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ABSTRACT

Scientific posters are an effective and expressive medium for conveying the
core ideas of academic papers, facilitating the communication of research tech-
niques. However, creating high-quality scientific posters is a complex and time-
consuming task that requires advanced skills to summarize key concepts and ar-
range them logically and visually appealingly. Previous studies have primarily
focused on either content extraction or the layout and composition of posters, of-
ten relying on small-scale datasets. The scarcity of publicly available datasets
has further limited advancements in this field. In this paper, we introduce a new
task called layout-aware scientific poster generation (LayoutSciPG), which aims
to generate flexible posters from scientific papers through integrated automatic
content extraction and layout design. To achieve this, we first build a new dataset,
namely SciPG, containing over 10,000 pairs of scientific papers and their corre-
sponding posters. We then propose a multimodal extractor-generator framework,
which employs a multimodal extractor to retrieve key text and image elements
from the papers and designs an interactive generator with an adaptive memory
mechanism to seamlessly paraphrase the extracted content and generate a struc-
tured layout. This approach effectively tackles challenges related to GPU mem-
ory consumption and long-term dependencies when handling the lengthy inputs
(scientific papers) and outputs (posters). Finally, both qualitative and quantita-
tive evaluations demonstrate the effectiveness of our approach while highlighting
remaining challenges.

1 INTRODUCTION

Recent years have witnessed a significant increase in the number of scientific papers published in
various academic conferences and journals. For example, AAAI, a prominent international confer-
ence on artificial intelligence, received over 2,300 papers in 2024 alone. It is time-consuming for
researchers to digest all these papers. Scientific posters offer an effective and expressive way to
present the core ideas and findings from original papers, enabling researchers to quickly grasp the
overall content. However, creating a high-quality scientific poster from scratch that is both informa-
tive and aesthetically pleasing is a challenging task. Poster design is a complex and time-consuming
task that requires both a deep understanding of the paper’s content and experience in design. Conse-
quently, the need for automatic generation of readable, informative, and visually appealing posters
has become increasingly important.

Scientific poster generation involves multimodal understanding and reasoning, as both the paper
document and the poster contain tightly integrated text and image elements 1. Previous approaches
for automatic poster generation have primarily focused on either the layout and composition of
posters (Paramita & Khodra, 2016; Qiang et al., 2016; 2019) or content extraction (Xu & Wan,
2021; 2022). These methods have not performed well because those emphasizing layout and com-
position often neglect the importance of robust content extraction, relying on simple summarization
models such as TextRank (Mihalcea & Tarau, 2004). Conversely, approaches that focus on content
extraction typically use LaTeX templates for poster generation, which lack diversity and flexibility

1The image element includes figures, charts, and tables; henceforth, we will refer to them collectively as
images.
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in layout design. These naturally bring us to a question: can machines learn to automatically gener-
ate diverse and flexible posters from a large quantity of example pairs of papers and posters created
by human experts?

Table 1: A summary of main scientific poster generation datasets. Compared to ours, these datasets
are relatively small. Moreover, they are typically designed for either content extraction or layout
generation, rather than encompassing both aspects.

Datasets #(Paper-Poster Pairs) Tasks
Content Extraction Layout Generation

NCE ((Xu & Wan, 2021)) 60 ✓ ✗
PGM ((Qiang et al., 2016)) 25 ✗ ✓
NJU-Fudan ((Qiang et al., 2019)) 85 ✗ ✓
SciPG 11,302 ✓ ✓

To automatically generate a diverse and flexible scientific poster that accurately represents the orig-
inal paper, three key challenges need to be addressed: (1) Multimodal Extraction: Important text
and image elements must be exactly extracted from the original paper. (2) Multimodal Generation:
The extracted textual elements typically cannot be directly placed onto the poster. They need to be
paraphrased into a concise form suitable for the poster. Additionally, the size and placement of both
the extracted image elements and the paraphrased text elements must be carefully considered. (3)
Large-Scale Training Data: As shown in Table 1, existing data-driven approaches rely on small-
scale datasets. The lack of publicly available large-scale datasets has hindered further research in
this area.

To address the aforementioned challenges, we first collect a new dataset of paper-poster pairs from
public conference web pages, explicitly aligning elements of each paper with its corresponding
poster. We then propose a multimodal extractor-generator framework for LayoutSciPG, which in-
volving: (1) Multimodal Extraction: Using a multimodal extractor to retrieve text and image ele-
ments from the paper. (2) Interactive Generation: Implementing an interactive generator with an
adaptive memory mechanism to jointly paraphrase the extracted elements and generate the corre-
sponding layout positions. This interactive generation and adaptive memory mechanism address the
challenges of GPU memory cost and long-term dependencies in handling the lengthy inputs (papers)
and outputs (posters).

The contributions of this paper are as follows:

• We create and will release a new dataset 2, namely SciPG, for the task of scientific poster
generation for research purposes.

• We develop a multimodal extractor-generator framework for LayoutSciPG. This includes a
multimodal extractor for joint text and image extraction, and an interactive generator that
unifies the paraphrasing of extracted elements and layout generation.

• Both automatic and human evaluation results demonstrate the effectiveness of our ap-
proach, while also revealing some remaining challenges.

2 RELATED WORK

2.1 TEXT SUMMARIZATION

Text summarization generally falls into two categories: extractive summarization (Cheng & Lapata,
2016; Yao et al., 2018; Nallapati et al., 2017) and abstractive summarization (Nallapati et al., 2016;
Yao et al., 2020; See et al., 2017). Extractive summarization focuses on identifying the most salient
parts of the input document and using them directly as the output summary. For example, Cheng
& Lapata (2016) employed a neural attention model to select sentences or words from the input
document as the summary. Similarly, Nallapati et al. (2017) developed a recurrent neural network
(RNN) for extractive summarization. While abstractive summarization involves paraphrasing or
rewriting the important parts of the input document into a concise summary. For instance, Lead3
(Nallapati et al., 2016) used an attentional encoder-decoder RNN for abstractive text summarization.

2The source code and data will be made available upon acceptance of this work.
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See et al. (2017) designed a hybrid pointer-generator network that can copy words from the source
text via pointing, enabling more robust summary generation. However, these approaches are tailored
for pure text summarization and do not account for the graphical elements in the original document.

Our LayoutSciPG combines both abstractive and extractive summarization, as it requires extracting
key elements from a document and rewriting it into a concise form. A closely related task is scientific
document summarization (Jaidka et al., 2016; Parveen et al., 2016), but existing work in that area
has primarily focused on producing pure text summaries. In contrast, our focus is on generating
multimodal scientific posters.

2.2 MULTIMODAL SUMMARIZATION

Our LayoutSciPG closely aligns with multimodal summarization, which focuses on extracting the
most important information from various modalities to create summaries. For example, Zhu et al.
(2018) introduced the first multimodal summarization (MSMO) model and compiled a dataset that
includes both text and image modalities. Li et al. (2020b) extended this approach to video-based
news articles, employing conditional self-attention for text and video fusion. More recently, He et al.
(2023) proposed a unified transformer-based model that effectively aligns and attends to multimodal
inputs. While LayoutSciPG similarly involves summarizing multimodal documents, it also requires
structuring the multimodal summary within a specific layout, incorporating layout prediction as an
essential component.

2.3 AUTOMATIC POSTER GENERATION

Existing methods for poster generation have primarily concentrated on either the scientific poster
composition (Paramita & Khodra, 2016; Qiang et al., 2016; 2019) or content extraction (Xu &
Wan, 2021; 2022). Approaches that emphasize layout composition often overlook the importance of
robust content extraction, relying on basic summarization models like TextRank (Mihalcea & Tarau,
2004). In addition, they have typically employed simple probabilistic graphical models to infer
panel attributes, but these approaches require human annotation of poster panels. On the other hand,
content-focused methods typically use predefined LaTeX templates for poster generation, which
limits both the flexibility and aesthetic appeal of the resulting scientific posters. Additionally, current
datasets in this domain are relatively small, with fewer than 300 paper-poster pairs each. To address
this, we have constructed a new dataset comprising 11,302 pairs of high-quality scientific documents
and posters.

3 DATASET

We collect pairs of scientific paper documents and the corresponding posters from the recent aca-
demic conference proceedings, including CVPR, ICML, NeurIPS and ICLR. These academic pro-
ceedings mainly focus on research communities of computer vision and machine learning. Table 2
reports the descriptive statistics of our dataset.

Table 2: Statistics of datasets. We report the average number of sentences, words and figures in a
document or a poster.

Conference Year Document - Poster Documents Posters
Train / Val / Test #Sentences #Words #Figures #Sentences #Words #Figures

CVPR 2023 1,851 / 231 / 231 489.28 7827.48 10.82 38.29 345.80 8.14
ICML 2022 / 2023 1,910 / 239 / 239 799.5 13,397.18 15.13 55.03 572.79 5.94
NeurIPS 2022 / 2023 3,625 / 453 /453 634.59 10,712.07 11.43 51.9 544.55 6.52
ICLR 2023 / 2024 1,653 / 207 / 207 800.59 12,436.17 19.86 49.69 500.96 7.08
Total - 9,039 / 1,129 /1,134 670.05 11,004.36 13.63 49.37 501.85 6.83

For the collected pairs, we randomly split them by 8:1:1, resulting in 9,039, 1,130, and 1,130 pairs
allocated to the training, validation, and test sets, respectively. Meanwhile, we automatically extract
text and image elements from documents and posters and perform matching to create document-
to-poster alignment. The details for data processing and element alignment are represented in Ap-
pendix 6.
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Figure 1: Overview of our proposed framework.

4 METHODOLOGY

4.1 OVERVIEW

LayoutSciPG aims to generate a poster from a multimodal document containing both text and im-
ages. We decompose this task into several subtasks: first, summarizing the document by extracting
important sentences and images; next, paraphrasing the extracted sentences into a concise format
suitable for poster presentation; and finally, placing the paraphrased sentences and images in ap-
propriate locations on the poster. To achieve this, we propose a multimodal extractor-generator
framework, which performs multimodal content extraction, paraphrasing, and layout generation.
Figure 1 provides an overview of our approach, which includes the following modules:

• A Multimodal Document Extractor (MDE) encodes both sentences and images from the
paper document and selects which of them should be extracted;

• An Interactive Generator (IG) fulfills both paraphrasing the extracted sentences and lay-
out generation of text and image elements.

Given a scientific paper document D = {T , V }, where T = {t1, t2, ..., tn} is a sequence of n
sentences and V = {v1, v2, ..., vm} is a collection of m images. MDE first extracts the important
multimodal elements X = {Xt, Xv} from D, and IG paraphrases the selected sentences Xt into Yt

and predicts the layout information L = {Lt, Lv} of {Yt, Xv}, where Xt and Yt denote the directly
extracted and paraphrased sentences, respectively. Xv is a subset of images extracted from D. Lt

= {xt
0, yt0, wt

0, ht
0} and Lv = {xv

0 , yv0 , wv
0 , hv

0} are the bounding box (bbox) coordinates of the Yt

and Xv , where the first two values indicate the top left corner location, and the last two indicate the
width and height.

4.2 MULTIMODAL DOCUMENT EXTRACTOR

To capture both the textual and visual information from document D, we extend a text encoder,
specifically RoBERTa (Liu et al., 2019), into a multimodal encoder. This multimodal encoder takes
the concatenation of text embeddings (et) and visual embeddings (ev) as input, outputting contex-
tualized joint representations. Specifically, given a document D containing n sentences {t1, t2, ...,
tn} and m images {v1, v2, ..., vm}, we use RoBERTa to encode each sentence ti. For the images,
we employ a pre-trained CLIP (Radford et al., 2021) vision encoder to extract visual features, which
are then projected via a linear layer to match the hidden dimension of the text input. Additionally,
we represent the images with a series of special index tokens: “[img 1]” denotes the first image,
“[img 2]” the second, and so on. This formulation allows us to utilize the standard Transformer ar-
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chitecture with minimal modifications while also facilitating the subsequent paraphrasing of visual
elements. The encoding process for each modality is formulated as follows:

et = EmbeddingLayer([t1, ..., tn]),

eiv = EmbeddingLayer([img 1], ..., [img m]),

ejv = [CLIP(v1), ...,CLIP(vm)]Wv,

e = [et; ev] = [et, e
i
v + ejv],

h = [ht;hv] = fenc(e),

(1)

where EmbeddingLayer is the embedding layer of RoBERTa, fenc denotes RoBERTa based encoder
function, and Wv denotes the feature projection, which are learnable parameters.

In our encoder, we represent individual sentences by inserting additional “[CLS]” and “[SEP]” to-
kens at the beginning and end of each sentence, respectively. The “[CLS]” token is used to aggregate
the features of the sentence that follows it, i.e., ĥt = ht[CLS]. For visual features, we directly use
hv as the representation for each image. Next, we apply a bidirectional long short-term memory
network (BiLSTM) (Zhang et al., 2015) to capture the contextualized representations of both sen-
tences and images. Finally, a fully connected layer (MLP) is used on top of the BiLSTM to predict
an extractive score for each sentence and image:

[h
′

t;h
′

v] = BiLSTM([ĥt;hv]),

fcls(h
′
) = Wtv[h

′

t;h
′

v] + btv,
(2)

where Wtv and btv are learnable parameters. By adopting such a hierarchical framework for the se-
mantic representations. RoBERTa at the lower level learns sentence-level semantic representations,
while a BiLSTM at the higher level captures the contextual semantic representations for the entire
document. Finally, based on the extractive score s for each sentence and image, we use the standard
binary cross-entropy loss as the objective function for the extractive references:

ptv(h̃) =
exp(fcls(h̃))∑

h̃∈[h
′
t;h

′
v]

exp(fcls(h̃))
,

Lext = −
∑

h̃∈[h
′
t;h

′
v ]

logptv(h̃)
(3)

4.3 INTERACTIVE GENERATOR

We propose an interactive generator that unifies multimodal generation (i.e., text, images, and lay-
out) using BART (Lewis et al., 2019) in an interactive fashion. Given an input list from the extractor,
at each step, we automatically feed one element of the input into the generator, which then returns
its predicted result. This process is repeated iteratively until the entire input list has been processed.
Instead of relying on a dedicated module for image representation, we adopt a similar approach
as in the extractor by utilizing an index token, such as “[img i]”, to indicate that the i-th image is
the target. This allows all target outputs to be transformed into a textual format, while the visual
input are represented as the image feature, which are concatenated with textual token embeddings
as input for the generator. Additionally, we encode the bounding boxes for each target sentence and
image in the format “x0, y0, w, h”, appended at the end of each sequence as the final target output,
where (x0, y0) represents the top-left corner coordinates and (w, h) denotes the width and height.
An example of the input-to-output format is provided on the right side of Figure 1. Note that we
use four “[mask]” tokens to indicate the layout coordinates in the input, ensuring alignment with
the pretraining task. To address the challenge of long target generation, we draw inspiration from
the memory mechanism in the Recurrent Memory Transformer (RMT) (Bulatov et al., 2022) and
introduce an adaptive memory module. This memory module enhances the model’s ability to han-
dle long-term dependencies in extended generation tasks, while the interactive generation approach
mitigates GPU memory limitations.
4.3.1 GENERATOR FORMULATION.
Given the extracted elements X = {Xt, Xv}, For each element (text sentence or image) x ∈ X
, the generator predicts the generation probability Pθ(yt, lt|x, y<t, l<t) based on the current input

5
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element xt and previous contextual history (y<t, l<t). For the whole extracted elements X , the
generation probability can be computed as: Pθ(Y,L|X)

Pθ(Y,L|X) =
∏

xt∈X

Pθ(yt, lt|xt, y<t, l<t) (4)

where y ∈ Y is the paraphrasing content of x ∈ X and l ∈ L is the corresponding bounding boxes
of each extracted element y. Finally, our training objective employs negative log-likelihood (NLL)
loss, combined with KL-Divergence between the predicted probability Pθ and the output one-hot
distribution P

′

θ , incorporating Label Smoothing (Szegedy et al., 2016) to prevent the model from
becoming overconfident.

Lgen = −logPθ(Y, L|X) + β ∗DKL(Pθ||P
′

θ) (5)

where β is a weight parameter to balance the NLL loss and KL-D loss. During the interactive gen-
eration process, given a extracted element xt, each step produces a new pair (yt, lt), causing the
contextual history to grow increasingly long. This accumulation leads to high GPU memory con-
sumption and challenges in handling long-term dependencies. To address these issues, we introduce
an adaptive memory mechanism.

4.3.2 ADAPTIVE MEMORY MECHANISM.
Inspired by the memory module in the RMT (Bulatov et al., 2022), we adapt it in the encoding
process of our interactive generator. This adaptation augments the interactive generation process
with adaptive memory, composed of k real-valued trainable vectors. Specifically, at each step, the
contextual history (y<t, l<t) is divided into z segments, and memory vectors are prepended to the
first segment embeddings and processed alongside the segment tokens. At the time step τ (τ ≤ z)
and segment H0

τ , the recurrent step is performed as follows:

[Ĥmem
τ ;HN

τ ] = fg
enc([H

mem
τ ;H0

τ ]), (6)

where fg
enc denotes the encoding process of our generator and N is a number of encoder layers.

After the forward pass, Ĥmem
τ contains updated memory tokens for the segment τ . Segments of

the input sequence are processed sequentially. To enable the recurrent connection, we introduce a
MultiHeadAttention mechanism (Vaswani et al., 2017) to update the memory between the output
memory tokens of the current segment and the input memory tokens of the next segment, enabling
an adaptive attention over previous memories:

Hmem
τ+1 = MultiHeadAttention(Hmem

τ+1 , Ĥmem
τ ),

[Ĥmem
τ+1 ;HN

τ+1] = fg
enc([H

mem
τ+1 ;H0

τ+1]),
(7)

4.3.3 PRE-TRAINING OBJECTIVES.
As shown in Figure 1, flattening layout information into a text sequence often leads to the loss of
spatial context, making it challenging for the generative model to understand the relationship be-
tween generated content and its spatial positioning. To improve the model’s spatial awareness, we
introduce several innovative self-supervised learning objectives for the extracted sequences in the
posters. These sequences consist of OCR text blocks or visual tokens along with their correspond-
ing bounding boxes. In the rest of this subsection, we introduce three sentinel tokens “[content]”,
“[region]” and “[mask]” and demonstrate their use with the following input text example:

“[content]: simple self-supervised learning of periodic targets [region]: 725, 52, 236, 50”

(1) Joint Text-Layout Reconstruction requires the generative model to simultaneously reconstruct
missing text and predict the layout of entire text blocks. Specifically, we mask a portion of text
tokens and all layout coordinates, tasking the model with reconstructing both the text and their
corresponding bounding boxes (i.e., layout tokens). For example, assuming the words “simple” and
“learning of” are masked, the input and target sequences would appear in the following table.
Unlike the 15% masking ratio used in Masked Language Modeling (MLM) (Devlin et al., 2018),
joint text-layout reconstruction employs a higher masking ratio of 50% for text. This is because
using a smaller ratio would make the task too simple, whereas a larger ratio increases the difficulty
and encourages more effective learning.

6
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Input Sequence:
“[content]: [mask] self-supervised [mask] periodic tar-
gets [region]: [mask], [mask], [mask], [mask]”
Output Sequence:
“[content]: simple self-supervised learning of periodic
targets [box]: 725, 52, 236, 50”

(2) Layout Modeling requires the generative model to predict the spatial positions of a given text
block based on the surrounding context. For instance, the model is tasked with predicting the coordi-
nates of the top-left corner or the width and height of the text block. The input and target sequences
are structured as follows:

Input Sequence 1:
“[content]: simple self-supervised learning of periodic
targets [region]: [mask], [mask], 236, 50”
Output Sequence 1:
“[content]: simple self-supervised learning of periodic
targets [region]: 725, 52, 236, 50”

Input Sequence 2:
“[content]: simple self-supervised learning of periodic
targets [region]: 725, 52, [mask], [mask]”
Output Sequence 2:
“[content]: simple self-supervised learning of periodic
targets [region]: 725, 52, 236, 50”

(3) Text Construction involves generating a text sequence for a specified location on the poster. For
example, if all text content is masked, the input and target sequences are as follows:

Input Sequence:
“[content]: [mask] [region]: 725, 52, 236, 50”
Output Sequence:
“[content]: simple self-supervised learning of periodic
targets [region]: 725, 52, 236, 50”

4.3.4 DATA EXTENSION.
During interactive generation, the input order of extracted elements directly impacts the generator’s
performance. Therefore, we sort the elements according to their order in the original document D,
as the content in the poster is typically organized sequentially based on the document. Additionally,
we shuffle the extracted elements to create supplementary extended data.

5 EXPERIMENTS

5.1 EVALUATION METRICS

LayoutSciPG is a multimodal extraction and generation task that involves producing textual, pic-
torial, and layout outputs. To assess the quality of each output type, we define distinct metrics for
evaluation, as outlined below.

ROUGE: For the textual output, we report the F1 ROUGE score via ROUGE1.5.5.pl (Lin, 2004)
which calculates the overlap lexical units between generated and ground-truth sentences. This metric
includes ROUGE-1, ROUGE-2 and ROUGE-L.

ImgP and ImgR: For the extracted images, we use ImgP) and ImgR) to evaluate the images se-
lected by our method. ImgR represents the recall of extracted image elements, calculated as

The number of correct images
The total number of ground truth images . ImgP represents the precision of extracted image elements, calcu-

lated as The number of correct images
The total number of extracted images .

To quantitatively evaluate layout performance, we introduce the following metrics:

7
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Overlap and Coverage: Overlap refers to the intersection over union (IoU) of various layout ele-
ments. Generally, these elements do not overlap significantly, so the overlap score tends to be low.
Coverage measures the percentage of the canvas occupied by the layout elements. These metrics
help assess the spatial arrangement and utilization of space in the generated layouts.

Validity, Alignment, FD and DreamSim: Validity, annotated as Val, is the ratio of valid elements
greater than 0.1% of the canvas. Alignment, annotated as Ali, is the extent of spatial non-alignment
between elements. FD denotes the Frechet distance. DreamSim (Fu et al., 2023) is a perceptual
metric that assesses the poster images holistically.

5.2 BASELINES

For the multimodal content extraction, we employ there baselines: NeuralExt (Xu & Wan, 2021)
, MSMO (Zhu et al., 2018) and AdaD2P (Fu et al., 2022). NeuralExt is a neural extractive model
designed to extract text, figures, and tables from a paper. MSMO is a multimodal attention model
that jointly generates text and selects the most relevant image from multimodal input. We adapt
MSMO for the content extraction task. AdaD2P is originally designed for document-to-slide gener-
ation. We adapt its the extraction module for our multimodal content extraction. For the multimodal
generation, there are no established baselines to compare. We still adapt the content paraphrasing
and layout prediction modules of AdaD2P for our task.

5.3 IMPLEMENTATION DETAILS

For the multimodal extractor, we initialize the encoder using the RoBERTa-base model 3, which
consists of 12 layers, a hidden size of 768 dimensions, and 12 attention heads. The Bi-LSTM is
configured with 768 hidden units. For the interactive generator, we initialize its parameters with the
BART-large model 4. The memory size is set to 50, and the KL-Divergence weight is set to 0.5. Our
framework is trained using the ADAM (Kingma & Ba, 2015) optimizer with a learning rate of 3e-4.
In the training phase, every 1000 iterations, we evaluate the model’s performance on the validation
dataset using the current parameters. After completing the training process, we load the model with
the optimal parameters, as determined on the validation dataset, and test it on the test dataset. All
experiments are carried out with Pytorch framework and fourNVIDIA A100-PCIE-40GB GPUs.

Table 3: The evaluation for multimodal element extraction. The best result is in boldface.

Methods Text Image
ROUGE-1 ROUGE-2 ROUGE-L ImgP ImgR

NeuralExt 36.55 12.67 14.43 31.68 24.91
MSMO 32.45 10.43 12.51 36.64 32.56
AdaD2P 38.28 13.04 15.72 38.24 33.76
MDE 40.68 14.76 17.54 44.43 40.57
MDE w/o LSTM 36.73 11.78 14.59 40.26 36.55

Table 4: The evaluation for multimodal generation. For the layout, the values in parentheses rep-
resent the ground-truth posters. All values in the table are expressed as percentages, with the best
results highlighted in bold.

Methods Text Layout
ROUGE-1 ROUGE-2 ROUGE-L Overlap Coverage

AdaD2P 39.84 13.75 16.68 47.44 (5.11) 12.38 (53.42)
IG 41.05 15.19 18.84 25.08 (5.11) 37.43 (53.42)

Table 5: The experimental results for the layout evaluations. The best results highlighted in bold.
Methods Val Ali FD DreamSim
AdaD2P 0.8832 0.0923 33.55 0.1314

Ours 0.9765 0.0668 18.23 0.2436

5.4 RESULTS AND DISCUSSIONS

Main results. For mutlimodal content extraction, we present the experimental result in Table 3.
Our MDE model outperforms the baselines due to its hierarchical structure, which is better suited

3https://huggingface.co/FacebookAI/roberta-base
4https://huggingface.co/facebook/bart-large
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for handling long documents. In contrast, NeuralExt achieves the worst performance in image ex-
traction, as it is a single-modal model that relies solely on figure and table captions to represent
visual elements. We also conduct the ablation study to investigate the contribution of LSTM module
in our MDE. From the Table 3, we can observe that our MDE suffers the significant decrease in
performance when removing LSTM, which validates its effectivenss of LSTM module.

For multimodal generation, Table 4 compares the performance of our method against the base-
line. Overall, our method demonstrates superior results. Specifically, while achieving comparable
ROUGE scores for text output compared to AdaD2P, our method shows significant improvements in
image output, with increases of 6.29% in ImgP and 6.81% in ImgR. This improvement is attributed
to the effective multimodal representation modeling in our extractor. For layout output, our method
achieves a 22.36% improvement in overlap and a 25.05% improvement in coverage. These gains
can be attributed to the interactive generator, which employs an adaptive memory mechanism to
capture long-term dependencies, and unifies both the paraphrasing of extracted content and layout
generation, enhancing the interaction between content and layout. In order to evaluate the layout of
generated poster holistically, we compute the metrics like validity (Val), alignment (Ali), the Frechet
distance (FD) and DreamSim. The experimental results are shown in Table 5. Compared to baseline,
our approach outperforms the baseline significantly.

Ablation studies. We also conduct ablation studies to assess the impact of different modules in the
generator. The results, shown in Table 6, reveal that removing the memory module (i.e., f) leads to
the largest decline in layout performance, underscoring the crucial role of the memory mechanism
in maintaining and transforming state information. Additionally, configuration (a) outperforms (b),
(c), (d), and (e), demonstrating the effectiveness of the KL-Divergence optimization, data exten-
sion strategy, pretraining strategy, and memory mechanism, respectively. Notably, compared to no
memory or standard memory used in RMT (Bulatov et al., 2022), our adaptive memory design sig-
nificantly improves layout generation, effectively managing the complexities of layout prediction.

Table 6: Overall result of different ablation settings under automatic evaluation metrics. “KL”, “PT”
and “DE” denotes KL-Divergence optimization, pretraining strategy and data extension strategy,
respectively. The memory mechanism includes three variants: adaptive, normal and not used. All
values in the table are expressed as percentages, with the best result highlighted in bold.

Ablation Settings Text Layout
KL PT DE Memory ROUGE-1 ROUGE-2 ROUGE-L Overlap Coverage

(a) ✓ ✓ ✓ Adaptive 41.05 15.19 18.84 25.08 37.43
(b) ✓ ✓ ✗ Adaptive 40.26 14.53 18.47 38.85 20.06
(c) ✗ ✓ ✓ Adaptive 38.19 13.35 17.43 33.72 13.21
(d) ✓ ✗ ✓ Adaptive 38.90 13.79 17.85 30.91 17.68
(e) ✓ ✗ ✗ Adaptive 39.09 13.88 18.22 23.15 13.03
(f) ✓ ✓ ✓ Normal 40.12 14.60 18.29 36.42 23.42
(g) ✓ ✓ ✓ None 40.64 15.03 18.74 42.94 20.65

Table 7: Topic-aware evaluation results are obtained by training and testing on data from different
conferences. For layout metrics, the values in parentheses represent the ground-truth posters. All
values in the table are expressed as percentages, with the best results highlighted in bold.

Topic Text Layout Image
ROUGE-1 ROUGE-2 ROUGE-L Overlap Coverage ImgP ImgR

All 41.05 15.19 18.84 25.08 (5.11) 37.43 (53.42) 44.43 40.57
CVPR 26.33 11.61 13.38 34.01 (4.34) 38.74 (59.14) 50.01 66.58
ICML 36.74 13.84 15.42 32.11 (5.38) 38.43 (50.28) 34.19 56.43

NeurIPS 33.48 13.21 14.93 33.14 (5.07) 38.26 (52.12) 44.52 58.41
ICLR 34.81 13.15 15.51 32.45 (5.72) 40.28 (53.47) 29.88 55.29

Topic-Aware Evaluation. We evaluate performance in both topic-dependent and topic-independent
settings. Specifically, we train and test our method on data from four conference proceedings:
CVPR, ICML, NeurIPS, and ICLR. As shown in Table 7, the model trained on data from all topics
outperforms models trained and tested within individual topics, particularly in terms of text and
layout metrics. Notably, training on CVPR data yields the highest image extraction performance,
with scores of 50.01% precision rate and 66.58% recall rate.
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Figure 2: The analysis of parameter sensitivity for varying k and β.

Figure 3: Human evaluation for the baseline and our model.

Parameter Sensitivity. We perform a parameter sensitivity analysis to examine the impact of mem-
ory size k and the KL-Divergence weight β on performance. To evaluate the effect of memory size,
we experiment with values of 0, 10, 30, 50, 70, and 100. For the KL-Divergence weight, which
balances the KL-Divergence loss and cross-entropy loss, we set values of 0, 0.05, 0.1, 0.2, 0.5, and
1.0. The results, displayed in Figure 2, indicate that the model achieves comparable ROUGE scores
for textual metrics, while it performs best on layout metrics when the memory size is set to 50 and
the KL-Divergence weight is 0.5. Given the challenges associated with layout prediction, we set the
memory size (k) to 50 and the KL-Divergence weight (β) to 0.5 in our main experiments.

Human Evaluation. We conduct a human evaluation to assess the perceived quality of the gen-
erated posters. To simplify the task, we randomly sampled 50 document-poster pairs from the test
dataset. For each document, we prepared three posters: the ground-truth poster, one generated by
our method, and one produced by the baseline. We then ask ten annotators to rate these posters on a
scale of 1 to 5 based on the following criteria:

• Text Relevance: How closely the text in the generated posters aligns with the content in the
ground-truth poster.

• Image Accuracy: The accuracy of matching image elements between the generated and
ground-truth posters.

• Layout Aesthetics: Whether the placement of text and image elements is both logical and
visually appealing.

Figure 3 presents the average scores for each method. Our approach consistently receive higher
ratings across all three aspects compared to the baseline. However, it is notable that both our method
and the baseline received relatively low scores in the layout aesthetics category, highlighting the
ongoing challenge of achieving aesthetic design in automatic poster generation systems. There
remains significant room for improvement in this area.

6 CONCLUSION

In this paper, we introduced a new task, LayoutSciPG, for scientific poster generation. To tackle
this, we first built a new dataset, namely SciPG, with over 10,000 pairs of scientific papers and
their corresponding posters. We then developed a multimodal extractor to capture both text and
image elements from the paper, and implemented an interactive generator with an adaptive memory
mechanism to seamlessly integrate the paraphrasing of extracted content with layout generation.
Both qualitative and quantitative evaluations highlight the effectiveness of our approach, while also
revealing some remaining challenges.
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APPENDIX

A1.DATASET PREPROCESSING

DATA PROCESSING

The collected scientific papers and poster pairs are in the PDF and PNG format, respectively. Data
processing aims to extract the text and image elements and match them between documents and
posters. However, it is not easy to exactly extract these multimodal elements, especially for images
like tables and figures, from documents and posters because they contain rich structure and complex
layouts. Except utilizing OCR tools to extract text information and its corresponding bounding box
coordinates, it is also necessary to leverage the document layout analysis algorithms to obtain the
layout information of figures.

Paper document extraction. In order to extract the image elements in the paper document, we
employ a state-of-the-art (SOTA) document layout analysis model, i.e., VGT (Da et al., 2023), which
are trained on the open sourced datasets such as Docbank (Li et al., 2020a) and Doclaynet (Pfitzmann
et al.). Thus, we can obtain all the image elements in the document. For the text elements, we use
an open-sourced OCR tool, i.e., PaddleOCR 5, to extract them.

Poster extraction. Compared to the paper document, a poster contain more complex and richer
layout structure. Existing SOTA document layout analysis models like VGT perform not good on
the poster. In addition, we also compare some commercial API service for document layout analysis.
Finally, we select the best of them, i.e., Azure document layout analysis service 6, to extract text and
image elements and their corresponding bounding boxes in the poster.

ELEMENT ALIGNMENT

The elements, i.e., text sentences and images, extracted from posters and documents need to be
aligned each other. Thus, the aligned labels can be served as the supervised signals to guide which
elements should be extracted from document and what to be generated according to the extracted
elements. To this end, we employ a sentence matching model and an image matching model to
achieve this:

Sentence Matching. We match sentences from the posters to their corresponding paper documents
by using RoBERTa (Liu et al., 2019) to extract sentence embeddings from both. Matching sentences
are identified by calculating cosine similarity between the embeddings.

Image Matching. For image elements, we match images from the posters to those in the corre-
sponding document. We use a pre-trained CLIP (Radford et al., 2021) vision encoder to extract
visual embeddings of all images in both the poster and the document, then match them based on
the highest cosine similarity. Note that some images in posters may not appear in the corresponding
document, resulting in no match. To simplify the process, we ignore any images whose highest
visual embedding similarity is below a threshold of δ = 0.8.

A2. QUALITATIVE RESULTS

Figure 4 presents qualitative results for scientific poster generation. Our method first extracts and
paraphrases the text and image elements, followed by predicting the corresponding layout boxes. We

5https://github.com/PaddlePaddle/PaddleOCR
6https://azure.microsoft.com/en-us/products/ai-services/

ai-document-intelligence
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Figure 4: Four generated posters by the proposed method.

then utilize the Python package pptx 7 to generate editable posters. For simplicity, font size, style,
and capitalization of input text are disregarded during the automatic generation process. While
the generated posters appear visually acceptable at first glance, several challenges remain. First,
elements in the poster often overlap. Second, some areas of the canvas are underutilized. Third,
predicted boxes sometimes fail to accommodate the associated text elements. Most importantly, the
logical relationships between these elements may be misaligned. To solve these problems, this work
aims to establish a benchmark dataset and approach to advance the development of automatic poster
generation.

7https://pypi.org/project/python-pptx
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