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ABSTRACT

With the prevalence of large-scale pretrained vision-language models (VLMs),
such as CLIP, soft-prompt tuning has become a popular method for adapting
these models to various downstream tasks. However, few works delve into
the inherent properties of learnable soft-prompt vectors, specifically the impact
of their norms to the performance of VLMs. This motivates us to pose an
unexplored research question: “Do we need to normalize the soft prompts in
VLMs?” To fill this research gap, we first uncover a phenomenon, called the
Low-Norm Effect by performing extensive corruption experiments, suggest-
ing that reducing the norms of certain learned prompts occasionally enhances
the performance of VLMs, while increasing them often degrades it. To har-
ness this effect, we propose a novel method named Normalizing the soft-prompt
vectors of vision-language models (Nemesis) to normalize soft-prompt vectors
in VLMs. To the best of our knowledge, our work is the first to systemati-
cally investigate the role of norms of soft-prompt vector in VLMs, offering valu-
able insights for future research in soft-prompt tuning. The code is available at
https://github.com/ShyFoo/Nemesis.

1 INTRODUCTION

In the age of large-scale pretrained vision-language models (VLMs), such as CLIP (Radford et al.,
2021), Flamingo (Alayrac et al., 2022), and BLIP (Li et al., 2022), soft-prompt-based methods,
also known as prompt-tuning, have emerged as a dominant approach for adapting these models to a
wide range of downstream tasks. For instance, Zhou et al. (2022b) propose a Context Optimization
(CoOp) method to learn soft prompts in a continuous space of CLIP for image classification tasks.
Additionally, Rao et al. (2022) and Du et al. (2022) also employ prompt-tuning to address dense
prediction and open-vocabulary object detection tasks, respectively.

Recent research in the field of VLMs has been primarily focused on enhancing model performance
through the alignment of visual and textual features. For instance, in (Lu et al., 2022), the weight
distribution of output embeddings is estimated, while Zang et al. (2022) propose a joint optimization
approach for prompts across multiple modalities. Additionally, Chen et al. (2023) employs optimal
transport techniques. To interpret learned soft-prompt vectors, Zhou et al. (2022b) and Chen et al.
(2023) map them to the nearest words within the embedding space. More recently, Oymak et al.
(2023) delves into the role of attention mechanisms in prompt-tuning, specifically within the context
of a one-layer attention network.

While considerable advancements have been made in soft-prompt-based techniques for VLMs, scant
attention has been paid to their intrinsic properties, specifically the norms of learnable soft-prompt
vectors. We argue that the norms of soft prompts are a crucial but overlooked attribute that sig-
nificantly influences the performance of VLMs. This paper addresses an overlooked aspect and
presents a research question “Do we need to normalize the soft prompts in VLMs?” To the best of
our knowledge, there is no work to study this question.

∗Corresponding author.
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(a) Top: corrupted soft prompts with increased norms
leading to decreased performance; Middle: soft prompts
learned by CoOp; Bottom: corrupted soft prompts with
reduced norms resulting in enhanced performance.
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(b) The occurrence frequency of the Low-Norm
Effect across 11 datasets. Each distinct color or
geometrical shape represents a different dataset.

Figure 1: A schematic diagram of the Low-Norm Effect. (a) The occurrence of the Low-Norm
Effect in soft-prompt tuning VLMs. (b) The occurrence frequency of the Low-Norm Effect across
11 datasets commonly used in soft-prompt tuning VLMs.

To thoroughly investigate the role of soft-prompt vector norms in VLM performance, we introduce
two corruption operations, REPLACE and RESCALE, to alter the norms in vectors learned by CoOp
(Zhou et al., 2022b). Through the corruption of learned soft prompts, an intriguing phenomenon
emerges: the reduction of norms at specific positions within these prompts enhances performance,
whereas an increase in norms typically results in performance deterioration, as illustrated in Figure
1(a). We term this previously uncovered phenomenon the Low-Norm Effect.

Figure 1(b) explores the prevalence of the Low-Norm Effect across 11 widely-used prompt-tuning
VLM datasets. Notably, the Imagenet (Deng et al., 2009), OxfordPets (Parkhi et al., 2012), and
Food101 (Bossard et al., 2014) datasets show a higher frequency of this effect compared to datasets
like Flowers102 (Nilsback & Zisserman, 2008). Moreover, we observe a negative correlation be-
tween the occurrence frequency of the Low-Norm Effect and the number of shots, indicating that
less training data tends to induce the effect. These discrepancies might be linked to potential degra-
dation in soft-prompt methods with limited data resources, thereby affecting model performance.
Addressing the Low-Norm Effect remains challenging due to its inconsistent manifestation across
datasets.

To exploit the Low-Norm Effect for enhancing the performance of VLMs, we propose a method
called Normalizing the soft-prompt vectors of vision-language models (Nemesis). We employ a
Position-Uniform Normalization (PUN) loss to regulate the norms of all prompt vectors. This ap-
proach can be easily integrated into existing soft-prompt methods with negligible computation costs.
However, the PUN loss may degrade the performance since it may normalize soft-prompt vectors
that are unaffected by the Low-Norm Effect.

To handle this, the Position-Aware Normalization (PAN) loss is proposed as a refined substitute
for the PUN loss. Specifically, a pre-inference step is introduced before each training batch to
identify positions that are likely to induce the Low-Norm Effect. The pre-inference step applies
corruption operations to generate multiple sets of corrupted prompts at distinct positions and then
evaluates these corrupted prompts against their non-corrupted counterparts. This allows for the
identification of positions that induce the Low-Norm Effect, followed by selective normalization of
those positions, ultimately improving the performance. Extensive experiments demonstrate that the
proposed Nemesis method could help boost the performance of soft-prompt-based VLMs in various
tasks.

2 LOW-NORM EFFECT

In this section, we examine how the norms of learned prompt vectors influence the performance
of VLMs and identify the Low-Norm Effect. To achieve that, we conduct extensive corruption

2



Published as a conference paper at ICLR 2024

experiments by altering the norms of learned prompt vectors and applying two corruption operations
(i.e., REPLACE and RESCALE) proposed in Section 3.2.

Specifically, following (Zhou et al., 2022b), we train the CoOp model and obtain the learned prompt
vectors with a length of L. Then we corrupt these soft-prompt vectors at a single position each
time and record the change of the performance and norms of soft prompts. To reduce the effect
of experimental randomness, we average outcomes over five distinct runs using different seeds.
Implementation details and results can be found in Appendix A.2.3.

The corruption experiments reveal a interesting phenomenon: reducing the norms of soft prompts at
specific positions enhances the performance, while increasing them could degrade the performance,
which is termed Low-Norm Effect. This phenomenon responds to the research question posed in
Section 1 by uncovering the previously unexplored Low-Norm Effect in prompt-tuning VLMs. It
also motivates the proposed Nemesis method for soft prompt normalization. Moreover, Section 4.6
offers a plausible explanation for the occurrence of the Low-Norm Effect and provides insights into
the effectiveness of the proposed method. We believe our discovery can offer valuable insights for
future research in soft-prompt tuning, laying the groundwork for potential advancements.

3 METHODOLOGY

In this section, we introduce the proposed Nemesis method. We begin with a review of the CoOp
method (Zhou et al., 2022b) and subsequently introduce two key corruption operations, REPLACE
and RESCALE. Finally, we present the entire method.

3.1 A REVISIT OF PROMPT-TUNING VISION-LANGUAGE MODELS

Over the years, pretrained VLMs have demonstrated impressive generalization performance in zero-
shot open-world visual recognition, wherein the model can perform a task without undergoing ex-
plicit training. One typical paradigm is CLIP (Radford et al., 2021), which consists of an image en-
coder and a text encoder. CLIP is trained on approximately 400 million image-text pairs, contribut-
ing to its remarkable performance. Nevertheless, effectively fine-tuning these VLMs for downstream
tasks remains a challenge, particularly when dealing with few-shot data, due to their massive param-
eters. The CoOp method addresses this issue by setting the templated context prompts (e.g. This
is a photo of {class-name}.) as learnable vectors, which only requires fine-tuning these
learnable vectors while keeping the pretrained VLMs frozen. For a downstream visual recogni-
tion task consisting of C categories, the classification weights of one image can be defined by the
similarity between the visual feature and the text features of all categories.

Formally, the image encoder and text encoder can be denoted by f and g, respectively. Given an
image x along with its classification label y, the visual feature can be formulated as f = f(x), while
the textual prompt of i-th class can be formulated as ti = {v1,v2,vj , ...,vL, ci}, where vj and ci
denote the j-th soft-prompt vector and the word embedding of the class name, respectively. Then
the i-th class textual feature can be denoted as gi = g(ti). Given few-shot data, CoOp can learn the
soft prompts VL×D = {v1,v2, ...,vL}, where L and D denote the length of soft prompts and the
dimension of prompt vectors, respectively, by minimizing the negative log-likelihood between the
image feature f and its ground-truth textual feature gy as

LCE = −
∑
x∈X

log
exp(sim(f , gy)/λ)∑C
i=1 exp(sim(f , gi)/λ)

, (1)

where λ is a temperature parameter and sim(·, ·) denotes the cosine similarity function. After the
training process, the text encoder g encodes both the learned prompts V and the class embeddings
to produce textual features for all classes.

3.2 CORRUPTION OPERATIONS

In this section, we introduce two corruption operations: REPLACE and RESCALE, which can be
employed to corrupt the learned soft-prompt vectors.

For the REPLACE operation, we replace learned prompt vectors at a single position with a zero-
mean Gaussian-distributed vector with fixed variance. Then, we can obtain a set of corrupted soft
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prompts trei = {v1,v2, rj , ...,vL, ci}, where the j-th prompt vector is replaced with a random
Gaussian vector rj ∼ N (µ1, σ2I), where 1 denotes a vector of all ones with an appropriate size, I
denotes an identity matrix with an appropriate size, µ denotes the mean for each dimension, and σ
denotes the standard deviation for each dimension.

For the RESCALE operation, we rescale the value of j-th prompt vector using various rescaling
factors. Then, we can obtain a set of corrupted soft prompts tsci = {v1,v2, s × vj , ...,vL, ci},
where s is a rescaling factor.

In essence, both corruption operations can be regarded as strategies to modify the soft prompts,
subsequently altering their norms. By changing soft prompts, the textual features generated by g are
influenced, consequently impacting final predictions. Specifically, given corrupted soft prompts, the
prediction probability can be calculated as

pcsp(y|x) =
exp(sim(f , gcsp

y )/λ)∑C
i=1 exp(sim(f , gcsp

i )/λ)
, (2)

where gcsp can be either g(trei ) or g(tsci ). Note that the two corruption operations we proposed can
be applied to any learned soft prompts, thereby facilitating research in the field of investigating the
impact of soft-prompt norms to the model performance.

3.3 THE NEMESIS METHOD

To handle the Low-Norm Effect during prompt-tuning VLMs, we propose two losses for normal-
izing the norms of soft prompts: Position-Uniform Normalization (PUN) loss and Position-Aware
Normalization (PAN) loss. In the experiments, they are separated as an individual regularization
item, which is added to the standard soft-prompt tuning process.

Generally, given a set of soft prompts VL×D = {v1,v2, ...,vL}, we can calculate their norms as
1
M

L∑
j=1

αj∥vj∥p, where M denotes the number of non-zero values in the set {α1, α2, . . . , αL} and

∥ · ∥p denotes the ℓp-norm of a vector. Unless otherwise specified, we use the ℓ2 norm by default.

For the PUN loss, all elements of the set {α1, α2, . . . , αL} are set to the same value, imposing an
equal weight on the norms of soft prompts at all positions. Hence, this loss can be formulated as

LPUN =
1

M

L∑
j=1

αj∥vj∥p, (3)

where αj = ω for j = 1, . . . , L. Here ω is a scaling coefficient that controls the normalization
strength. However, normalizing prompt vectors at positions unaffected by the Low-Norm Effect
may not yield performance improvement. This is because it could potentially restrict the weight
updates of soft prompts at these positions. Hence, it is necessary to tackle the Low-Norm Effect at
each prompting position and dynamically adjust αj during training.

On the other hand, if the Low-Norm Effect can be explicitly recognized during the training process,
we can effectively address this issue and enhance the efficacy of soft-prompt learning. To achieve
this, we incorporate an additional inference process prior to each batch training iteration to identify
the prompting positions that induce the Low-Norm Effect.

Similar to corruption experiments, we initially set a rescaling factor, denoted by τ , to induce the
Low-Norm Effect, where τ is a positive real number less than 1. Then we apply the RESCALE oper-
ation on a normal soft prompt V to generate N sets of corrupted prompts at distinct prompting posi-
tions {Vl1 ,Vl2 , . . . ,Vln , . . . ,VlN }, where ln denote corrupted positions. Note that for each training
batch, we randomly select N distinct positions from the set of L positions L = {1, 2, . . . , L}. For-
mally, the conditions 1 ≤ l1 ̸= l2 . . . ̸= ln . . . ̸= lN ≤ L and N ≤ L ensure that the positions of
rescaled prompt vectors for each set of corrupted prompts are distinct from each other.

By having a set of images X with a batch size of B as well as their ground-truth labels Y =
(y1, . . . , yB), and a hybrid prompt set V (N+1)×L×D = {V,Vl1 ,Vl2 , . . . ,VlN }, where V is the orig-
inal prompt and others are corrupted prompts, we can obtain a set of label predictions Ŷ (N+1)×B
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of VLMs, where the first row corresponds to the batch predictions for the original prompt and the
next N rows represent the batch predictions for its corrupted counterparts.

By calculating prediction scores for all prompts and comparing them, we can identify corrupted
prompts at specific positions that yield more accurate predictions than their original counterparts.
This observation indicates the occurrence of the Low-Norm Effect during training. As a result, only
those soft prompts at the prompting positions that induce the Low-Norm Effect will be normalized
during this training batch. Hence, the PAN loss can be defined as

LPAN =
1

M

lN∑
k=l1

αk∥vk∥p, (4)

where αk equals ω if
∑B

b=1 1(ŷb,k = yb) >
∑B

b=1 1(ŷb = yb) and otherwise 0 for k =
l1, l2, . . . , lN . ŷb,k refers to the prediction for the b-th sample in the batch, using the soft prompts
which have been corrupted at k-th position, while ŷb represents the prediction for the b-th sample
in the batch, using the original, uncorrupted soft prompts. The detailed algorithm by adopting LPAN
can be found in Section A.1.

To sum up, for a training batch, we can optimize soft prompts by minimizing the following total
objective as

L = LCE + βLPUN + (1− β)LPAN, (5)

where β, which equals either 0 or 1, corresponds to two variants of the proposed Nemesis method.

4 EXPERIMENTS

In this section, extensive experiments are conducted to evaluate the proposed Nemesis method,
including comparison with CoOp (Zhou et al., 2022b) on few-shot image classification tasks and
domain generalization tasks, comparison with CoCoOp (Zhou et al., 2022a) in the base-to-new
generalization setting. Additionally, we conduct an in-depth impact analysis on VLM performance
due to the norms of soft prompts, explore the method’s extensibility to other soft-prompt tuning
approaches, and assess the computational efficiency.

4.1 DATASETS

For few-shot image classification experiments and base-to-new generalization tasks, we follow the
experimental setting of CoOp and CoCoOp, respectively, and conduct experiments on 11 visual
classification datasets, including Caltech101 (Fei-Fei et al., 2004) and ImageNet (Deng et al., 2009)
for object recognition, EuroSAT (Helber et al., 2019) for satellite image recognition, DTD (Cimpoi
et al., 2014) for texture recognition, UCF101 (Soomro et al., 2012) for action recognition, SUN397
(Xiao et al., 2010) for scene recognition, OxfordPets (Parkhi et al., 2012), FGVCAircraft (Maji
et al., 2013), Food101 (Bossard et al., 2014), Flowers102 (Nilsback & Zisserman, 2008), and Stan-
fordCars (Krause et al., 2013) for fine-grained recognition. Besides, ImageNet (Deng et al., 2009)
and its variants, including ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al.,
2021a), ImageNetV2 (Recht et al., 2019), and ImageNet-Sketch (Wang et al., 2019), are used for the
evaluation of domain generalization. Detailed descriptions of each dataset can be found in Appendix
A.2.1.

4.2 IMPLEMENTATION DETAILS

For few-shot image classification experiments and domain generalization tasks, we compare our
method with the baseline method CoOp, while CoCoOp is chosen as our baseline model in base-
to-new generalization tasks. Following the few-shot evaluation protocol used in CoOp, we use a
fixed number of training samples from each category (i.e. 1, 2, 4, 8, 16 shots per class). Besides, we
follow the same training configurations as these baseline models, including training epochs, learning
rate, and batch size, etc. All reported results are based on the average of five different seed runs.
Bold denotes the best performance on each comparison setting. More implementation details and
hyper-parameter settings can be found in Section A.2.2.
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Figure 2: The few-shot recognition results of CoOp and CoOp+Nemesis (ours) on 11 datasets.

4.3 FEW-SHOT IMAGE RECOGNITION RESULTS

The experimental results of few-shot recognition are summarised in Figure 2. The blue, orange,
and green lines represent CoOp, CoOp+Nemesis with the PUN loss, and CoOp+Nemesis with the
PAN loss, respectively. In terms of average performance, both Nemesis methods outperform CoOp.
Particularly, they achieved a large improvement over CoOp on the ImageNet, OxfordPets, Food101,
and SUN397 datasets. This indicates that normalizing the soft prompts in VLMs can lead to bet-
ter performance on these datasets that exhibit a more pronounced Low-Norm Effect. Taking the
ImageNet dataset as an example, Nemesis with the PUN loss gains 2.06%, 3.84%, 2.6%, 1.16%,
0.38% performance boost over CoOp at 1, 2, 4, 8, 16 shots. Similarly, Nemesis with the PUN loss
also shows performance improvements of 0.46%, 1.56%, 1.74%, 0.80%, and 0.44%. Moreover, it
is evident that CoOp+Nemesis demonstrates enhanced robustness and superior performance on the
Food101 and OxfordPets, compared with CoOp. Additionally, comparing Nemesis with the PUN
loss, Nemesis with the PAN loss shows more robust performance at larger shot settings. All these
performance comparisons demonstrate normalizing the soft prompts in VLMs can facilitate the ef-
fective learning of soft prompts for few-shot recognition. More detailed data and analysis of training
process can be found in Appendix A.2.6.

4.4 EVALUATION OF GENERALIZATION PERFORMANCE

In this subsection, we conduct experiments to assess the generalization performance of the proposed
method. All methods are trained on the ImageNet dataset with 16 shots per class and tested on four
different ImageNet-based datasets. Table 1 reports the results of CoOp, CoOp+Nemesis (PUN),
and CoOp+Nemesis (PAN). It is clear that CoOp+Nemesis outperforms CoOp consistently on both
source and target domains, whether adopting the PUN loss or PAN loss, which suggests that Nemesis
can improve CoOp’s domain generalization abilities by normalizing the soft prompts in VLMs.
Furthermore, we can observe that Nemesis using larger ω can achieve better transfer performance,
implying that a stronger normalization of soft prompts could enhance the robustness of soft prompts
to domain shifts. Comparing Nemesis using the PUN loss and Nemesis using the PAN loss, despite
that the latter achieves better performance on the source domain, its performance on target domains
is inferior to the former. We argue that this may arise due to the PAN loss excessively prioritizing
to identify and address the Low-Norm Effect within intra-domain data, which could compromise its
generalization capability. The results of base-to-new experiments can be found in Appendix A.2.4.
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Table 1: Comparison of CoOp and CoOp+Nemesis (ours) in the domain generalization setting.

Method Source Target

ImageNet -V2 -Sketch -A -R

CoOp 62.70 55.04 32.64 22.44 54.60
CoOp+Nemesis (PUN, ω = 1) 62.96 55.48 33.64 22.96 55.72
CoOp+Nemesis (PUN, ω = 10) 63.08 55.50 34.34 23.40 56.78
CoOp+Nemesis (PAN, ω = 1) 63.28 55.16 32.70 22.48 54.72
CoOp+Nemesis (PAN, ω = 10) 63.14 55.20 33.50 23.30 56.68
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Figure 3: Analysis of the impact of soft prompt norms on the model’s performance using the Stan-
fordCars dataset as an example. The X-axis, Y1-axis, and Y2-axis represent training epochs, test
accuracy, and average norm value of all soft-prompt vectors, respectively.

It also can be found that the generalization performance from base classes to unseen classes can be
improved by normalizing the soft prompts in VLMs.

4.5 IN-DEPTH STUDIES ON THE LOW-NORM EFFECT IN VLMS

In this section, we aim to provide plausible explanations for the occurrence of the Low-Norm Effect
and the effectiveness of the proposed method Nemesis.

From Figure 3(a), it is apparent that the norms of soft prompts in CoOp first increase and then
level off, while test accuracy falls into degradation as norms slowly flatten out. By performing
corruption operations that decrease the norms of prompt vectors, the last green circle may be pushed
away from the degradation area and get closer to those small green circles that demonstrate superior
performance. This could be regarded as a plausible explanation for the occurrence of the Low-
Norm Effect: those corrupted soft prompts that demonstrate superior performance than their original
counterparts may be precisely one of those small circles. Moreover, this figure may unveil a potential
correlation between the time when prompt learning starts to degrade and the time when the norm of
soft prompts begins to stabilize. We leave this to future research.

From Figure 3(b), different from the observed norm variation pattern in CoOp, CoOp+Nemesis
(ours) exhibits a distinct trend where norms initially increase, followed by a subsequent decrease,
and eventually stabilize. Furthermore, the test accuracy exhibits a consistent upward trend before
reaching a plateau, whereas a declining trend is observed in CoOp. This implies that our method
can delay the time point where soft prompts tend to plateau during the learning process, thereby
reducing the probability of learning degradation.

4.6 EXTENDIBILITY ANALYSIS

To analyze the extensibility of the proposed approach Nemesis, we apply the proposed method
Nemesis to other soft prompt-tuning methods on few-shot recognition experiments. PLOT (Chen
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Table 2: The few-shot recognition results of PLOT and PLOT+Nemesis (ours) on several datasets.

Dataset Method 1 shot 2 shots 4 shots 8 shots 16 shots

Caltech101
PLOT 88.80 87.94 89.44 90.46 92.16
PLOT+Nemesis (PUN) 89.14 88.02 89.74 90.38 92.10
PLOT+Nemesis (PAN) 89.16 87.98 89.86 90.80 92.30

DTD
PLOT 46.42 51.52 56.10 60.66 64.16
PLOT+Nemesis (PUN) 46.64 51.58 56.22 60.94 64.46
PLOT+Nemesis (PAN) 46.65 51.40 56.08 61.56 64.68

Flowers102
PLOT 71.06 81.38 87.68 92.58 94.92
PLOT+Nemesis (PUN) 70.94 81.44 88.42 92.86 95.32
PLOT+Nemesis (PAN) 71.40 81.96 88.24 93.06 95.46

Average
PLOT 68.76 73.61 77.74 81.23 83.75
PLOT+Nemesis (PUN) 68.91 73.68 78.13 81.39 83.96
PLOT+Nemesis (PAN) 69.07 73.78 78.05 81.81 84.15

Table 3: Ablation studies about the PAN loss on the FGVCAircraft dataset. N denotes the number
of corruption positions, while w/o selection means the prompting positions where the soft prompts
are directly normalized, without the selection process within the PAN loss.

Method 1 shot 2 shots 4 shots 8 shots 16 shots

CoOp 9.56 18.30 21.04 26.66 31.64
CoOp+Nemesis (N = 1, w/o selection) 9.60 19.34 21.64 26.98 30.92
CoOp+Nemesis (N = 1)* 9.88 18.52 20.94 27.50 32.32
CoOp+Nemesis (N = 2, w/o selection) 9.50 18.72 21.72 27.22 30.90
CoOp+Nemesis (N = 2) 9.74 18.38 21.18 27.36 32.46
CoOp+Nemesis (N = 4, w/o selection) 10.04 19.20 22.10 27.36 31.26
CoOp+Nemesis (N = 4) 9.44 19.02 21.26 27.52 32.10
CoOp+Nemesis (N = 8, w/o selection) 9.62 19.28 21.58 26.92 30.88
CoOp+Nemesis (N = 8) 9.30 19.32 21.66 27.36 32.02
CoOp+Nemesis (N = 16, w/o selection) 9.82 19.24 21.52 26.98 31.12
CoOp+Nemesis (N = 16) 10.44 19.72 22.13 27.83 31.44

et al., 2023) is an ensemble-based prompt-tuning method and leverages optimal transport distance
to achieve better alignment between multiple sets of soft prompts and image features. In this ex-
periment, We set ω as 0.1 by default. Table 2 provides partial results for comparing PLOT and
PLOT+Nemesis (our approach). In comparison to PLOT, PLOT+Nemesis demonstrates enhanced
recognition performance for all shots. This verifies that ensemble-based prompt-tuning methods can
also benefit from normalizing the soft prompts in VLMs. Furthermore, we discuss other applicable
scenarios of the proposed method. More details can be found in Appendix A.2.8.

4.7 ABLATION STUDIES AND HYPER-PARAMETER ANALYSIS

The results of ablation studies about the PAN loss are shown in Table 3, where w/o selection
is analogous to utilizing the PUN loss to normalize soft prompts at N random positions and *
means the default setting in few-shot recognition tasks. Overall, increasing N typically leads to
improved performance, except for the case of 16 shots, where performance initially increases and
then decreases with N . Besides, comparing the PAN loss without considering the selection process,
the proposed selection of prompting positions that are used for normalization based on performance
variation demonstrates a more robust performance.

Furthermore, Table 4 provides the results of combining the two proposed losses. We can observe
that β=0.3 and β=0.1 achieve the best results under 1-shot and 16-shots, respectively. This suggests
that the PAN loss plays a dominant role, while the PUN loss provides assistance, which can lead
to improved performance. Besides, the discussion about the computation costs raised by the two
proposed losses can be found in Appendix A.2.7.

Moreover, the hyper-parameter analysis about ω, τ , and norm types used in the normalization losses
can be found in Tables A5, A6, and A7, respectively. The outcome data demonstrate that the pro-
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Table 4: Ablation studies about β.

β=0 β=0.1 β=0.3 β=0.5 β=0.7 β=0.9 β=1

1-shot 59.33 59.45 59.54 59.29 59.26 59.37 59.42
16-shots 74.20 74.39 73.37 74.02 73.93 73.79 73.47

posed method Nemesis, is resilient when different norm types and values of τ are used. Additionally,
we observe that a larger value of ω generally yields better performance for small shots, whereas a
smaller value of ω performs well for large shots. This finding combined with the results of corruption
experiments presented in Section 2, implies that soft prompts with a higher occurrence frequency
necessitate stronger normalization. Therefore, determining the appropriate size of ω is also one of
the potential research directions for the future.

5 RELATED WORK

5.1 VISION-LANGUAGE MODELS PRE-TRAINING

Vision-language models (VLMs), usually consisting of a visual module and a language module, are
expected to explore the semantic connections between images and texts. With large-scale image-
text pairs which are available on the internet, an increasing number of pre-trained VLMs (Radford
et al., 2021; Cui et al., 2022; Yao et al., 2021) have been proposed. These pre-trained VLMs can
capture deep vision-language semantic correspondence by using various vision-language objectives,
including contrastive objective (Radford et al., 2021; Cui et al., 2022; Singh et al., 2022; Yao et al.,
2021; Zhong et al., 2022), generative objective (Cui et al., 2022; Singh et al., 2022), and alignment
objective (Yao et al., 2021; Zhong et al., 2022). Moreover, these pre-trained VLMs also show strong
capacities for generalization and can perform zero-shot predictions (without fine-tuning models) on
a wide range of downstream tasks, such as image classification (Radford et al., 2021), visual question
answering (Alayrac et al., 2022), and text-guided image generation (Avrahami et al., 2022).

5.2 PARAMETER-EFFICIENT FINE-TUNING

Parameter-efficient fine-tuning (PEFT) methods serve as a crucial approach for adapting pretrained
models, particularly within the Natural Language Processing (NLP) domain. Among these, prompt-
tuning (Lester et al., 2021; Jiang et al., 2023) has gained attention for optimizing task-specific prompt
embeddings, providing performance similar to full parametric fine-tuning but with fewer tunable pa-
rameters. Similarly, prefix-tuning (Li & Liang, 2021) extends this concept by optimizing a sequence
of prefixes at each transformer layer, thereby augmenting the set of tunable parameters marginally,
while P-tuning (Liu et al., 2022) incorporates manually designed patterns to intersperse learned
prompts within the input embeddings. Inspired by these PEFT methods of NLP, this technique has
been successfully extended to VLMs. For instance, CoOp (Zhou et al., 2022b) and its variants (Zhou
et al., 2022a) apply CLIP (Radford et al., 2021) to few-shot visual recognition tasks by replacing
hard-crafted prompts with learnable soft-prompt vectors. In addition, adapter-tuning (Gao et al.,
2023), which allows for fine-tuning a part of the network or fine-tuning an extra network, are an-
other research direction of PEFT method of VLMs. Distinctively, the proposed method, Nemesis,
first provides empirical evidence that normalizing soft-prompt vectors of VLMs can help improve
performance.

6 CONCLUSION

In this paper, we are the first to examine the impact of soft prompts’ norms on the performance of
VLMs. We conduct extensive corruption experiments using two specially designed operations and
discover the Low-Norm Effect. To harness this phenomenon, we introduce Nemesis, a method for
normalizing soft prompts during soft-prompt tuning. In general, Nemesis can be incorporated into
any soft-prompt-based methods, even other PEFT methods, such as prefix-tuning, and P-tuning. We
hope our findings and proposed method can provide new insights and facilitate future research on
these fields.
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A APPENDIX

A.1 METHOD DETAILS

During the training process, the proposed method Nemesis adopting the Position-Aware Normal-
ization (PAN) loss would involve an additional inference process to determine those prompting
positions inducing the Low-Norm Effect. On the other side, Nemesis does not change the inference
process of original soft-prompt-based methods. Hence, here we only provide more details of the
training process for Nemesis adopting the PAN loss in this subsection. Its iterative optimization
procedure is summarized in Algorithm 1.

Algorithm 1: The training process of Nemesis adopting the PAN loss.
Input: The training data {x, y} ∈ {X,Y}, pretrained CLIP model f and g, the threshold τ

inducing the Low-Norm Effect, the number of corrupted positions N for soft
prompts, the scaling coefficient ω for the norm of soft-prompt vectors, the total
training epochs E, and the training batch size B.

Output: The parameters of soft prompts VL×D = {v1,v2, ...,vL}.
1 Function update alpha(V,X , Y , τ , ω, N):
2 Randomly select N distinct positions {l1, l2, . . . , lN} from the set of L positions

{1, 2, . . . , L} to generate the corrupted prompt set;
3 Obtain the corrupted prompt set V (N+1)×L×D = {V,Vl1 ,Vl2 , . . . ,VlN }, where V is

the original prompt;
// Enabling the process of inference

4 Generate a visual feature set FB×C of with the visual encoder f(X );
5 Generate a corrupted textual feature set G

B(N+1)×C
i of each class with the textual

encoder g(concat{V , ci}), where ci denotes the word embedding of i-th class
name;

6 Calculate the similarity between visual and textual feature Si = GiF⊤ of each class;
// Terminating the process of inference

7 Obtain the classification predictions Ŷ =


ŷ1 ŷ2 · · · ŷB
ŷ1,l1 ŷ2,l1 · · · ŷB,l1

...
...

. . .
...

ŷ1,lN ŷ2,lN · · · ŷB,lN

;

8 Calculate a set of prediction performance:(∑B
b=1 1(ŷb = yb)

∑B
b=1 1(ŷb,l1 = yb) · · ·

∑B
b=1 1(ŷb,lN = yb)

)
;

9 for ln to {l1, l2, . . . , lN} do
10 if

∑B
b=1 1(ŷb,ln = yb) >

∑B
b=1 1(ŷb = yb) then

11 αln = ω

12 else
13 αln = 0

14 return {αl1 , αl2 , . . . , αlN }
15 Initialize V
16 for e to E do
17 for each training mini-batch X , Y do
18 Obtain {αl1 , αl2 , . . . , αlN } using update alpha(V,X , Y , τ , ω, N);

19 Calculate the PAN loss LPAN = 1
M

lN∑
j=l1

αj · ∥vj∥p;

20 Generate the visual feature set F and textual feature set Gi of each class;

21 Calculate the cross-entropy loss LCE = −
∑

X ∈X

log
exp(sim(F ,Gy)/λ)∑C
i=1 exp(sim(F ,Gi)/λ)

;

22 Update V by minimizing LCE and LPAN
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Table A1: The detailed statistics of datasets.

Dataset Classes Train Test Task

Caltech101 (Fei-Fei et al., 2004) 100 4,128 2,465 Object recognition
ImageNet (Deng et al., 2009) 1,000 1.28M 50,000 Object recognition
EuroSAT (Helber et al., 2019) 10 13,500 8,100 Satellite image recognition
DTD (Cimpoi et al., 2014) 47 2,820 1,692 Texture recognition
UCF101 (Soomro et al., 2012) 101 7,639 3,783 Action recognition
SUN397 (Xiao et al., 2010) 397 15,880 19,850 Scene recognition
OxfordPets (Parkhi et al., 2012) 37 2,944 3,669 Fine-grained pets recognition
FGVCAircraft (Maji et al., 2013) 100 3,334 3,333 Fine-grained aircraft recognition
Food101 (Bossard et al., 2014) 101 50,500 30,300 Fine-grained food recognition
Flowers102 (Nilsback & Zisserman, 2008) 102 4,093 2,463 Fine-grained flowers recognition
StanfordCars (Krause et al., 2013) 196 6,509 8,041 Fine-grained cars recognition

ImageNet-A (Hendrycks et al., 2021b) 200 N/A 7,500 Robustness of adversarial attack
ImageNet-R (Hendrycks et al., 2021a) 200 N/A 30,000 Robustness of multi-domains
ImageNetV2 (Recht et al., 2019) 1,000 N/A 10,000 Robustness of collocation
ImageNet-Sketch (Wang et al., 2019) 1,000 N/A 50,889 Robustness of sketch domain

A.2 EXPERIMENTAL DETAILS

A.2.1 DATASETS

Following CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a), the datasets we used in-
clude 11 datasets for few-shot visual recognition and base-to-new generalization tasks, as well as
4 ImageNet-based datasets for the evaluation of domain generalization. The details of each dataset
can be found in Table A1, including dataset name, the number of classes, the number of training and
testing samples, as well as the type of visual task.

A.2.2 HYPER-PARAMETER SETTINGS

To normalize the soft prompts in VLMs, two types of normalization losses are proposed: the
Position-Uniform Normalization (PUN) loss and the Position-Aware Normalization (PAN) loss.
Both losses involve a crucial hyper-parameter ω, which controls the extent of normalization for soft
prompts. Unless specified otherwise, ω is set to 1 for all datasets, except for the ImageNet dataset
where it is set to 10, the OxfordPets dataset, where it is set to 50, and the Food101 dataset where
it is also set to 50. Based on our experimental findings, we observed that our approach performs
well on these three datasets when ω is relatively large. This observation aligns with our discovery
of a pronounced Low-Norm Effect in these datasets, providing evidence that our method is indeed
capable of addressing the Low-Norm Effect. At the same time, we provide a decreasing schedule of
ω for a better balance between Lce and the PUN or PAN loss. To be specific, it is varied based on
a logistic function ωE = 1 − 1

1+exp(−k(E−0.5maxE)) , where E and maxE denote current training
epoch and maximum training epoch, respectively. k represents the attenuation rate, and it is fixed as
0.2.

In addition to ω, the PAN loss incorporates two important hyper-parameters the number of corruption
positions N and the pre-defined threshold τ inducing the Low-Norm Effect. It should be noted
that the size of the additional inference cost incurred by the PAN loss is positive correlation with
N . Technically, the text encoder needs to perform inferences on a batch of B × (N + 1). In the
computational efficiency experiments, we set the default value of N to 1 and τ to 0.5. These settings
are chosen to minimize computational costs while maintaining the desired performance.

Furthermore, the baseline model CoOp has multiple variations, including multiple backbones (e.g.
ResNet-50 (He et al., 2016) and ViT-B/16 (Dosovitskiy et al., 2020)), different positions for the class
token (e.g., ”front”, ”middle”, and ”end”), various lengths for the soft-prompt (e.g., 4 and 16), and
multiple parameter initialization strategies. For a clear comparison, here we choose one of them as
our baseline with ResNet-50 backbone, the class token at the ”end” position, 16 soft-prompt tokens,
and ”random” initialization.
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A.2.3 CORRUPTION EXPERIMENTS

This subsection provides more details of corruption experiments implemented by the two corruption
operations we proposed.

The REPLACE operation involves replacing the prompt vector at a single position with a randomly
generated vector from a Gaussian distribution, which is characterized by a zero mean and a fixed
variance. By modifying the variance of the Gaussian distribution, we can roughly control the norms
of generated Gaussian vectors. To be specific, increasing the variance leads to higher norms of the
generated Gaussian vectors while decreasing the variance results in lower norms. We employ five
different variance values: 0, 0.001, 0.01, 0.1, and 0.5.

Furthermore, the RESCALE operation is utilized to rescale the prompt vector at a single position
by applying various sizes of rescaling factors, including 0.001, 0.01, 0.1, 0.5, and 2. The first four
rescaling factors are employed to reduce the norms, while the last one is utilized to increase the
norms. As a result, for soft prompts of length L and a corruption operation, we conduct corruption
experiments L times. Then, we can calculate the occurrence frequency with which the performance
of corrupted prompts exceeds that of their original counterparts. Tables A2 and A3 provide a de-
tailed record of this occurrence frequency under different corruption operations, respectively. It is
noteworthy that the results of occurrence frequency of the Low-Norm Effect across 11 datasets (i.e.
the results of Figure 1) are calculated by the sum of four rescaling factors, including 0.001, 0.01,
0.1, and 0.5.

For a better intuitive understanding, we present a part of corruption experiments in the form of bar
graphs. Take the ImageNet dataset under 1 shot setting as an example, as shown in Figure A1.
From Figure A1(c), we can perceive that the replacement of prompt vectors at positions 1-4 with
random Gaussian vector having a zero mean and a variance of 0.001 barely changes the model’s
performance. Surprisingly, an improvement in performance is observed for positions 5, 7, 8, and
9. Additionally, a similar pattern can be found in Figure A1(h), where we observe varying degrees
of performance improvement when the prompt vector at positions 1-14 is rescaled to half of its
original magnitude (i.e. reducing the norms). On the contrary, the model’s performance for all
positions experiences varying degrees of decline when the norms of soft prompts increase, whether
the Replace or Rescale operation, as shown in Figure A1(g), A1(i) and A1(j).

A.2.4 BASE-TO-NEW RESULTS

In this subsection, we compare the baseline model CoCoOp and CoCoOp+Nemesis (ours) in the
base-to-new setting. CoCoOp inputs a batch of image features into an additional neural network to
generate instance-conditional prompts, which are added to soft prompts to produce a batch of final
prompts. Following CoCoOp, all methods are implemented with ViT-B/16 backbone and evaluated
with 16 shots. We report the performance on 11 datasets, including the base classes (Base), new
classes (New), and the harmonic mean (H) of both. We present comprehensive results of base-to-
new experiments conducted on all datasets, as illustrated in Table A4. We can observe that increasing
the strength of normalization of soft prompts (i.e. larger ω) would have a slight negative effect on the
performance of base classes but better enhance the performance of new classes. This suggests that
the generalization performance from base classes to unseen classes can be improved by normalizing
the soft prompts of VLMs. In particular, CoCoOp+Nemesis (PAN, ω = 20) achieve a performance
improvement of 1.3% compared to CoCoOp for new classes.

A.2.5 RESULTS OF ABLATION STUDY AND HYPER-PARAMETER ANALYSIS

This subsection presents the ablation results for the normalized strength ω. The outcomes of different
sizes of ω on few-shot recognition tasks across 11 datasets are illustrated in Table A5. Additionally,
Table A7 showcases the results of using different norm types for the PUN loss, including 1-norm,
2-norm, and Inf-norm.

A.2.6 RESULTS DURING TRAINING PROCESS

This subsection provides results during soft-prompt tuning VLMs, including training loss, test ac-
curacy, norms of soft prompts at various positions, and the occurrence frequency of Low-Norm
Effect for different prompting positions. The data comparison between Figure A2 and Figure A3
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leads to several conclusions. Firstly, regardless of whether it is in the 1-shot or 16-shot setting, the
PUN loss demonstrates a stronger level of normalization compared to the PAN loss. On the other
hand, despite the stronger normalization of the PUN loss, it does not outperform the PAN loss in
the 16-shot setting. This implies that simply reducing the norm of soft prompts does not always
lead to an improvement in model performance. Secondly, there is a notable occurrence frequency
of the Low-Norm Effect in the 16-shot setting during training process, indicating that an increased
number of training samples can facilitate the identification of prompting positions that induce the
Low-Norm Effect by the PAN loss. This observation may explain why the PAN loss performs better
in the 16-shot setting but is inferior to the PUN loss in the 1-shot setting. Lastly, the addition of two
normalization losses does not seem to have a substantial influence on the original cross-entropy loss,
indicating that they do not contribute to model performance primarily by reducing the cross-entropy
loss. Instead, their benefits are likely derived from harnessing the Low-Norm Effect.

A.2.7 COMPUTATION COST ANALYSIS

The data in Table A8 represents the average computation costs of multiple training batches, based
on the benchmark of CoOp’s training time. The numbers in parentheses indicate the corresponding
running times in seconds. Firstly, we observe that incorporating the PUN or PAN loss increases
computation costs compared to using CoOp alone. The PAN loss introduces an additional pre-
inference step before each training batch, resulting in a higher computational burden compared
to the PUN loss. However, combining both losses does not significantly impact the running time
compared to using the PAN loss alone. Furthermore, there is a clear and consistent trend across all
methods, including CoOp, PLOT, and our two losses, where computation costs increase with the
number of classes in the datasets. We speculate this is caused by the fact that CoOp-based methods
optimize the similarity scores between text features of all categories and image features of a mini-
batch. The increase of number of classes will result in a significant increase in the gradients required
for calculation. Lastly, it should be noted that the running time of the PAN loss and PLOT is almost
comparable.

The data in Table A9 demonstrate that increasing the value of N leads to increased computational
costs, particularly when dealing with large datasets, resulting in longer computation time and higher
memory consumption. This is because the model requires generating a greater number of corrupted
textual features for prediction within each training batch. Although it is generally observed that
increasing N has a positive impact on the model’s performance, finding ways to mitigate the com-
putational burden is a valuable area for future research.

A.2.8 OTHER APPLICABLE SCENARIOS ANALYSIS

While our proposed method primarily focuses on benchmarking soft prompt-tuning VLMs, it should
be noted that the benefits of Nemesis may be not limited to it alone. We speculate that they can also
be applied to other parameter-efficient tuning (PEFT) methods, such as visual prompt-tuning (Jia
et al., 2022) and prefix-tuning (Li & Liang, 2021), as well as their various downstream task.

To verify this, we conducted preliminary experiments on a few PEFT methods and their applicable
scenarios, including visual prompt-tuning (Jia et al., 2022) for image classification and prefix-tuning
(Li & Liang, 2021) for paraphrase classification. Given that the proposed PAN loss may involve
designing specific corruption experiments and adopting distinct performance comparison metrics
depending on different methods and tasks. To be more specific, we should adopt various perfor-
mance metrics when identifying the positions that induce the Low-Norm Effect, such as classifica-
tion accuracy for classification tasks, mAP (mean Average Precision) for object detection tasks, IoU
(Intersection over Union) for segmentation tasks, and BLEU (BilinguaL Evaluation Understudy) for
text generation. We leave it for the future work. Here, we only incorporate the PUN loss into these
methods and obtain the results, as shown in Tables A10 and A11.

Based on the presented results, the proposed PUN loss can enhance the performance in all conducted
experiments. However, determining the ideal weight for the proposed loss requires further investi-
gation, which is a potential direction for future work. In summary, these preliminary results support
our research prospects discussed in the Conclusion Section (i.e. Section 6), and we hope that our
findings and approaches will provide new insights into PEFT methods and inspire future research in
these fields.
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(f) Rescaling factor = 0.1.
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(h) Rescaling factor = 0.5.
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(i) Replaced by r ∼ N (r; 0, 0.52).
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Figure A1: Comparison of the model’s performance and norms of soft prompts before and after
corrupting the prompt vector at various positions. The blue and green bars denote the model’s
performance and the norms of soft prompts, respectively. The lines represent the benchmarks of
without corruption. Take the ImageNet dataset under 1 shot setting as an example.
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Figure A2: The results of the Caltech101 dataset at the 1-shot setting during the training process.
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Figure A3: The results of the Caltech101 dataset at the 16-shots setting during the training process.
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Table A2: Corruption experiments using the Replace operation: the detailed occurrence frequency
with which the performance of corrupted prompts exceeds that of their original counterparts. The
upward and downward arrows indicate an increase and decrease in norms, respectively.

Dataset Variance 1 shot 2 shots 4 shots 8 shots 16 shots Norms variation

ImageNet

0 5 0 0 0 0 ↓
0.001 6 0 0 0 0 ↓
0.01 3 0 0 0 0 ↓
0.1 0 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑

Caltech101

0 8 3 0 0 0 ↓
0.001 7 4 0 0 0 ↓
0.01 7 1 0 0 0 ↓
0.1 0 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑

OxfordPets

0 10 12 7 8 6 ↓
0.001 7 12 6 8 5 ↓
0.01 6 12 5 4 3 ↓
0.1 0 8 0 0 0 ↑
0.5 0 3 0 0 0 ↑

StanfordCars

0 4 0 0 0 0 ↓
0.001 2 0 0 0 0 ↓
0.01 3 0 0 0 0 ↓
0.1 2 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑

Flowers102

0 0 0 0 0 0 ↓
0.001 0 0 0 0 0 ↓
0.01 0 0 0 0 0 ↓
0.1 0 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑

Food101

0 7 5 5 7 1 ↓
0.001 7 5 6 7 1 ↓
0.01 9 3 5 5 1 ↓
0.1 4 3 3 0 0 ↑
0.5 1 0 0 0 0 ↑

FGVCAircraft

0 2 0 0 0 0 ↓
0.001 2 0 0 0 0 ↓
0.01 2 0 0 0 0 ↓
0.1 0 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑

SUN397

0 0 0 0 0 0 ↓
0.001 0 0 0 0 0 ↓
0.01 0 0 0 0 0 ↓
0.1 0 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑

DTD

0 3 1 0 0 0 ↓
0.001 3 0 0 0 0 ↓
0.01 1 0 0 0 0 ↓
0.1 0 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑

EuroSAT

0 0 0 0 0 0 ↓
0.001 0 0 0 0 0 ↓
0.01 1 0 0 0 0 ↓
0.1 1 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑

UCF101

0 1 0 0 0 0 ↓
0.001 1 0 0 0 0 ↓
0.01 0 0 0 0 0 ↓
0.1 0 0 0 0 0 ↑
0.5 0 0 0 0 0 ↑
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Table A3: Corruption experiments using the Rescale operation: the detailed occurrence frequency
with which the performance of corrupted prompts exceeds that of their original counterparts. The
upward and downward arrows indicate an increase and decrease in norms, respectively.

Dataset Resclaing factor 1 shot 2 shots 4 shots 8 shots 16 shots Norms variation

ImageNet

0.001 6 0 0 0 0 ↓
0.01 6 0 0 0 0 ↓
0.1 8 3 0 0 0 ↓
0.5 14 15 13 11 9 ↓
2.0 0 0 0 1 0 ↑

Caltech101

0.001 8 3 0 0 0 ↓
0.01 9 4 0 0 0 ↓
0.1 5 5 0 0 0 ↓
0.5 10 8 11 4 2 ↓
2.0 3 2 2 1 0 ↑

OxfordPets

0.001 10 12 5 8 6 ↓
0.01 10 13 6 7 6 ↓
0.1 10 13 7 12 6 ↓
0.5 10 15 16 15 7 ↓
2.0 1 0 1 0 1 ↑

StanfordCars

0.001 6 0 0 0 0 ↓
0.01 5 0 0 0 0 ↓
0.1 8 0 0 0 0 ↓
0.5 16 5 4 0 0 ↓
2.0 6 1 0 0 0 ↑

Flowers102

0.001 0 0 0 0 0 ↓
0.01 0 0 0 0 0 ↓
0.1 0 0 0 0 0 ↓
0.5 2 1 0 1 1 ↓
2.0 0 0 0 0 0 ↑

Food101

0.001 8 4 5 7 1 ↓
0.01 8 5 6 7 1 ↓
0.1 13 9 7 7 1 ↓
0.5 14 12 11 15 13 ↓
2.0 1 1 1 0 0 ↑

FGVCAircraft

0.001 2 0 0 0 0 ↓
0.01 1 0 0 0 0 ↓
0.1 1 0 0 0 0 ↓
0.5 5 0 0 4 0 ↓
2.0 3 0 0 0 0 ↑

SUN397

0.001 0 0 0 0 0 ↓
0.01 0 0 0 0 0 ↓
0.1 0 0 0 0 0 ↓
0.5 8 12 11 5 5 ↓
2.0 0 0 0 0 0 ↑

DTD

0.001 3 1 0 0 0 ↓
0.01 2 1 0 0 0 ↓
0.1 5 1 0 0 0 ↓
0.5 13 11 4 2 2 ↓
2.0 2 1 0 0 0 ↑

EuroSAT

0.001 0 0 0 0 0 ↓
0.01 0 0 0 0 0 ↓
0.1 0 0 0 0 0 ↓
0.5 8 5 2 2 2 ↓
2.0 1 5 1 0 2 ↑

UCF101

0.001 1 0 0 0 0 ↓
0.01 1 0 0 0 0 ↓
0.1 1 0 0 0 0 ↓
0.5 3 11 12 0 2 ↓
2.0 2 0 1 0 0 ↑
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Table A4: Comparison of CoCoOp and CoCoOp+Nemesis (ours) in the base-to-new generalization
setting. Following CoCoOp, all methods are implemented with ViT-B/16 backbone and evaluated
with 16 shots. We report the performance on 11 datasets, including the base classes (Base), new
classes (New), and the harmonic mean (H) of both.

(a) Average.

Base New H

CoCoOp 80.8 72.6 76.5
CoCoOp+Nemesis (PUN, ω = 1) 80.7 72.6 76.4
CoCoOp+Nemesis (PUN, ω = 10) 80.4 73.2 76.6
CoCoOp+Nemesis (PUN, ω = 20) 80.5 73.3 76.7
CoCoOp+Nemesis (PAN, ω = 1) 80.4 72.6 76.3
CoCoOp+Nemesis (PAN, ω = 10) 80.5 73.3 76.7
CoCoOp+Nemesis (PAN, ω = 20) 80.3 73.9 77.0

(b) ImageNet.

Base New H

CoCoOp 76.3 70.6 73.3
CoCoOp+Nemesis (PUN, ω = 1) 76.2 70.7 73.3
CoCoOp+Nemesis (PUN, ω = 10) 76.2 70.6 73.3
CoCoOp+Nemesis (PUN, ω = 20) 76.3 70.5 73.3
CoCoOp+Nemesis (PAN, ω = 1) 76.2 70.5 73.2
CoCoOp+Nemesis (PAN, ω = 10) 76.2 70.5 73.3
CoCoOp+Nemesis (PAN, ω = 20) 76.2 70.5 73.2

(c) Caltech101.

Base New H

CoCoOp 97.9 93.2 95.5
CoCoOp+Nemesis (PUN, ω = 1) 97.8 93.6 95.7
CoCoOp+Nemesis (PUN, ω = 10) 97.7 93.7 95.6
CoCoOp+Nemesis (PUN, ω = 20) 98.0 93.7 95.8
CoCoOp+Nemesis (PAN, ω = 1) 97.8 93.5 95.6
CoCoOp+Nemesis (PAN, ω = 10) 97.8 93.9 95.8
CoCoOp+Nemesis (PAN, ω = 20) 98.0 93.7 95.8

(d) OxfordPets.

Base New H

CoCoOp 95.0 97.6 96.3
CoCoOp+Nemesis (PUN, ω = 1) 95.2 97.8 96.5
CoCoOp+Nemesis (PUN, ω = 10) 95.0 97.6 96.3
CoCoOp+Nemesis (PUN, ω = 20) 94.8 97.7 96.2
CoCoOp+Nemesis (PAN, ω = 1) 95.3 97.7 96.5
CoCoOp+Nemesis (PAN, ω = 10) 94.8 97.8 96.3
CoCoOp+Nemesis (PAN, ω = 20) 94.7 97.7 96.2

(e) StanfordCars.

Base New H

CoCoOp 70.8 73.1 71.9
CoCoOp+Nemesis (PUN, ω = 1) 71.0 73.3 72.1
CoCoOp+Nemesis (PUN, ω = 10) 70.2 73.6 71.9
CoCoOp+Nemesis (PUN, ω = 20) 70.6 73.4 72.0
CoCoOp+Nemesis (PAN, ω = 1) 71.0 72.7 71.5
CoCoOp+Nemesis (PAN, ω = 10) 70.2 73.5 72.1
CoCoOp+Nemesis (PAN, ω = 20) 70.6 73.2 72.3

(f) Flowers102.

Base New H

CoCoOp 95.2 68.9 79.9
CoCoOp+Nemesis (PUN, ω = 1) 95.0 70.8 81.1
CoCoOp+Nemesis (PUN, ω = 10) 93.7 71.3 81.0
CoCoOp+Nemesis (PUN, ω = 20) 94.0 71.3 81.1
CoCoOp+Nemesis (PAN, ω = 1) 94.5 72.2 81.8
CoCoOp+Nemesis (PAN, ω = 10) 95.2 71.8 81.8
CoCoOp+Nemesis (PAN, ω = 20) 93.5 71.5 81.0

(g) Food101.

Base New H

CoCoOp 90.5 91.3 90.9
CoCoOp+Nemesis (PUN, ω = 1) 90.6 91.5 91.0
CoCoOp+Nemesis (PUN, ω = 10) 90.6 91.4 91.0
CoCoOp+Nemesis (PUN, ω = 20) 90.6 91.5 91.0
CoCoOp+Nemesis (PAN, ω = 1) 90.5 91.5 91.0
CoCoOp+Nemesis (PAN, ω = 10) 90.5 91.3 90.9
CoCoOp+Nemesis (PAN, ω = 20) 90.6 91.5 91.0

(h) FGVCAircraft.

Base New H

CoCoOp 35.6 32.1 33.8
CoCoOp+Nemesis (PUN, ω = 1) 35.7 32.7 34.1
CoCoOp+Nemesis (PUN, ω = 10) 35.5 34.0 34.7
CoCoOp+Nemesis (PUN, ω = 20) 35.8 34.8 35.3
CoCoOp+Nemesis (PAN, ω = 1) 35.3 33.4 34.3
CoCoOp+Nemesis (PAN, ω = 10) 35.5 32.3 33.8
CoCoOp+Nemesis (PAN, ω = 20) 35.1 35.8 35.4

(i) SUN397.

Base New H

CoCoOp 79.6 76.6 78.1
CoCoOp+Nemesis (PUN, ω = 1) 79.2 75.9 77.5
CoCoOp+Nemesis (PUN, ω = 10) 79.2 76.7 77.9
CoCoOp+Nemesis (PUN, ω = 20) 79.4 77.0 78.2
CoCoOp+Nemesis (PAN, ω = 1) 79.3 76.7 78.0
CoCoOp+Nemesis (PAN, ω = 10) 79.1 77.0 78.0
CoCoOp+Nemesis (PAN, ω = 20) 79.2 76.7 77.9

(j) DTD.

Base New H

CoCoOp 77.3 55.8 64.8
CoCoOp+Nemesis (PUN, ω = 1) 77.5 55.4 64.6
CoCoOp+Nemesis (PUN, ω = 10) 77.4 54.9 64.2
CoCoOp+Nemesis (PUN, ω = 20) 76.4 58.7 66.4
CoCoOp+Nemesis (PAN, ω = 1) 77.3 56.6 65.3
CoCoOp+Nemesis (PAN, ω = 10) 76.0 57.3 65.3
CoCoOp+Nemesis (PAN, ω = 20) 76.6 56.7 65.2

(k) EuroSAT.

Base New H

CoCoOp 88.1 65.2 74.9
CoCoOp+Nemesis (PUN, ω = 1) 87.4 64.1 74.0
CoCoOp+Nemesis (PUN, ω = 10) 86.6 66.9 75.5
CoCoOp+Nemesis (PUN, ω = 20) 87.5 64.0 73.9
CoCoOp+Nemesis (PAN, ω = 1) 85.8 61.8 71.9
CoCoOp+Nemesis (PAN, ω = 10) 88.0 68.6 77.1
CoCoOp+Nemesis (PAN, ω = 20) 86.2 71.3 78.1

(l) UCF101.

Base New H

CoCoOp 82.5 73.8 77.9
CoCoOp+Nemesis (PUN, ω = 1) 81.9 72.6 77.0
CoCoOp+Nemesis (PUN, ω = 10) 81.9 74.4 78.0
CoCoOp+Nemesis (PUN, ω = 20) 81.9 74.1 77.8
CoCoOp+Nemesis (PAN, ω = 1) 82.1 72.5 77.0
CoCoOp+Nemesis (PAN, ω = 10) 81.7 72.6 76.9
CoCoOp+Nemesis (PAN, ω = 20) 81.6 74.5 77.9
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Table A5: Comparison of CoOp and CoOp+Nemesis (ours) in few-shot image recognition tasks,
including 11 different datasets. All methods are implemented with ResNet-50 backbone.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

ImageNet

CoOp 56.62 56.96 59.40 61.38 62.70
Nemesis (PUN, ω=0.1) 56.62 57.12 59.54 61.58 63.18
Nemesis (PUN, ω=1) 56.16 58.00 61.14 62.30 62.96
Nemesis (PUN, ω=10) 60.44 61.78 62.14 62.54 63.08
Nemesis (PAN, ω=0.1) 57.00 57.44 59.64 61.76 63.14
Nemesis (PAN, ω=1) 56.70 57.10 59.54 61.78 63.28
Nemesis (PAN, ω=10) 57.08 58.52 61.14 62.18 63.14

Caltech101

CoOp 86.98 87.32 89.28 89.82 91.70
Nemesis (PUN, ω=0.1) 87.64 87.36 89.46 90.32 91.86
Nemesis (PUN, ω=1) 86.90 86.98 88.94 90.32 91.78
Nemesis (PUN, ω=10) 85.76 87.92 90.36 91.28 91.42
Nemesis (PAN, ω=0.1) 87.36 87.50 89.50 90.36 91.70
Nemesis (PAN, ω=1) 87.58 87.44 89.50 90.12 91.90
Nemesis (PAN, ω=10) 87.32 87.06 88.92 90.16 91.70

OxfordPets

CoOp 85.80 83.02 85.98 84.86 85.98
Nemesis (PUN, ω=0.1) 86.28 83.16 86.38 85.20 86.18
Nemesis (PUN, ω=1) 86.22 82.68 85.82 83.76 86.08
Nemesis (PUN, ω=50) 85.02 87.18 88.00 88.66 88.88
Nemesis (PAN, ω=0.1) 86.28 83.16 86.38 85.20 86.18
Nemesis (PAN, ω=1) 86.22 82.68 85.82 83.76 86.08
Nemesis (PAN, ω=50) 85.90 83.48 86.90 87.68 88.90

StanfordCars

CoOp 55.62 58.44 62.84 67.78 72.80
Nemesis (PUN, ω=0.1) 56.18 58.50 63.00 68.22 73.74
Nemesis (PUN, ω=1) 56.16 58.08 63.72 68.10 71.50
Nemesis (PUN, ω=10) 56.42 59.62 63.34 67.08 70.46
Nemesis (PAN, ω=0.1) 56.20 58.70 63.02 68.24 73.56
Nemesis (PAN, ω=1) 56.14 58.54 63.46 68.52 73.60
Nemesis (PAN, ω=10) 56.16 58.08 63.64 67.66 71.60

Flowers102

CoOp 67.48 76.92 85.28 90.84 94.30
Nemesis (PUN, ω=0.1) 67.70 77.04 85.46 91.68 94.76
Nemesis (PUN, ω=1) 68.52 78.38 86.58 92.08 94.62
Nemesis (PUN, ω=10) 69.96 80.16 86.56 90.46 93.70
Nemesis (PAN, ω=0.1) 67.76 77.44 85.86 91.50 94.58
Nemesis (PAN, ω=1) 67.94 77.12 85.94 91.80 94.90
Nemesis (PAN, ω=10) 68.44 78.86 87.16 91.92 94.46

Food101

CoOp 73.76 72.62 74.06 71.80 74.20
Nemesis (PUN, ω=0.1) 74.02 72.84 74.12 71.68 74.32
Nemesis (PUN, ω=1) 73.70 71.18 71.34 71.44 76.24
Nemesis (PUN, ω=50) 74.26 77.36 78.68 78.80 78.62
Nemesis (PAN, ω=0.1) 74.10 72.98 74.34 72.06 74.48
Nemesis (PAN, ω=1) 74.08 72.84 74.06 71.52 74.28
Nemesis (PAN, ω=50) 72.10 71.74 75.30 78.38 79.36

FGVCAircraft

CoOp 9.56 18.30 21.04 26.66 31.64
Nemesis (PUN, ω=0.1) 9.36 19.42 21.46 27.94 31.64
Nemesis (PUN, ω=1) 10.02 19.40 21.76 27.04 30.92
Nemesis (PUN, ω=10) 12.48 19.88 22.72 26.86 29.64
Nemesis (PAN, ω=0.1) 9.82 18.76 21.36 27.10 31.72
Nemesis (PAN, ω=1) 9.88 18.52 20.94 27.50 32.32
Nemesis (PAN, ω=10) 10.28 19.36 22.16 27.48 30.50

SUN397

CoOp 60.12 59.96 62.70 65.28 68.82
Nemesis (PUN, ω=0.1) 60.12 60.14 62.78 65.64 69.36
Nemesis (PUN, ω=1) 59.54 58.60 63.54 66.62 69.82
Nemesis (PUN, ω=10) 59.16 61.38 65.08 67.30 69.74
Nemesis (PAN, ω=0.1) 60.32 59.96 63.06 65.74 69.42
Nemesis (PAN, ω=1) 59.36 59.56 64.06 66.82 69.72
Nemesis (PAN, ω=10) 58.78 59.80 64.92 67.84 69.92

DTD

CoOp 44.16 46.24 53.16 58.64 62.70
Nemesis (PUN, ω=0.1) 44.60 46.28 53.64 58.85 63.06
Nemesis (PUN, ω=1) 43.98 46.64 53.48 58.74 63.16
Nemesis (PUN, ω=10) 43.96 46.20 53.46 58.98 62.76
Nemesis (PAN, ω=0.1) 43.96 46.94 53.10 58.96 63.06
Nemesis (PAN, ω=1) 43.76 46.64 53.54 59.00 63.26
Nemesis (PAN, ω=10) 44.58 46.34 53.46 59.16 63.16

EuroSAT

CoOp 48.78 59.90 67.54 77.32 83.24
Nemesis (PUN, ω=0.1) 48.14 61.60 68.64 77.12 83.42
Nemesis (PUN, ω=1) 49.06 60.62 69.26 77.22 83.50
Nemesis (PUN, ω=10) 51.10 61.22 69.52 77.10 82.86
Nemesis (PAN, ω=0.1) 50.12 62.08 69.20 77.70 83.10
Nemesis (PAN, ω=1) 50.66 61.24 67.68 77.36 83.52
Nemesis (PAN, ω=10) 50.62 61.70 67.94 77.60 83.36

UCF101

CoOp 62.66 64.40 68.50 73.46 76.58
Nemesis (PUN, ω=0.1) 63.38 65.00 69.26 73.28 76.58
Nemesis (PUN, ω=1) 63.14 64.40 69.32 73.36 77.28
Nemesis (PUN, ω=10) 60.88 64.66 69.04 72.74 75.80
Nemesis (PAN, ω=0.1) 63.14 64.74 68.64 73.62 76.94
Nemesis (PAN, ω=1) 63.18 65.24 69.14 73.52 77.10
Nemesis (PAN, ω=10) 62.44 64.60 68.76 74.04 77.02
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Table A6: Hyper-parameter analysis on threshold τ .

Threshold τ Caltech101 StanfordCars EuroSAT DTD Flowers102 UCF101 Average

0.1 89.29 63.91 67.79 53.32 83.35 69.52 85.44
0.5* 89.25 63.59 67.13 53.30 83.44 69.58 85.26
0.9 89.31 63.81 68.28 53.55 83.51 69.40 85.57

Table A7: Hyper-parameter analysis on different types of p-norm.

Norm type Caltech101 StanfordCars EuroSAT DTD Flowers102 UCF101 Average

2-norm* 89.25 63.59 67.13 53.30 83.44 69.58 85.26
1-norm 89.16 63.48 67.43 53.22 84.21 68.76 85.25
Inf-norm 89.33 63.95 67.21 53.23 83.39 69.52 85.33

Table A8: Analysis of computation costs. All comparison results are obtained by the average of
multiple training batches and based on the benchmark of the training time of CoOp. For fair com-
parison, we do not report the computation costs of PLOT on the ImageNet dataset as it needs to
reduce batch size for single GPU execution. The PAN loss adopts the default setting N = 1.

Datasets Classes CoOp CoOp+PUN CoOp+PAN CoOp+PUN+PAN PLOT

ImageNet 1000 1× (0.22) 2.27× (0.50) 4.00× (0.88) 4.05× (0.89) -
SUN397 397 1× (0.11) 1.91× (0.21) 3.36× (0.37) 3.45× (0.38) 3.00× (0.33)
StanfordCars 196 1× (0.07) 1.57× (0.11) 2.86× (0.20) 2.86× (0.20) 2.57× (0.18)
Flowers102 102 1× (0.06) 1.17× (0.07) 2.00× (0.12) 2.00× (0.12) 1.83× (0.11)
UCF101 101 1× (0.06) 1.17× (0.07) 2.00× (0.12) 2.17× (0.13) 1.83× (0.11)
Food101 101 1× (0.06) 1.17× (0.07) 2.00× (0.12) 2.00× (0.12) 1.83× (0.11)
Caltech101 100 1× (0.06) 1.17× (0.07) 2.00× (0.12) 2.00× (0.12) 1.83× (0.11)
FGVCAircraft 100 1× (0.06) 1.17× (0.07) 2.00× (0.12) 2.00× (0.12) 1.83× (0.11)
DTD 47 1× (0.05) 1.00× (0.05) 1.60× (0.08) 1.60× (0.08) 1.40× (0.07)
OxfordPets 37 1× (0.05) 1.00× (0.05) 1.40× (0.07) 1.60× (0.08) 1.40× (0.07)
EuroSAT 10 1× (0.05) 1.00× (0.05) 1.20× (0.06) 1.20× (0.06) 1.00× (0.05)

Table A9: Analysis of computation costs about N . All comparison results are obtained by the
average of multiple training batches and based on the benchmark of the training time of CoOp.

Datasets CoOp CoOp+PAN(N=1) CoOp+PAN(N=2) CoOp+PAN(N=4) CoOp+PAN(N=8) CoOp+PAN(N=16)

ImageNet 1× (0.22) 4.00× (0.88) 4.86× (1.07) 6.64× (1.46) 10.09× (2.22) 17.05× (3.75)
SUN397 1× (0.11) 3.36× (0.37) 4.09× (0.45) 5.36× (0.59) 8.18× (0.90) 13.64× (1.50)
StanfordCars 1× (0.07) 2.86× (0.20) 3.43× (0.24) 4.43× (0.31) 6.57× (0.46) 10.71× (0.75)
Flowers102 1× (0.06) 2.00× (0.12) 2.50× (0.15) 3.00× (0.18) 4.43× (0.26) 6.83× (0.41)
UCF101 1× (0.06) 2.00× (0.12) 2.33× (0.14) 3.00× (0.18) 4.43× (0.26) 6.83× (0.41)
Food101 1× (0.06) 2.00× (0.12) 2.33× (0.14) 3.00× (0.18) 4.43× (0.26) 6.67× (0.40)
Caltech101 1× (0.06) 2.00× (0.12) 2.33× (0.14) 3.00× (0.18) 4.17× (0.25) 6.67× (0.40)
FGVCAircraft 1× (0.06) 2.00× (0.12) 2.33× (0.14) 3.00× (0.18) 4.17× (0.25) 6.67× (0.40)
DTD 1× (0.05) 1.60× (0.08) 1.80× (0.09) 2.20× (0.11) 2.80× (0.14) 4.20× (0.21)
OxfordPets 1× (0.05) 1.40× (0.07) 1.80× (0.09) 1.80× (0.09) 2.40× (0.12) 3.40× (0.17)
EuroSAT 1× (0.05) 1.20× (0.06) 1.20× (0.06) 1.20× (0.06) 1.40× (0.07) 1.80× (0.09)

Table A10: Results from incorporating the PUN loss into visual prompt tuning for image classifica-
tion. The experiment setting follows the VTAB-1k (Zhai et al., 2019) benchmark. ω = 0 denotes
the case without the PUN loss.

Datasets ω=0 ω=0.001 ω=0.01 ω=0.1 ω=1 ω=10

Sun397 (Natural) 49.86 49.76 50.04 48.89 46.67 45.07
EuroSAT (Specialized) 91.89 91.30 92.00 92.81 91.63 91.31
DMLab (Structured) 33.54 33.39 33.75 34.85 35.75 35.50

Table A11: Results from incorporating the PUN loss into prefix-tuning for paraphrase classification.
The experiment is conducted on the MRPC dataset (Dolan & Brockett, 2005). ω = 0 denotes the
case without the PUN loss.

Datasets Performance Metrics ω=0 ω=0.0001 ω=0.001 ω=0.01 ω=0.1 ω=1

MRPC F1 Score 89.37 91.06 90.90 88.70 80.62 80.81
Accuracy 85.10 88.00 88.00 85.10 69.62 70.90

24


	Introduction
	Low-Norm Effect
	Methodology
	A Revisit of Prompt-tuning Vision-language Models
	Corruption Operations
	The Nemesis Method

	Experiments
	Datasets
	Implementation Details
	Few-shot Image Recognition Results
	Evaluation of Generalization Performance
	In-depth Studies on the Low-Norm Effect in VLMs
	Extendibility Analysis
	Ablation studies and Hyper-parameter Analysis

	Related Work
	Vision-Language Models Pre-training
	Parameter-Efficient Fine-Tuning

	Conclusion
	Appendix
	Method Details
	Experimental Details
	Datasets
	Hyper-parameter Settings
	Corruption Experiments
	Base-to-New Results
	Results of Ablation Study and Hyper-parameter Analysis
	Results during Training Process
	Computation Cost Analysis
	Other Applicable Scenarios Analysis



