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Abstract—This paper proposes OPENNAVMAP, a multi-session
mapping system designed for scalable visual navigation. Rather
than relying on the 3D structure-based representation of the
environment, OPENNAVMAP adopts a robust collaborative lo-
calization strategy to facilitate map merging, taking only 2D
images as input. The resulting topometric map is thus lightweight
and structure-free, composed of three layered graphs: odometry,
covisibility, and traversability. This design enables autonomous
visual navigation without the need for prior structure-based
maps. Experiments on map merging demonstrate that OPEN-
NAVMAP achieves high accuracy (< 3m ATE over 15km) and
strong robustness to challenging conditions such as day-night
transitions and large viewpoint changes. The system has been
successfully deployed on a quadruped robot using only monocular
RGB inputs for image-goal visual navigation. A video is provided
to explain the methodology and experimental result:

I. INTRODUCTION

A. Motivation

Robots navigating daily tasks require map representations
that are expressive, scalable, and easy to maintain. Traditional
dense 3D maps are computationally heavy, difficult to update,
and brittle under environmental changes. To address this, we
propose a mapping framework that incrementally integrates
maps from multiple sessions [[1]], emphasizing scalability and
robustness for long-term visual navigation.

B. Challenges

Constructing scalable maps across diverse environments
remains challenging.

1) Map Representation: Conventional methods for visual
navigation, such as SfM [2], SLAM [3]], [4], or volumetric
mapping [5]], generate accurate but storage-heavy maps or
lightweight ones with reduced precision. Both are hard to
maintain as environments evolve. Inspired by the map-free
benchmark [[6]], we adopt a sparse, structure-free representation
that avoids explicit 3D priors and improves adaptability.
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Fig. 1. Visual navigation with the proposed structure-free topometric map.
Green dots show the path to the goal, white dots other nodes.

2) Collaborative Localization: Merging submaps from
multiple sessions presents a significant challenge, particularly
due to the limited overlap inherent in crowd-sourced data.
This limitation stems from the lack of a unified collection
strategy, which yields sparse and non-uniform environmental
coverage, thereby restricting the common geometric features
necessary for robust map registration. This raises the need for
robust mechanisms to handle: 1) Spatial Scalability: adapting
to diverse environments and arbitrary viewpoints; and 2) Tem-
poral Adaptability: ensuring robustness against environmental
dynamics, such as movable objects and diurnal variations [7].

3) Scalable Mapping Data Acquisition: High-end LiDARs
and expert calibration [2], limit scalability in mapping data
acquisition. In contrast, consumer devices (e.g., smartphones,
AR/VR headsets) enable crowd-sourced mapping [9], [10],
though they introduce sensor diversity and perceptual noise.
Unlike OSM or Google Street View , robotic navigation
requires sub-meter accuracy in GNSS-denied settings.

C. Contributions

We present OPENNAVMAP, a collaborative multi-session
mapping system for visual relocalization (VLoc) and navi-
gation (VNav). The term “Open”, reflects our commitment
to collaborative mapping construction inspired by platforms
such as OpenStreetMap [12], where crowd-sourced data ag-
gregation enables extensible environmental representation.
OPENNAVMAP uses a lightweight topometric map orga-
nized as three layers: odometry, covisibility, and traversability.
Each node stores 6-DoF poses, while edges capture spatial
and semantic constraints. Unlike 3D point clouds or voxel
grids [2]-[4], our structure-free map avoids heavy storage.
Using a SoTA stereo reconstruction model [13]], geometry
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is reconstructed on demand, retaining metric precision while
remaining lightweight and editable. This enables efficient
updates under dynamic changes. OPENNAVMAP is multi-
session mapping system with a structure-free representation,
explicitly designed for scalable VLoc and VNav. It requires
only monocular images and scale-aware poses, achieving
below 3m ATE across 15km of real-world data collected over
10 months. The system also supports cross-device localization
and has been deployed on simulated and real robots (Fig. [I)),
completing multiple autonomous image-goal navigation tasks
under significant perceptual variation.

II. METHODOLOGY

A. Scene Representation

The resulting topometric map MW = {QZY ,Qg/ GV
represents scenes using three distinct graphs in a global world
frame {}"': Covisibility Graph (CvG), Odometry Graph
(0dG), and Traversability Graph (7rG), as illustrated in
Fig. 2] Each graph serves a specific function. CvG supports
VLoc. It connects nodes based on visual co-visibility and
stores global descriptors for VPR, along with raw images and
their associated poses. OdG functions as a factor graph, en-
coding odometry measurements and loop closures. Two nodes
are connected if their relative transformations are available
either from odometry data or from relative pose estimation.
TrG is utilized for motion planning and connects nodes that
are mutually traversable. Nodes store their poses, while edges
store traversability costs. Importantly, even if two nodes have
pose constraints and are visually co-visible, they are not
necessarily traversable if an obstacle obstructs their direct path.

We describe our collaborative localization approach, which
integrates submaps generated independently by multiple de-
vices. Modeling the OdG as a factor graph [14], the problem
is addressed in three steps: /) submap construction, 2) relative
pose estimation across submaps, and 3) pose graph optimiza-
tion (PGO) for global consistency.

B. Submap Construction

Each submap consists of CvG, OdG, and TrG graphs
containing nodes and edges. Devices generate submaps during
capture sessions using VIO, which fuses camera imagery and
IMUs for locally consistent, scale-aware poses. This setup is
compatible with smartphones, AR glasses [[15]], multi-sensor
SLAM robots [4], 360° cameras, or vehicles with wheel
odometry [16]. Submaps can be derived from: /) SEIM/SLAM
pipelines [[17]], 2) odometry-based robots, or 3) geo-referenced
image repositories. This flexibility supports long-term, scalable
mapping across diverse sources.

C. Topological-Level Localization

Without GPS, topological localization relies on visual
place recognition (VPR). Robustness requires rejecting false
matches (high precision) while retaining correct but rare
matches (high recall). Our approach integrates: /) descrip-
tor extraction: global descriptors from images using Cos-
Place [18] (ResNet-18 backbone, 256-D output); 2) sequence-
based matching: align descriptor sequences via a DP-
based shortest-path search through the difference matrix,
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Fig. 2. Block diagram illustrating the pipeline of the proposed OPENNAVMAP
system. The system builds on the topometric map with multiple layers
for different utilities: covisbility, traversibility, and odometry. a) Individual
submaps can be constructed from data collected by various types of devices.
b) The collaborative localization consists of two steps to compute the relative
transformation between the reference and query map, and then perform the
PGO to jointly estimate their transformation. c) The resulting topometric map
is deployed for image-goal navigation.

enabling flexible in-sequence and jump operations [19],
[20]; 3) geometric verification: validate correspondences via
RANSAC-based fundamental matrix estimation, producing
high-confidence pairs Pgy .

D. Metric-Level Localization

We refine inter-submap transformations using a stereo re-
construction network [|13] to predict geometry and poses from
image pairs. Multiple references are integrated via global opti-
mization of 3D pointmaps and camera parameters, improving
accuracy even with sparse overlaps. Confidence maps are
calibrated into the optimization process, weighting residuals to
downplay unreliable predictions. High-confidence pairs Ppsr,
are retained as loop-closure constraints.

E. Pose Graph Optimization

Finally, loop-closure constraints from Py, are incorporated
into the odometry graph G&. We solve a robust nonlinear least-
squares PGO:

(T} =argmin > p(|l10gl(T}) (T T, ),
T R R !
€5, €ES
)
using GTSAM |[14] for efficient optimization. The result is a

unified, globally consistent map.

III. DATASETS

This section describes our experimental setup and datasets.
The collaborative mapping and localization system is imple-
mented in Python. All experiments, except the real-world
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Fig. 3. The incremental map merging process is performed with the incoming submaps, where the order of submaps are randomly shuffled and they may
present non-overlapping at the beginning, as seen in (a), where disconnected submaps present, but not affect the pose graph optimization. The data used is
S2-R4 for the example. Green lines indicate the reliable loop factors.
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Fig. 4. Overview of our dataset collected with Aria glasses across offices,
campuses, shopping centers, and vineyards in two countries, spanning 9
months, 37 sequences, and 19km of trajectories.
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VNav deployment, are run on a desktop with an Intel i9
CPU and NVIDIA RTX 4090 GPU. Models are used without
additional fine-tuning. We collected data using Meta Project
Aria glasses [15], equipped with grayscale cameras, a front
RGB camera, IMU, and GPS. Data span two countries, 9
months, 37 sequences, and 19km of trajectories across offices,
campuses, shopping centers, parks, and vineyards. Sequences
are grouped as: GO: a vineyard session; G1: campus recordings
(day and night); G2: large-scale urban areas recorded over
three months, capturing long-term variations.

Five users with varied behaviors contributed, introducing
challenges such as wide viewpoint changes and irregular
motion. Ground-truth poses were generated using Meta’s
cloud-based SLAM, and images were anonymized. A dataset
overview is shown in Fig. [f] For map merging, we use all
GO0-G2 sequences. Each sequence is divided into segments of
up to 300m, with keyframes sampled by a distance thresh-
ol<ﬂ yielding 68 segments. For each, we provide intrinsics,
extrinsics, timestamps, VIO poses, and GT poses.

IV. EXPERIMENTAL RESULTS

We evaluate our system in two parts: /) map merging
across different devices and 2) integration into a closed-loop
VNav system tested in simulation and real robots. Overall,

2Translation and rotation thresholds: 3.9m and 60°.

TABLE I
THEORETICAL MAP SIZE PER IMAGE AND RELATIVE RATIO OF BASELINES
COMPARED TO OURS.

Methods ‘ Parameters ‘ Map Size [M B]
Ours H =512,W =288,C € (0,1] 0.423CN
Hloc (DISK+LG) M = 5000,D = 128 1.22N (289 x)
Hioc (SP+LG) M = 4096, D = 256 2N (258 %)

*N: Number of reference images for a map.

results show that even with a structure-free map, our approach
achieves robust localization and scalable navigation.

A. Map Size

The primary storage concern for our mapping solution is
the co-visibility graph and its associated keyframe images.
We evaluate the Theoretical Map Size to demonstrate the
lightweight nature of our approach compared to SfM-based
methods like Hloc [21], a state-of-the-art feature-based visual
localization system. SfM-based systems, such as Hloc, must
store a 3D point cloud and per-3D point feature descriptors
(along with co-visibility and visual dictionary information),
where the feature descriptors constitute the largest data vol-
ume. Specifically, the Hloc map size is estimated as N x 2D M
bytes, where N is the number of reference images, D = 256
is the descriptor dimension (half precision, 2 bytes per entry),
and M is the number of features per image. In contrast, ours
only store compressed reference images. The map size for
these methods is given by N x 3W H x C bytes, where W
and H are the image dimensions, and C is the average JPEG
compression ratio (empirically, C' = 0.14 in our experiments).
Table [l provides a detailed comparison of the storage require-
ments. For instance, our map shown in Fig. [3| achieves a total
storage size under 255MB for 4273 images.

B. Map Merging

Map merging incrementally aligns multiple submaps rep-
resented as pose graphs, using our collaborative localization
pipeline and PGO. Data from three regions (G0-G2) include
challenges such as low texture, illumination changes, and
viewpoint variation. To test robustness, we randomly shuffled
submap order (Gi-Rj), simulating unstructured crowdsourced
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Fig. 5. Global path planning on the proposed topometric map. Subfigures (a)-(e) represent different stages of the mapping process. As more data are collected,
the map incrementally expands to cover a larger area, enabling the robot to navigate to a broader set of goals via the shortest paths. The goal images in
(a)-(c) are captured using Aria glasses, while (d) uses a Google Street View image. As demonstrated in (e), our framework also supports input captured by
heterogeneous devices such as smartphones, highlighting its generalization capability.
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Fig. 6. Real-world experiment (R0) with a quadruped robot. (a) Navigation through indoor and outdoor areas using goal images. (b) Multiple runs across

day/night show robustness under lighting variations.

TABLE II
ABSOLUTE TRAJECTORY ERROR (ATE) MEASUREMENTS ACROSS
DIFFERENT SCENARIOS.

C. Closed-Loop Visual Navigation

We evaluate image-goal navigation, where the target is a
goal image, by integrating our topometric map into a closed-

Data | Dist/Dura. | Shuffie | Trans. ATE [m] | Rot. ATE [deg] ~ loop VNav system [22]. This interaction is intuitive, avoids
GO-InOrder | N 0.47 0.70 coordinate specification, and can extend to object- or .language-
GO-RO Brmins Y 0.65 0.86 based goals. We test two tasks: /) global path planning on the
GO-R1 Y 0.27 050 merged map, and 2) closed-loop navigation on a real robot.
Gl(—;Iln(l){r(;ier 3.9%m I;I ;ég (1).411451 1) Global Path I.’lannifzg: The map supports metric-based
GLRI 18hours v 197 041 shortest path planning with newly added submaps, ensuring
globally consistent trajectories. It also handles in-the-wild goal
Gz('}gn_%rgler I;I ;g(l) ii(l) images from mobile phones. As shown in Fig. 5} our method
G2-R1 Y 2.87 1.52 consistently selects correct shortest paths, even when user
G2-R2 Y 2.30 1.56 intuition suggests longer routes.
gg:gi 1115031221 g }?g (2):82 2) Real-World Experiments: We validate in three scenar-
G2-R5 Y 2.05 1.52 ios: RO (indoor and outdoor lab), R1 (outdoor with bridge
G2-R6 Y 1.80 1.35 crossing), and R2 (building perimeter with turns). In RO, the
ggg; ;( ;gg (1)88 robot follows three image goals over 160m in 312s at 0.5m/s,

input. Key observations: /) Shuffled submaps may lack over-
lap, but mismatches are filtered via geometric verification and
confidence weighting. 2) The final map achieves < 3m trans-
lational and < 2.1° rotational ATE over 15.3km, demonstrat-
ing robustness. 3) Node-level matching enables independent
submap integration.

robustly handling dynamic objects. Repeated runs confirm
consistent trajectories across lighting changes. In R1, the robot
successfully navigates sparse visual features; in R2, it manages
complex turns where odometry alone would drift (Fig. [7).

V. CONCLUSION

We presented OPENNAVMAP, a collaborative localization
and multi-session mapping system for scalable robot nav-
igation. The method employs a lightweight, structure-free
topometric map that reduces complexity and storage compared
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Fig. 7. Experiments R1 and R2. The robot navigates challenging terrains,
including a bridge and confined paths, using only image goals.

to structure-based maps. Extensive experiments across 19km
of trajectories in varied environments show that our approach
achieves sub-3m ATE over 15km using only monocular RGB
inputs. The system was also deployed on a real quadruped
robot, completing multiple autonomous navigation tasks and
demonstrating practical scalability. To support future research,
we will release our code and datasets.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

M. Fernandez-Cortizas, H. Bavle, D. Perez-Saura, J. L. Sanchez-Lopez,
P. Campoy, and H. Voos, “Multi s-graphs: an efficient distributed
semantic-relational collaborative slam,” IEEE Robotics and Automation
Letters, 2024.

J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

R. Murai, E. Dexheimer, and A. J. Davison, “MASt3R-SLAM: Real-
time dense slam with 3d reconstruction priors,” in Proceedings of the
Computer Vision and Pattern Recognition Conference, 2025, pp. 16 695—
16705.

C. Zheng, W. Xu, Z. Zou, T. Hua, C. Yuan, D. He, B. Zhou, Z. Liu,
J. Lin, F. Zhu et al., “Fast-livo2: Fast, direct lidar-inertial-visual odom-
etry,” IEEE Transactions on Robotics, 2024.

H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, ‘“Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2017, pp. 1366-1373.

E. Arnold, J. Wynn, S. Vicente, G. Garcia-Hernando, A. Monszpart,
V. Prisacariu, D. Turmukhambetov, and E. Brachmann, “Map-free visual
relocalization: Metric pose relative to a single image,” in Springer
European Conference on Computer Vision, 2022, pp. 690-708.

P. Yin, J. Jiao, S. Zhao, L. Xu, G. Huang, H. Choset, S. Scherer,
and J. Han, “General place recognition survey: Towards real-world
autonomy,” IEEE Transactions on Robotics, 2025.

W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000
km: The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3-15, 2017.

T. Qin, C. Li, H. Ye, S. Wan, M. Li, H. Liu, and M. Yang, “Crowd-
sourced nerf: Collecting data from production vehicles for 3d street
view reconstruction,” IEEE Transactions on Intelligent Transportation
Systems, 2024.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Doso-
vitskiy, and D. Duckworth, “Nerf in the wild: Neural radiance fields
for unconstrained photo collections,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 7210-
7219.

D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale,
L. Vincent, and J. Weaver, “Google street view: Capturing the world at
street level,” Computer, vol. 43, no. 6, pp. 32-38, 2010.
OpenStreetMap  contributors,  “Planet dump retrieved
https://planet.osm.org ,” https://www.openstreetmap.org, 2017.
V. Leroy, Y. Cabon, and J. Revaud, “Grounding image matching in 3d
with mast3r,” in European Conference on Computer Vision. Springer,
2024, pp. 71-91.

F. Dellaert and G. Contributors, “borglab/gtsam,” May 2022. [Online].
Available: https://github.com/borglab/gtsam)

J. Engel, K. Somasundaram, M. Goesele, A. Sun, A. Gamino, A. Turner,
A. Talattof, A. Yuan, B. Souti, B. Meredith et al., “Project Aria:
A new tool for egocentric multi-modal ai research,” arXiv preprint
arXiv:2308.13561, 2023.

H. Wei, J. Jiao, X. Hu, J. Yu, X. Xie, J. Wu, Y. Zhu, Y. Liu, L. Wang,
and M. Liu, “Fusionportablev2: A unified multi-sensor dataset for
generalized slam across diverse platforms and scalable environments,”
The International Journal of Robotics Research, p. 02783649241303525,
2024.

H. Xu, P. Liu, X. Chen, and S. Shen, “D2SLAM: Decentralized and
distributed collaborative visual-inertial slam system for aerial swarm,”
IEEE Transactions on Robotics, 2024.

G. Berton, C. Masone, and B. Caputo, “Rethinking visual geo-
localization for large-scale applications,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 4878-4888.

M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based navigation
for sunny summer days and stormy winter nights,” in 2012 [EEE
international conference on robotics and automation.  1EEE, 2012,
pp. 1643-1649.

O. Vysotska and C. Stachniss, “Lazy data association for image se-
quences matching under substantial appearance changes,” IEEE Robotics
and Automation Letters, vol. 1, no. 1, pp. 213-220, 2015.

E. Brachmann, T. Cavallari, and V. A. Prisacariu, “Accelerated
coordinate encoding: Learning to relocalize in minutes using rgb
and poses,” 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5044-5053, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:258841110

J. Jiao, J. He, C. Liu, S. Aegidius, X. Hu, T. Braud, and D. Kanoulas,
“LiteVLoc: Map-lite visual localization for image goal navigation,” 2025
IEEE International Conference on Robotics and Automation (ICRA),
2025.

from


 https://www.openstreetmap.org 
https://github.com/borglab/gtsam)
https://api.semanticscholar.org/CorpusID:258841110

	Introduction
	Motivation
	Challenges
	Map Representation
	Collaborative Localization
	Scalable Mapping Data Acquisition

	Contributions

	Methodology
	Scene Representation
	Submap Construction
	Topological-Level Localization
	Metric-Level Localization
	Pose Graph Optimization

	Datasets
	Experimental Results
	Map Size
	Map Merging
	Closed-Loop Visual Navigation
	Global Path Planning
	Real-World Experiments


	Conclusion
	References

