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Abstract

Existing representation models often utilize
single-token embedding for downstream tasks,
employing approaches such as first token pool-
ing, last token pooling, average pooling, and
max pooling for representation. However, these
token pooling methods inevitably lead to in-
formation loss, as they either ignore or dilute
important features from the rest of the sentence.
So, would multiple tokens improve sentence
embeddings? In this paper, we select the sen-
tence classification task as the research founda-
tion, as it best reflects the quality of sentence
embeddings. Randomly selecting multiple to-
kens is unlikely to effectively improve sentence
embeddings; understanding which tokens to
use and how to utilize multiple tokens are criti-
cal questions that must be explored. Therefore,
we propose BTMR, which stands for Boosted
Token-Level Matryoshka Representation, to
investigate the impact of using multiple to-
kens on sentence embeddings. BTMR operates
through two key stages: Fine-to-Coarse Token
Matryoshka Learning, which generates token
group representation vectors by capturing both
local and global contextual information, and
Token Fusion Boosting, which aggregates the
correct predictions derived from these vectors
to produce the final prediction. Experimental
results demonstrate that leveraging multiple to-
kens can indeed improve sentence embeddings.

1 Introduction

In the field of natural language processing (NLP),
effective representation of textual data is paramount
for the success of various downstream tasks such as
question answering (Rajpurkar et al., 2016), clas-
sification (Warstadt et al., 2019), sentiment analy-
sis (Socher et al., 2013), and so on. Existing rep-
resentation models employ various strategies to
encapsulate overall text information. Some (De-
vlin et al., 2019) employ special token represen-
tation vectors, some apply average pooling (Li

et al., 2023) to token representation vectors, and
some (Meng et al., 2024) utilize the representation
of the last token. To enhance performance, existing
models have expanded parameter scales (Radford
et al., 2018), increased dataset diversity (Raffel
et al., 2023), and introduced various training or
fine-tuning techniques (Wang et al., 2024).

Despite advancements in representation mod-
els, the token pooling methods commonly used to
obtain sentence embeddings still suffer from in-
evitable information loss. For instance, First Token
Pooling, as used in BERT (Devlin et al., 2019),
captures global sequence-level information when
trained properly but loses detailed context from the
rest of the sentence. Last Token Pooling, employed
in the GPT (Radford et al., 2018) series, fails to
explicitly consider contributions from preceding
tokens. Average Pooling dilutes important features
by averaging irrelevant tokens. Max Pooling risks
losing information by focusing solely on maximum
values and ignoring subtle variations.

These limitations raise an important question:
could using multiple tokens improve sentence em-
beddings? To explore the question, we select the
sentence classification task as our research foun-
dation, as it best reflects the quality of sentence
embeddings. Randomly selecting multiple tokens
is unlikely to effectively improve sentence em-
beddings; understanding which tokens to use and
how to utilize multiple tokens are critical ques-
tions that must be explored. Therefore, we intro-
duce BTMR (Boosted Token-Level Matryoshka
Representation), an approach that effectively takes
the advantage of multiple sentence classification to
compensate for the shortcomings of the sentence
classification prediction of a single token represen-
tation vector.

Specifically, BTMR first leverages a Fine-to-
Coarse Token Matryoshka Learning strategy to
generate token group representation vectors that
capture both local and global information. The to-



ken group, when transmitting information, extracts
the locally significant information that contributes
more to the right prediction, similar to applying
a weight to the crucial local information. Then,
by employing a Token Fusion Boosting mecha-
nism, BTMR aggregates correct sentence classifica-
tion from these token group representation vectors,
thereby refining the overall prediction and reducing
the likelihood of misclassification.

The extensive experiments demonstrate the ef-
fectiveness of BTMR, showing that multiple tokens
can improve sentence embeddings. Additionally,
we conduct a series of ablation studies, which col-
lectively highlight the necessity of Fine-to-Coarse
Token Matryoshka Learning and the Token Fusion
Boosting mechanism, indicating the importance of
methods for selecting and utilizing multiple tokens
to improve sentence embeddings.

Our contributions can be summarized as follows:
To address the limitations of token pooling meth-
ods, which inherently suffer from information loss,
we investigate whether multiple tokens could im-
prove sentence embeddings. Since randomly se-
lecting multiple tokens is unlikely to achieve this
effectively, we introduce BTMR, which combines
Fine-to-Coarse Token Matryoshka Learning and a
Token Fusion Boosting mechanism to better select
and utilize multiple tokens. Extensive experiments
validate the effectiveness of BTMR, demonstrating
that multiple tokens can indeed improve sentence
embeddings. Ablation studies highlight the ne-
cessity of BTMR’s components, underscoring the
importance of methods for selecting and utilizing
multiple tokens in improving sentence embeddings.

2 Related Work

2.1 Representation Models

Representation models have a long history. In this
section, we briefly review some of the most widely
used and more recent models. Early models, such
as Word2Vec (Google, 2013), represented words
as vectors using the Skip-gram or CBOW models,
making natural language computable. GloVe (Pen-
nington et al., 2014) constructed word vectors
based on co-occurrence matrices.

Subsequently, several well-known deep learn-
ing representation models emerged. For exam-
ple, ELMo (Peters et al., 2018) uses bidirectional
LSTMs to generate word embeddings, captur-
ing contextual information. Models like ULM-
FiT (Howard and Ruder, 2018), BERT (Devlin

et al., 2019), RoBERTa (Liu et al., 2019), AL-
BERT (Lan et al., 2020), and Electra (Clark et al.,
2020) follow the paradigm of pre-training on
large datasets and then fine-tuning on downstream
tasks. GPT (Radford et al., 2018), LLaMA (Tou-
vron et al., 2023), Mistral (Jiang et al., 2023)
and other decoder-only models also follow this
paradigm; however, they use a unidirectional Trans-
former (Vaswani et al., 2023) and pre-train in a gen-
erative way, whereas the BERT series uses a bidi-
rectional Transformer to learn deep contextual rep-
resentations. BART (Lewis et al., 2020) combines
BERT’s bidirectional encoding with GPT’s autore-
gressive decoding, providing effective sequence-
to-sequence modeling. TS5 (Raffel et al., 2023)
introduces transfer learning into NLP by convert-
ing text-based language problems into a text-to-text
format. ST-MoE (Zoph et al., 2022) uses a Mixture-
of-Experts (MoE) approach for stable training and
improved capability. Vega v2 (Zhong et al., 2022)
enhances performance through self-evolution learn-
ing.

Recently, some models represent the overall text
through methods like average pooling over the
representation vectors of tokens (as in GTE (Li
et al., 2023)), using the last token’s representation
vector (as in E5-Mistral-7B-instruct (Wang et al.,
2024) and SFR-Embedding-Mistral (Meng et al.,
2024)), or employing a latent attention layer (as
in NV-Embed (Lee et al., 2024)). Gist (Mu et al.,
2024), Transformer-XL (Dai et al., 2019) and An-
LLM (Pang et al., 2024) distill context information
into several designed tokens.

In addition to these monolingual models, some
models extend representation to multilingual con-
texts, such as mBERT (Devlin et al., 2019),
XLM (Lample and Conneau, 2019), XLM-R (Con-
neau et al., 2020), mT5 (Xue et al., 2020),
MASS (Song et al., 2019), and XY-LENT (Patra
et al., 2022).

Besides these flat representation models, there
are also models that perform hierarchical repre-
sentation learning. For example, MRL (Kusu-
pati et al., 2022) designs a flexible representation
that can adapt to multiple downstream tasks with
varying computational resources; AJANNS (Rege
et al., 2023) leverages different stages of approxi-
mate nearest neighbor search for adaptive semantic
search; and repLLaMA-rankLLaMA (Ma et al.,
2024) utilizes a multi-stage text ranking pipeline to
enhance a variety of retrieval tasks.



Fine-to-Coarse Token Matryoshka Learning
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Others say it is the reconstruction

and interpretation of meanings behind printed symbols.

Reading is described in many ways by different

Some describe it as a cognitive

Others say it is the reconstruction

and interpretation of mean ings behind printed symbols

Query:
Instruct: Given a web search query,
retrieve relevant passages \n Query:

Instruct : Given a web search query
->
retrieve relevant passages \n Query :

Token Fusion Boosting

B ]

Make Predictions

)
CEED
B
e

12120
X X
201220 Final Predictions
x xXx 1020 20
122010
X x
002021
% X

Figure 1: The overall framework of BTMR. BTMR first leverages a Fine-to-Coarse Token Matryoshka Learning
strategy to generate token group representation vectors that capture both local and global information. Then, by
employing a Token Fusion Boosting mechanism, BTMR aggregates correct sentence classification from these token
group representation vectors, refining the overall prediction. Symbols 0, 1, 2 represent classification categories.

X0 X1 bo-r-bk-1 X2 X3 bk--rb2k-1 X4 X5 bk b3kl

x I e
ol 2 1 v

b

|
=
N

X3

bk
bak1

X4

|
L

X5

bak
bik-1

[]

I o

C OO
R

|

[ | unmasked [ ] masked

Figure 2: The attention masks utilized in Fine-to-Coarse
Token Matryoshka Learning.

2.2 Ensemble Learning

We primarily discuss boosting in this section.
Boosting is a powerful ensemble learning technique
that has significantly influenced the field of ma-
chine learning. The concept was first introduced by
Schapire with the proposal of the Weak Learnabil-
ity framework (Schapire, 1990), leading to the de-
velopment of the AdaBoost (Schapire et al., 1999)
algorithm. AdaBoost, short for Adaptive Boost-
ing, combines weak learners sequentially, adjust-
ing the weights of misclassified examples to focus
the learning on harder cases. Following AdaBoost,
many variants have been proposed. Gradient Boost-

ing Machines (GBM) (Friedman, 2001, 2002; Ma-
son et al., 1999) extend the idea of boosting to opti-
mize any differentiable loss function. This has been
further popularized by implementations like XG-
Boost (Chen and Guestrin, 2016), LightGBM (Ke
et al., 2017), and CatBoost (Prokhorenkova et al.,
2019), which focus on improving computational
efficiency, scalability, and handling of categorical
features. Moreover, recent advances have incorpo-
rated boosting techniques into deep learning. For
instance, (Schwenk and Bengio, 1997, 2000; Han
et al., 2016) combine the strengths of boosting and
neural networks to tackle complex tasks.

3 Multi-Token Sentence Representation
Learning

3.1 Preliminary

We limit the representation learning discussed in
this paper to the field of NLP. Given a sequence of
tokens X = {x1,x9,...,z,} representing a text
of length n, the objective of text representation
learning is to learn a mapping function f : X —
H, where H = {h;, hy, ..., h,} denotes the set
of hidden representation vectors corresponding to
each token z; in the input sequence. Each hidden
representation vector h; € R? is a d-dimensional
vector that captures semantic information of the
token x; within context of the entire sequence X.
The goal is to ensure that the learned represen-
tations H effectively capture both the local and



global semantic information of the text. To this
end, we can define the problem as minimizing a
loss function £(H), which typically involves tasks
such as predicting the next token, reconstructing
the input sequence, or fine-tuning on specific down-
stream tasks. Formally, the problem can be ex-
pressed as:

H = f(X;0) (1)

0 = arg min LH,Y), )

where 6 represents the parameters of the mapping
function f, and Y denotes the ground truth labels
or targets used for supervision, depending on the
specific task at hand. The learned representation H
should not only be robust and informative for the
input sequence X but also be generalizable across
various downstream tasks.

Token pooling methods used in single-token rep-
resentation models to obtain the sentence embed-
ding z can be represented as follows. First Token
Pooling selects the hidden representation of the
first token in the sequence: z = h;. Last To-
ken Pooling selects the hidden representation of
the last token in the sequence: z = h,,. Average
Pooling computes the average of all token repre-
sentations across the sequence: z = %Z?:l h;.
Max Pooling selects the maximum value across
the token representations for each dimension: z; =
max;_, h;;, j=1,2,...,d, where z; is the j-
th dimension of z.

To address the limitations of traditional single-
token representation models, we introduce Boosted
Token-Level Matryoshka Representation (BTMR)
to investigate whether multiple tokens can improve
sentence embeddings. BTMR operates by initially
applying Fine-to-Coarse Token Matryoshka Learn-
ing, which generates token group representation
vectors that capture both local and global infor-
mation. These vectors are then utilized through a
boosting mechanism that aggregates the accurate
sentence classification to produce a final prediction.
We design a special token <BMT> and the overall
framework is in Figure 1.

3.2 Fine-to-Coarse Token Matryoshka
Learning

Given text token sequence X, to capture not only
detailed local information but also global informa-
tion, BTMR divides X into multiple fixed-length
segments, inserting a fixed number of learnable
special tokens <BMT> after each segment. By using
a specific attention mask, BTMR condenses the

Algorithm 1 Token Fusion Boosting Algorithm
Input: Training data
{(1‘%17 yi)v (x:iz’ yi)> ) (xzk’ yi)}?:l’ where
xlk is the sentence classification prediction of the
first k <BMT> tokens’ representation vectors in the
<BMT> token group of the i-th data item, and y; is
the label; weak learner by (x;7), where 7 is its
parameters; loss function L(y, f(x)); number of
boosting rounds T’

Parameter: Weak learner coefficient 3; Weak
learner parameters y

Output: Final prediction model f(z)

I: Initialize the model with a constant: fy(z) =
argmin: » - ; L(y;, ¢)

:fort=1toT do

let 2 + Concat([z, 2, ... 2*F])

4:  Minimize the loss function:

W N

arg nginz L (yi, fi—1(xs) + Bby(z45y))

to obtain the parameters 5;, ;.
5. Update the model:

fi(x) = fi—1(z) + Bib(z;71)

end for
return the final prediction model:

A

T
f@) = fr(z) = fo(@) + Y Bebs(w; )
t=1

information of each segment s and the information
contained in the <BMT> token group before s into
the <BMT> token group after s. By continuously
transferring information from the previous <BMT>
token group to the subsequent <BMT> token group,
the information contained in the final <BMT> token
group of X gradually shifts from fine-grained local
details to coarse-grained global information.

In this process, BTMR utilizes Matryoshka rep-
resentation learning (Kusupati et al., 2022) and
adds the losses generated by the first 1,2,...,k
tokens in the <BMT> token group during training to
the overall loss. This concentrates the information
density in the leading tokens of the <BMT> token
group, so that even with fewer <BMT> tokens, criti-
cal information can still be obtained, while adding
more <BMT> tokens provides richer information.



Model Name

E5-Mistral-7B-instruct | <BMT>-Num-1 ~<BMT>-Num-2 ~<BMT>-Num-3 <BMT>-Num-4 BTMR

MTOPDomain 96.12 96.09 96.09 96.02 95.99 96.01
Banking77 88.23 87.88 87.95 87.94 87.90 88.24
AmazonCounterfactual 78.69 73.36 73.21 73.31 74.16 78.72
Emotion 49.77 45.95 46.37 47.13 47.72 52.20
ToxicConversations 69.59 66.94 67.91 68.16 68.78 73.66
MassiveScenario 82.39 82.06 81.94 81.70 81.22 82.40
TweetSentimentExtraction 63.72 62.51 62.09 61.84 61.78 64.74
AmazonPolarity 95.91 95.19 95.05 95.70 95.90 95.92
AGNews 86.27* 86.98 87.67 87.58 87.36 87.53
RottenTomatoes 91.51* 91.38 90.97 90.75 90.69 91.24
DBpedial4 95.40* 95.52 94.94 94.62 94.25 94.77
ClimateSentiment 72.22% 72.75 71.44 68.66 68.78 70.94
Financial 53.83* 55.32 57.81 59.25 59.62 59.25
EnvironmentalClaim 82.34* 82.23 81.92 81.43 81.13 82.53
Average | 79.00 | 7815 78.24 78.15 78.23 79.87

Table 1: Results compared to the baseline E5-Mistral-7B-instruct. The results marked with * are the performance

we obtain using ES-Mistral-7B-instruct model.

The attention masks used is shown in the Fig-
ure 2. The idea is that the segment s and the
<BMT> token group after it can only see the pre-
vious <BMT> token group, meaning the condi-
tional probability of predicting the next token x;
is p(x;|by, . . .,xi—1), where b repre-
sents the <BMT> token, £ is the number of <BMT>
tokens in the <BMT> token group, and ¢ is the num-
ber of text tokens in the segment s before z;.

Pre-training We use the MS-MARCO BM25
dataset processed by SimLM (Wang et al., 2023)
to pre-train the <BMT> token group representation
vectors for 1 epoch. For each query-passage pair
(¢, d) in the dataset, we segment both ¢ and d and
then insert <BMT> token groups. We use standard
language modeling cross-entropy loss:

© bk7 Ti—ty - -

n
Lim == _1og P(y; | yr:i-1;6) 3)

i=1
In addition to the standard language modeling loss,
we also perform contrastive learning by comparing
the representation vectors of the first 1,2,...,k
<BMT> tokens following each segment of ¢ with
those following each segment of d. For positive
samples, we aim to increase the matching score,
while for negative samples, we aim to decrease it.

The contrastive loss used is as follows:
lneg = Y_(6(b3 b)) + o(byy b)) (4)
neN

B(b5 b3)

log ——— 1=
D(bs’, bg)) + lneg

k
Lcons = Z Z le (6)

5q€Q sq€D i=1

li=— &)

where b;j, b%;j, b;nz represent the vector formed by
concatenating the representation vectors of the first
1 <BMT> tokens in the <BMT> token group follow-
ing the query segment s,, passage segment s,, and
negative passage segment s, ; k represents the num-
ber of <BMT> tokens in the <BMT> token group; N
denotes all the negatives; Q and ID represent seg-
ments set of query ¢ and passage d; and ¢(q, d)
is a function to compute the matching score be-
tween the representation vector of ¢ and d. We
use temperature-scaled cosine similarity function:
¢(q,d) = exp(L cos(hg, hg)), where hy and hy
denote representation vector of ¢ and d; T is a tem-
perature hyper-parameter and set to a constant 0.02
in pre-training.

Therefore, the total loss for pre-training is:

£ = le + Lcons (7)

3.3 Token Fusion Boosting

After obtaining the pre-trained <BMT> token group
representation vectors, Token Fusion Boosting
mechanism is applied to utilize the sentence classifi-
cation of <BMT> token group representation vectors,
resulting in improved performance. The algorithm
of Token Fusion Boosting is as in Algorithm 1.

By combining the sentence classification of mul-
tiple weak learners, each of which focuses on dif-
ferent aspects of the sentence classification of the
<BMT> tokens’ representation vectors, Token Fusion
Boosting reduces the error iteratively.



4 [Experiments

4.1 Datasets

We select a total of 14 datasets, including MTOP-
Domain (Li et al., 2020), Banking77 (Casanueva
etal., 2020), AmazonCounterfactual (O’Neill et al.,
2021), Emotion (Saravia et al., 2018), Toxic-
Conversations (cjadams et al., 2019), MassiveSce-
nario (FitzGerald et al., 2022), TweetSentimentEx-
traction (Maggie, 2020), AmazonPolarity (Zhang
et al.,, 2015), AGNews (Zhang et al., 2015),
RottenTomatoes (Pang and Lee, 2005), DBpe-
dial4 (Zhang et al., 2015), ClimateSentiment (Bin-
gler et al., 2024), Financial (nickmuchi, 2022), and
EnvironmentalClaim (Stammbach et al., 2023). We
use accuracy as the reported metric.

4.2 Baseline

We choose E5-Mistral-7B-instruct (Wang et al.,
2024) as the baseline model for comparison. After
initializing our model with the parameters from ES-
Mistral-7B-instruct, we used the average embed-
ding weight and bias of tokens from its vocabulary
to initialize the weight and bias of the <BMT> tokens.
Following the pre-training phase (where we set the
segment length to 64 tokens and select 9 negative
samples for each data pair), we evaluate the BTMR
model using the checkpoint that achieved the best
Mean Reciprocal Rank (MRR) metric. The MRR
is a measure used to evaluate the quality of ranking
predictions.

4.3 Evaluation

During evaluation, given a data pair (d, y), where
d is the sentence to be classified and y is the la-
bel, we follow the same approach as E5-Mistral-
7B-instruct by prepending the task-specific instruc-
tion to d, resulting in the input d*. We then ap-
pend a <BMT> token group—specifically k <BMT>
tokens—only to the end of each input d*. In our
experiments, unless otherwise noted, k is set to 4.
For each label type, we use only 8 samples as
training data. We transform the input d™ into repre-
sentation vectors, using the representation vectors
of the <BMT> token group as the feature x for the
training data, with the corresponding ground-truth
sentence classification type as the label. Consistent
with ES-Mistral-7B-instruct, we fit the Logistic Re-
gression classifier for the classification. We fit k
Logistic Regression classifiers, with the predictions
from these classifiers representing the sentence
classification for the first 1,2, ..., k <BMT> tokens’

representation vectors, employ these Logistic Re-
gression classifiers as weak learners, and apply the
Token Fusion Boosting Algorithm to achieve the
final performance of the BTMR model.

Model Name | BTMR  BTMR o475
MTOPDomain 96.01 93.81
Banking77 88.24 84.69
AmazonCounterfactual 78.72 75.49
Emotion 52.20 51.19
ToxicConversations 73.66 70.37
TweetSentimentExtraction | 64.74 64.61
AGNews 87.53 85.33
Financial 59.25 58.95
Average | 75.04 73.06

Table 2: Ablation results of Coarse Token Matryoshka
Learning. Coarse Token Matryoshka Learning only
extracts global information without emphasizing local
information.

4.4 Main Results

The main results are in the Table 1. As observed,
the BTMR method outperforms ES5-Mistral-7B-
instruct on almost all datasets, with only slight dif-
ferences of 0.03 and 0.13 on the MTOPDomain and
RottenTomatoes datasets. This demonstrates the
effectiveness of BTMR, implying that multiple to-
kens can improve sentence embeddings. Although
BTMR'’s performance when considering individual
sentence classification of the first 1,...,k <BMT>
tokens’ representation vectors may not always sur-
pass that of ES-Mistral-7B-instruct, BTMR gener-
ally exceeds it after applying Token Fusion Boost-
ing, indicating the importance of the method used
to utilize multiple tokens in improving sentence
embeddings, and that effectively utilizing multiple
tokens can better enhance sentence embeddings.

In some datasets, such as AGNews and Finan-
cial, the performance after Token Fusion Boosting
shows a slight decline compared to the performance
before Token Fusion Boosting. This is because that
while Token Fusion Boosting typically leverages
the correct sentence classification from the <BMT>
token group’s representation vectors, it can occa-
sionally be influenced by the erroneous sentence
classification of a majority within the <BMT> token
group for a particular data instance. However, this
interference is quite limited.

4.5 Ablation Study

Regarding Fine-to-Coarse Token Matryoshka
Learning, we conduct two ablation studies to indi-



Ablation Model ‘ Banking77 AmazonCounterfactual MTOPDomain ToxicConversations Average
BTMR <BMT>-Num-1 87.88 73.36 96.09 66.94 81.07
<BMT>-Num-2 87.95 73.21 96.09 67.91 81.29

<BMT>-Num-3 87.94 73.31 96.02 68.16 81.36

<BMT>-Num-4 87.90 74.16 95.99 68.78 81.71

boosted 88.24 78.72 96.01 73.66 84.16
BTMRy, /o Matryoshka  <BMT>-Num-1 85.40 73.84 92.90 68.98 80.28
<BMT>-Num-2 84.87 73.60 92.90 68.28 79.91

<BMT>-Num-3 84.07 73.57 92.79 68.59 79.75

<BMT>-Num-4 83.81 73.78 92.74 68.70 79.76

boosted 82.81 76.15 92.34 67.54 79.71

Table 3: Ablation results of Fine-to-Coarse Token Learning. The pre-training loss of Fine-to-Coarse Token Learning

includes only the standard language modeling loss and the contrastive learning loss for the <BMT> token group.
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Figure 3: The boxplot of Fine-to-Coarse Token Learning results. It shows the median, quartile range, and distribution
of the results. The o markers indicate values that are far from the main data distribution.

cate the importance of effectively selecting multi-
ple tokens for improving sentence embeddings as
follows.

Coarse Token Matryoshka Learning: In this
ablation, we do not segment the text and insert
the <BMT> token groups. Instead, we only append
the <BMT> token group at the end, extracting only
global information without emphasizing local in-
formation. The resulting performance is referred
to as BTMR,4rse, and the results are shown in
the Table 2. The results indicate that by extracting
more detailed local information, the accuracy of
the predictions improves, highlighting that multi-
ple tokens should combine both detailed local and
global information, rather than focusing solely on
global information.

Fine-to-Coarse Token Learning: In this abla-
tion, we omit the contrastive learning loss for the
first 1,2, ...,k — 1 <BMT> tokens. The pre-training
loss includes only the standard language modeling
loss and the contrastive learning loss for the <BMT>

token group, resulting in a loss function of:

'Cw/o Matryoshka — Lim + Leons w/o Matryoshka

(®)

=Lim+ Y Y I ©)

5¢€Q sq€D

From the results in Table 3 and Figure 3, it is
evident that the performance deteriorates without
Matryoshka Learning. Additionally, on datasets
where Token Fusion Boosting performs well, such
as Banking77 and ToxicConversations, the boosted
performance of BTMR, /, afatryoshka dO€s not im-
prove, indicating that the absence of Matryoshka
Learning leads to more dispersed information. In
such cases, the sentence classification from multi-
ple <BMT> tokens’ representation vectors become
quite similar, and the effectiveness of Token Fusion
Boosting is not fully realized. Therefore, multiple
tokens should contain more focused information,
meaning that the representation vectors of the to-
kens should be more diverse.

Regarding Token Fusion Boosting, we also con-
duct two ablation studies to present the importance



Ablation Model MTOPDomain Banking77 AmazonCounterfactual ClimateSentiment DBpedial4 RottenTomatoes
BTMR <BMT>-Num-1 96.09 87.88 73.36 72.75 95.52 91.38
<BMT>-Num-2 96.09 87.95 73.21 71.44 94.94 90.97
<BMT>-Num-3 96.02 87.94 73.31 68.66 94.62 90.75
<BMT>-Num-4 95.99 87.90 74.16 68.78 94.25 90.69
boosted 96.01 88.24 78.72 70.94 94.77 91.24
BTMR 10 —nested <BMT>-1th 96.09 87.88 73.36 72.75 95.52 91.38
<BMT>-2nd 95.82 87.86 71.28 65.34 93.49 88.75
<BMT>-3rd 95.51 87.89 72.85 65.34 9291 87.54
<BMT>-4th 95.42 87.39 72.31 63.00 91.88 85.39
boosted 96.01 88.22 76.97 70.94 94.71 91.22

Table 4: Ablation results of Token Fusion Boosting without Nested Representation Vectors. Token Fusion Boosting
without Nested Representation Vectors only applies Token Fusion Boosting to the 1-th,. . . ,k-th <BMT> token.

of effectively utilizing multiple tokens for improv-
ing sentence embeddings as follows.

—s— BTMR <BMT>-Num-1
BTMR <BMT>-Num-2
—+ BTMR <BMT>-Num-3
- BTMR <BMT>-Num-4
—»— BTMR Boosted
-<- BTMR_non-nested <BMT>-1th
BTMR_non-nested <BMT>-2nd
+- BTMR_non-nested <BMT>-3rd
BTMR_non-nested <BMT>-4th
BTMR_non-nested Boosted

Performance

Datasets

Figure 4: The line chart of Token Fusion Boosting with-
out Nested Representation Vectors Results.

Model Name <BMT>-4 <BMT>-3 <BMT>-2
MTOPDomain 96.01 95.98 95.79
Banking77 88.24 88.22 88.06
AmazonCounterfactual 78.72 76.73 79.66
Emotion 52.20 50.08 50.53
MassiveScenario 82.40 81.72 81.88
TweetSentimentExtraction 64.74 62.99 62.82
AGNews 87.53 88.50 88.49
RottenTomatoes 91.24 91.11 91.27
Financial 59.25 58.00 56.82
EnvironmentalClaim 82.53 81.81 81.92
Average | 7829 7751 7172

Table 5: The ablation results of Token Fusion Boosting
with Different Token Numbers.

Token Fusion Boosting without Nested Repre-
sentation Vectors: We explore the impact of not
using nested representation by applying Token Fu-
sion Boosting to the 1-th, ..., k-th <BMT> token,
with the results shown in the Table 4 and Figure 4.
From the results, when nested representation is not
used, the performance remains fairly consistent,
further demonstrating that Token Fusion Boosting
effectively leverages the correct sentence classifi-

cation from different <BMT> tokens’ representation
vectors, even when the performance of the 2-nd,
..., k-th <BMT> tokens is noticeably worse than that
of the first 2, . .., k <BMT> tokens. In other words,
as long as multiple tokens are effectively utilized,
whether or not nested representation vectors are
used, the improvement in sentence embeddings is
similar.

Token Fusion Boosting with Different Token
Numbers: We investigate the effects of using dif-
ferent numbers of <BMT> tokens for Token Fusion
Boosting, with the results presented in the Table 5.
The reason the number of <BMT> tokens is limited
to 4 is that increasing the number of tokens fur-
ther is unlikely to yield substantial improvement,
and it also increases memory usage. To balance
performance and memory consumption, we select
4 tokens as the upper bound. Based on the re-
sults, in general, using more <BMT> tokens with
Token Fusion Boosting tends to lead to better per-
formance, which is consistent with our conclusion
that multiple tokens can improve sentence embed-
dings. However, in some cases, more <BMT> tokens
might introduce some noise, and the performance
may not necessarily be better than boosting with
fewer <BMT> tokens. In other words, the choice of
the number of multiple tokens should balance both
efficiency and benefits.

5 Conclusion

In this paper, we explore whether using multiple to-
kens can improve sentence embeddings to address
the limitations of traditional single-token represen-
tation models. We propose BTMR, which lever-
ages Fine-to-Coarse Token Matryoshka Learning
and Token Fusion Boosting. Experiments show
that by appropriately selecting and utilizing multi-
ple tokens, sentence embeddings can be improved.



Limitations

Our paper focuses on the Sentence Classification
task. Sentence classification differs from tasks such
as clustering, reranking, retrieval and so on. In
Sentence Classification, each data entry can be di-
rectly classified into its category independently,
whereas other tasks require batch-level operations
like clustering or similarity ranking. Our approach
aggregates the correct predictions to enhance per-
formance and is particularly well-suited for the sen-
tence classification task. So we select the classifi-
cation datasets from MTEB. Other MTEB datasets
are designed for clustering, reranking, retrieval,
etc., which are beyond the scope of our current
research.
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Model Name SFR-Embedding-Mistral | <BMT>-Num-1 <BMT>-Num-2 <BMT>-Num-3 <BMT>-Num-4 BTMR

AmazonCounterfactual 77.93 75.87 75.85 76.09 76.09 77.40
Emotion 50.24 51.76 51.66 51.53 51.36 55.48
TweetSentimentExtraction 63.64 64.13 64.10 63.90 64.31 65.35
RottenTomatoes 91.59%* 91.03 91.14 91.23 91.40 91.50
ClimateSentiment 72.78* 73.69 73.41 73.69 73.59 73.91
Financial 53.87* 58.44 57.75 57.29 57.96 57.85
EnvironmentalClaim 82.64* 82.87 82.68 82.87 83.70 83.13
Average \ 70.38 | 711 70.94 70.94 71.20 72.09

Table 6: Results compared to the baseline SFR-Embedding-Mistral. The results marked with * are outcomes
for datasets where SFR-Embedding-Mistral did not report results, which we measured directly under the same
environment.

A Further Experiments

We test our method based on the new SFR-
Embedding-Mistral model, with results shown in
Table 6. Overall improvement can be observed on
the tested datasets, with significant gains on some,
such as a 2.69 % improvement on the TweetSenti-
mentExtraction dataset, an 8.48% increase on the
Financial dataset, and a 10.43% increase on the
Emotion dataset.
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