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ABSTRACT

As humans increasingly share environments with diverse agents powered by RL,
LLMs, and beyond, the ability to explain agent policies in natural language is
vital for reliable coexistence. We introduce a general-purpose framework that
trains explanation-generating LLMs via reinforcement learning from AI feedback,
with distributional rewards generated by generative continuous normalizing flows
(CNFs). CNFs capture the pluralistic and probabilistic nature of human judgments
about explanations. Moreover, under mild assumptions, CNFs provably bound
deviations from true human reward distributions when trained on noisy proxy
rewards from LLMs. We design a specialized CNF architecture that selectively
attends to linguistic cues in the decision context and explanations when generating
rewards. Human and LLM evaluators find that our method delivers explanations
that enable more accurate predictions of true agent decisions, exhibit greater logical
soundness and actionability, and impose lower cognitive load than explanations
trained with proxy LLM rewards or state-of-the-art RLHF and RLAIF baselines.

1 INTRODUCTION

Intelligent agents, ranging from reinforcement learning (RL) agents (Kiran et al., 2021; Zhao et al.,
2021; Liu & Zhu, 2024; Qiu et al., 2024), large language models (LLMs) (Yao et al., 2022; Shinn et al.,
2024; Wang et al., 2023a; Kang et al., 2020), to robotic systems (Ismail et al., 2018), are becoming
increasingly intertwined with daily lives (Wang et al., 2024a). To foster transparency, safety, and
alignment, a promising avenue is communicating the reasoning behind actions or decisions generated
by agent policies in natural language (Lazaridou et al., 2016). A good explanation provides a rationale
that helps recover the underlying policy, enabling third parties to infer the decision. Such explanations
allow humans to comprehend decisions, provide meaningful feedback, and intervene when necessary,
ultimately enhancing trust and reliability within intelligent ecosystems (Cambria et al., 2023).

This effort is situated within the broader field of explainable AI and RL (Arrieta et al., 2020; Car-
valho et al., 2019; Ehsan et al., 2019; Gunning, 2017; Ras et al., 2018; Gilpin et al., 2018), which
encompasses methods such as causal inference and contrastive learning. Nevertheless, existing
natural language explanation methods are often tailored to specific application scenarios, including
self-driving (Cai et al., 2024), recommender systems (Lubos et al., 2024), stock prediction (Koa et al.,
2024), robotics (Lu et al., 2023), and autonomous navigation (Trigg et al., 2024). To circumvent the ex-
tensive task- and agent-specific engineering, there is a need for a generalizable and task-agnostic expla-
nation method. We achieve this by concealing agent decisions from an EXPLANATION LLM, prompt-
ing it solely with decision contexts, and training it to recover a specific underlying policy and generate
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explanations that reflect that policy’s behavior. This approach forces the LLM to reason only from
contextual information, independent of task or agent specifics, and thereby achieves generalizability.

In reinforcement learning from human feedback (RLHF), such third-party evaluations are provided
by humans. In explanation tasks, human feedback is inherently pluralistic (Feng et al., 2024;
Sorensen et al., 2024a; Kirk et al., 2024; Sorensen et al., 2024b) and probabilistic (Lou et al.,
2024; Dorka, 2024), as explanations are open-ended and subject to wide variation in individual
judgments. This pluralism necessitates the costly collection of diverse human feedback in RLHF.
Reinforcement learning from AI feedback (RLAIF) (Bai et al., 2022b; Pace et al., 2024; Liu et al.,
2024b) economizes human feedback, typically by adapting auxiliary LLMs to generate proxy rewards
that approximate human feedback. Although early work (Li et al., 2024a) shows promise, current
RLAIF approaches have not yet been rigorously studied on how to generate distributional rewards
that explicitly manage proxy errors relative to human reward distributions.

We close this gap by extending RLAIF with generative continuous normalizing flows (CNFs) (Chen
et al., 2018; Lipman et al., 2023) as reward models. CNFs map base noise distributions to complex
distributions, a process we exploit to represent reward distributions for training the EXPLANATION
LLM. We train a CNF to fit reward samples generated by separate PROXY LLMs. This method
enjoys the theoretical benefit that, assuming the noise in these rewards generated by PROXY LLMs
has the same functional form as the CNF’s base distribution (e.g., Gaussian), the CNF provably
bounds its deviation from the underlying human reward distribution. Intuitively, the PROXY LLM
acts as a forward process that injects noise into human rewards, and the CNF learns its inverse,
partially denoising and recovering the underlying human rewards. These analyses extend to all
generative models based on ordinary differential equations (ODEs), including score-based diffusion
models (Song et al., 2021). Among them, we choose rectified flow (RF) (Liu et al., 2022; Albergo &
Vanden-Eijnden, 2023) for its fast inference and high distributional fidelity. Appx. D demonstrates
the proof ideas of this theoretical benefit.

To operationalize these theoretical benefits, we condition the RF reward model on decision contexts
and explanations. We learn to transform inputs of the RF model into flow tokens that cross-attend to
latent embeddings of decision contexts and explanations. The resulting attention summary informs
the flow’s output, allowing it to selectively integrate linguistic and contextual cues when assigning
reward distributions.

We evaluate our method on both RL tasks (SMAC, (Samvelyan et al., 2019)) and LLM tasks (MMLU
(Hendrycks et al., 2020), MathQA (Amini et al., 2019)). Removing the rectified flow and directly using
rewards from proxy LLMs decreases performance by 6.9%-12.4%, demonstrating the effectiveness of
the generated rewards. Moreover, our method outperforms SFT, RLHF (Bai et al., 2022a), RLAIF (Bai
et al., 2022b), and reasoning baselines (Trung et al., 2024) by 1.9%-18.2% across all tasks and
backbone models. Human evaluations further confirm the high quality of our generated explanations,
which receive the highest scores of accuracy, logicality, actionability, and cognitive load.

1.1 RELATED WORKS

LLM explanations. Methods such as AMPLIFY(Krishna et al., 2024), Self-Explain(Rajagopal et al.,
2021), and Summarize and Score (SASC) (Singh et al., 2023) generate concise rationales based on
agent decisions, sometimes accompanied by an explanation score to assess reliability. Unlike these
methods, our approach trains LLMs to generate explanations without knowing agent decisions a
priori. Chain-of-Thought (CoT) prompting (Wei et al., 2022) is a widely adopted in-context learning
technique that relies on step-by-step explanations or reasoning to enhance decision-making. Self-
Taught Reasoner (STaR) (Zelikman et al., 2022) introduces an iterative refinement method, where
a model improves its own explanations through self-generated rationales. While these methods
are prompting-based and do not require additional training, optimization-based CoT methods like
CoT+SFT (Wei et al., 2022) and ReFT (Trung et al., 2024) have been developed. We compare against
these optimization-based methods in our experiments for their proven powerful reasoning capability.

RLHF. Reinforcement learning from human feedback (RLHF) (Bai et al., 2022a; Wang et al., 2023b;
Ouyang et al., 2022; Dong et al., 2024) is critical to aligning LLM behavior with human preferences
such as helpfulness, harmlessness, and honesty (Ganguli et al., 2022; Achiam et al., 2023; Team
et al., 2023). An RL-based method uses a reward model (Liu et al., 2024b) to approximate human
preferences. Given a dataset of preferred versus rejected responses, a reward model can be trained
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using the standard Bradley-Terry model (Bradley & Terry, 1952) with a pairwise ranking loss. The
policy model (LLM) can then be fine-tuned by learned rewards via PPO (Schulman et al., 2017).
However, training a reward model can be costly. Direct preference learning (DPO) (Rafailov et al.,
2024) enables direct training on preference data, which can be adapted to different human utility
models (KTO, (Ethayarajh et al., 2024)). We compare against PPO, DPO, and KTO in our experiments.

RLAIF. (Bai et al., 2022b) introduces RLAIF, integrating LLM-generated preferences with human-
defined principles for improved reward modeling. Subsequent studies, such as Skywork (Liu et al.,
2024b) and West-of-N (Pace et al., 2024), further enhance this area by refining methods for curating
preference data. While these approaches still partially rely on human annotations, other methods
entirely exclude human data (Wang et al., 2024b; Wu et al., 2024b). In our experiments, we include
comparisons with Skywork (Liu et al., 2024b), the leading RLAIF algorithm on the RewardBench
leaderboard (Lambert et al., 2024).

Several recent RLHF and RLAIF studies train distributional reward models for LLM post-training.
QRM (Dorka, 2024) employs quantile regression to estimate multimodal preference distributions.
DPRM (Li et al., 2024a) represents multiple preferences by a categorical distribution and approximates
the target distribution via an optimal transport objective. In our setting, both methods would need to
discretize explanation feedback–the probability that a third party can infer the true agent decision
from explanations–and then fit a distribution on that discretized space. By contrast, our method seeks
to model continuous feedback, learning distributions without discretization. URM (Lou et al., 2024)
parameterizes Gaussian distributions to model disentangled human preference attributes, whereas our
approach accommodates arbitrary reward distributions.

Please see Appx. A for more related works on Diffusion in Transformer, Cross-attention, Explain-
able AI/RL, and LLM Training in Explanations.

2 PRELIMINARY

Rectified Flow (Liu et al., 2022; Albergo & Vanden-Eijnden, 2023) emerges as a powerful generative
model and has recently served as the basis for popular commercial tools like Stable Diffusion
3 (Stability AI, 2023). Based on continuous normalizing flow (CNF) (Chen et al., 2018; Lipman
et al., 2023), it models a generative process as an Ordinary Differential Equation (ODE). Formally, a
CNF transports an input z0 ∈ Rd to zt = ϕ(t,z0) at time t ∈ [0, 1] via the ODE:

d

dt
ϕ(t, z0) = φ (t, ϕ(t,z0)) . (1)

ϕ : [0, 1]× Rd → Rd is the flow, and the vector field φ : [0, 1]× Rd → Rd specifies the change rate
of the state zt. (Chen et al., 2018) suggests representing the vector field φ with a neural network.
The flow ϕ transforms an initial random variable Z0 ∼ p0(z0) to Z1 ∼ p1(z1) at time t = 1.
Rectified flow drives ϕ to follow the linear path in the direction (Z1 − Z0) as much as possible by
optimizing the objective: minφ

∫ 1

0
E
[
∥(Z1 − Z0)− φ(t, Zt)∥2

]
dt, where Zt = t ·Z1+(1− t) ·Z0

is the linear interpolation of Z0 and Z1. Typically, the vector field network φ is implemented as a
U-Net (Ronneberger et al., 2015) for image inputs or an MLP for vector inputs (Wang et al., 2024c).

Transformer. The Transformer architecture (Vaswani et al., 2017) is foundational to recent progress
in LLMs (Liu et al., 2024a; Zeng et al., 2024; Yang et al., 2024a; Team et al., 2023). For an input
token sequence x = (x(1), . . . ,x(N)), let E(n) = [e(x(1)), . . . , e(x(n))] denote the sequence of
token embeddings up to position n, where e(·) is the token embedding function. A standard LLM
generates its output by

H(n) = TRANSFORMER
(
E(n)

)
, M

(
y(n+1) | x(≤n)

)
= Wh(n), (2)

where H(n) ∈ Rn×d denotes the last layer hidden states for the first n tokens, with d representing
the hidden dimensionality. The last layer hidden state at position n is h(n) = H(n)[n, :]. We denote
the output projection matrix by W , the generation logits by M , and the output tokens by y.
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Figure 1: An overview of our method. (Left) We prompt an EXPLANATION LLM to generate
reasoning about an agent decision based on the context information. Our focus is on whether a third
party can infer the actual decision from this explanation. (Middle) We employ a rectified flow model
φ to generate rewards capturing how likely the actual decision appears as a plausible outcome after
each sentence of the explanation. Per-sentence rewards for training the EXPLANATION LLM are the
changes in the probability of the actual decision (highlighted in blue). (Right) The architecture and
training of the rectified flow φ are based on a PROXY LLM. The PROXY LLM provides positive
samples, where, with the context and explanation as input, it can produce a distribution p that
assigns the highest probability to the actual decision. The rectified flow φ is trained to produce such
distributions p, with a cross-attention layer in its middle that selectively leverages information from
the PROXY LLM input, enabling generalization to negative samples.

3 METHOD

Our goal is to train an EXPLANATION LLM πe(θe) to recover a specific underlying policy and
generate natural language explanations that reflect that policy’s decision of RL agents and LLMs
given only context. In RL, the decision is an RL action, and the context is the trajectory of preceding
states, actions, and rewards. In LLM tasks, the decision could be, for example, the selected option for
a multiple-choice question, and the context is the question itself. Given a set De = {(aj , cj)}Jj=1

of decisions aj and their context cj , we construct a prompt xe
j for πe(θe): Given

[
Context cj

]
.

Please analyze the reasoning behind the agent decision based on the context. The
EXPLANATION LLM then generates the corresponding explanation yej = πe(x

e
j ; θe).

To prevent superficial explanations that simply restate the decision, we intentionally exclude the
actual decision aj from the prompt xe

j . For the generated content to be effective explanations, we train
the EXPLANATION LLM using RL with rewards generated by a rectified flow φ(θφ). These rewards
are probabilistic, reflecting the fact that human individuals have different opinions about the efficacy
of the same explanation. Different explanation models correspond to different policies differentiated
by training with distinct rewards. Fig. 1 illustrates our learning framework. The architecture and
training of φ(θφ) are described in the following subsection.

3.1 RECTIFIED FLOW REWARD MODEL

We aim at generating rewards that reflect how likely human individuals can infer correct decisions
from explanations. To save costly human feedback (Bai et al., 2022b), we use LLMs as proxy
feedback providers when training the rectified flow reward model. Proxy LLM feedback may deviate
from real human feedback. We empirically show the influence of these deviations as a baseline
method Proxy LLM in Tab. 2 and formally analyze how the rectified flow manages these deviations in
Sec. 4.
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Specifically, we query a PROXY LLM with the prompt xg
j : Given [Context cj], the reasoning

is [yej ]. Thus, the decision is [a decision a]. For each candidate decision a, we measure the
likelihood of it being a plausible outcome based on the token-level logits M(a|xg

j ) (Eq. 2), which
indicate how likely the PROXY LLM is to output a at the end of xg

j . If a spans multiple tokens, we
compute the mean of their logits (Yang et al., 2022).

To capture the probabilistic nature of judgments on an explanation, we issue the same query for K
independent PROXY LLMs, collecting logits {Mj,k(·|xg

j )}Kk=1. The rectified flow φ(θφ) is trained
by minimizing the following loss function:

LFLOW(θφ) = Ez0∼Z0,(cj ,ye
j ,Mj,k)∼Dp,z1=Mj,k,t∼[0,1]

[
∥(z1 − z0)− φ(t, zt|cj , yej ; θφ)∥2

]
. (3)

where Dp = {(cj , yej , {Mj,k}Kk=1)}Jj=1 is the training dataset and zt = t · z1 + (1 − t) · z0, for
t ∈ [0, 1]. The flow model transports each initial random sample z0 ∈ R|A| drawn from Z0 to
a logit vector of the same dimension, where A is the set of all candidate decisions. With initial
samples from Z0, φ(θφ) effectively constructs a distribution over logits. We define rewards as the
logits corresponding to the ground-truth decision. Selecting them from the generated logits yields a
corresponding distribution over rewards. We discuss how to use this reward distribution in Sec. 3.2.

The choice of Z0 is critical for the rectified flow to handle noise in the PROXY LLM, as we will
discuss in Sec. 4.

Rectified Flow Model Architecture. As in a standard rectified flow model, the input to φ includes
(1) the current state zt ∈ R|A|, t ∈ [0, 1], with z0 sampled from Z0; and (2) a positional encoding
PE(t) corresponding to the ODE time t ∈ [0, 1]. Apart from these, the inputs also include (3) context
cj and explanations yej . This requires that φ can understand the linguistic cues in cj and yej , which is
beyond the capacity of typical rectified flow models based on fully-connected networks (Wang et al.,
2024c) or U-Nets (Liu et al., 2022). To solve this problem, we propose to embed the rectified flow
model φ into an LLM.

Embedding. The context cj and explanations yej are encoded by the EXPLANATION LLM, and we use
its last layer latent states. ReLU-activated, layer-normalized MLPs φEMB are used to project zt and
PE(t) to have the same dimension as the LLM tokens. PE(t) and zt use two separate embedding
MLPs: hEMB,t = φEMB,t(PE(t)),hEMB,zt = φEMB,zt(zt). The resulting embeddings, stacked as
HEMB = (hEMB,t,hEMB,zt)

⊤ ∈ R2×d, are called flow tokens.

Cross-Attention. We use the LLM’s last layer weight matrices (WQ,WK ,WV ) to generate queries,
keys, and values of the flow tokens: (QEMB,KEMB,VEMB) = HEMB(WQ,WK ,WV ), which are
concatenated with the last layer hidden states of the cj and yej to calculate cross-attention. More
details are discussed in Appx. C.

Projector. Define hATTN,zt
as the latent state of the flow token hEMB,zt

after cross-attention. This state
has incorporated the ODE time t and explanatory information through cross-attention. Progressing
from this state, we use a fully-connected network φPROJ : Rd → R|A| with ReLU activation and layer
normalization to generate the vector field φ = φPROJ(hATTN,zt

). We find that skip-layer connections
are important for training stability, and we append the inputs zt and t to the hidden layers of φPROJ.

3.2 OVERALL TRAINING PROCEDURE

Once the rectified flow model φ is trained, we use it to generate rewards for samples in De. Concretely,
we solve the ODE dzt = φ(t,zt)dt starting from z0 sampled from the initial distribution. An
advantage of rectified flow is that the vector field φ is encouraged to be straight lines, allowing
efficient and accurate solution of the ODE in a few steps. The solution z1 (at time 1) is taken as the
estimated logit MFLOW(·|xg

j ) = z1 = z0 +
∫ 1

0
φ(t, zt)dt.

Given different initial samples z0, we might get different logits MFLOW, which reflect probabilistic
opinions. We use the average logit of the true decision MFLOW(aj |xg

j ) as the reward. We then use
PPO to train the EXPLANATION LLM to improve its explanations that achieve higher rewards from
the rectified flow model. The rectified flow model and EXPLANATION LLM are trained alternately
until convergence. The EXPLANATION LLM is fine-tuned using PPO with LoRA. The rectified flow
model consists of a frozen LLM backbone and two trainable MLPs: φEMB and φPROJ.
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Implementation details. In practice, we adopt rejection sampling (Touvron et al., 2023) when training
the flow model. Specifically, we only use samples where PROXY LLMs assign the highest likelihood
to the true decision: aj = argmaxa M(a|xg

j ). To mitigate the influence of large-magnitude logit
values, we apply a softmax activation to M(·|xg

j ) before using it in the loss function (Eq. 3). Moreover,
our model supports dense rewards. The logits change as we feed sentences in an explanation
incrementally. We define per-sentence rewards as the changes of the true decision aj’s logit after
each newly added sentence. The sentence-level reward is used in addition to the sparse reward, where
a reward of 1 is assigned only to the last token of the explanation if the predicted decision is correct;
otherwise, the reward is 0. More details are discussed in Appx. C. We study the effects of rejection
sampling and sentence-level rewards in Sec. 5.

4 THEORETICAL ANALYSIS

In this section, we analyze the usage of a rectified flow model to approximate rewards.

Let p(·|yej ) be the unknown human reward distribution for the explanation yej . As discussed, using
LLMs as proxy human reward approximators might introduce errors. We first assume a Gaussian
additive error model, and p0 = N (0, σ2

rI|A|) is the corruption noise. The LLM-generated distribution
is given by the convolution p̂ = p ∗ p0. For rectified flow, we adopt an initial distribution of the
same functional form as the corruption noise: q0 = N (0, σ2I|A|). Define the terminal distribution of
the flow ϕt as q1 = ϕ1♯q0. We can prove the following theorem.
Theorem 1. [Error bound for recovering the human reward distribution with a rectified flow] The
flow is trained so that the fitting error to the proxy LLM reward distribution, measured in quadratic
Wasserstein distance, satisfies W2(p̂, q1) ≤ ε. pFLOW := ϕ1♯p0 is the denoised candidate obtained
by pushing p0 through the learned flow. Errors relative to the true human distribution are bounded by

W2(pFLOW, p) ≤ ε + L
√

|A|
∣∣σ − σr

∣∣,
where L = exp

(∫ 1

0
∥∇φt∥∞ dt

)
is the Lipschitz constant. In many architectures, L ≈ 1.

The proof in Appx. D applies to any ODE-based generative models like score-based diffusion
models. For other learning methods, such as previously proposed distributional reward modeling
approaches (Dorka, 2024; Lou et al., 2024; Li et al., 2024a), we have the following lemma applicable
when they learn from AI feedback.
Lemma 2. [Error bound without a rectified flow] Without a rectified flow model, the error of a
learning model approximating p̂ relative to the true human distribution is bounded by

W2(p̃, p) ≤ ε′ +
√
|A|

∣∣σr

∣∣,
where ε′ is the model’s approximation error with respect to p̂. Moreover, the inherent error in the
proxy LLM reward distribution is W2(p̂, p) =

√
|A|

∣∣σr

∣∣.
The major takeaway is that a rectified flow turns an unavoidable bias term W2(p̂, p) =

√
|A|

∣∣σr

∣∣
into a controllable one as long as the initial distribution of the flow and the error model share the
same functional form. A reasonable estimation of hyperparameters, e.g., (σ ≈ σr), guarantees that a
rectified model can well recover the true human reward distribution. We further provide a theoretical
analysis in Appx. D for the case where q0 and p0 follow different functional forms. Figure 3 in
Appx. D illustrates the proof ideas of our theorems.

5 EXPERIMENT

Benchmark. We evaluate our method on three testbeds: (1) SMAC (StarCraft Multiagent Chal-
lenge (Samvelyan et al., 2019)) is an RL benchmark based on the real-time multi-agent strategy
game StarCraft II that emphasizes micromanagement challenges. Explaining a decision here requires
analyzing the status of ally and enemy units, such as their remaining health points and positions,
and inferring their intentions from trajectories. (2) AI2-THOR (Kolve et al., 2017) is a widely used
embodied AI benchmark in RL research (Li et al., 2024b; Wu et al., 2021), featuring household
activity scenarios that demand multi-step planning, multi-robot coordination, and interaction with
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dynamic environments. We use the Complex Tasks split from SMART-LLM (Kannan et al., 2024)
and expand it from 8 to 59 tasks. (3) MMLU (Massive Multitask Language Understanding (Hendrycks
et al., 2020)) is a multiple-choice QA benchmark for LLMs. We choose 4 challenging Professional
Knowledge subsets (Professional Medicine (272 samples), Professional Law (1.53K samples),
Professional Accounting (282 samples), and Professional Psychology (612 samples)). (4) MathQA
(Amini et al., 2019) is a large-scale multiple-choice QA benchmark for math word problems,
comprising 30K training samples and 3K testing samples. Please refer to Appx. F for more details.

Baselines. We evaluate our method against seven baseline families. (1) Proxy LLM. This baseline di-
rectly uses rewards generated by the PROXY LLM to train the EXPLANATION LLM. (2) SFT is a pop-
ular paradigm for adapting LLMs to downstream tasks. (3) RLHF. We consider PPO (Xu et al., 2024),
DPO (Rafailov et al., 2024) and KTO (Ethayarajh et al., 2024), using the TRL implementations (von
Werra et al., 2020). (4) Reasoning Frameworks. We compare against CoT+SFT (Wei et al., 2022) and
ReFT (Trung et al., 2024). (5) RLAIF. We report results for SKYWORK (Skywork-Reward-Llama-
3.1-8B-v0.2) (Liu et al., 2024b), which ranks in the top two 8B models on the RewardBench leader-
board (Lambert et al., 2024). (6) DeepSeek. We compare with DeepSeek-R1-Distill-Llama-8B (Guo
et al., 2025). (7) o3-mini. We directly use o3-mini (OpenAI, 2025) for evaluation without fine-tuning.

Ablations. (1) Ours w/o Attn. We remove the cross-attention layer in the reward model φ and
use a fully-connected network to generate the vector field. (2) Ours (Sparse Reward). We use
a single reward for the last token of the explanation instead of sentence-level rewards. (3) PPO
(Sentence Reward). We apply sentence-level rewards to PPO. (4) Ours w/o Flow is the same as the
baseline Proxy LLM.

Models and Training. By default, we use Llama-3.1-8B-Instruct (Dubey et al., 2024) as the
backbone of the EXPLANATION LLM. We also test different backbone models, including Llama-3.1-
8B, Qwen2.5-7B-Instruct (Yang et al., 2024a) and Gemma-2-2B-It (Lieberum et al., 2024) to assess
the robustness of our method.

All methods except o3-mini are trained on a shared synthetic dataset generated by o1-mini (Jaech
et al., 2024) and verified by human evaluators. We prompt o1-mini to generate paired Preferred
explanations given ground-truth decisions and Rejected explanations given randomly selected incor-
rect decisions. The training dataset for CoT+SFT and ReFT is further enhanced by asking o1-mini to
adopt the CoT paradigm. We didn’t directly use established instruction-tuning datasets because they
provide preference data for answers, not explanations. To evaluate the quality of our synthetic dataset,

Table 1: Human evaluation of
our constructed datasets.

Preferred↑ Rejected↓
3.53(0.53) 2.26(0.76)

12 participants (2 females, 10 males, aged 20–40) are invited to rate
5% randomly chosen samples from each benchmark and their corre-
sponding explanations on a 1–4 scale based on decision inferability.
As shown in Tab. 1, the results (score mean ± variance) indicate
that preferred samples significantly enhance human inference ac-
curacy compared to rejected samples, confirming the reliability of
our synthetic dataset.

All methods except o3-mini undergo three epochs of SFT on the preferred subset. Baselines (PPO,
DPO, KTO, Skywork and ReFT) then perform preference optimization with the full preferred/rejected
pairs. For our approach, the EXPLANATION LLM and the rectified flow model are trained iteratively
for two rounds. As shown in Fig. 2(d), additional rounds provide only marginal gains. For the rectified
flow model, we choose σ = 1. We use K = 3 independent PROXY LLMs: Llama-3.1-8B-Instruct,
Qwen2.5-7B-Instruct and Gemma-2-2B-It. Complete training details and hyperparameter settings
can be found in Appx. F.

Evaluation and Metrics. For LLM evaluation, an explanation generated by the EXPLANATION
LLM is considered effective if GPT-4o correctly infers the ground-truth decision based on it, with
accuracy (ACC) measured as the proportion of effective explanations. We also consider the success
rate of the whole task as the evaluation metric. For human evaluation, we recruit 45 participants (30
males, 15 females, aged 20-40) from diverse backgrounds (engineering, chemistry, machine learning,
and economics). Each participant reviews 3 randomly selected samples from the benchmark and
predicts the ground-truth labels. We report prediction accuracy and the percentage of participants
rating each method the highest logical soundness, the highest actionability, and the lowest cognitive
load. More details can be found in Appx. F.
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5.1 COMPARISONS AGAINST BASELINES

LLM Evaluation. Tab. 2 reports the results. For SMAC, MMLU, and MathQA benchmark, compared to
Proxy LLM, our method achieves 12.4%, 6.9%, and 11.0% higher ACC on these datasets, respectively.
These results support our theoretical analyses that rewards from PROXY LLMs yield ineffective
optimization, while the rectified flow model better handles noisy proxy rewards. Among RLHF
baselines, KTO and DPO perform relatively well due to strong human utility models. In Reasoning
Frameworks, although ReFT improves ACC to 72.2%, 74.3%, and 76.3% on these datasets, it
still lags behind our method. Skywork, DeepSeek and o3-mini also underperform our method.
The performance of our method remains significantly better than baselines in the challenging AI2-
THOR benchmark. It improves the success rate by 7.4%, 6.0%, and 2.5% over KTO, ReFT and
o3-mini, respectively. In summary, our method consistently surpasses all baselines, demonstrating
its effectiveness in generating more reasonable explanations that support inferring correct decisions.

Table 2: Accuracy results of our method and baselines on SMAC, MMLU and MathQA. Success rate of
our method and baselines on AI2-THOR.

Datasets Ours SFT
Proxy
LLM

RLHF Reasoning RLAIF
DeepSeek

o3−
mini

PPO DPO KTO CoT+SFT ReFT Skywork

SMAC 0.764 0.582 0.640 0.653 0.713 0.721 0.642 0.722 0.692 0.658 0.455

MMLU 0.772 0.689 0.703 0.723 0.746 0.753 0.705 0.743 0.737 0.721 0.707

MathQA 0.804 0.667 0.694 0.719 0.753 0.758 0.712 0.763 0.729 0.718 0.739

AI2-THOR 0.702 0.447 \ \ \ 0.628 \ 0.642 0.483 0.476 0.677

Human Evaluation. In LLM evaluation, DPO and KTO lead the RLHF baselines, ReFT tops the
reasoning frameworks. Therefore, for human evaluation, we compare our method against DPO and
ReFT. Results on MathQA are shown in Tab. 3. Our method achieves the highest accuracy, exceeding
the strongest baseline by 25.7%. Around 60% of participants judge our explanations to be the most
logically sound and the least cognitively demanding, indicating improved decision comprehension.

Table 3: Human evaluations on MathQA,
where Cognitive denotes cognitive load.

Methods ACC Logic Actionable Cognitive

Ours 0.892 0.60 0.46 0.60
DPO 0.591 0.17 0.28 0.18

ReFT 0.635 0.23 0.26 0.22

Table 4: Accuracy of our method and baselines with
rejection sampling.

Datasets Ours PPO DPO KTO Skywork

SMAC 0.764 0.642 0.704 0.708 0.713

MMLU 0.772 0.715 0.738 0.759 0.720

MathQA 0.804 0.732 0.765 0.773 0.731

Rejection Sampling. We conduct a control study by applying the same rejection sampling procedure
from our method to the baselines. For preferred data, we select those where the PROXY LLM can infer
the correct decision (called filtered preferred data). This removes possible noisy data. Our method
uses this subset, while baselines that require pairwise training data use both this subset and rejected
data. As shown in Tab. 4, our method still achieves the best performance under this setting. By
contrast, rejection sampling is not guaranteed to improve the performance of other baselines. These
results show that the effectiveness of our method is not due to the higher quality of the training data.

Masked Explicitly Stated Decisions. We conducted an additional evaluation in which any occurrence
of the explicit decision in the generated explanation was masked before passing it to the evaluator
model. As shown in Tab 8, this causes only a slight drop in performance. Specifically, our method’s
accuracy decreases by 2.1% on SMAC, 1.8% on MMLU, and 3.6% on MathQA. We find that in most
instances where the explanation states the decision explicitly, the decision can still be inferred from the
reasoning trace (e.g., detailed numerical derivations or clear contextual cues). In these cases, masking
does not significantly hinder the evaluator’s ability to infer the decision. Baselines are also affected
under this evaluation protocol, yet our method still outperforms the strongest ones, KTO and ReFT.

5.2 GENERALIZATION TO NEGATIVE SAMPLES: DISTINGUISHING TRUE AND FALSE
NEGATIVES

As discussed in Sec. 3.2, we train the rectified flow model φ solely on positive samples–explanations
that allow the PROXY LLM to infer the ground-truth decision. It is critical that φ generalizes to
other unseen, negative samples and assigns them reliable rewards. Otherwise, the EXPLANATION
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(a) Positive Samples (b) Negative Samples (c) True/False Negative Samples (d)

Figure 2: (a-b) Accuracy of the rectified model φ on unseen test samples. Flow ACC is reported as
the percentage of samples for which the flow model φ assigns the highest logit (reward) to the ground-
truth decision. (c) Our rectified reward model learns to assign low rewards to true negatives—
explanations that lead to wrong decisions—and high rewards to false negatives. Rewards are
positively related to accuracy, represented by the y-axis. (d) EXPLANATION LLM accuracy increases
with each training round. Each training step corresponds to processing a single training sample.

Table 5: A true negative sample from MMLU. Initially, the explanation from the EXPLANATION
LLM erroneously supports answer B that focuses on the influence of the filter placement. Post-
training with our method, the EXPLANATION LLM accurately justifies the correct answer.

Context (shortened): A 67-year-old woman had a pulmonary embolism... She underwent placement
of an inferior vena cava (IVC) filter. She had a hematoma that was resolving... Which of the following
is the most likely cause of this patient’s decreased sensation?

Decision set A: [A. Cerebral infarction during the hospitalization; B. Complication of the IVC filter
placement; C. Compression of the lateral femoral cutaneous nerve ✓; D. Hematoma of the left thigh.]

Explanation: ... The patient’s symptoms began after hospitalization, aligning with the placement of
the IVC filter... The improvement over time supports a reversible cause related to the filter placement
rather than other options... (B,×)

Improved Explanation (Ours): ...involving nerves near sites of cannula placement or previous
bleeding sites... The sensation loss around the left thigh aligns with nerve compression near ✓ the
sites of recent interventions.

LLM would not receive informative reward signals. These negative samples fall into two categories.
True negatives are invalid explanations rightly rejected by the PROXY LLM, while false negatives are
effective explanations misclassified by the PROXY LLM. Effective EXPLANATION LLM training
requires distinguishing and differentially rewarding these types. We assess whether our method
achieves this separation by first using o1-mini to label negatives as true or false, and then examining
the rewards that our algorithm assigns to each type.

Fig. 2(c) demonstrates that our reward model effectively differentiates between the two. Over the
course of training, it gradually learns to grant higher rewards to false negatives and lower rewards
to true negative samples–precisely the desired behavior. This pattern is mirrored in the accuracy
curve: in our framework, rewards are positively related to accuracy, and our reward model achieves
approximately 80% accuracy on false negatives and only around 5% on true negatives. To see how this
improvement happens, Tab. 5 gives a true negative example where our method successfully guides the
EXPLANATION LLM to refine the explanation, an update attributable to correctly computed rewards.
Tab. 6 gives an example of a false negative sample. Although the PROXY LLM cannot infer the correct
decision, our method is able to deliver correct rewards. We hypothesize that this generalization capa-
bility stems from the cross-attention mechanism. Fig. 2 (a) and (b) compare the accuracy of our flow
model and the ablation Ours w/o Attn on unseen samples. As we can see, without cross-attention,
performance on negative samples stagnates throughout training, underscoring its importance.

5.3 ABLATION STUDY

Different Backbone Models. In Tab. 7, we change the backbone model of our method to Llama-
3.1-8B, where our method still surpasses all baselines, achieving a minimum of 2.6% higher ACC
on SMAC, 2.0% higher ACC on MMLU, and 3.7% higher ACC on MathQA. We further evaluate the
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Table 6: A false negative sample from MMLU where the explanation is correct but the PROXY
LLM produces an incorrect distribution. Although the rectified flow model was not trained on this
sample, it correctly identifies “the egg roll was present for a substantial time”, a cue missed by the
PROXY LLM, and thus provides a correct distribution.

Context (shortened): A wife and her husband were dining at a restaurant owned by a chef. As the
wife walked past a table, she slipped on an egg roll that had been on the floor for quite some time,
although the chef was unaware it had fallen there. If she sues the chef , she will most likely:

Decision set A: [A. Recover, because the egg roll on the floor constituted an unsafe condition of the
premises; B. Recover, because the egg roll was on the floor for a substantial period of time before the
accident ✓; C. Not recover, ...; D. Not recover, ...]

Explanation: ... The fact that the egg roll was present for a substantial time ✓ suggests that the
owner should have been aware of the potential hazard and taken steps to address it. This situation
falls under premises liability where maintaining safe conditions is crucial to ...

Distribution p from the PROXY LLM: [0.9297, 0.0674, 0.0010, 0.0013] → ‘A’ ×
Distribution p̂ from the rectified flow model: [0.0547, 0.9330, 0.1089, 0.0685] → ‘B’ ✓

robustness of our method using two more backbone models: Qwen2.5-7B-Instruct, and Gemma-2-
2B-It (abbreviated as Qwen and Gemma). As shown in Tab 9, our method consistently improves
ACC by up to 19.5% over SFT, confirming its effectiveness across diverse LLM backbones.

Sparse Reward vs Sentence-level Reward. As shown in Tab. 10, Ours (Sp Reward) represents the
sparse-reward variant and PPO (Se Reward) represents PPO with sentence-level reward. Using sparse
reward in our method leads to at least 1.2% lower ACC, indicating that the sentence-level reward
design offers better guidance for learning high-quality explanations. With sentence-level reward, PPO
still lags behind Ours by at least 5.2% ACC, underscoring the effectiveness of our rectified flow model.

Table 7: Accuracy of our method and baselines with a differ-
ent backbone model, Llama-3.1-8B.

Datasets Ours SFT PPO DPO KTO CoT+SFT ReFT

SMAC 0.689 0.583 0.632 0.650 0.655 0.614 0.663

MMLU 0.724 0.638 0.682 0.698 0.673 0.653 0.704

MathQA 0.746 0.626 0.662 0.683 0.709 0.631 0.695

Table 8: Accuracy of our method and
baselines with masked explicit decisions.

Datasets Ours KTO ReFT

SMAC 0.743 0.702 0.696

MMLU 0.754 0.709 0.725

MathQA 0.768 0.732 0.735

Table 9: Accuracy of our method with another two
backbone models.

Datasets Llama (Default) Qwen Gemma

SFT Ours SFT Ours SFT Ours

SMAC 0.582 0.764 0.594 0.783 0.536 0.731
MMLU 0.689 0.772 0.693 0.789 0.653 0.740
MathQA 0.667 0.804 0.645 0.778 0.626 0.723

Table 10: Ablations. (Sp Reward): Sparse
reward; (Se Reward): Sentence reward.

SMAC MMLU MathQA

Ours 0.764 0.772 0.804
Ours (Sp Reward) 0.752 0.757 0.773

PPO (Se Reward) 0.688 0.720 0.734

Ours w/o Attn 0.662 0.721 0.728

Without Attention. As shown in Tab. 10, Ours w/o Attn underperforms Ours with a minimum of
5.1% lower ACC, indicating that the transformer-based architecture can better capture the complex
context information. Fig. 2(a) and Fig. 2(b) further elucidate the reason: it cannot even reproduce
100% accuracy on positive samples and cannot generalize to negative samples.

Appendix H reports additional results under noisy reward, varying σ and excluding SFT.

6 CONCLUSION

We demonstrate that a flow-matching generative model can provide sentence-level and reliable
rewards for training LLMs to recover a specific policy and explain that policy’s decisions in both RL
agents and other LLMs. Looking ahead, we envision extending this approach into a general-purpose
LLM training framework that automatically generates high-quality reward signals.
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7 ETHICS STATEMENT

To assess the quality of the synthetic dataset generated by o1-mini, we enlist 12 participants (2
females, 10 males, aged 20-40) to evaluate whether the samples are reasonable and human-like. For
the human evaluation, we recruited 45 participants (30 male, 15 female, aged 20–40) from diverse
fields, including engineering, chemistry, machine learning, and economics. To ensure consistency,
we provided standardized instructions and illustrative examples before the evaluation. All participant
information was anonymized, and no personally identifiable data were collected, ensuring that there
was no risk to privacy.

8 REPRODUCIBILITY STATEMENT

We have undertaken comprehensive efforts to ensure the reproducibility of this work. The complete
source code is provided in the supplementary materials. For theoretical analysis, detailed explanations
of underlying assumptions and full proofs of the claims are presented in Appx. D. A complete and
transparent description of the data processing steps employed in our experiments is also included in
the supplementary materials.
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A MORE RELATED WORKS

Diffusion in Transformer (DiT, (Yang et al., 2023)) leverages the strengths of self-attention of
Transformers to improve the performance of diffusion models across a range of tasks, including image
and text generation (Cao et al., 2024). (Dhariwal & Nichol, 2021) demonstrate how Transformer-
based architectures can optimize the denoising process in diffusion models, resulting in high-quality
image synthesis. (Ulhaq & Akhtar, 2022) explore efficient implementations for diffusion within
Transformer. These works are related to our work, as we embed flow matching into the last layer of
an LLM. The difference is that we train the LLM-augmented flow matching model as a reward model
for the purpose of LLM post-training.

Cross-attention is a popular technique for processing information across multiple modalities (Rad-
ford et al., 2021; Alayrac et al., 2022; Li et al., 2023). Approaches such as T2I-Adapter (Mou et al.,
2024) and VMix (Wu et al., 2024a) use cross-attention mechanisms between text encoders (an LLM)
and diffusion models to enhance the generation of high-quality images from textual descriptions.
More generally, cross-attention has helped solve tasks that require both vision and language under-
standing (Hatamizadeh et al., 2025; Cao et al., 2024). Different from previous work on DiT and
cross-attention-based image/video generation, to our best knowledge, the proposed method is the first
to use generative models and cross-attention to generate rewards for RL-based LLM training.

Explainable AL/RL without natural language explanations. Our method is suited within the
domain of explainable AI (Arrieta et al., 2020; Carvalho et al., 2019; Ehsan et al., 2019; Gunning,
2017; Ras et al., 2018; Gilpin et al., 2018). Faithfulness (Jacovi & Goldberg, 2020) is one of key
concepts from the XAI literature, which is defined as the degree to which an explanation reflects
the model’s actual decision-making process, rather than merely presenting a narrative that sounds
plausible to humans (i.e., plausibility).

Recent studies have explored how to generate faithful explanations from large language models. Some
approaches (Lyu et al., 2023; Radhakrishnan et al., 2023) focus on enhancing faithfulness through
Chain-of-Thought prompting, breaking down the reasoning process into multiple sub-sentences.
Others (Schimanski et al., 2024) improve faithfulness by augmenting the training data to provide
stronger supervisory signals. For measuring rational faithfulness, Matton et al. (2025) introduces
a causal counterfactual evaluation framework using an auxiliary LLM and a Bayesian hierarchical
model. Parcalabescu & Frank (2023) proposes CC-SHAP, a token-level self-consistency measure
that records model contributions. Madsen et al. (2024) measures self-explanations and find that
faithfulness varies significantly across models and datasets. Our method captures the essential
behavior of the model by faithfully reproducing its outputs from the given inputs, thereby serving as
an interpretable intermediate representation of model behavior. In this sense, our approach offers a
form of faithfulness from a functional and behavioral perspective.

For explainable RL (XRL), our approach draws particular parallels with it. Post-hoc XRL methods
focus on relating inputs and outputs of a trained RL policy in an interpretable way, using an inter-
pretable surrogate model as policy approximation. Examples of surrogate models include imitation
learning (Abbeel & Ng, 2004), learning from demonstration (Argall et al., 2009), finite state ma-
chines (Koul et al., 2018; Danesh et al., 2021), decision trees and their variants (Bastani et al., 2018;
Jhunjhunwala, 2019; Bewley & Lawry, 2021; Liu et al., 2018), genetic programming (Zhang et al.,
2020), programmatic policy searching (Verma et al., 2018), and deterministic finite automata (Hasan-
beig et al., 2021). However, in order to be interpretable, surrogate models are designed as simple as
possible. Ad-hoc XRL methods represent policies as inherently interpretable models. For example,
Silva et al. (2019); Topin & Veloso (2019); Hein et al. (2018); Landajuela et al. (2021) use decision
trees as policy approximators. However, the capacity of these models is typically limited. Saliency
maps distinguish observation elements that influence decisions (Atrey et al., 2019; Greydanus et al.,
2018; Gottesman et al., 2020), but does not capture the reasoning behind decisions (Atrey et al., 2019),
leaving humans to give ad-hoc explanations based on these visual cues. Example-based methods
use similar experiences to explain decisions (Amir & Amir, 2018; Huang et al., 2018; Zahavy et al.,
2016; Topin & Veloso, 2019), but largely overlook underlying reasoning.

Use explanations to train LLMs. Various prior works have explored training or tuning language
models with explanatory cues, often relying on techniques such as span or word highlighting (Hase &
Bansal, 2021; Zhou et al., 2020; Narang et al., 2020; Rajani et al., 2019). Moreover, explicitly training
language models with natural language explanations or instructions has been shown to enhance their
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ability to leverage explanations in prompts (Wei et al., 2021). These works are different from our
method, because we do not use explanations to train LLMs. Instead, we train LLMs to generate
explanations.

B NOTATIONS FOR TRANSFORMERS

We consider an LLM with L layers, the hidden state after l layers, H(n,l), is projected by three
weight matrices WQ, WK , and WV to the query, key, and value embeddings Q(n,l), K(n,l), and
V (n,l), respectively. The self-attention is calculated as:

(Q(n,l),K(n,l),V (n,l)) = H(n,l)(WQ,WK ,WV ),

A(n,l) = Q(n,l)K(n,l)⊤/
√

dK ,

Attn(H(n,l)) = σ(A(n,l))V (n,l),

where σ(·) is SoftMax, and A is the self-attention matrix.

C LEARNING FRAMEWORK

EXPLANATION LLM. Our method is developed around the EXPLANATION LLM. Given a set
De = {(aj , cj)}Jj=1 of decisions aj and their context cj , we use the following prompt xe

j to ask the
EXPLANATION LLM to generate explanations: Given

[
Context cj

]
. Please analyze reasoning

for the agent decision based on the context.

Suppose that the EXPLANATION LLM generates Ke sentences as output: yej=(s
e(1)
j , · · · , se(Ke)

j ]).
For the generated content to be effective explanations, we hope that one can consistently infer agent
decisions from explanations across various contexts. To this end, we seek feedback regarding how
likely the actual decision aj is a plausible outcome given each incremental portion of the explanation.

Such feedback is most accurate when provided by human annotators. However, human feedback is
expensive (Bai et al., 2022b). We first discuss an alternative approach that uses a PROXY LLM as a
surrogate feedback provider, whose downside will motivate the proposed generative reward method
introduced in the next subsection.

We query the PROXY LLM with the prompt: Given [Context cj], the reasoning is s
e(1:k)
j ].

Thus, the decision is [a decision a ∈ A]. Here, se(1:k)j is the first k sentences of the explanation

yej . We denote this prompt to the PROXY LLM by x
g(k)
j (yej ). The dependence on yej will be omitted

when unambiguous.

We are interested in the likelihood a decision a ∈ A appearing at the end of xg(k)
j (yej ), influenced by

logits M(a|xg(k)
j (yej )) (Eq. 2). In practice, a is represented by some tokens describing the decision.

If it involves multiple tokens, we calculate their mean (Yang et al., 2022).

By applying the SoftMax operation to M(a|xg(k)
j (yej )), a ∈ A, we get a distribution over decisions:

p(aj |xg(k)
j ) = SOFTMAXj

(
M(a|xg(k)

j )
)
. (4)

This distribution is defined for the first k sentences, k = 1, · · · ,Ke. Intuitively, the distribution
p changes as we feed the sentences in the explanation yej incrementally. These changes measure
the contribution of each sentence to the effectiveness of the explanation, allowing us to define per-
sentence rewards for yej as the changes of the likelihood of the actual decision aj after each newly
added sentence:

r(s
e(k)
j ) = p(aj |xg(k)

j )− p(aj |xg(k−1)
j ), (5)

which can be understood as an information gain (Ton et al., 2024). Calculating sentence-level rewards
is a trade-off (Team, 2025). We benefit from denser reward signals compared to a single reward for
the whole explanation, and also avoid the costs of per-token reward calculation.
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Figure 3: Overview of the idea of our theoretical analysis for the proposed flow-matching–based
reward generation framework. We train a flow-matching model to approximate the distribution of
LLM-generated feedback. Assuming the LLM feedback distribution is a transformation of the ground-
truth human feedback distribution, we derive a closed-form expression for the distance between the
induced flow-matching reward distribution and the human feedback distribution.

We intentionally exclude the actual decision aj from the prompt xe to the EXPLANATION LLM.
Otherwise, the rewards r(se(k)j ) might be trivial and encourage merely restating the decision: the
sentence that discloses the decision will get a very large reward, while the following sentences get
fairly small rewards, regardless of their content.

The disadvantage of directly using this PROXY LLM is that the rewards r(se(k)j ) could be noisy or
inefficient (Yang et al., 2024b), as proven by a baseline method Proxy LLM in Tab. 2. We propose to
fix this problem by introducing a rectified flow model for reward generation.

Rectified Flow Model Architecture.

Cross-Attention. (WQ,WK ,WV ) are last-layer attention weights of the EXPLANATION LLM. We
apply these weights to the flow-token hidden states (HEMB) to obtain corresponding queries, keys,
and values: (QEMB ,KEMB , VEMB) = HEMB(WQ,WK ,WV ). In parallel, we also obtain the
last-layer queries, keys, and values from the EXPLANATION LLM for the given context (i.e., the query
and its explanation), denoted as Q(L−1),K(L−1), V (L−1), where L is the number of transformer
layers. We then perform standard multi-head attention using the concatenated queries, keys, and
values ([Q(L−1), QEMB ], [K

(L−1),KEMB ], [V
(L−1), VEMB ]). Finally, we extract the attention

hidden states at the flow-token positions as the output.

Projector. Define hATTN,zt as the latent state of the flow token hEMB,zt after cross-attention. This state
has incorporated the ODE time t and explanatory information through cross-attention. Progressing
from this state, we use a four-layer fully-connected network φPROJ : Rd → R|A| with ReLU activation
and layer normalization to generate the vector field φ(t, zt) = φPROJ(hATTN,zt

). We find that skip-
layer connections are important for training stability. Specifically, we append the inputs zt and t to
the hidden layers of φPROJ.

D RECTIFIED FLOW CAN CORRECT ERRORS

Theorem 1. [Error bound for recovering the human reward distribution with a rectified flow] The
flow is trained so that the fitting error to the proxy LLM reward distribution, measured in quadratic
Wasserstein distance, satisfies W2(p̂, q1) ≤ ε. pFLOW := ϕ1♯p0 is the denoised candidate obtained
by pushing p0 through the learned flow. Errors relative to the true human distribution are bounded by

W2(pFLOW, p) ≤ ε + L
√

|A|
∣∣σ − σr

∣∣,
where L = exp

(∫ 1

0
∥∇φt∥∞ dt

)
is the Lipschitz constant. In many architectures, L ≈ 1.

Proof. Recall that for any two probability measures µ, ν on Rd, the quadratic Wasserstein distance is
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W 2
2 (µ, ν) = inf

γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥2 dγ(x, y),

where Γ(µ, ν) is the set of all couplings of µ and ν.

Moreover, if f : Rd → Rd is L-Lipschitz then

W2

(
f♯µ, f♯ν

)
≤ LW2(µ, ν).

We want to bound W2

(
pFLOW, p

)
. By the triangle inequality,

W2(pFLOW, p) ≤ W2

(
pFLOW, q1

)
+ W2

(
q1, p̂

)
+ W2

(
p̂, p

)
.

The middle term is exactly the training error: W2(q1, p̂) ≤ ε. For the last term, W2(p̂, p), we observe
the fact that p̂ = p ∗ p0 shares its mean with p; since the corruption is mean-zero Gaussian, the
optimal coupling between p and p̂ is to pair each clean sample x with x+ξ where ξ ∼ p0, giving
zero squared cost in expectation.

Hence it suffices to bound the first term, W2(pFLOW, q1).

Since

pFLOW = ϕ1♯p0, q1 = ϕ1♯q0,

and ϕ1 is L-Lipschitz by construction,

W2

(
pFLOW, q1

)
= W2

(
ϕ1♯p0, ϕ1♯q0

)
≤ LW2

(
p0, q0

)
.

For two zero-mean Gaussians in R|A|, N (0, σ2
rI) and N (0, σ2I), one shows

W2

(
p0, q0

)
=

√
|A|

∣∣σr − σ
∣∣.

Combining,

W2(pFLOW, p) ≤ L
√
|A|

∣∣σ − σr

∣∣ + ε,

which is exactly the claimed bound.

Lemma 2. [Error bound without a rectified flow] Without a rectified flow model, the error of a
learning model approximating p̂ relative to the true human distribution is bounded by

W2(p̃, p) ≤ ε′ +
√
|A|

∣∣σr

∣∣,
where ε′ is the model’s approximation error with respect to p̂. Moreover, the inherent error in the
proxy LLM reward distribution is W2(p̂, p) =

√
|A|

∣∣σr

∣∣.
Proof. First, by the definition of ε′ as the model’s approximation error to p̂, we have

W2(p̃, p̂) ≤ ε′.

Next, apply the triangle inequality for the 2-Wasserstein distance:

W2(p̃, p) ≤ W2(p̃, p̂) + W2(p̂, p).

Combining with the above bound gives

W2(p̃, p) ≤ ε′ + W2(p̂, p).
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It remains only to compute W2(p̂, p). Recall that p̂ = p ∗ p0 where p0 = N (0, σ2
rI|A|). Since p and

p̂ differ by the addition of a zero-mean Gaussian of covariance σ2
rI|A|, one shows directly for two

zero-mean Gaussians in R|A| that

W2

(
p̂, p

)
=

√
|A|

∣∣σr

∣∣.
Hence

W2(p̃, p) ≤ ε′ +
√

|A|
∣∣σr

∣∣,
as claimed.

D.1 WITH DIFFERENT FUNCTIONAL FORM

The following is the general case where the initial distribution q0 and the error model p0 follow
different laws.

For the true distribution p and the flow model’s output pflow, the error is bounded by

W2(pflow, p) ≤ ϵ+
√
tr Σp0

+ L
√

|µp0
|2 + trΣp0

+ trΣq0 ,

where Σ· denotes the covariance matrix and µ· is the mean. When both p0 and q0 are Gaussian, this
reduces exactly to Theorem 1.

The human-feedback distribution is unknown, but we assume we observe a noisy proxy provided
by the LLM with an additive noise model p0. In the proof, the flow network acts as a denoiser: it
transforms the proxy toward the latent human distribution. The inequality above quantifies how
closely the denoised distribution can approximate the true one.

E PROMPTS

Below are the prompts used for the EXPLANATION LLM and the PROXY LLM on the SMAC datasets.
For the EXPLANATION LLM, the prompt describes the overview of the scenarios along with the
previous action-state pairs and instructs the EXPLANATION LLM to analyze the provided information.
In response, the EXPLANATION LLM generates a summary of the preceding trajectories and implies
the action selection. For the PROXY LLM, the prompt includes a statement summarizing both the
input to and output from the EXPLANATION LLM, followed by the phrase: ’Therefore, the missing
action is a possible action from A’. Then, we calculate the mean token logits for each possible action
in A, which are then used to determine the action with the highest likelihood.
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An example that the prompts used for the EXPLANATION LLM and the PROXY LLM on the
SMAC datasets

User for EXPLANATION LLM:
Q: Here are 5 allies and 6 enemies in SMAC. The goal of each ally is to attack all the enemies
together with other allies. At every step, each ally can choose one action to take from the
Action set. The trajectory of each ally consists of a series of State, Action, Value pairs. Here
are 4 consecutive State, Action, Value pairs where the last state-action pair misses the Action:
xxx. Please help me concisely summarize and analyze this part of the trajectory for the
missing Action prediction.

EXPLANATION LLM:
R: Throughout the provided trajectory, the ally consistently maneuvered strategically while
maintaining full health and ensuring weapon readiness. Initially, moving SOUTH likely
aimed to xxx. The subsequent WEST movement improved xxx. The predicted next action
should be a directional movement aimed at advancing toward a more optimal attacking
position. Compared to other directions, EAST offers the best alignment for coordinated
attacks, ensuring allies can effectively converge on and target enemies together.

User for PROXY LLM:
Q + R + Therefore, the missing action is {a possible action from A}.

PROXY LLM:
The token logits of the given possible action.

An example that the prompts used for the EXPLANATION LLM and the PROXY LLM on the
AI2-THOR datasets

User for EXPLANATION LLM:
Q: There are multiple robots in the simulation,each with different skills and capabilities. The
robots are tasked with performing a series of actions in a simulated environment to complete
a certain task. Robot one xxx. Task is xxx. Current environment condition is xxx. The
previous actions include xxx. The available actions are xxx. You act as an AI assistant to
help the robots decompose the tasks into actions step by step.

EXPLANATION LLM:
R: Toggling on the television and placing the keychain on the coffee table. Robot 0 now
should take a corrective navigation step (GoToObject) before successfully executing
ToggleOnObject. After completing this sub-task, Robot 1 should navigate to the coffee table
and keychain, pick up the keychain, and place it on the table in the correct order.

User for PROXY LLM:
Q + R + Therefore, the next action is {a possible action from A}.

PROXY LLM:
The token logits of the given possible action.

Above are the prompts used for the EXPLANATION LLM and the PROXY LLM on the AI2-THOR
datasets. For the EXPLANATION LLM, the prompt describes the overview of the scenarios along
with the previous action pairs and instructs the EXPLANATION LLM to help robots to take action
step by step. In response, the EXPLANATION LLM generates potential trajectories and implies the
action selection. For the PROXY LLM, the prompt includes a statement summarizing both the input
to and output from the EXPLANATION LLM, followed by the phrase: ’Therefore, the next action is
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a possible action from A’. Then, we calculate the mean token logits for each possible action in A,
which are then used to determine the action with the highest likelihood.

An example that the prompts used for the EXPLANATION LLM and the PROXY LLM on the
MMLU datasets

User for EXPLANATION LLM:
Q: Below is a multiple-choice question about professional law. Please explain your reasoning
without explicitly revealing your selection. The question is: Which of the following is not
within the power of a federal subpoena to command a person to do at a specified time and
place? A: Submit to a physical or mental examination.; B: Attend and testify as to persons
and/or events related to a cause of action.; C: Produce designated documents, electronically
stored information, or tangible things in that person’s possession, custody, or control.; D:
Permit the inspection of premises.

EXPLANATION LLM:
R: Federal subpoenas are designed to compel testimony, the production of documents, and
permit inspections related to a case. However, requiring an individual to undergo a physical
or mental examination typically falls outside the scope of what a subpoena can mandate.
Such examinations usually require separate legal processes or warrants, ensuring
individuals’ rights are adequately protected.

User for PROXY LLM:
Q + R + Therefore, the correct answer is {a possible answer from A}.

PROXY LLM:
The token logits of the given possible answer.

An example that the prompts used for the EXPLANATION LLM and the PROXY LLM on the
MathQA datasets

User for EXPLANATION LLM:
Q: Below is a multiple-choice question about math problem. Please explain your reasoning
without explicitly revealing your selection. The question is: an auction house charges a
commission of 18 % on the first $50,000 of the sale price of an item, plus 10 % on the
amount of the sale price in excess of $50,000. what was the price of a painting for which the
house charged a total commission of $24,000? a ) $115,000, b ) $160,000, c ) $ 200,000, d )
$ 240,000, e ) $365,000

EXPLANATION LLM:
R: Say the price of the house was $ x, then 0.18 * 50,000 + 0.1 * ( x - 50,000 ) = 24,000 →
x = $ 200,000 ( 18 % of $ 50,000 plus 10 % of the amount in excess of $ 50,000, which is x -
50,000, should equal to total commission of $ 24,000 )

User for PROXY LLM:
Q + R + Therefore, the correct answer is {a possible answer from A}.

PROXY LLM:
The token logits of the given possible answer.

There are the prompts used for the EXPLANATION LLM and the PROXY LLM on the MMLU and
MathQA datasets. For the EXPLANATION LLM, the user provides the question along with the possible
answer options and requests the EXPLANATION LLM to explain the reasoning process without
explicitly revealing the selection. In response, the EXPLANATION LLMgenerates an explanation that
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analyzes the problem and implicitly suggests an answer. For the PROXY LLM, the user presents a
statement that includes both the input to and the output from the EXPLANATION LLM, followed
by the phrase: ’Therefore, the correct answer is a possible answer from A’. to calculate the mean
token logits of the given possible answer. Then, we calculate the mean token logits for each possible
answer in A, which are then used to determine the answer with the highest likelihood.

F ADDITIONAL EXPERIMENTAL SETUP

Benchmark.

(1) SMAC. We generate explanations for an ally agent based on action-state history. Our dataset
consists of 2K trajectories (1.5K for training and 0.5K for evaluation), with each trajectory containing
states, actions, and rewards for 30 time steps. We feed information of previous 4 consecutive time
steps to the EXPLANATION LLM to generate explanations.

Specifically, we first train an RL policy using MAPPO (Yu et al., 2022) on SMAC and then collect
the action-state pairs at each timestep during the evaluation phase. Each action-state pair contains
information about the current agent’s position, health, and weapon cooldown, as well as the corre-
sponding details for visible allies and enemies. Additionally, the action selected by the current agent
is included. All action-state pairs are stored in JSON format:

State : {visible allies : {relative (x, y) ;weapon_cooldown;health}
{id0 : [0.0765,−0.0765] ; 0.0; 1.0} ; {id1 : [0.0765, 0.0] ; 0.0; 1.0} ;
{id2 : [0.0765, 0.0765] ; 0.0; 1.0} ; {id3 : [0.153, 0.0] ; 0.0; 1.0} ;
None visible enemies; own_health : 1.0 } ;Action : SOUTH

We feed the EXPLANATION LLM with 4 consecutive action-state pairs, masking the action in the
final pair, and then instruct the EXPLANATION LLMto analyze the provided information and infer
the missing action.

(2) AI2-THOR. We evaluate our method on AI2-THOR, an embodied AI benchmark widely used in
RL research, thereby testing the proposed method in a fully sequential decision-making environment.

Specifically, AI2-THOR includes household activity scenarios that require multi-step planning, multi-
robot coordination, and interaction with dynamic environments. We use the Complex Tasks split from
the SMART-LLM dataset, in which each task involves 2–4 heterogeneous robots with complementary
skills. These tasks are challenging because they cannot be decomposed into independent sub-
problems solvable by a single robot; agents must reason over past actions and observations, perform
long-horizon planning, and coordinate multiple robots strategically to leverage their combined
capabilities. This setting demands strong reasoning and sequencial decision-making, making it a
suitable benchmark for evaluating our method’s ability to recover a complex underlying policy. The
original Complex Tasks split contains only 8 tasks. To broaden task diversity, we expand the set to 59
tasks by prompting GPT-4o to generate additional tasks that follow the same structural requirements.

The prompt is formatted as:

AI2THOR is a embodied-AI benchmark xxx.
The robots should be xxx.
The tasks should be xxx.
Here are some examples of embodied-AI task.
Example 1: xxx.
...
Example n: xxx.
Please help me generate new tasks that satisfy the above requirement.
After generating these new tasks, we ask both human and GPT-4o to verify the correctness of these
tasks.

We then apply RL to obtain a near-optimal policy over these 59 tasks and record its successful
trajectories of 70% tasks for training our method and baselines. During evaluation, we measure the
average success rate of our method and baselines on the remaining 30% unseen tasks to assess their
generalization capability.
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(3) MMLU. We choose 4 challenging Professional Knowledge subsets (Professional214 Medicine
(272 samples), Professional Law (1.53K samples), Professional Accounting (282 samples),215 and
Professional Psychology (612 samples)). For each dataset, 70% of the samples are selected randomly
for training, and the remaining 30% for evaluation.

Training Details. For training dataset construction, established instruction-tuning datasets provide
(general-purpose) preference data for answers, but we optimize explanations for answers. As a
result, existing instruction-tuning datasets can’t perform very well in our tasks. Constructing of a
human-annotated dataset is labor-intensive, so we leverage OpenAI o1-mini to generate explanations
for each sample, providing a more efficient alternative. To generate positive samples, o1-mini is
prompted with a question and its correct answer. The prompt used for positive sample generation is
as follows: ’Below is a multiple-choice question about xxx. Please explain your reasoning without
explicitly revealing the correct answer: xxx. The question is: xxx . The options are xxx.’. Similarly, to
generate negative samples, o1-mini receives a question with a randomly selected incorrect answer in
the prompt: ’Below is a multiple-choice question about xxx. Please explain your reasoning without
explicitly revealing a wrong answer: xxx. The question is: xxx . The options are xxx.’.

To further assess the quality of the generated samples, we enlist 12 participants (2 females, 10 males,
aged 20-40) to evaluate whether the samples are reasonable and human-like. We randomly select
5% randomly chosen samples from each datasets and ask panticipants to rate them on a scale of 1 to
4: 1 = unreadable, 2 = readable but unreasonable, 3 = reasonable but unnatural, and 4 = natural and
human-like. The example of a sample is listed below.

An example that the evaluation of the quality of our constructed dataset on MathQA

Q = Below is a multiple-choice question about professional law. Please explain your
reasoning without explicitly revealing your selection. The question is: At a defendant’s trial
for drug dealing, a prosecution witness testified that he had heard the defendant telling a
group of people to come to the defendant’s house because he had "a great crop of apples for
sale." The prosecutor then called and qualified a drug enforcement agent as an expert in how
drug dealing is conducted. The prosecutor now seeks to have the expert testify that in her
opinion, based on years of experience with drug dealers, the defendant’s statement about the
apples was code for his having drugs for sale. Should the expert’s opinion be admitted?

Decision set A =
[a: No, because an expert must base his or her opinion on scientific or technical data, not
merely on experience.;
b: No, because the opinion is based on the criminal actions of others engaged in drug dealing,
and thus is substantially more unfairly prejudicial than probative.;
c: Yes, because the opinion is based on her specialized knowledge, and it will assist the trier
of fact in understanding the evidence and determining facts in issue in the case.;
d: Yes, provided that the expert first testifies about the specific information upon which she
based her view that the defendant was using "apples" as a code word to refer to drugs.]

Explanation: The expert’s testimony is likely admissible because her specialized knowledge
can clarify the defendant’s statements in the context of drug dealing. Courts generally allow
experts to provide opinions that assist the jury in understanding evidence or determining
facts. As long as her opinion is based on her experience and doesn’t rely solely on hearsay, it
should help the trier of fact make informed decisions.

Score: (1-4, 1=unreadable, 2=readable but unreasonable, 3=reasonable but unnatural, 4=
natural and human-like):

We train the EXPLANATION LLM and the rectified flow model iteratively. In the first step, EXPLA-
NATION LLM generates an explanation for each sample 3 times in the training set. The PROXY
LLM then classifies these explanations as positive or negative. We use the positive samples to
train the rectified flow model. Once trained, the rectified flow model is employed in subsequent the
EXPLANATION LLM training. This entire process constitutes one round. As shown in Fig. 2(d), the
EXPLANATION LLM’s accuracy plateaus during the third round because the updates to the reward
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model no longer yield significant performance improvements. By comparison, in the first two rounds,
the accuracy initially increases rapidly due to substantial updates to the reward model, followed by a
more gradual improvement. Therefore, we perform two rounds of training. Note that the training
process can be adapted for online learning, where the EXPLANATION LLM and the rectified flow
model are trained simultaneously.

In each round, the EXPLANATION LLMand the flow model are trained for 10 and 100 epochs,
respectively. The learning rate for the EXPLANATION LLMis initialized as 2e-5 and then decays
linearly to zero, whereas the learning rate for the flow model is fixed at 2e-4. EXPLANATION
LLM uses the Adam optimizer, BF16 and LoRA with hyperparameters rlora = 16 and αlora = 16,
while DeepSpeed ZeRO-3 is employed to accelerate training. The rectified flow model uses the
Adam optimizer. The batch size is 12 for the EXPLANATION LLM training and 128 for the flow
model training. We run our method on 4 parallel 80GB Nvidia A100 GPUs. For EXPLANATION
LLM training, each GPU processes at most 1 sample at a time, with gradient accumulation over 3
steps. For the flow model training, each GPU processes at most 32 samples at a time. SFT typically
takes 0.5 to 1 hour, while our method requires approximately 14–30 hours on different datasets.

Evaluation. For evaluation, we use temperature τ = 0.7 across all settings. The maximum number
of generated tokens is 350 for SMAC, and 200 for MMLU and MathQA.

For human evaluation, we recruit 45 participants(30 males, 15 females, aged 20-40) from diverse
fields (engineering, chemistry, machine learning, and economics). Each participant completes
a questionnaire containing 3 randomly selected benchmark samples. For test samples outside
an annotator’s expertise, we suggest that annotators consult authoritative sources for unfamiliar
terminology or background context to better judge whether the explanations are factually grounded.
To ensure consistency across participants, we provided clear instructions and illustrative examples
prior to the evaluation. For each task, participants were presented with multiple explanations generated
by different methods and asked to make a decision based on each one independently. Immediately
afterward, participants selected the explanation they perceived as least cognitively demanding, most
logically sound, and most actionable, with the order of explanations randomized for each participant
to ensure fairness and minimize bias. This procedure enabled us to analyze trends with statistical
confidence.

We define cognitive load as the perceived mental effort required to complete a task. Importantly,
actionability and ACC capture distinct concepts. Actionability reflects how easily a third party
can select an answer based on an explanation, emphasizing its clarity and usability. By contrast,
ACC denotes the accuracy with which a third party can predict the underlying decision based on
the explanation. Notably, an explanation may be highly clear (high actionability) yet still lead to
an incorrect prediction (low ACC). The score for each metric is computed as the proportion of
participants selecting a given method as the best. The example of a sample is listed below. We make
sure that all the information about the participants is invisible, and there is no potential risk to their
privacy.
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An example that the evaluation of the effectiveness of our method on MathQA. The explana-
tions generated by DPO; ReFT and our method are named as A1; A2; A3 and A4 in a random
order.

Description = Optimal MathQA Problem-Solving Strategies: Choose the Best Explana-
tion: Below is a question along with three explanations (A1, A2, A3). Please review the
question and the three explanations carefully, then answer the following questions accordingly

Q = A shopkeeper sold an article offering a discount of 5% and earned a profit of 31.1%.
what would have been the percentage of profit earned if no discount had been offered? A: 38,
B: 27.675, C: 30, D: Data Inadequate, E: None of These.

A1: Let’s assume that the cost price of the article is ’C’. When the shopkeeper offered a
discount of 5%, the selling price of the article became 95% of the original selling price. Let’s
call the original selling price ’S’. Therefore, the new selling price is 0.95S. We know that the
shopkeeper earned a profit of 31.1%. Therefore, we can write the equation: Profit percentage
= (Profit / Cost price) x 100. 31.1 = [(0.95S - C) / C] x 100. Now, let’s assume that the
shopkeeper did not offer any discount. In that case, the selling price would have been the
original selling price ’S’. Let’s call the new profit percentage ’P’. Therefore, we can write
the equation: P = [(S - C) / C] x 100. We need to find the value of ’P’ in terms of ’C’ and
’S’. From the first equation, we can solve for ’C’: C = (0.95S - 0.311S) / 0.311. C = 2.978S.
Substituting this value of ’C’ in the second equation, we get: P = [(S - 2.978S) / 2.978S] x
100 P = 33.1%.

After reading Explanation A1, which answer do you think it is leading to? A: 38; B: 27.675;
C: 30; D: Data Inadequate; E: None of These. F: Not Sure

A2: xxx

After reading Explanation A2, which answer do you think it is leading to? A: 38; B: 27.675;
C: 30; D: Data Inadequate; E: None of These. F: Not Sure

A3: xxx

After reading Explanation A3, which answer do you think it is leading to? A: 38; B: 27.675;
C: 30; D: Data Inadequate; E: None of These. F: Not Sure

A4: xxx

After reading Explanation A4, which answer do you think it is leading to? A: 38; B: 27.675;
C: 30; D: Data Inadequate; E: None of These. F:Not Sure

Which explanation do you think is the most logically sound? A: A1; B: A2; C: A3; D: A4

Which explanation induce the least cognitive load? A: A1; B: A2; C: A3; D: A4

Which explanation is the most actionable? (Knowing which answer to select after reading it.)
A: A1; B: A2; C: A3; D: A4

G BASELINES

SFT is a widely used approach to fine-tune LLMs for specific downstream tasks by training them
on labeled datasets. In this process, a pre-trained LLM is exposed to task-specific data containing
input-output pairs. The goal is to minimize the difference between the model’s predictions and
the ground truth, typically using a supervised learning objective like cross-entropy loss. We use a
training dataset consisting of preferred examples generated by o1-mini. These examples are effective
explanations. We use SFT as the initialization stage to enable the EXPLANATION LLM to adhere
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to the target format and to set a foundation for subsequent refinement toward the target explanatory
behavior. We use BF16 and DeepSpeed ZeRO-2 to accelerate training. The batchsize is 12 and
the optimizer is Adam. The training epochs of SFT is 3 and the learning rate is initialized as 2e-5
recommended by the TRL library and then decays linearly to zero.

PPO is a reinforcement learning algorithm commonly used to fine-tune LLMs, enhancing their
alignment with specific goals or human preferences. PPO fine-tunes a pre-trained model by optimizing
its policy based on feedback signals. These signals typically come from a reward model, which
is trained on labeled data that reflects desirable outputs. PPO adjusts the model’s parameters to
maximize expected reward while constraining updates within a predefined range, avoiding large
deviations that could destabilize training. We initialize the model with the same SFT procedure,
leveraging the same o1-mini–distilled preferred examples. To generate more effective explanations,
we further fine-tune this SFT model with a reinforcement learning algorithm, PPO, which is supposed
to reinforce explanations that better support inferring the policy’s decision by assigning higher
rewards. To achieve this, we train a reward model on a paired preference dataset (queries with
corresponding positive/negative explanations). We then fine-tune the SFT model with PPO using this
reward model. We use BF16 and LoRA with hyperparameters rlora = 16 and αlora = 16, while
DeepSpeed ZeRO-3 is employed to accelerate training. The batchsize is 12 and the optimizer is Adam.
The training epochs of the reward model and PPO are both 10 and the learning rate is initialized
as 3e-6 recommended by the TRL library and then decays linearly to zero. The main difference
between PPO and our method lies in the reward modeling. Our method trains a probabilistic reward
model using flow matching, while PPO uses a standard deterministic reward model trained with the
Bradley-Terry model.

DPO is a technique for aligning LLMs with human preferences by directly optimizing their outputs
using labeled preference data. Unlike traditional reinforcement learning from human feedback, which
relies on a reward model to evaluate responses, DPO simplifies the alignment process by directly using
preference comparisons to guide optimization. In DPO, the labeled data consists of paired responses
where one option is preferred over the other. The model learns to produce outputs that align with
these preferences by optimizing a contrastive objective. For DPO, we initialize the model with the
same SFT procedure, leveraging the same preferred examples distilled from o1-mini. To generate
more effective explanations, we then fine-tune this SFT model using preference-based learning via
DPO. Unlike PPO, DPO does not require a separate reward model. Instead, we use paired preference
data (each query paired with a preferred and a dispreferred explanation), freeze the SFT checkpoint as
the reference model, and fine-tune the EXPLANATION LLM using the DPO objective. After training
converges, we generate explanations using the same prompts as the other baselines. We use BF16
and LoRA with hyperparameters rlora = 16 and αlora = 16, while DeepSpeed ZeRO-2 is employed
to accelerate training. The batchsize is 12 and the optimizer is Adam. The training epochs of DPO
is 10 and the learning rate is initialized as 5e-6 recommended by the TRL library and then decays
linearly to zero.

KTO is an advanced approach for aligning LLMs with human preferences or specific task objectives.
It draws inspiration from prospect theory, a behavioral economics framework that models how
humans evaluate potential gains and losses under uncertainty. In this context, KTO optimizes the
alignment process by weighting outputs based on their perceived utility, rather than treating all errors
equally. The core idea of KTO is to model alignment as an optimization problem where the goal is to
maximize expected utility under a prospect-theoretic framework. For KTO, we initialize the model
using the same SFT procedure, leveraging the same preferred examples distilled from o1-mini. To
further improve explanation quality, we fine-tune the SFT model using preference-based learning via
KTO. Unlike PPO, KTO does not require a separate reward model. Instead, we construct a dataset of
(query, explanation, label) triples, where the label indicates whether the explanation is preferred or
dispreferred. We then optimize the EXPLANATION LLM using the KTO loss, with the SFT checkpoint
kept as a frozen reference for regularization. After training, the KTO-tuned model is prompted with
the same context as the other baselines to generate explanations. We use BF16 and LoRA with
hyperparameters rlora = 16 and αlora = 16, while DeepSpeed ZeRO-2 is employed to accelerate
training. The batchsize is 12 and the optimizer is Adam. The training epochs of KTO is 10 and the
learning rate is initialized as 5e-7 recommended by the TRL library and then decays linearly to zero.

Skywork. Skywork-Reward-Llama-3.1-8B-v0.2 is a reward model developed by Skywork AI as part
of their efforts to improve alignment and instruction-following abilities in large language models.
Based on the LLaMA-3.1 8B architecture, this version—v0.2—is specifically trained to evaluate and
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rank responses generated by language models in a preference-based learning setting. The model is
fine-tuned using a dataset of paired responses labeled by humans or heuristic methods, where each
pair contains a preferred and a less preferred answer. This enables the model to predict a scalar reward
score for any given response, facilitating its use in fine-tuning chat models for improved helpfulness,
relevance, and alignment with human expectations. It ranks among the top two 8B models on the
RewardBench Leaderboard, and all top five 8B models adopt it as their backbone and utilize its
preference dataset for training. For Skywork, we adopt Skywork-Reward-Llama-3.1-8B-v0.2 as the
base model. This checkpoint has already been optimized for reward modeling. We further fine-tune
it using SFT on the same preferred explanation dataset to adapt it to the explanation generation
task. Then, we apply PPO using this trained reward model to further align the model’s outputs with
human preferences. We using BF16 and LoRA with hyperparameters rlora = 16 and αlora = 16.
DeepSpeed ZeRO-3 is employed to accelerate training. The batchsize is 12 and the optimizer is
Adam. The training epoch of SFT is 3. The training epoch of the reward model and PPO is both 10,
and the learning rate is initialized as 3e-6 recommended by the TRL library and then decays linearly
to zero.

Deepseek. DeepSeek-R1-Distill-Llama-8B is a high-performance, open-source language model
developed by DeepSeek. This model is a distilled version of DeepSeek-R1, built upon the Llama-3.1-
8B-Instruct architecture. By distilling knowledge from the larger DeepSeek-R1 model, it provides
state-of-the-art performance with reduced computational requirements, making it more accessible for
various applications. For DeepSeek, we use DeepSeek-R1-Distill-Llama-8B as the base model and
apply SFT using the same preferred explanation dataset to adapt it to the explanation generation task.
We use BF16 and LoRA with hyperparameters rlora = 16 and αlora = 16. DeepSpeed ZeRO-3 is
employed to accelerate training. The batchsize is 12 and the optimizer is Adam. The training epoch
of the SFT model is 3 and the learning rate is initialized as 2e-5 recommended by the TRL library
and then decays linearly to zero.

CoT+SFT is a fine-tuning method that enhances the reasoning capabilities of LLMs by combining
SFT with the structured reasoning paradigm. CoT uses explicit programmatic representations, such
as pseudo-code or structured logic, to model complex problem-solving tasks. In this approach, SFT is
performed using datasets annotated with both input-output pairs and detailed programmatic reasoning
traces. These traces serve as templates for step-by-step reasoning and enable the model to break down
complex problems, such as mathematical reasoning or logical inference, into manageable sub-tasks.
The explicit program-like structure helps the model perform multi-step computations and enhances
interpretability, making it especially useful for domains requiring precision and transparency. For
CoT+SFT, we construct a CoT-augmented version of our preferred explanation dataset via o1-mini by
replacing each explanation with a CoT variant, containing more explicit step-by-step reasoning. We
then apply SFT using this modified dataset to the same base model as our method. We adopt the open
source library from (Trung et al., 2024), where we use BF16, DeepSpeed ZeRO-2, a fixed learning
rate of 1e-5, Adam optimizer and a batchsize of 12.

ReFT is a training approach designed to enhance the reasoning capabilities of LLMs by combining
supervised fine-tuning (SFT) with reinforcement learning. In ReFT, the initial training begins with
SFT, where the model is fine-tuned using datasets annotated with reasoning traces, such as step-by-
step explanations or logical chains of thought. Once the model achieves a baseline performance,
reinforcement learning is applied to further refine its reasoning capabilities. For ReFT, we use the
same COT-augmented dataset as in CoT+SFT and the ReFT algorithm to the same base model as our
method. We adopt the open source library from (Trung et al., 2024), where we use BF16, DeepSpeed
ZeRO-2, a fixed learning rate of 3e-7, Adam optimizer and a batchsize of 12.

o3-mini is a smaller, more cost-efficient reasoning model in OpenAI’s “o3” family. It’s optimized for
tasks in STEM domains — especially math, science, and coding — with the goal of higher accuracy,
lower latency, and lower cost compared to larger models. We directly use it for evaluation without
fine-tuning.

o3-mini is used exclusively for inference without fine-tuning, whereas CoT+SFT and ReFT rely on
the CoT-enhanced dataset. All other baselines, as well as our method, are trained on the same dataset.
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H ADDITIONAL RESULTS

H.1 DIFFERENT CHOICES OF σ IN q0

We evaluate the impact of varying σ in q0 on final performance across different datasets. As shown in
Table 11, the results remain stable across a wide range of values (σ2 = 0.5, 1, 5). Specifically, on
SMAC, the performance slightly decreases from 0.772 at σ2 = 0.5 to 0.761 at σ2 = 5, while MMLU
exhibits a small improvement from 0.759 to 0.781 as σ2 increases. For MathQA, performance
is highest at σ2 = 0.5 (0.809) and decreases mildly as σ2 grows. These variations are minimal,
underscoring that our method is not sensitive to the choice of σ and thereby confirming the robustness
predicted by our theoretical analysis.

Table 11: Performance of our method with different σ in q0.

Datasets σ2 = 0.5 σ2 = 1 σ2 = 5

SMAC 0.772 0.764 0.761

MMLU 0.759 0.772 0.781

MathQA 0.809 0.804 0.783

H.2 WITHOUT SFT

To evaluate the influence of supervised fine-tuning on our method, we train our method and baselines
without conducting SFT. Results are shown in Tab. 12. Our method does require SFT to achieve
strong performance, possibly because SFT data is crucial for obtaining enough positive samples to
train the rectified flow model. Removing SFT, the performance of our method and baselines drops
particularly sharply on RL tasks like SMAC. RL tasks typically involve sequential decision-making
and even interactions among multiple agents, making the reasoning of correct actions particularly
challenging. SFT offers valuable examples about how to reason in such complex scenarios. Notably,
our method without SFT significantly outperforms baselines without SFT on SMAC, demonstrating its
effectiveness in cases characterized by higher reasoning demands.

Table 12: Performance of our method and baselines without supervised fine-tuning.

Datasets Ours PPO DPO KTO ReFT Skywork

SMAC 0.457 0.302 0.324 0.381 0.405 0.357

MMLU 0.605 0.586 0.590 0.621 0.602 0.608

MathQA 0.634 0.618 0.630 0.638 0.643 0.629

H.3 UNDER NOISY REWARD

To evaluate the robustness of our method under noisy reward signals, we conduct an additional
experiment where the reward (0/1) of the final token is randomly flipped with probability 0.03. As
shown in Tab. 13, under the noisy reward condition, the performance of our method decreases only
slightly from 77.2% to 74.3% on unseen tasks in the MMLU benchmark. Notably, even with these
noisy rewards, our method still outperforms PPO (72.3%), Skywork (73.7%), and DeepSeek (72.1%)
trained without noise. This demonstrates the robustness of our approach under imperfect reward
feedback.

Table 13: Performance of our method under noisy reward.

SMAC MMLU MathQA

Ours (Noise) \ 0.743 \
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H.4 VISUALIZED EXAMPLES

SMAC. To showcase the effectiveness of our method, we visualize an example on SMAC that a negative
explanation classified by PROXY LLM is corrected by the rectified flow model φ. As shown above,
this explanation infers the answer is related to ‘Attack Enemy 0’, however, the PROXY LLM fails to
predict the correct action. Instead, the rectified flow model φ can predict the action correctly based
on the explanation.

Besides, we visualize another example that a negative explanation generated by EXPLANATION
LLM is optimized to a positive explanation after training for two rounds. As shown below, the
explanation from the SFT model opts for the movement of EAST. The explanation of our method can
infer the correct movement of NORTH with solid evidence.

MathQA. To showcase the effectiveness of our method, we visualize an example on MathQA that a
negative explanation classified by PROXY LLM is corrected by the rectified flow model φ. As shown
below, this explanation infers the answer is related to option d, however, the PROXY LLM fails to
predict the correct answer. Instead, the rectified flow model φ can predict the answer correctly based
on the explanation.

Besides, we visualize another example on MathQA that a negative explanation generated by EXPLA-
NATION LLM is optimized to a positive explanation after training for two rounds. As shown below,
the explanation from the SFT model is confusing and misleading. The explanation of our method can
infer the correct answer c with solid evidence.

An example that a negative explanation classified by the PROXY LLM is corrected by the
rectified flow model φ of on SMAC

Q = Here are 5 allies and 6 enemies in SMAC. The goal of each ally is to attack all the
enemies together with other allies. At every step, each ally can choose one action to take
from the Action set. The trajectory of each ally consists of a series of State, Action, Value
pairs. Here are 4 consecutive State, Action, Value pairs where the last state-action pair misses
the Action: xxx. Please help me concisely summarize and analyze this part of the trajectory
for the missing Action prediction.

Action set A = [‘DEAD’, ‘STOP’, ‘NORTH’, ‘SOUTH’, ‘EAST’, ‘WEST’, ‘Attack Enemy
0’ ✓, ‘Attack Enemy 1’, ‘Attack Enemy 2’, ‘Attack Enemy 3’, ‘Attack Enemy 4’, ‘Attack
Enemy 5’]

Explanation: ...In the first state, Ally opts to move EAST, likely positioning itself xxx.
Ally’s next action, “Attack Enemy 3”, shows a shift to offensive behavior, ... Ally’s following
action, “Attack Enemy 0”, further prioritizes offense, which might reflect a high-risk
engagement. Ally’s last action solidifies this pattern, further engaging Enemy 0, likely due
to the imminent engagement’s hazards. Throughout these actions, ... The allies prioritize
attacking specific foes based on their availability and proximity.✓

Distribution p from the PROXY LLM: [0.0074, 0.0031, 0.0260, 0.0062, 0.0055, 0.0096,
0.1069, 0.2148, 0.2812, 0.1089, 0.1260, 0.1045] → ‘Attack Enemy 2’ ×

Distribution p̂ from the rectified flow model: [0.0084, 0.0040, 0.0084, 0.0061, 0.0064,
0.0099, 0.3254, 0.1110, 0.1137, 0.1771, 0.1065, 0.1218] → ‘Attack Enemy 0’ ✓

33



Published as a conference paper at ICLR 2026

An example on SMAC that a negative explanation generated by the PROXY LLM is optimized
to a positive explanation after training for two rounds

Q = Here are 5 allies and 6 enemies in SMAC. The goal of each ally is to attack all the enemies
together with other allies. At every step, each ally can choose one action to take from the
Action set. The trajectory of each ally consists of a series of State, Action, Value pairs. Here
are 4 consecutive State, Action, Value pairs where the last state-action pair misses the Action:
xxx. Please help me concisely summarize and analyze this part of the trajectory for the
missing Action prediction.

Actual Action = NORTH

Explanation: In the first state, ally 0,1,2, and 3 all move south, ... The following action,
STOP, ... Subsequently, ally 0 and 2 move WEST, ... Throughout these steps, allies prioritize
movement over direct engagement, likely because no enemies are in view. Given the current
state, where allies are arranged with their backs touching and no Enemy is in sight, the next
logical action is EAST. This directional movement likely aims to realign the formation back
to its original or a more advantageous state, ensuring that allies are positioned optimally for
future engagements. This EAST movement contrasts with WEST, which may have been a
short-term repositioning to balance the formation (EAST, ×), and NORTH and SOUTH,
which were likely attempts to regroup or reposition relative to other allies.

Improved Explanation (Ours): In the first state, the ally chooses to move SOUTH, ... In
the second state, the ally STOPs, ... Moving WEST in the third state likely aims to cover
more ground or flank the enemies, ... In the latest state, with no visible enemies and all
allies maintaining full health and no weapon cooldowns, the ally opts to move NORTH. This
directional movement decision likely stems from a strategic need to reposition for a better
vantage point or to avoid potential threats, given the NORTHward movement may offer a
more advantageous stance compared to other directions.✓ Choosing NORTH over EAST, for
instance, may be due to factors such as better cover or better line-of-sight, enhancing the
ally’s readiness to engage when enemies become visible.

An example that a negative explanation classified by the PROXY LLM is corrected by the
rectified flow model φ of on MathQA

Q = the cash realised on selling a 14% stock is rs. 101.25, brokerage being 1/4% is.

Decision set A = [a: 123, b: 106, c: 100, d: 101 ✓, e: 240]

Explanation: cash realised = rs. ( 101.25 - 0.25 )✓ = rs

Distribution p from the PROXY LLM: [0.1035, 0.0481, 0.6289, 0.2061, 0.0122] → ‘c’ ×

Distribution p̂ from the rectified flow model:: [0.2363, 0.0477, 0.0114, 0.6683, 0.0567] →
‘d’ ✓
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An example on MathQA that a negative explanation generated by the PROXY LLM is opti-
mized to a positive explanation after training for two rounds

Q = A pet store regularly sells pet food at a discount of 10 percent to 30 percent from the
manufacturer’s suggested retail price. if during a sale, the store discounts an additional 20
percent from the discount price, what would be the lowest possible price of a container of pet
food that had a manufacturer’s suggested retail price of $ 40.00?

Decision set A = [a: $ 10.00, b: $ 11.20, c: $ 22.40 ✓, d: $ 16.00, e: $ 18.00.]

Explanation: retail price = manufacturer suggested retail price = $ 40 first discount price =
retail price -10 % to -30 % = presence of retail price retrievable.×

Improved Explanation (Ours): retail price =40 first maximum usually discounted price =40
- 30 % of 40 =40 - 12 =28 price after additional discounting during sale =28 - 20 % of 28 =28
- 5.60 =22.40 ✓

I LIMITATION

While the flow model is theoretically grounded and performs well in capturing reward distributions
aligned with human preferences, it may still face generalization challenges in edge cases—such
as ambiguous preference data, rare or unseen scenarios, and sensitive topics—similar to other
LLM-based reward models.

Besides, our method assumes that decisions are context-dependent. For random actions, which lack a
consistent rationale, the model cannot generate faithful explanations.

Moreover, learning from human feedback and ethical reasoning are two examples of such tasks that
involve multiple plausible choices. Human feedback and ethical judgments may vary with different
individuals, and the viewpoints of a population together form a complex distribution. Our method is
suitable for such learning tasks. By contrast, our method may be less effective in domains such as
abstract knowledge, where producing logical or factual rules is required. In such cases, constructing
meaningful rewards from PROXY LLM s becomes more challenging.

Although our design choice foregoes direct analysis of internal mechanisms, we think that this
pragmatic trade-off is warranted when developing methods intended to generalize across model
classes with fundamentally different or opaque internals. It affords two advantages that are central to
our goals: (i) it enables a unified treatment of diverse architectures—including RL policies and LLM
agents—whose internal structures may be opaque, inaccessible, or highly heterogeneous; and (ii) it
guarantees behavioral (functional) faithfulness, which is often a primary concern in safety-critical or
deployment settings.

J IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of machine learning by developing a
model-agnostic explanation generator for intelligent agents, enhancing transparency and interpretabil-
ity in agent decision prediction. The ability to generate effective and interpretable explanations has
the potential to foster trust in AI systems, improving effectiveness in high-stakes applications such as
healthcare, finance, and autonomous systems. Overall, we believe our work contributes positively to
the broader AI ecosystem by promoting more explainable and trustworthy AI.
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