
Can Multiple Tokens Improve Sentence Embeddings? A
Classification-Based Analysis

Anonymous ACL submission

Abstract

Existing representation models often utilize001
single-token embedding for downstream tasks,002
employing approaches such as first token pool-003
ing, last token pooling, average pooling, and004
max pooling for representation. However, these005
token pooling methods inevitably lead to in-006
formation loss, as they either ignore or dilute007
important features from the rest of the sentence.008
So, would multiple tokens improve sentence009
embeddings? In this paper, we select the sen-010
tence classification task as the research founda-011
tion, as it best reflects the quality of sentence012
embeddings. Randomly selecting multiple to-013
kens is unlikely to effectively improve sentence014
embeddings; understanding which tokens to015
use and how to utilize multiple tokens are criti-016
cal questions that must be explored. Therefore,017
we propose BTMR, which stands for Boosted018
Token-Level Matryoshka Representation, to019
investigate the impact of using multiple to-020
kens on sentence embeddings. BTMR operates021
through two key stages: Fine-to-Coarse Token022
Matryoshka Learning, which generates token023
group representation vectors by capturing both024
local and global contextual information, and025
Token Fusion Boosting, which aggregates the026
correct predictions derived from these vectors027
to produce the final prediction. Experimental028
results demonstrate that leveraging multiple to-029
kens can indeed improve sentence embeddings.030

1 Introduction031

In the field of natural language processing (NLP),032

effective representation of textual data is paramount033

for the success of various downstream tasks such as034

question answering (Rajpurkar et al., 2016), clas-035

sification (Warstadt et al., 2019), sentiment analy-036

sis (Socher et al., 2013), and so on. Existing rep-037

resentation models employ various strategies to038

encapsulate overall text information. Some (De-039

vlin et al., 2019) employ special token represen-040

tation vectors, some apply average pooling (Li041

et al., 2023) to token representation vectors, and 042

some (Meng et al., 2024) utilize the representation 043

of the last token. To enhance performance, existing 044

models have expanded parameter scales (Radford 045

et al., 2018), increased dataset diversity (Raffel 046

et al., 2023), and introduced various training or 047

fine-tuning techniques (Wang et al., 2024). 048

Despite advancements in representation mod- 049

els, the token pooling methods commonly used to 050

obtain sentence embeddings still suffer from in- 051

evitable information loss. For instance, First Token 052

Pooling, as used in BERT (Devlin et al., 2019), 053

captures global sequence-level information when 054

trained properly but loses detailed context from the 055

rest of the sentence. Last Token Pooling, employed 056

in the GPT (Radford et al., 2018) series, fails to 057

explicitly consider contributions from preceding 058

tokens. Average Pooling dilutes important features 059

by averaging irrelevant tokens. Max Pooling risks 060

losing information by focusing solely on maximum 061

values and ignoring subtle variations. 062

These limitations raise an important question: 063

could using multiple tokens improve sentence em- 064

beddings? To explore the question, we select the 065

sentence classification task as our research foun- 066

dation, as it best reflects the quality of sentence 067

embeddings. Randomly selecting multiple tokens 068

is unlikely to effectively improve sentence em- 069

beddings; understanding which tokens to use and 070

how to utilize multiple tokens are critical ques- 071

tions that must be explored. Therefore, we intro- 072

duce BTMR (Boosted Token-Level Matryoshka 073

Representation), an approach that effectively takes 074

the advantage of multiple sentence classification to 075

compensate for the shortcomings of the sentence 076

classification prediction of a single token represen- 077

tation vector. 078

Specifically, BTMR first leverages a Fine-to- 079

Coarse Token Matryoshka Learning strategy to 080

generate token group representation vectors that 081

capture both local and global information. The to- 082
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ken group, when transmitting information, extracts083

the locally significant information that contributes084

more to the right prediction, similar to applying085

a weight to the crucial local information. Then,086

by employing a Token Fusion Boosting mecha-087

nism, BTMR aggregates correct sentence classifica-088

tion from these token group representation vectors,089

thereby refining the overall prediction and reducing090

the likelihood of misclassification.091

The extensive experiments demonstrate the ef-092

fectiveness of BTMR, showing that multiple tokens093

can improve sentence embeddings. Additionally,094

we conduct a series of ablation studies, which col-095

lectively highlight the necessity of Fine-to-Coarse096

Token Matryoshka Learning and the Token Fusion097

Boosting mechanism, indicating the importance of098

methods for selecting and utilizing multiple tokens099

to improve sentence embeddings.100

Our contributions can be summarized as follows:101

To address the limitations of token pooling meth-102

ods, which inherently suffer from information loss,103

we investigate whether multiple tokens could im-104

prove sentence embeddings. Since randomly se-105

lecting multiple tokens is unlikely to achieve this106

effectively, we introduce BTMR, which combines107

Fine-to-Coarse Token Matryoshka Learning and a108

Token Fusion Boosting mechanism to better select109

and utilize multiple tokens. Extensive experiments110

validate the effectiveness of BTMR, demonstrating111

that multiple tokens can indeed improve sentence112

embeddings. Ablation studies highlight the ne-113

cessity of BTMR’s components, underscoring the114

importance of methods for selecting and utilizing115

multiple tokens in improving sentence embeddings.116

2 Related Work117

2.1 Representation Models118

Representation models have a long history. In this119

section, we briefly review some of the most widely120

used and more recent models. Early models, such121

as Word2Vec (Google, 2013), represented words122

as vectors using the Skip-gram or CBOW models,123

making natural language computable. GloVe (Pen-124

nington et al., 2014) constructed word vectors125

based on co-occurrence matrices.126

Subsequently, several well-known deep learn-127

ing representation models emerged. For exam-128

ple, ELMo (Peters et al., 2018) uses bidirectional129

LSTMs to generate word embeddings, captur-130

ing contextual information. Models like ULM-131

FiT (Howard and Ruder, 2018), BERT (Devlin132

et al., 2019), RoBERTa (Liu et al., 2019), AL- 133

BERT (Lan et al., 2020), and Electra (Clark et al., 134

2020) follow the paradigm of pre-training on 135

large datasets and then fine-tuning on downstream 136

tasks. GPT (Radford et al., 2018), LLaMA (Tou- 137

vron et al., 2023), Mistral (Jiang et al., 2023) 138

and other decoder-only models also follow this 139

paradigm; however, they use a unidirectional Trans- 140

former (Vaswani et al., 2023) and pre-train in a gen- 141

erative way, whereas the BERT series uses a bidi- 142

rectional Transformer to learn deep contextual rep- 143

resentations. BART (Lewis et al., 2020) combines 144

BERT’s bidirectional encoding with GPT’s autore- 145

gressive decoding, providing effective sequence- 146

to-sequence modeling. T5 (Raffel et al., 2023) 147

introduces transfer learning into NLP by convert- 148

ing text-based language problems into a text-to-text 149

format. ST-MoE (Zoph et al., 2022) uses a Mixture- 150

of-Experts (MoE) approach for stable training and 151

improved capability. Vega v2 (Zhong et al., 2022) 152

enhances performance through self-evolution learn- 153

ing. 154

Recently, some models represent the overall text 155

through methods like average pooling over the 156

representation vectors of tokens (as in GTE (Li 157

et al., 2023)), using the last token’s representation 158

vector (as in E5-Mistral-7B-instruct (Wang et al., 159

2024) and SFR-Embedding-Mistral (Meng et al., 160

2024)), or employing a latent attention layer (as 161

in NV-Embed (Lee et al., 2024)). Gist (Mu et al., 162

2024), Transformer-XL (Dai et al., 2019) and An- 163

LLM (Pang et al., 2024) distill context information 164

into several designed tokens. 165

In addition to these monolingual models, some 166

models extend representation to multilingual con- 167

texts, such as mBERT (Devlin et al., 2019), 168

XLM (Lample and Conneau, 2019), XLM-R (Con- 169

neau et al., 2020), mT5 (Xue et al., 2020), 170

MASS (Song et al., 2019), and XY-LENT (Patra 171

et al., 2022). 172

Besides these flat representation models, there 173

are also models that perform hierarchical repre- 174

sentation learning. For example, MRL (Kusu- 175

pati et al., 2022) designs a flexible representation 176

that can adapt to multiple downstream tasks with 177

varying computational resources; AdANNS (Rege 178

et al., 2023) leverages different stages of approxi- 179

mate nearest neighbor search for adaptive semantic 180

search; and repLLaMA-rankLLaMA (Ma et al., 181

2024) utilizes a multi-stage text ranking pipeline to 182

enhance a variety of retrieval tasks. 183
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Query:
Instruct: Given a web search query,
retrieve relevant passages \n Query:

Make Predictions

Instruct : Given a web search query    

retrieve relevant passages \n Query :   

<BMT> <BMT> <BMT> <BMT>

<BMT> <BMT> <BMT> <BMT>

Passage:
Reading is described in many ways by different people. 
Some describe it as a cognitive process. 
Others say it is the reconstruction 
and interpretation of meanings behind printed symbols. 

Reading is described in many ways by different

Some describe it as a cognitive

Others say it is the reconstruction

and interpretation of mean ings behind printed symbols

<BMT> <BMT> <BMT> <BMT>

<BMT> <BMT> <BMT> <BMT>

<BMT> <BMT> <BMT> <BMT>

<BMT> <BMT> <BMT> <BMT>

Fine-to-Coarse Token Matryoshka Learning

<BMT> <BMT> <BMT> <BMT> <BMT>

<BMT> <BMT>

<BMT> <BMT> <BMT>

<BMT> <BMT> <BMT> <BMT>

1   1   2   1   2   0

2   0   1   2   2   0

1   2   2   0   1   0

0   0   2   0   2   1

Token Fusion Boosting

Final Predictions
1   0   2   0   2   0

Figure 1: The overall framework of BTMR. BTMR first leverages a Fine-to-Coarse Token Matryoshka Learning
strategy to generate token group representation vectors that capture both local and global information. Then, by
employing a Token Fusion Boosting mechanism, BTMR aggregates correct sentence classification from these token
group representation vectors, refining the overall prediction. Symbols 0, 1, 2 represent classification categories.
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Figure 2: The attention masks utilized in Fine-to-Coarse
Token Matryoshka Learning.

2.2 Ensemble Learning184

We primarily discuss boosting in this section.185

Boosting is a powerful ensemble learning technique186

that has significantly influenced the field of ma-187

chine learning. The concept was first introduced by188

Schapire with the proposal of the Weak Learnabil-189

ity framework (Schapire, 1990), leading to the de-190

velopment of the AdaBoost (Schapire et al., 1999)191

algorithm. AdaBoost, short for Adaptive Boost-192

ing, combines weak learners sequentially, adjust-193

ing the weights of misclassified examples to focus194

the learning on harder cases. Following AdaBoost,195

many variants have been proposed. Gradient Boost-196

ing Machines (GBM) (Friedman, 2001, 2002; Ma- 197

son et al., 1999) extend the idea of boosting to opti- 198

mize any differentiable loss function. This has been 199

further popularized by implementations like XG- 200

Boost (Chen and Guestrin, 2016), LightGBM (Ke 201

et al., 2017), and CatBoost (Prokhorenkova et al., 202

2019), which focus on improving computational 203

efficiency, scalability, and handling of categorical 204

features. Moreover, recent advances have incorpo- 205

rated boosting techniques into deep learning. For 206

instance, (Schwenk and Bengio, 1997, 2000; Han 207

et al., 2016) combine the strengths of boosting and 208

neural networks to tackle complex tasks. 209

3 Multi-Token Sentence Representation 210

Learning 211

3.1 Preliminary 212

We limit the representation learning discussed in 213

this paper to the field of NLP. Given a sequence of 214

tokens X = {x1, x2, . . . , xn} representing a text 215

of length n, the objective of text representation 216

learning is to learn a mapping function f : X → 217

H, where H = {h1,h2, . . . ,hn} denotes the set 218

of hidden representation vectors corresponding to 219

each token xi in the input sequence. Each hidden 220

representation vector hi ∈ Rd is a d-dimensional 221

vector that captures semantic information of the 222

token xi within context of the entire sequence X. 223

The goal is to ensure that the learned represen- 224

tations H effectively capture both the local and 225
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global semantic information of the text. To this226

end, we can define the problem as minimizing a227

loss function L(H), which typically involves tasks228

such as predicting the next token, reconstructing229

the input sequence, or fine-tuning on specific down-230

stream tasks. Formally, the problem can be ex-231

pressed as:232

H = f(X; θ) (1)233
234

θ̂ = argmin
θ
L(H,Y), (2)235

where θ represents the parameters of the mapping236

function f , and Y denotes the ground truth labels237

or targets used for supervision, depending on the238

specific task at hand. The learned representation H239

should not only be robust and informative for the240

input sequence X but also be generalizable across241

various downstream tasks.242

Token pooling methods used in single-token rep-243

resentation models to obtain the sentence embed-244

ding z can be represented as follows. First Token245

Pooling selects the hidden representation of the246

first token in the sequence: z = h1. Last To-247

ken Pooling selects the hidden representation of248

the last token in the sequence: z = hn. Average249

Pooling computes the average of all token repre-250

sentations across the sequence: z = 1
n

∑n
i=1 hi.251

Max Pooling selects the maximum value across252

the token representations for each dimension: zj =253

maxni=1 hi,j , j = 1, 2, . . . , d, where zj is the j-254

th dimension of z.255

To address the limitations of traditional single-256

token representation models, we introduce Boosted257

Token-Level Matryoshka Representation (BTMR)258

to investigate whether multiple tokens can improve259

sentence embeddings. BTMR operates by initially260

applying Fine-to-Coarse Token Matryoshka Learn-261

ing, which generates token group representation262

vectors that capture both local and global infor-263

mation. These vectors are then utilized through a264

boosting mechanism that aggregates the accurate265

sentence classification to produce a final prediction.266

We design a special token <BMT> and the overall267

framework is in Figure 1.268

3.2 Fine-to-Coarse Token Matryoshka269

Learning270

Given text token sequence X, to capture not only271

detailed local information but also global informa-272

tion, BTMR divides X into multiple fixed-length273

segments, inserting a fixed number of learnable274

special tokens <BMT> after each segment. By using275

a specific attention mask, BTMR condenses the276

Algorithm 1 Token Fusion Boosting Algorithm
Input: Training data
{(x:1i , yi), (x:2i , yi), . . . , (x:ki , yi)}ni=1, where
x:ki is the sentence classification prediction of the
first k <BMT> tokens’ representation vectors in the
<BMT> token group of the i-th data item, and yi is
the label; weak learner bf (x; γ), where γ is its
parameters; loss function L(y, f(x)); number of
boosting rounds T
Parameter: Weak learner coefficient β; Weak
learner parameters γ
Output: Final prediction model f(x)

1: Initialize the model with a constant: f0(x) =
argminc

∑n
i=1 L(yi, c)

2: for t = 1 to T do
3: let x← Concat([x:1, x:2, . . . , x:k])
4: Minimize the loss function:

argmin
β,γ

n∑
i=1

L (yi, ft−1(xi) + βbf (xi; γ))

to obtain the parameters βt, γt.
5: Update the model:

ft(x) = ft−1(x) + βtbf (x; γt)

6: end for
7: return the final prediction model:

f(x) = fT (x) = f0(x) +

T∑
t=1

βtbf (x; γt)

information of each segment s and the information 277

contained in the <BMT> token group before s into 278

the <BMT> token group after s. By continuously 279

transferring information from the previous <BMT> 280

token group to the subsequent <BMT> token group, 281

the information contained in the final <BMT> token 282

group of X gradually shifts from fine-grained local 283

details to coarse-grained global information. 284

In this process, BTMR utilizes Matryoshka rep- 285

resentation learning (Kusupati et al., 2022) and 286

adds the losses generated by the first 1, 2, . . . , k 287

tokens in the <BMT> token group during training to 288

the overall loss. This concentrates the information 289

density in the leading tokens of the <BMT> token 290

group, so that even with fewer <BMT> tokens, criti- 291

cal information can still be obtained, while adding 292

more <BMT> tokens provides richer information. 293
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Model Name E5-Mistral-7B-instruct <BMT>-Num-1 <BMT>-Num-2 <BMT>-Num-3 <BMT>-Num-4 BTMR

MTOPDomain 96.12 96.09 96.09 96.02 95.99 96.01
Banking77 88.23 87.88 87.95 87.94 87.90 88.24

AmazonCounterfactual 78.69 73.36 73.21 73.31 74.16 78.72
Emotion 49.77 45.95 46.37 47.13 47.72 52.20

ToxicConversations 69.59 66.94 67.91 68.16 68.78 73.66
MassiveScenario 82.39 82.06 81.94 81.70 81.22 82.40

TweetSentimentExtraction 63.72 62.51 62.09 61.84 61.78 64.74
AmazonPolarity 95.91 95.19 95.05 95.70 95.90 95.92

AGNews 86.27* 86.98 87.67 87.58 87.36 87.53
RottenTomatoes 91.51* 91.38 90.97 90.75 90.69 91.24

DBpedia14 95.40* 95.52 94.94 94.62 94.25 94.77
ClimateSentiment 72.22* 72.75 71.44 68.66 68.78 70.94

Financial 53.83* 55.32 57.81 59.25 59.62 59.25
EnvironmentalClaim 82.34* 82.23 81.92 81.43 81.13 82.53

Average 79.00 78.15 78.24 78.15 78.23 79.87

Table 1: Results compared to the baseline E5-Mistral-7B-instruct. The results marked with * are the performance
we obtain using E5-Mistral-7B-instruct model.

The attention masks used is shown in the Fig-294

ure 2. The idea is that the segment s and the295

<BMT> token group after it can only see the pre-296

vious <BMT> token group, meaning the condi-297

tional probability of predicting the next token xi298

is p(xi|b1, . . . , bk, xi−t, . . . , xi−1), where b repre-299

sents the <BMT> token, k is the number of <BMT>300

tokens in the <BMT> token group, and t is the num-301

ber of text tokens in the segment s before xi.302

Pre-training We use the MS-MARCO BM25303

dataset processed by SimLM (Wang et al., 2023)304

to pre-train the <BMT> token group representation305

vectors for 1 epoch. For each query-passage pair306

(q, d) in the dataset, we segment both q and d and307

then insert <BMT> token groups. We use standard308

language modeling cross-entropy loss:309

Llm = −
n∑

i=1

logP (yi | y1:i−1; θ) (3)310

In addition to the standard language modeling loss,311

we also perform contrastive learning by comparing312

the representation vectors of the first 1, 2, . . . , k313

<BMT> tokens following each segment of q with314

those following each segment of d. For positive315

samples, we aim to increase the matching score,316

while for negative samples, we aim to decrease it.317

The contrastive loss used is as follows:318

lneg =
∑
n∈N

(ϕ(b1:isq , b
1:i
sn ) + ϕ(b1:isd

, b1:isn )) (4)319

320

li = − log
ϕ(b1:isq , b

1:i
sd
)

ϕ(b1:isq , b
1:i
sd
) + lneg

(5)321

322

Lcons =
∑
sq∈Q

∑
sd∈D

k∑
i=1

li (6)323

where b1:isq , b
1:i
sd
, b1:isn represent the vector formed by 324

concatenating the representation vectors of the first 325

i <BMT> tokens in the <BMT> token group follow- 326

ing the query segment sq, passage segment sd, and 327

negative passage segment sn; k represents the num- 328

ber of <BMT> tokens in the <BMT> token group; N 329

denotes all the negatives; Q and D represent seg- 330

ments set of query q and passage d; and ϕ(q, d) 331

is a function to compute the matching score be- 332

tween the representation vector of q and d. We 333

use temperature-scaled cosine similarity function: 334

ϕ(q, d) = exp( 1τ cos(hq,hd)), where hq and hd 335

denote representation vector of q and d; τ is a tem- 336

perature hyper-parameter and set to a constant 0.02 337

in pre-training. 338

Therefore, the total loss for pre-training is: 339

L = Llm + Lcons (7) 340

3.3 Token Fusion Boosting 341

After obtaining the pre-trained <BMT> token group 342

representation vectors, Token Fusion Boosting 343

mechanism is applied to utilize the sentence classifi- 344

cation of <BMT> token group representation vectors, 345

resulting in improved performance. The algorithm 346

of Token Fusion Boosting is as in Algorithm 1. 347

By combining the sentence classification of mul- 348

tiple weak learners, each of which focuses on dif- 349

ferent aspects of the sentence classification of the 350

<BMT> tokens’ representation vectors, Token Fusion 351

Boosting reduces the error iteratively. 352
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4 Experiments353

4.1 Datasets354

We select a total of 14 datasets, including MTOP-355

Domain (Li et al., 2020), Banking77 (Casanueva356

et al., 2020), AmazonCounterfactual (O’Neill et al.,357

2021), Emotion (Saravia et al., 2018), Toxic-358

Conversations (cjadams et al., 2019), MassiveSce-359

nario (FitzGerald et al., 2022), TweetSentimentEx-360

traction (Maggie, 2020), AmazonPolarity (Zhang361

et al., 2015), AGNews (Zhang et al., 2015),362

RottenTomatoes (Pang and Lee, 2005), DBpe-363

dia14 (Zhang et al., 2015), ClimateSentiment (Bin-364

gler et al., 2024), Financial (nickmuchi, 2022), and365

EnvironmentalClaim (Stammbach et al., 2023). We366

use accuracy as the reported metric.367

4.2 Baseline368

We choose E5-Mistral-7B-instruct (Wang et al.,369

2024) as the baseline model for comparison. After370

initializing our model with the parameters from E5-371

Mistral-7B-instruct, we used the average embed-372

ding weight and bias of tokens from its vocabulary373

to initialize the weight and bias of the <BMT> tokens.374

Following the pre-training phase (where we set the375

segment length to 64 tokens and select 9 negative376

samples for each data pair), we evaluate the BTMR377

model using the checkpoint that achieved the best378

Mean Reciprocal Rank (MRR) metric. The MRR379

is a measure used to evaluate the quality of ranking380

predictions.381

4.3 Evaluation382

During evaluation, given a data pair (d, y), where383

d is the sentence to be classified and y is the la-384

bel, we follow the same approach as E5-Mistral-385

7B-instruct by prepending the task-specific instruc-386

tion to d, resulting in the input d+. We then ap-387

pend a <BMT> token group—specifically k <BMT>388

tokens—only to the end of each input d+. In our389

experiments, unless otherwise noted, k is set to 4.390

For each label type, we use only 8 samples as391

training data. We transform the input d+ into repre-392

sentation vectors, using the representation vectors393

of the <BMT> token group as the feature x for the394

training data, with the corresponding ground-truth395

sentence classification type as the label. Consistent396

with E5-Mistral-7B-instruct, we fit the Logistic Re-397

gression classifier for the classification. We fit k398

Logistic Regression classifiers, with the predictions399

from these classifiers representing the sentence400

classification for the first 1, 2, . . . , k <BMT> tokens’401

representation vectors, employ these Logistic Re- 402

gression classifiers as weak learners, and apply the 403

Token Fusion Boosting Algorithm to achieve the 404

final performance of the BTMR model. 405

Model Name BTMR BTMRcoarse

MTOPDomain 96.01 93.81
Banking77 88.24 84.69

AmazonCounterfactual 78.72 75.49
Emotion 52.20 51.19

ToxicConversations 73.66 70.37
TweetSentimentExtraction 64.74 64.61

AGNews 87.53 85.33
Financial 59.25 58.95

Average 75.04 73.06

Table 2: Ablation results of Coarse Token Matryoshka
Learning. Coarse Token Matryoshka Learning only
extracts global information without emphasizing local
information.

4.4 Main Results 406

The main results are in the Table 1. As observed, 407

the BTMR method outperforms E5-Mistral-7B- 408

instruct on almost all datasets, with only slight dif- 409

ferences of 0.03 and 0.13 on the MTOPDomain and 410

RottenTomatoes datasets. This demonstrates the 411

effectiveness of BTMR, implying that multiple to- 412

kens can improve sentence embeddings. Although 413

BTMR’s performance when considering individual 414

sentence classification of the first 1, . . . , k <BMT> 415

tokens’ representation vectors may not always sur- 416

pass that of E5-Mistral-7B-instruct, BTMR gener- 417

ally exceeds it after applying Token Fusion Boost- 418

ing, indicating the importance of the method used 419

to utilize multiple tokens in improving sentence 420

embeddings, and that effectively utilizing multiple 421

tokens can better enhance sentence embeddings. 422

In some datasets, such as AGNews and Finan- 423

cial, the performance after Token Fusion Boosting 424

shows a slight decline compared to the performance 425

before Token Fusion Boosting. This is because that 426

while Token Fusion Boosting typically leverages 427

the correct sentence classification from the <BMT> 428

token group’s representation vectors, it can occa- 429

sionally be influenced by the erroneous sentence 430

classification of a majority within the <BMT> token 431

group for a particular data instance. However, this 432

interference is quite limited. 433

4.5 Ablation Study 434

Regarding Fine-to-Coarse Token Matryoshka 435

Learning, we conduct two ablation studies to indi- 436
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Ablation Model Banking77 AmazonCounterfactual MTOPDomain ToxicConversations Average

BTMR <BMT>-Num-1 87.88 73.36 96.09 66.94 81.07
<BMT>-Num-2 87.95 73.21 96.09 67.91 81.29
<BMT>-Num-3 87.94 73.31 96.02 68.16 81.36
<BMT>-Num-4 87.90 74.16 95.99 68.78 81.71

boosted 88.24 78.72 96.01 73.66 84.16

BTMRw/oMatryoshka <BMT>-Num-1 85.40 73.84 92.90 68.98 80.28
<BMT>-Num-2 84.87 73.60 92.90 68.28 79.91
<BMT>-Num-3 84.07 73.57 92.79 68.59 79.75
<BMT>-Num-4 83.81 73.78 92.74 68.70 79.76

boosted 82.81 76.15 92.34 67.54 79.71

Table 3: Ablation results of Fine-to-Coarse Token Learning. The pre-training loss of Fine-to-Coarse Token Learning
includes only the standard language modeling loss and the contrastive learning loss for the <BMT> token group.
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Figure 3: The boxplot of Fine-to-Coarse Token Learning results. It shows the median, quartile range, and distribution
of the results. The ◦ markers indicate values that are far from the main data distribution.

cate the importance of effectively selecting multi-437

ple tokens for improving sentence embeddings as438

follows.439

Coarse Token Matryoshka Learning: In this440

ablation, we do not segment the text and insert441

the <BMT> token groups. Instead, we only append442

the <BMT> token group at the end, extracting only443

global information without emphasizing local in-444

formation. The resulting performance is referred445

to as BTMRcoarse, and the results are shown in446

the Table 2. The results indicate that by extracting447

more detailed local information, the accuracy of448

the predictions improves, highlighting that multi-449

ple tokens should combine both detailed local and450

global information, rather than focusing solely on451

global information.452

Fine-to-Coarse Token Learning: In this abla-453

tion, we omit the contrastive learning loss for the454

first 1, 2, . . . , k− 1 <BMT> tokens. The pre-training455

loss includes only the standard language modeling456

loss and the contrastive learning loss for the <BMT>457

token group, resulting in a loss function of: 458

Lw/oMatryoshka = Llm + Lcons w/o Matryoshka

(8)

459

= Llm +
∑
sq∈Q

∑
sd∈D

lk (9) 460

From the results in Table 3 and Figure 3, it is 461

evident that the performance deteriorates without 462

Matryoshka Learning. Additionally, on datasets 463

where Token Fusion Boosting performs well, such 464

as Banking77 and ToxicConversations, the boosted 465

performance of BTMRw/oMatryoshka does not im- 466

prove, indicating that the absence of Matryoshka 467

Learning leads to more dispersed information. In 468

such cases, the sentence classification from multi- 469

ple <BMT> tokens’ representation vectors become 470

quite similar, and the effectiveness of Token Fusion 471

Boosting is not fully realized. Therefore, multiple 472

tokens should contain more focused information, 473

meaning that the representation vectors of the to- 474

kens should be more diverse. 475

Regarding Token Fusion Boosting, we also con- 476

duct two ablation studies to present the importance 477

7



Ablation Model MTOPDomain Banking77 AmazonCounterfactual ClimateSentiment DBpedia14 RottenTomatoes

BTMR <BMT>-Num-1 96.09 87.88 73.36 72.75 95.52 91.38
<BMT>-Num-2 96.09 87.95 73.21 71.44 94.94 90.97
<BMT>-Num-3 96.02 87.94 73.31 68.66 94.62 90.75
<BMT>-Num-4 95.99 87.90 74.16 68.78 94.25 90.69

boosted 96.01 88.24 78.72 70.94 94.77 91.24

BTMRnon−nested <BMT>-1th 96.09 87.88 73.36 72.75 95.52 91.38
<BMT>-2nd 95.82 87.86 71.28 65.34 93.49 88.75
<BMT>-3rd 95.51 87.89 72.85 65.34 92.91 87.54
<BMT>-4th 95.42 87.39 72.31 63.00 91.88 85.39
boosted 96.01 88.22 76.97 70.94 94.77 91.22

Table 4: Ablation results of Token Fusion Boosting without Nested Representation Vectors. Token Fusion Boosting
without Nested Representation Vectors only applies Token Fusion Boosting to the 1-th,. . . ,k-th <BMT> token.

of effectively utilizing multiple tokens for improv-478

ing sentence embeddings as follows.
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Figure 4: The line chart of Token Fusion Boosting with-
out Nested Representation Vectors Results.

479

Model Name <BMT>-4 <BMT>-3 <BMT>-2

MTOPDomain 96.01 95.98 95.79
Banking77 88.24 88.22 88.06

AmazonCounterfactual 78.72 76.73 79.66
Emotion 52.20 50.08 50.53

MassiveScenario 82.40 81.72 81.88
TweetSentimentExtraction 64.74 62.99 62.82

AGNews 87.53 88.50 88.49
RottenTomatoes 91.24 91.11 91.27

Financial 59.25 58.00 56.82
EnvironmentalClaim 82.53 81.81 81.92

Average 78.29 77.51 77.72

Table 5: The ablation results of Token Fusion Boosting
with Different Token Numbers.

Token Fusion Boosting without Nested Repre-480

sentation Vectors: We explore the impact of not481

using nested representation by applying Token Fu-482

sion Boosting to the 1-th, . . . , k-th <BMT> token,483

with the results shown in the Table 4 and Figure 4.484

From the results, when nested representation is not485

used, the performance remains fairly consistent,486

further demonstrating that Token Fusion Boosting487

effectively leverages the correct sentence classifi-488

cation from different <BMT> tokens’ representation 489

vectors, even when the performance of the 2-nd, 490

. . . , k-th <BMT> tokens is noticeably worse than that 491

of the first 2, . . . , k <BMT> tokens. In other words, 492

as long as multiple tokens are effectively utilized, 493

whether or not nested representation vectors are 494

used, the improvement in sentence embeddings is 495

similar. 496

Token Fusion Boosting with Different Token 497

Numbers: We investigate the effects of using dif- 498

ferent numbers of <BMT> tokens for Token Fusion 499

Boosting, with the results presented in the Table 5. 500

The reason the number of <BMT> tokens is limited 501

to 4 is that increasing the number of tokens fur- 502

ther is unlikely to yield substantial improvement, 503

and it also increases memory usage. To balance 504

performance and memory consumption, we select 505

4 tokens as the upper bound. Based on the re- 506

sults, in general, using more <BMT> tokens with 507

Token Fusion Boosting tends to lead to better per- 508

formance, which is consistent with our conclusion 509

that multiple tokens can improve sentence embed- 510

dings. However, in some cases, more <BMT> tokens 511

might introduce some noise, and the performance 512

may not necessarily be better than boosting with 513

fewer <BMT> tokens. In other words, the choice of 514

the number of multiple tokens should balance both 515

efficiency and benefits. 516

5 Conclusion 517

In this paper, we explore whether using multiple to- 518

kens can improve sentence embeddings to address 519

the limitations of traditional single-token represen- 520

tation models. We propose BTMR, which lever- 521

ages Fine-to-Coarse Token Matryoshka Learning 522

and Token Fusion Boosting. Experiments show 523

that by appropriately selecting and utilizing multi- 524

ple tokens, sentence embeddings can be improved. 525

8



Limitations526

Our paper focuses on the Sentence Classification527

task. Sentence classification differs from tasks such528

as clustering, reranking, retrieval and so on. In529

Sentence Classification, each data entry can be di-530

rectly classified into its category independently,531

whereas other tasks require batch-level operations532

like clustering or similarity ranking. Our approach533

aggregates the correct predictions to enhance per-534

formance and is particularly well-suited for the sen-535

tence classification task. So we select the classifi-536

cation datasets from MTEB. Other MTEB datasets537

are designed for clustering, reranking, retrieval,538

etc., which are beyond the scope of our current539

research.540
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Model Name SFR-Embedding-Mistral <BMT>-Num-1 <BMT>-Num-2 <BMT>-Num-3 <BMT>-Num-4 BTMR

AmazonCounterfactual 77.93 75.87 75.85 76.09 76.09 77.40
Emotion 50.24 51.76 51.66 51.53 51.36 55.48

TweetSentimentExtraction 63.64 64.13 64.10 63.90 64.31 65.35
RottenTomatoes 91.59* 91.03 91.14 91.23 91.40 91.50

ClimateSentiment 72.78* 73.69 73.41 73.69 73.59 73.91
Financial 53.87* 58.44 57.75 57.29 57.96 57.85

EnvironmentalClaim 82.64* 82.87 82.68 82.87 83.70 83.13

Average 70.38 71.11 70.94 70.94 71.20 72.09

Table 6: Results compared to the baseline SFR-Embedding-Mistral. The results marked with * are outcomes
for datasets where SFR-Embedding-Mistral did not report results, which we measured directly under the same
environment.

A Further Experiments816

We test our method based on the new SFR-817

Embedding-Mistral model, with results shown in818

Table 6. Overall improvement can be observed on819

the tested datasets, with significant gains on some,820

such as a 2.69 % improvement on the TweetSenti-821

mentExtraction dataset, an 8.48% increase on the822

Financial dataset, and a 10.43% increase on the823

Emotion dataset.824
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