Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

ON THE ROLE OF FORGETTING IN FINE-TUNING RE-
INFORCEMENT LEARNING MODELS

Maciej Wolczyk Bartlomiej Cupiat Michatl Zajac Razvan Pascanu
Jagiellonian University Jagiellonian Unviersity Jagiellonian University DeepMind
Ideas NCBR
EFukasz Kucinski Piotr Mito$
Ideas NCBR, Ideas NCBR,
Polish Academy of Sciences Polish Academy of Sciences,

deepsense.ai

ABSTRACT

Recently, foundation models have achieved remarkable results in fields such as
computer vision and language processing. Although there has been a significant
push to introduce similar approaches in reinforcement learning, these have not yet
succeeded on a comparable scale. In this paper, we take a step towards understand-
ing and closing this gap by highlighting one of the problems specific to founda-
tion RL models, namely the data shift occurring during fine-tuning. We show that
fine-tuning on compositional tasks, where parts of the environment might only be
available after a long training period, is inherently prone to catastrophic forgetting.
In such a scenario, a pre-trained model might forget useful knowledge before even
seeing parts of the state space it can solve. We provide examples of both a grid
world and realistic robotic scenarios where catastrophic forgetting occurs. Finally,
we show how this problem can be mitigated by using tools from continual learn-
ing. We discuss the potential impact of this finding and propose further research
directions.

1 INTRODUCTION

Foundation models are one of the most important trends in deep learning in recent years. Pre-
training a massive model on a very wide array of diverse data and then fine-tuning it on a specific
task proved to be a highly useful paradigm. Models such as BERT (Devlin et al., [2019), GPT-3
(Brown et al.,|2020), and CLIP (Radford et al., 2021) significantly outperformed their predecessors
in their respective benchmarks and enabled efficient adaptation to specific downstream tasks through
the relatively cheap fine-tuning procedure. Even straightforward fine-tuning approaches work very
well in this paradigm, as it is enough to simply use the pre-trained model as the initialization and
train for a short amount of time. Although this approach achieved remarkable results in fields like
natural language processing, computer vision, automatic speech recognition (Radford et al., [2022)
and cheminformatics (Chithrananda et al., |2020), it has not yet succeeded on a similar scale in
reinforcement learning.

There has been a significant push towards foundation models in reinforcement learning, with differ-
ent approaches focusing on building transferable models of the world (Seo et al.l 2022} |Sun et al.,
2022)), learning reusable features (Schwarzer et al.l 2021; |Stooke et al.l |2021)) or obtaining general
policies through offline RL (Kumar et al.,2022)). Although these efforts lead to significant advances
in this field and remarkable achievements (Brohan et al.| [2022; |Adaptive Agent Team et al., |2023)),
the problem of building foundation models in reinforcement learning seems to be inherently more
difficult than in supervised learning. In this work, we attempt to highlight and analyze one of the
reasons for this difficulty gap, namely the data shift that naturally occurs during fine-tuning RL
models.

In most supervised learning scenarios, the fine-tuning data is completely static and does not change
during the training. On the other hand, even if the environment used for the purpose of fine-tuning is

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

(a) (b)

Figure 1: Example of the forgetting problem. (a) We start with a pre-trained model that is capable
of picking up and placing objects. (b) In the downstream task, we need to pick up the object inside
the drawer which is currently closed. The model needs to learn how to open the drawer first. (c)
If we simply fine-tune our pre-trained model on this task, it will forget how to pick up and place
objects. After opening the drawer, it will need to re-learn how to move objects, therefore limiting
the usefulness of the pre-trained model.

completely stationary, the data the model sees while training might not be. If some parts of the state
space are not available in the initial phase of fine-tuning (e.g. due to exploration policy not being
able to reach there), the model will focus on learning only the parts it sees. Even if the pre-trained
model implements an optimal policy on this unseen part of the environment, its parameters will be
effectively overwritten by the current task, in a phenomenon called catastrophic forgetting
[1999). By the time we are able to visit the previously unseen parts of the environment, the pre-
trained knowledge will be completely lost. As such, the knowledge transfer might be limited only
to the parts of the environment which are available from the start. An example of such a situation is
shown in Figure [T}

Similar considerations appear in existing papers on fine-tuning reinforcement learning models. In
particular, Baker et al.| (2022) mention that they include a regularization term to limit forgetting.
Other strategies commonly applied in fine-tuning RL which might implicitly help with catastrophic
forgetting include mixing new data with the old data (Kumar et al.,[2022)) and introducing modularity
to the model [2022). As such, we do not claim to be the first ones who noticed this issue.
Instead, we focus on the characterization and the experimental analysis of the problem of forgetting
in fine-tuning RL models, as well as connecting this problem to the vast continual learning literature.
We show that existing continual learning approaches can largely alleviate forgetting.

This paper is a preliminary study of this phenomenon, to be updated and extended in the future. Our
contributions are as follows:

* Describing and formalizing the forgetting problem in fine-tuning reinforcement learning
models, along with a synthetic example.

* Analyzing the problem through an experimental study of a compositional robotic task.

* Applying continual learning methods on this problem to show they help with alleviating
the forgetting issue.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

We follow the standard Markov Decision Process (MDP) formulation for reinforcement learning.
We define MDP as a tuple M = (S, A, p, R,), where S is the state space, A is the action space,
p: S x A— P(S) are the state transition probabilities, R : S x A — R is the reward function, and
v € [0, 1] is the discount factor. The agent interacts with the environment through the policy 7 : S —
P(A) with the goal of maximizing the expected reward defined as E[Y_,~, v'r;], where r; is the
reward at timestep ¢. Additionally, we define the occupancy measure 1. (s) = >.,° v P(s; = s)
to capture the visitation probabilities of each state under policy 7.

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

2.2 CONTINUAL LEARNING

The field of continual learning focuses on the problem of learning from a changing stream of data
and, in particular, dealing with catastrophic forgetting. As such, we want to investigate the useful-
ness of continual learning tools in our setting. Three major families of continual learning methods
include regularization-based approaches, which limit changes in the parameters of the network,
replay-based methods, which rehearse data from the past to minimize forgetting, and modularity-
based methods which try to keep separate parts of the network for each encountered task (De Lange
et al.|[2021)). Here, we will focus on the first two families, and we leave the investigation of modular-
ity for future work. We choose established and well-tested methods for our study. Although classical
continual learning approaches primarily focus on constantly minimizing forgetting throughout the
training, here we will focus only on protecting the knowledge of the pre-trained model. This requires
only small adjustments to existing methods.

Regularization-based In this family, we consider L2 and Elastic Weight Consolidation
(EWCO) (Kirkpatrick et al.l [2017), which apply a quadratic penalty on parameter changes in or-
der to mitigate forgetting. In our case, this is equivalent to introducing an auxiliary loss of the form:
RO) = >, F i(@gre — 6)2, where 0 are the weights of a pre-trained model, F* are weighting
coefficients, and the sum iterates over all parameters in the model. For L2, F' = 1, as we simply
minimize the Euclidean distance between the old and new parameters. For EWC, F' is the diagonal
of the Fisher matrix, which approximates how small changes in each parameter impact the output
distribution.

Replay-based We use behavioral cloning (BC) as a simple replay-based approach that worked
well in previous works (Rebuffi et al.l 2017; Wolczyk et al., 2022)). In our case, behavioral cloning
relies on distilling the knowledge from the pre-trained model into the model being fine-tuned by
minimizing the Kullback-Leibler divergence between these two. However, since we initialize the
fine-tuning model using the parameters of the pre-trained network, the KL loss effectively miti-
gates the loss of performance rather than introducing new knowledge. It is important to note that
distillation-based approaches have been often used for transferring knowledge in RL (Rusu et al.,
2015} [Schmitt et al.| |2018). We hypothesize that their success might be also understood from the
perspective of avoiding forgetting.

In practice, we implement BC in the following way. Before the training, we gather a buffer of data
B from the parts of the environment the model was pre-trained on. For each state-action tuple in
this buffer, we save the action distribution 7*(s) returned by the actor from the pre-trained model.
During the training, we apply an auxiliary loss of the form R(0) = E, g[Dxr(7(s) || 7*(s))]-
In principle, we could also mitigate forgetting in the critic, but we find empirically that it hurts the
performance, which is consistent with prior work (Wolczyk et al.| 2022).

3 BACKGROUND AND PROBLEM OUTLINE

In this section, we define the data-shift problem in fine-tuning reinforcement learning models that
leads to forgetting. The key distinction between fine-tuning in supervised learning and reinforcement
learning is that the data for supervised fine-tuning is usually stationary. The same is not true for
reinforcement learning. Even if the training environment itself is stationary, the policy we use for
exploration constantly evolves, and, consequently, the distribution of the states we visit is changed.
In particular, if a pre-trained model is capable of solving part of the environment which will only be
encountered after prolonged training, its performance on that part might drop significantly during
the training.

3.1 COMPOSITIONAL MDPs

Below, we formally describe how forgetting might occur in certain MDPs which we call composi-
tional MDPs. Our goal is to solve MDP M = (S, A, p, R,), starting from a policy 7 pre-trained

on MDP M = (5, A, p, R, 7). We assume that M is a subset of the target MDP M, that is, Scs,
R =Rz, 4 05 a)i) = % for §,{ € S,a € A, and that S contains high-value states

acs p(g,a)(ﬂ

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

that we need to visit in order to solve the task. Finally, we assume that getting to S is not trivial, i.e.
t=(8) ~ 0 for any § € S and a policy 7 below some performance threshold T > Vg, where Vi is
the average performance of the random policy.

Assume that we have a pre-trained parametric policy 7y that is nearly optimal on M, but was not
trained on S \ S. As such, it cannot be used to reach states S reliably, that is zi, (5) ~ 0, for all
§ € 8. We can fine-tune the policy 7 on the target task. However, since the problem requires
training the model on a distribution that was not previously encountered, there is a significant risk of
catastrophic forgetting. Namely, at the point when 7y manages to reach the states it was pre-trained
on, i.e. fir,(5) > 0 for some § € S, it might no longer be close to the optimal policy on M.

The above formulation fits various environments that follow the temporal compositionality principle,
i.e. they require a sequence of tasks to be executed. For example, the sub-MDP M might represent
later levels of Montezuma’s Revenge, advanced phases of the Minecraft challenge (i.e. using a
pickaxe to dig diamonds), or certain skills in a robotic environment (e.g. picking and placing objects
in Figure [1 ' In all of these settings, using a policy mg which is optimal on M might lead to
interference with fine-tuning on M, which in turn leads to losing good performance on M.

3.2 TOY EXAMPLE

In order to illustrate the problem described above,

we introduce the APPLERETRIEVAL (¢, M, T) envi-

ronment, where ¢, M, T" denote important design pa- Phase 1
rameters. We show that even simple RL algorithms LR e
with linear function approximators exhibit forgetting R(s,a) {_ el =
in this environment. &::

In APPLERETRIEVAL, visualized in Figure 2] the ‘ “ ‘ ‘ ‘ ‘ ‘ ‘ ® ‘
agent lives on a 1D gridworld. Starting at home at x=0 Y
position x = 0, in Phase 1, the agent has to go to Phase 2

x = M,M € RT to retrieve the apple. Then, in

Phase 2, the agent has to go back home by returning $ R(s,a) {l*l :f a= :-1:,:1:1

to 2 = 0. If not solved, the episode finishes after T [S

steps. The state is a vector s = [1, —c] in Phase 1 and ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
s = [1,c] in Phase 2. The first element of the vector =0
is just a constan{'| and the second encodes the infor-
mation about the current Phase. As such, it is trivial
to construct the optimal policy: go right during the
first phase and go left during the second phase.

x=M

Figure 2: A schematic of the APPLERE-
TRIEVAL enviornment.

We try to solve this environment using a linear model

7w(s) = w’'s trained with the REINFORCE algo-

rithm (Williams}, [1992). We initialize its weights with a model that was only trained on Phase 2. For
simplicity, we set T' = 100 in all experiments. We show experimentally, that for certain values of the
design parameters, APPLERETRIEVAL is an example of a compositional MDP, with M representing
Phase 2 and M representing the whole environment. In particular, Figure [3a shows that for high
enough distance M the probability of getting to Phase 2 with a poor policy is very low. This, in turn,
leads to high forgetting and overall poor performance.

Additionally, in this simple linear case, we can pinpoint the cause of the interference by looking at
the weights of the model. If the pre-trained policy mostly relies on so which represents the phase
(i.e. |wa| > |ws]) then the interference will be limited. However, if the model relies on s; (i.e.
|wa| < |w1]) then interference will occur as its value is the same in both phases. We can guide the
model towards focusing on one or the other by changing the relative magnitude of - L by setting the ¢
parameter. The results presented in Figure[3b|confirm our hypothesis, as lower values of c encourage
models to rely more on s; which leads to forgetting. Such low-level analysis is infeasible for deep

'Since we use a linear model without bias, it effectively serves as bias. We can omit it if we assume an
affine model.

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

Success rate on the 2nd Phase (knowledge retention) Success rate on the full environment Probability of seeing Phase 2

M

5 08

10
— 15
— 20
— 25
— 30
— 35
— 40
— a5

o
® o

Success rate
14 o
2 &
Success rate
Probability under

°
o

°
°

20 30
gradient steps

200
gradient steps

300 400 0 100 200

gradient steps

300

(a) Impact of M on the results for set ¢ = 0.5. Forgetting (left) becomes much more problematic as we increase
the distance from the house to the apple, which in turn impacts the success rate on the whole environment
(center). This happens since the probability of seeing Phase 2 in early training decreases (right, note x-scale
change), leading to a stronger data shift.

Success rate on the 2nd Phase (knowledge retention)

c
01 10
02 -
— o3
N oa 05
— o5
— o6 & 0.0 /

Success rate on the full environment Relative weights

10

0.8

o o
PO
[wal = [wa|

Success rate

— 07
— 08
— 09

°
o

°
°

— 10
400 0 20 30

gradient steps

200
gradient steps

300 100 200

gradient steps

300

(b) Impact of c on the results for set M = 30. For smaller c forgetting (left) is greater and the overall success
rate is smaller (center), since it encourages the pre-trained model to pay more attention to the task-shared
variable s1, as confirmed by looking at weight difference early in fine-tuning (right).

Figure 3: Study of the impact of the design parameters on the APPLERETRIEVAL results.

neural networks, but experimental results confirm that interference occurs in practice (Kirkpatrick

let all 2017} [Kemker et al,[2018}; [Ramasesh et al., [2022)).

Although ultimately we are interested in investigating types of phenomena on a much larger scale,
this simple toy environment shows that the problem of forgetting can be in fact fundamental to
fine-tuning. An anonymized version of an interactive version of this environment is available at
https://huggingface.co/spaces/LLParallax/Applel It allows users to train on dif-
ferent variants of APPLERETRIEVAL and observe forgetting. We hope that this tool will help with
building basic intuitions for the issue of forgetting in RL fine-tuning.

4 EXPERIMENTS IN A ROBOTICS ENVIRONMENT

In this section, we experimentally investigate the catastrophic forgetting phenomenon in fine-tuning
reinforcement learning models. We move on from the toy environment to a substantially more com-
plex compositional robotic manipulation task and we use multi-layer neural networks as function
approximators for the policy and the Q-value function. For all experiments, we use the Soft Actor-
Critic (SAC) algorithm (Haarnoja et all, 2018a) and we defer technical details to Appendix [A] All
experiments in this section are run with at least 10 seeds.

4.1 STITCHEDENV

We use the Continual World bench-
mark (Wofczyk et all which relies

on Meta-World (Yu et al, [2020) environments

as the testbed for our experiments. Continual
World was recently proposed for investigating
continual reinforcement learning. It introduces
pre-defined sequences of environments where
the tasks switch at set intervals. Although
consistent with classical continual learning
formulations, this approach does not properly
cover the fine-tuning issue where the shift in
the data is guided by the changes in the policy.

Algorithm 1: STITCHEDENV

Input: list of IV environments Ey, policy ,
time limit 7.
Returns: number of solved environments.
1 = 1;t = 1 {Initialize env idx, timestep
counter}
while i < Nand ¢t <7 do
Take a step in E; using 7
if F; is solved then
1 =14 1;t = 1 {Move to the next env,
reset timestep counter }
end if
end while
return ¢ — 1

https://huggingface.co/spaces/LLParallax/Apple

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

Stitched Environment Hammer Push
4.0 1.0 1.0

— finetuning from BC 2 A and Raaed maanl
08)
06

SAC from scratch gos f
4
3.0 g oa 0.4
— finetuning from BC 02 / — finetuning from BC

Success Rate

5
< 06
w
5
V0.2
SAC from scratch SAC from scratch

25 N 0.0 00
4 1 2 3 4 5 0 1 2 3 4 5
o,

Steps 1le6 # Steps 1e6

Peg Unplug Side 10 Push Wall

—— finetuning from BC —— finetuning from BC
/ g —— SAC from scratch 08 —— SAC from scratch

Solved
5 8
S

0.6
0.4

° °
° @«
ccess
o °
° s
\
Success Rate
)
o

0.0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Steps 1e6 # Steps 1e6 # Steps 1e6

(a) (b)

Figure 4: The performance of the fine-tuned model on STITCHEDENV compared to the performance
of a model trained from scratch. (a) The average success of the agent throughout the training, i.e.
how many tasks it can solve on average in a single episode. (b) The success rate of each of the tasks
evaluated separately. The fine-tuned model rapidly forgets how to solve PEG-UNPLUG-SIDE and
PUSH-WALL, the tasks it was pre-trained on, and then takes a long time to re-learn them. As such,
using the pre-trained model does not lead to any improvements over the baseline here.

Instead, we use the tasks defined in Con-

tinual World to create a new environment

dubbed STITCHEDENV. In STITCHEDENV

each episode consists of a sequence of tasks

stitched together, where the new task starts once the previous one is completed. Since each Con-
tinual World task has a clearly defined success condition (e.g. the object was placed properly), we
use it as a signal when to move on to the next task. As such, in opposition to classical continual
learning formulations, the data shift occurs here both on the level of a single trajectory and between
trajectories. The proposed environment, therefore, fulfills the compositionality condition mentioned
in the previous section. In this case, M would be the full environment, and M the later tasks
in the sequence. The algorithm formally describing the behavior of STITCHEDENV is shown in
Algorithm T}

In our experiments, we will focus on a STITCHEDENV consisting of the following Continual World
tasks: [hammer, push, peg-unplug-side, push-wall]. We use a model pre-trained on the
last two tasks. The first two tasks were chosen to be significantly easier than the second two so
that having a pre-trained policy on those would be very helpful. To assure that a multi-task solution
exists, we present the model with the task ID of the current task. This allows us to simplify the
experimental setting. We leave the task-agnostic formulation for future work.

4.2 FORGETTING

To investigate the forgetting problem, we use a model pre-trained on the last two tasks from the
sequence, PEG-UNPLUG-SIDE and PUSH-WALL. For this purpose, we simply train a SAC agent in
the multi-task regim on these tasks until it can solve these environments perfectly (100% success
rate). As such, if we were to run the obtained policy on STITCHEDENV(PEG-UNPLUG-SIDE, PUSH-
WALL), it would also achieve perfect results. However, the full STITCHEDENV(HAMMER, PUSH,
PEG-UNPLUG-SIDE, PUSH-WALL) proves much more difficult. The pre-trained policy, not having
seen HAMMER or PUSH previously, is not able to solve these without training, and as such does not
reach the state spaces from PEG-UNPLUG-SIDE and PUSH-WALL which come later in the sequence.

We train SAC on this environment for SM steps, using the parameters of the actor and the critic from
the pre-trained models as initialization. Figure [fa]shows the performance of the algorithm through-
out the training, compared to a baseline model which learns completely from scratch. Surprisingly,
the pre-trained model does not perform better than the randomly initialized one, even though it con-

>We argue that the choice of pre-training is not crucial here and we might as well use an offline RL pre-
training technique.

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

Stitched Environment Peg Unplug Side
e T A ST

Success Rat
o
S

25

0 1 2 3 4 5
Steps 1e6

Solved
N
°

Push Wall
15

— Fine-Tuning
BC

EWC 3
— 12
0.0 0.0 -

0 1 2 3 4 5 0 1 2 3) 5
Steps 1e6 # Steps le6

ccess Rate

St
o
~

(@ (b)

Figure 5: Results on STITCHEDENV for different continual learning methods. (a) By preserving
the performance on the pre-trained tasks, we are now able to benefit from fine-tuning and achieve
near-perfect results with EWC and behavioral cloning. (b) Performance on the tasks the model was
pre-trained on. Continual learning methods are able to maintain or very quickly regain performance
on these tasks.

tains information on how to solve two out of four tasks. We check the performance of the model on
each task in separation by running the policy in single-task scenarios. Figure db|shows that although
the performance of the model on PEG-UNPLUG-SIDE and PUSH-WALL is indeed very high at the
beginning, it rapidly deteriorates. This is an example of catastrophic forgetting. Since there is no
data representing the 3rd and 4th tasks at the beginning of the training, the model instead uses its
full capacity to learn the 1st and the 2nd task, causing interference.

4.3 CL METHODS

Next, we check whether continual learning methods that aim to mitigate forgetting, are able to
improve performance in this setting. We repeat the same experiment, but this time we apply the L2,
EWC, and behavioral cloning strategies described in Subsection [2.2] during fine-tuning. The results
presented in Figure [5a] show that EWC and behavioral cloning significantly outperform the fine-
tuning baseline, both in terms of the final performance as well the speed of learning. L2 performs
much worse which is not surprising as it is a very basic continual learning approach (Kirkpatrick:
et al.l[2017).

From the perspective of investigating forgetting, the performance on the pre-trained tasks is of spe-
cial importance. As shown in Figure [5b] continual learning methods are able to limit the impact of
forgetting at the start of fine-tuning. Although the performance on these tasks initially dips, EWC
and behavioral cloning are able to quickly relearn a high-performance policy, which suggests that
not all of the knowledge was wiped out. In comparison, even after completing the whole training
process, the success rate of vanilla fine-tuning stays low.

These results suggest that continual learning strategies might be useful tools for combating forgetting
in fine-tuning reinforcement learning models. At the same time, we believe that even better solutions
are possible. Continual learning methods tested here are fairly straightforward and were not built
with this specific type of scenario in mind. We postulate that building continual learning-based
algorithms with the specific aim of solving the fine-tuning problem might alleviate the issues related
to the underlying data shift.

5 RELATED WORK

Transfer in RL The prevailing paradigm in reinforcement learning is training models from scratch
which is known to be largely inefficient. Training an agent even on the relatively simple Atari bench-
mark typically requires at least a few million training steps and the real-world problems are known
to be much more complex than that (Ahn et al.,[2022;|Akkaya et al.,2019). Due to these difficulties,
a new trend emerged where one tries to reuse and transfer knowledge as much as possible (Agarwal

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

et al 2022). However, the fine-tuning strategy massively popular in supervised learning (Bom-
masani et al. 2021) is relatively less common in reinforcement learning. Instead, the community
favors methods such as kickstarting (Schmitt et al.l 2018 |Lee et al., [2022a)), and reusing offline
data (Lee et al.| 2022b}; [Kostrikov et al., 2021), skills (Pertsch et al.,[2021) or the feature representa-
tions (Schwarzer et al.| 2021} |Stooke et al.,|2021)). In this study, we identified catastrophic forgetting
as one of the problems making direct parameter reuse infeasible.

Numerous efforts in transfer learning were guided by the hope of achieving reliable foundation
models in RL, thus replicating their success in other domains. [Adaptive Agent Team et al.[(2023)
introduced an adaptive agent capable of in-context learning in previously unseen settings. [Brohan
et al.| (2022)) proposed Robotics Transformer which is able to perform a wide variety of manipulation
tasks and exhibits favorable scaling properties. Reed et al.| (2022) showed that a single model can
be taught to perform a wide variety of tasks, including acting in multiple reinforcement learning
environments

Continual learning Catastrophic forgetting is one of the core issues investigated in the field of
continual learning, which deals with learning from a changing stream of data. In particular, there is
a growing body of work at the intersection of continual and reinforcement learning (Khetarpal et al.,
2022)). Recent benchmarks include the robotics-based Continual World (Wotczyk et al., [2021)),
Lifelong Hanabi based on the multi-agent Hanabi game (Nekoei et al., [2021), and the CORA plat-
form (Powers et al., |2022) which implements various baselines, metrics and testing environments.
Several works proposed methods for continual reinforcement learning based on replay and distil-
lation (Rolnick et al., 2019; Traoré et al., 2019) or modularity (Mendez et al., 2022} |Gaya et al.,
2022). Most of this research covers model-free approaches, but there has been a surge of interest
in the previously under-explored problem of model-based continual reinforcement learning (Huang
et al.,[2021;Kessler et al.,2022)). Although very relevant to our study, these works usually investigate
changes in the dynamics of non-stationary environments. In this paper, we switch the perspective
and focus on the data shifts occurring during training due to changes in the exploration policy.

6 LIMITATIONS & CONCLUSIONS

This study forms a preliminary investigation into the problem of forgetting in fine-tuning RL models.
We show that fine-tuning a pre-trained model on compositional RL problems might result in a rapid
deterioration of the performance of the pre-trained model if the relevant data is not available at the
beginning of the training. This phenomenon is known as catastrophic forgetting. We show how it
can occur in simple toyish situations (policy gradient with linear approximators on 1D gridworld) as
well as more realistic problems (SAC with MLPs on a compositional robotic environment). Finally,
we showed that applying CL methods significantly limits forgetting and allows for efficient transfer.

At the same time, this study, due to its preliminary nature, has numerous limitations which we
hope to address in future work. We only considered a fairly strict formulation of the forgetting
scenario where we assumed that the pre-trained model works perfectly on tasks that appear later in
the fine-tuning phase. In practice, one should also consider the case when even though there are
differences between the pre-training and fine-tuning tasks, the transfer is still possible. For example,
if the model was pre-trained on picking and placing various objects, but in the fine-tuning phase
it encounters a new type of object, the prior knowledge should still be useful for learning how to
handle it. Additionally, our definition of a task is rigid and does not allow for continuous transitions
between tasks. Finally, our experimental study only considered a single realistic environment. At
the same time, even given these limitations, we see forgetting as an important problem to be solved
and hope that addressing these issues in the future might help with building better foundation models
in RL.

ACKNOWLEDGEMENTS

The work of Maciej Wotczyk was supported by the National Centre of Science (Poland) Grant No.
2021/43/B/ST6/01456. The work of Barttomiej Cupial was supported by Foundation for Polish Sci-
ence (grant no POIR.04.04.00-00-14DE/18-00 carried out within the Team-Net program co-financed
by the European Union under the European Regional Development Fund). The work of Piotr Mito$§

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

was supported by the Polish National Science Center grant UMO-2017/26/E/ST6/00622 and UMO-
2019/35/0/ST6/03464. We gratefully acknowledge Poland’s high-performance computing infras-
tructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer facilities and support
within computational grant no. PLG/2022/015875

REFERENCES

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, Vib-
havari Dasagi, Lucy Gonzalez, Karol Gregor, Edward Hughes, Sheleem Kashem, Maria Loks-
Thompson, Hannah Openshaw, Jack Parker-Holder, Shreya Pathak, Nicolas Perez-Nieves, Ne-
manja Rakicevic, Tim Rocktidschel, Yannick Schroecker, Jakub Sygnowski, Karl Tuyls, Sarah
York, Alexander Zacherl, and Lei Zhang. Human-timescale adaptation in an open-ended task
space, 2023. URL https://arxiv.org/abs/2301.07608\

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. arXiv
preprint arXiv:2206.01626, 2022.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. arXiv preprint arXiv:2206.11795, 2022.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: Large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ale$ Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366-3385, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128-135, 1999.

Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic Denoyer, and Roberta
Raileanu. Building a subspace of policies for scalable continual learning. arXiv preprint
arXiv:2211.10445,2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018a.

https://arxiv.org/abs/2301.07608

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Continual model-based
reinforcement learning with hypernetworks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 799-805. IEEE, 2021.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Samuel Kessler, Piotr Mito§, Jack Parker-Holder, and Stephen J Roberts. The surprising ef-
fectiveness of latent world models for continual reinforcement learning. arXiv preprint
arXiv:2211.15944, 2022.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401—
1476, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521-3526, 2017.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Anikait Singh, Frederik Ebert, Yanlai Yang, Chelsea Finn, and Sergey Levine. Pre-
training for robots: Offline 1l enables learning new tasks from a handful of trials. arXiv preprint
arXiv:2210.05178, 2022.

Alex X Lee, Coline Devin, Jost Tobias Springenberg, Yuxiang Zhou, Thomas Lampe, Abbas Abdol-
maleki, and Konstantinos Bousmalis. How to spend your robot time: Bridging kickstarting and
offline reinforcement learning for vision-based robotic manipulation. In 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 2468-2475. IEEE, 2022a.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transform-
ers. arXiv preprint arXiv:2205.15241, 2022b.

Jorge A Mendez, Harm van Seijen, and Eric Eaton. Modular lifelong reinforcement learning via
neural composition. arXiv preprint arXiv:2207.00429, 2022.

Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous coor-
dination as a realistic scenario for lifelong learning. In International Conference on Machine
Learning, pp. 8016-8024. PMLR, 2021.

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Guided reinforcement learning with
learned skills. arXiv preprint arXiv:2107.10253, 2021.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. Cora: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. In Conference
on Lifelong Learning Agents, pp. 705-743. PMLR, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

10

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356,
2022.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001-2010, 2017.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. arXiv preprint arXiv:1511.06295, 2015.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstart-
ing deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686-12699,
2021.

Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with
action-free pre-training from videos. In International Conference on Machine Learning, pp.

19561-19579. PMLR, 2022.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International Conference on Machine Learning, pp. 9870-9879.
PMLR, 2021.

Yanchao Sun, Ruijie Zheng, Xiyao Wang, Andrew E Cohen, and Furong Huang. Transfer rl across
observation feature spaces via model-based regularization. In International Conference on Learn-
ing Representations, 2022.

René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Natalia Diaz-
Rodriguez, and David Filliat. Discorl: Continual reinforcement learning via policy distillation.
arXiv preprint arXiv:1907.05855, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Reinforcement learning, pp. 5-32, 1992.

Maciej Wotczyk, Michat Zajac, Razvan Pascanu, Lukasz Kucinski, and Piotr Mitos. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 34:28496-28510, 2021.

Maciej Wolczyk, Michat Zajac, Razvan Pascanu, Lukasz Kucinski, and Piotr Mitos. Disentangling
transfer in continual reinforcement learning. In Advances in Neural Information Processing Sys-
tems, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094-1100. PMLR, 2020.

11

Published at the Workshop on Reincarnating Reinforcement Learning at ICLR 2023

Method | actor reg. coef. critic reg. coef. ~memory

L2 1000 0 -
EWC 1 100 -
BC 1 0 10000

Table 1: Hyperparameters of CL methods

A TECHNICAL DETAILS

A.1 CONTINUAL WORLD

In this paper, we use tasks from Continual World (Wolczyk et al.,|2021). However, in order to adopt
them to the fine-tuning scenario we introduce slight changes to the underlying environments. First
of all, we used MetaWorld-v2 environments rather than MetaWorld-v1 used in Continual World, as
they introduce more stable observation space (Yu et al.|[2020). Additionally, we change the behavior
of the terminal states. In the original paper, the environments are defined to run indefinitely, but
during the training finite trajectories are sampled (i.e. 200 steps). On the 200-th step even though
the trajectory ends, SAC receives information that the environment is still going. Effectively, it
means that we still bootstrap our Q-value target as if this state was not terminal. This is a common
approach for environments with infinite trajectories.

However, this approach is unintuitive from the perspective of task stitching. We would like to go
from a given task to the next one at the moment when the success signal appears, without waiting for
an arbitrary number of steps. As such, we introduce a change to the environments and terminate the
episode in two cases: when the agent succeeds or when the time limit is reached. In both cases, SAC
receives a signal that the state was terminal, which means no bootstrapping in the target Q-value.
In order for the MDP to be fully observable, we append the normalized timestep to the state vector.
Additionally, when the episode ends with success, we reward the agent with the "remaining" reward
it would get until the end of the episode. That is, if the last reward was originally r;, the augmented
reward is given by 7, = Br(T — t). 8 = 1.5 is a coefficient to encourage the agent to succeed.
Without the augmented reward there is a risk that the policy would avoid succeeding in order to get
rewards for a longer period of time.

A2 SAC

We use the Soft Actor-Critic (Haarnoja et al., 2018al) algorithm for all the experiments on Continual
World and use the same architecture as in the original paper (Wotczyk et al. |2021)), which is a 4-
layer MLP with 256 neurons each and Leaky-ReL U activations. We apply layer normalization after
the first layer. The entropy coefficient is tuned automatically (Haarnoja et al.| 2018b). We create a
separate output head for each task in the neural networks and then we use the task ID information
to choose the correct head. We found that this approach works better than adding the task ID to the
observation vector.

For the base SAC, we started with the hyperparameters listed in[Wolczyk et al.|(2021)), and then per-
formed additional hyperparameter tuning. We set learning rate to 10~ and use the Adam Kingma
& Bal (2014) optimizer. The batch size is 128 in all experiments. We use L2, EWC, and BC as
described in Wotczyk et al.[(2021)); [Wolczyk et al.| (2022). For each method, we perform a hyper-
parameter search on method-specific coefficients. That is, we look for the best-performing actor
regularization weight and critic regularization weight. For BC we set the episodic memory buffer
size to 10000. The final hyperparameters are listed in Table|[I]

12

	Introduction
	Preliminaries
	Reinforcement learning
	Continual Learning

	Background and problem outline
	Compositional MDPs
	Toy example

	Experiments in a Robotics Environment
	StitchedEnv
	Forgetting
	CL methods

	Related Work
	Limitations & Conclusions
	Technical details
	Continual World
	SAC

