intermediate prediction x̂0. Nested Diffusion would return the last x̂0 computed if terminated prematurely – corresponding
to the local minimas in the graph, shown in green.

The ratio RND = |outer steps|
|inner steps| determines the NFEs required for each update of the Nested Diffusion intermediate prediction.

Faster update rates come at a cost of lower intermediate prediction samples quality. Figure 5 shows this trade-off, showing
Nested Diffusion sampling with different RND where all other hyperparameters as well as the random seed remain equal.

B. More Examples
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Figure 5. Qualitative examples of Nested Diffusion with different ratios RND , each column denoted with |outer steps|/|inner steps| at the
top or bottom. Top text: a photograph of an hourglass filled with snowflakes. Bottom text: a diagram of an ancient sundial. Diffusion
process progresses from top to bottom.
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Figure 6. Additional samples of ImageNet generation, comparing vanilla diffusion model against Nested Diffusion.
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Figure 7. More Results of intermediate predictions of Stable Diffusion from a reverse diffusion process with 80 steps.


