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ABSTRACT

This paper extends the BERT model to user data for pretraining user representa-
tions in a self-supervised way. By viewing actions (e.g., purchases and clicks) in
behavior sequences (i.e., usage history) in an analogous way to words in sentences,
we propose methods for the tokenization, the generation of input representation
vectors and a novel pretext task to enable the pretraining model to learn from its
own input, omitting the burden of collecting additional data. Further, our model
adopts a unified structure to simultaneously learn from long-term and short-term
user behavior as well as user profiles. Extensive experiments demonstrate that
the learned representations result in significant improvements when transferred
to three different real-world tasks, particularly in comparison with task-specific
modeling and representations obtained from multi-task learning.

1 INTRODUCTION

The choice of data representations, i.e., how to create meaningful features, imposes tremendous
impact on the performance of machine learning applications (Bengio et al., 2013). Therefore, data
processing and feature engineering have been the decisive steps in developing machine learning
models. To extend the applicability of the models, recent research on representation learning aims
to discover the underlying explanatory factors hidden in raw data. With rapid advances in this
direction, we have witnessed many breakthroughs in the areas of computer vision (CV) (Doersch
et al., 2015; Sharif Razavian et al., 2014; Simo-Serra et al., 2015) and natural language processing
(NLP) (Mikolov et al., 2013; Pennington et al., 2014; Lin et al., 2017).

Similarly, for building user-oriented industrial applications like next purchase prediction and rec-
ommendation, much effort has been spent on understanding business models and user behavior for
creating useful features (Richardson et al., 2007; Covington et al., 2016). This is a time-consuming
and application-specific process. Also, it is challenging to reuse these features or share gained
knowledge between different services and applications.

To solve the issues of isolated feature engineering and task-oriented pipeline design, the pretraining-
transfer learning paradigm has been explored. For example, multi-task learning (MTL) has shown
promising results (Ni et al., 2018). Nevertheless, MTL has its intrinsic challenges, e.g., deciding
which tasks to learn jointly (Standley et al., 2019), or how to weigh tasks (Kendall et al., 2018),
to achieve optimal performance. More importantly, the learning still hinges on large amounts of
well-annotated user labels.

Inspired by the BERT model and its variations (Devlin et al., 2019; Lan et al., 2020), this paper
explores the feasibility of understanding users in a similar way to how language is understood. We
think it is conceptually intuitive to make such an analogy since understanding language and users
share a similar goal, i.e., understanding a conveyed message, but with different mediums. The former
models what is said (sentences) while the latter learns from what is done (behavior). The syntax and
semantics of a sentence are comparable with the behavioral patterns and the characteristics of a
user. Hence, we hypothesize the learning procedure can be consistent in methodology as well, and
propose to build upon BERT for pretraining user representations on unlabeled behavior data.

Our proposal, UserBERT, simultaneously learns from three categories of user data, i.e., long-term
and short-term behavior as well as user profiles, via a unified architecture. In particular, differ-
ent action types (e.g., page views, clicks and purchases) and attributes (e.g., shop and item genre)
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are chosen to represent long-term and short-term user behavior. For these two behavior types, we
first present distinct strategies to discretize them into a sequence of behavioral words. Instead of
modeling single user actions sequentially, the applied discretization leads to better generalization.
The token representation of these behavioral words is computed by the concatenation and mean
calculation of the word embeddings of the attribute IDs in each action, and this is followed by the
summation of token, position and segment embeddings. These representation vectors are finally
aligned with the word embeddings of user categorical profiles as the input to UserBERT. With this
input, we design a novel pretext task, masked multi-label classification, and the UserBERT model
is pretrained via optimizing the multi-label classifications of the multiple attributes in the masked
behavioral words.

Despite the parallels between user behavior and sentences, there are substantial differences and
challenges in designing the learning procedure in a coherent way. Our model is able to deal with
heterogeneous user behavior data, and achieve generalization via effective tokenization and the pre-
training task. While there is prior work applying BERT to task-specific user modeling (Sun et al.,
2019b), this paper is built upon the assumption that behavioral patterns can be understood like the
structure of a language. The UserBERT model explores integrating various types of user data in a
unified architecture and learning generic representations with self-supervised signals. In our exper-
iments, the pretrained model is fine-tuned on three different real-world tasks, and the results show
that UserBERT outperforms task-specific modeling and multi-task learning based pretraining.

Our contributions are summarized as follows:

• We propose UserBERT, a self-supervised learning model, to pretrain user representations
via analogizing actions in a user behavior sequence to words in sentence. It eliminates the
needs of previous approaches for collecting additional user annotated labels.

• We design the discretization of user raw data sequences, the generation of the input repre-
sentation and a novel pretext task for pretraining.

• UserBERT adopts a unified model architecture to enable the simultaneous learning from
heterogeneous data including long, short-term behavior as well as demographics.

• We demonstrate the empirical power of UserBERT with extensive experiments. Our model
is compared with task-specific models without pretraining and multi-task learning based
pretraining models, and achieves performance gains on three real-world applications.

2 RELATED WORK

2.1 PRETRAINING AND TRANSFER LEARNING

Recent studies have demonstrated that pretraining on large, auxiliary datasets followed by fine-
tuning on target tasks is a promising paradigm for boosting performance (Oquab et al., 2014; Don-
ahue et al., 2014; Hendrycks et al., 2019; Ghadiyaram et al., 2019). Multi-task learning has been
one of the commonly adopted approaches for pretraining due to its ability to improve generaliza-
tion (Zhang & Yang, 2017; Ruder, 2017). It is shown that the pretrained MTL models can boost
performance even when transferred to unseen tasks (Liu et al., 2015; Ni et al., 2018). Despite its
success, MTL still has many challenges, such as negative transfer and the learning adjustment be-
tween different tasks (Guo et al., 2018). Also, MTL requires large amounts of well-annotated labels
to produce satisfying outputs. There are two common forms of adaptation when transferring the pre-
trained models to a given target task, i.e., feature-based in which the pretrained weights are frozen,
and directly fine-tuning the pretrained model (Peters et al., 2019). We fine-tune pretrained models
in our experiments.

2.2 SELF-SUPERVISED LEARNING

Deep learning models can already compete with humans on challenging tasks like semantic seg-
mentation in the CV area (He et al., 2015) as well as a few language understanding tasks (Liu et al.,
2019). However, such success relies on adequate amounts of quality training data, which can be
extremely expensive or even impossible to obtain (Kolesnikov et al., 2019). As a result, a lot of
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research efforts aim to liberate learning from the heavy dependency on supervised signals. Self-
supervised learning (SSL), a subclass of unsupervised learning, has been drawing more attention
since the recent advances in the NLP field. Instead of using supervision signals, SSL only requires
unlabeled data and trains models via formulating a pretext learning task. There are two main types
of pretext tasks: context-based (Pathak et al., 2016; Noroozi & Favaro, 2016; Sermanet et al., 2018;
Wu et al., 2019) and contrastive-based (Hjelm et al., 2019; Chen et al., 2020).

2.3 USER MODELING

To build user-oriented machine learning applications, the key challenge is finding an expressive
representation of user data so that the followed modeling can effectively extract useful information to
produce good performance. For that reason, much effort has been going towards data preprocessing
and transformations, such as converting user categorical attributes to embeddings and aggregating
user activities like total number of visits, clicks or amount of money spent over certain time interval
or a particular product genre (Richardson et al., 2007; Zhu et al., 2010). Deep learning models
have successfully mitigated the dependency on human efforts due to its ability to capture underlying
representations in raw data (Cheng et al., 2016; Covington et al., 2016; Zhou et al., 2018). However,
these models need massive supervision signals for training, and they are mostly designed for specific
tasks like recommendation (Pei et al., 2019) and click-through rate prediction (Zhou et al., 2019).

Despite the success of these deep learning models, they fail to generate promising results for real-
world industrial tasks with limited labeled data. To deal with this issue, the methodology that pre-
training universal user representations on massive user data, and then fine-tuning them for down-
stream tasks is explored. The goal is to learn a universal and effective representation for each user
which can be transferred to new tasks (Ni et al., 2018). However, MTL-based pretraining still re-
quires the collection of user labels. Also, it is limited by inherent shortcomings to achieve optimal
results (Kendall et al., 2018; Guo et al., 2018). It is highly desirable for user applications to have
a learning paradigm that does not require large amounts of manually annotated data. Our work is
inspired by the BERT model which pretrains representations for language understanding. We aim to
pretrain universal user representations by analogizing actions in a user behavior sequence to words
in sentence, and apply transfer learning to downstream tasks, especially those with few labeled data,
for boosting performance.

3 THE PROPOSED APPROACH

In this section, we first review the BERT model in brief, and then elaborate on how to extend it to
user data including behavior sequences and demographic profiles.

3.1 THE BERT MODEL

BERT is a language representation model that pretrains deep bidirectional representations by jointly
conditioning on both left and right contexts in all encoding layers (Devlin et al., 2019). The input
of the BERT model is a sequence of tokens that can represent both a single text sentence and a pair
of sentences. These discrete tokens consist of words and a set of special tokens: separation tokens
(SEP), classifier tokens (CLS) and tokens for masking values (MASK). For a token in the sequence,
its input representation is a sum of a word embedding, the embeddings for encoding position and
segment.

The BERT model is pretrained with two tasks, masked language modeling (MLM) and next sentence
prediction. In MLM, the input tokens are randomly masked and the BERT model is trained to
reconstruct these masked tokens. In detail, a linear layer is learned to map the final output features
of the masked tokens to a distribution over the vocabulary and the model is trained with a cross-
entropy loss. In next sentence prediction, the inputs are two sampled sentences with a separator
token SEP between them. The model learns to predict whether the second sentence is the successor
of the first. A linear layer connecting the final output representations of the CLS token is trained
to minimize a cross-entropy loss on binary labels. Many recent research works focus on extending
the BERT model to areas beyond NLP, and successfully achieved state-of-the-art results (Sun et al.,
2019a; Lu et al., 2019; Su et al., 2020; Qi et al., 2020).
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Figure 1: Tokenization and input representation generation of long-term, short-term user be-
havior and profile data. To form behavioral words, we discretize long-term behavior into 24-hour
intervals and segment short-term sequences when there is a time interval larger than 30 minutes be-
tween two actions. The word embeddings of the attribute IDs in each action are first concatenated.
Then, the token representation is constructed by the mean of all action embeddings. The representa-
tion in the sequence is a summation of token embeddings and the embeddings for encoding position
and segment.

3.2 USERBERT

Tokenization of user behavior sequences. Our goal is to learn generic user representations that
characterize users based on their preferences and recent interests. We decide not to sequentially
model single actions in long-term and short-term user data. While such modeling is suitable for
certain tasks, it is susceptible to overfitting when learning generic user representations. Instead,
we learn from a sequence of clustered user actions, in which a cluster represents a routine or a
spontaneous interest. Customers often make online purchases with specific intentions, e.g., shopping
for a shirt, cartoon books or a gift for Mother’s Day. Also, many customers have long-standing
preferences for particular stores and sales are heavily impacted by seasonality. These continuous
or related actions form a ‘word’ in a behavior sequence. Similarly, we consider the same regarding
short-term user behavior. Users commonly browse web content, moving between pages on an e-
commerce site. During this time period, in order to capture the user’s interest, we aim to estimate
the theme or product genre rather than the specific order of individual actions.

Therefore, we first need to segment raw action data into a sequence of ’behavioral words’ for each
user, analogous to words in a sentence. In detail, we adopt different approaches for long-term
and short-term data. Data representing long-standing user preferences is discretized into 24-hour
intervals from 4 AM of one day to 4 AM of the next day. Short-term data is discretized if there is a
time interval larger than 30 minutes between two actions, similar to the processing steps in Grbovic
& Cheng (2018).

Input representations. In order to enable bidirectional representation learning, we transform the
behavioral word sequence into a sequence of input embeddings. We first introduce the concept of
action type and attribute in user actions: The action type indicates what a user does, e.g., making a
purchase or obtaining points for using a service, while the attribute of an action includes the shop
name, the item genre and price range, etc, as shown in Figure 1. We choose different action types and
attributes in our dataset to represent long-term and short-term user behavior, and propose separate
tokenization strategies for them since we expect to extract inherent user preferences from regular
routines over longer time periods, and short-term interests from recent, temporary interactions. In
combination with demographic data, we consider the learned representations comprehensive and
expressive.

To generate input representations, all attribute IDs are first mapped to fixed-length word embeddings
via look-up tables. Then, the attribute embeddings of each action are concatenated. Subsequently,
the token representation is constructed by the mean of all action embeddings. Finally, the input
embedding vector is obtained by summing the token embeddings and the embeddings for encoding

4



Under review as a conference paper at ICLR 2021

Figure 2: Pretraining of UserBERT. The representation vectors in input sequences are randomly
masked (zeroed-out), and then the masked input is passed through UserBERT. The model is trained
to reconstruct the attributes in these masked ‘words’. For each attribute, an output layer is connected
to the hidden representations at the masked positions, and it is learned via minimizing the prediction
errors of multi-label classifications.

position and segment. Long and short-term user data share the same processing steps above, but each
has their own definitions for token position. While the position of a token in long-term sequences
is the number of days counted from the starting point of the collected training data, for short-term
data it is the number of hours. The segment embedding is used to differentiate the given types of
user behavior. In order to incorporate non-temporal user profile data to our modeling, we consider
categorical attributes like gender as tokens in the user input sequence. For the continuous-valued
attributes like age, we segment them by heuristics and convert them to categorical attributes. After
mapping attributes to word embedding vectors, these are summed to the segment embedding. Note
that there is no position embedding for profile embeddings since no order information needs to
be captured for these user attributes. The input sequence for each user is formed by aligning the
generated representation vectors of user behavior as well as the embeddings of user profiles, see
Figure 1 for illustration.

Pretraining tasks. The generated input sequences allow us to make minimal changes to the BERT
architecture and follow the practice in Devlin et al. (2019). We then pretrain our model to learn
bidirectional representations. While the MLM task seems to naturally apply to our modeling, recon-
structing the masked ‘behavioral words’ requires modification since these words contain an assem-
bly of user actions rather than individual words used in the original BERT model. We implement
masked multi-label classification to predict the multiple attributes in the masked behavioral words.
More precisely, for each target attribute in a masked token, a linear layer is connected to the final
representations and learned to map a distribution over the vocabulary of the attribute, as illustrated
in Figure 2. For one masked token, the training loss is the sum of cross-entropy losses of all the
attribute predictions, e.g., the prediction of the shop IDs and genre IDs, etc. The final loss for one
input sequence is the sum of the losses of all masked tokens.

For masking input tokens, we follow a similar process as BERT: 15% of tokens are selected uni-
formly, where 80% of the time the token is zeroed-out and remains unchanged otherwise. We distin-
guish between three segments of behavioral words from the three types of user data, i.e., long-term,
short-term and user profiles. For long and short-term segments, we apply the masking-prediction for
pretraining our model, while we do not mask user profiles. To pretrain UserBERT, we first randomly
sample a mini-batch of raw user sequences. Then, they are tokenized and transformed to input rep-
resentations, which is followed by the masking step. In the end, the masked sequences are passed
through the model, and the model is trained by minimizing the prediction error for reconstructing
what attributes are inside the masked tokens. For each attribute type, a linear layer is learned to map
the hidden representations of masked tokens to distributions over its vocabulary for conducting the
multi-label classification.
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Let i be a randomly sampled index for masking, wi and w\i be the masked behavioral word and the
input after masking to the UserBERT. Also, let n be the number of target attributes for reconstruction
prediction, and f k(w\i|θ) be the final output vector after softmax layer for k-th attribute in the
masked wi. The loss of the UserBERT model is:

L(θ) = −Ew∼D,i∼{1,..,t}

n∑
k=1

LCE(y
k
i , f

k(w\i|θ)), (1)

where w is a uniformly sampled input representation sequence from the training dataset D, yki is
the ground truth binary vector for the k-th attribute with its corresponding vocabulary size in the
masked wi and LCE is the cross entropy loss for the multi-label classification. Note that long-term
and short-term user behavior have different types and numbers of attribute in actions. With the
pretrained models, we leverage them for fine-tuning on downstream tasks.

4 EXPERIMENTS

We experimentally verify whether the proposed UserBERT model is able to yield generic user rep-
resentations, and evaluate the performance when applying to different tasks via transfer learning.

4.1 DATASETS

Datasets are collected from a multitude of online ecosystem of services, including an e-commerce
platform, a travel booking service, a golf booking service and others. Customers can access all
services via their unique ID, and their activities across the ecosystem are linked together.

We consider two action types as long-term user behavior. The first one is the purchase action on the
e-commerce platform, and the second one is the point usage history. Points are earned whenever
purchases are made or when certain services are used and can be spent on any service within the
ecosystem. The ‘channel’ attribute represents from which service users obtain points or where they
spend points. We collected the purchase and point history data over a time period of three months
for our experiments. For short-term behavior, we mainly focus on recent customer activities on the
e-commerce website, i.e., browsing and search history. The collected actions are clicks, page views
and searches over a shorter time period of seven days. The detailed information on action types and
attributes in the experimental data are shown in Table 1.

The user profile data is registered customer information such as age and gender. The unique number
of users in the dataset is 22.5 million, the number of daily purchase and point usage samples is
approximately 5 million, and the number of short-term data samples is approximately 50 million.
The data is preprocessed to generate user action sequences.

Table 1: Action types and attributes in user behavior data

Action type Attribute (vocabulary size)

long-term purchase, point usage usage type (4), channel (742), expense range (17),
shop (85,124), genre (11,438), hour (24)

short-term click, search, page view event type (3), shop (40,804),
genre (10,386), device type (2)

4.2 TARGET TASKS

We transfer pretrained models to three downstream tasks that aim to improve the customer experi-
ence. The user targeting task is to identify potential new customers for certain services or products,
and it is formulated as a binary classification problem. The seed users who responded positively
to the target service/product are positive labels, while negative ones are uniformly sampled from
the rest of the users with a 3:1 ratio. The dataset is collected after the time period of the data used
for pretraining. The second task, next genre prediction, is a multi-class prediction problem with
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the aim to predict the next genre that a user will purchase from. The dataset is created from the
one-month user history following the pretraining time period. The final attribute prediction task is
predicting different user attributes such as whether a customer owns a pet. It is also a classification
problem, where ground truth labels are obtained through questionnaires. The datasets of the three
target tasks are split 80-20 to create training and testing datasets for fine-tuning.

4.3 BASELINES

The UserBERT is compared to direct modeling without pretraining and to MTL-based pretraining.
The MTL models apply a multi-tower architecture in which each tower encodes one type of user data
in our experiments. For the MTL-based baselines, different types of user data are passed through
corresponding encoders, and the encoded representations are combined at the last layer before con-
necting to multiple training tasks. The dimension of the combined representations is set to 128 for
all MTL models.

We collect user labels across the services in the ecosystem and pretrain MTL models with 12 multi-
class classification tasks. These pretraining tasks classify the categories of user activities such as the
usage frequency of certain services or attributes like type of occupation. By learning and sharing
across multiple tasks, the yielded user representations are considered to be generalized and applica-
ble for transferring to downstream tasks.

Wide&Deep+MTL: We generate fixed-length (1130-d) embeddings by aggregating behavior data
and input them to the deep part of the model (Cheng et al., 2016). Categorical user profile data is
mapped to word embeddings and concatenated before feeding it into the wide part of the model. The
wide part is a linear model, while the dimensions of the 4 hidden layers for the deep side are 512,
256, 256 and 128, respectively.

LSTM+MTL: The same discretization and input generation is applied to long-term and short-term
user behavior for this model. It is a 3-tower model, in which two LSTMs model the two types of user
behavior and user profiles are modeled in the same way as the Wide&Deep model. The dimension
of the hidden state in all LSTM encoders and the length limitation of both long-term and short-term
data are set to 128.

Transformer+MTL: The architecture is the same as the LSTM+MTL model above but with two
different Transformer encoders (Vaswani et al., 2017) to model long and short-term user data sep-
arately. The length of input user behavior sequence to the encoders is limited to 128 as well. We
pretrain the model via minimizing the summed cross-entropy loss of the multiple training tasks.

UserBERT: The proposed self-supervised learning based pretraining model. It enables a simultane-
ous learning from long, short user behavior and user profiles. Its pretraining is done by reconstruct-
ing attributes in masked tokens via multi-label classifications.

4.4 EXPERIMENTAL SETUP

For UserBERT, we use the same notations as BERT, and set the number of Transformer blocks L to
4, the hidden sizeH to 128 and the number of self-attention headsA to 4. The input sequence length
of both long-term and short-term data is limited to 128 in the experiments. For fair comparison, we
pretrain all models using the Adam optimizer with a learning rate of 1e-4 and a batch size of 16. We
fine-tune models using the same learning rate and a batch size of 128. Pretraining of 400K batches
of the UserBERT model takes approximately 12 hours using our PyTorch implementation, run on
two GeForce RTX 2080 Ti GPUs.

For fine-tuning each target task, the combined encoder representations of the MTL-based models
are fed to an output layer, while the fine-tuning of UserBERT is done by connecting the hidden
representations of the first token to an output layer for each task. After plugging in task-specific
inputs and outputs, we fine-tune the parameters of pretrained models in an end-to-end way.

4.5 EXPERIMENT RESULTS

User Targeting. We show the results for two different services. The sizes of the datasets are 30,204
samples and 31,106, respectively. Compared to the size of the pretraining dataset, the use cases of
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Figure 3: Fine-tuning performance comparison for the user targeting task. ROC AUC and ac-
curacy results on two use cases, predicting new users for two different services.

Figure 4: ROC AUC comparison between
Transformer-based MTL models with different
numbers of labeled data.

Figure 5: Performance comparison between
UserBERT with and without pretraining on user
targeting task

this task only have few labeled data. Classification performance in terms of accuracy and ROC AUC
are shown in Figure 3. The LSTM model, which sequentially models user behavior, has relatively
low accuracy. One possible explanation is that the sequential order of user actions does not provide
useful information for this task. From our experience the user targeting task focuses on patterns from
relatively static user preferences. The Wide&Deep model shows competitive performance, which
is reasonable since our exploratory analysis indicates that user profiles are important features. The
performance of the Transformer-based models reveal that the underlying explanatory factors for this
task can be captured by attention networks. UserBERT outperforms other models in both use cases
by a substantial margin. We hypothesize that, compared to Transformer-based MTL, the learning of
the UserBERT is not limited by the multiple training tasks and is able to learn more expressive and
generic representations from the input.

To further demonstrate the advantage of the proposed method over MTL-based pretraining, we pre-
train Transformer-based MTL models with different numbers of labels before fine-tuning. We eval-
uate three models: without pretraining, trained on 30% of the available labels and trained using
all labels. The comparison indicates that the performance of MTL is significantly affected by the
number of training samples. As shown in Figure 4, more annotated training data contributes to per-
formance gain. The model without the pretraining step shows the worst performance. In contrast,
the pretraining of the UserBERT does not require the additional collection of supervision signals,
and therefore is not impacted by either the quantity or the quality of user annotations.

We also directly apply UserBERT to these two use cases without pretraining to verify whether the
user targeting task benefits from the pretraining step. The ROC AUC comparison between User-
BERT with and without pretraining is shown in Figure 5. The pretrained models outperform the
direct modeling significantly. This indicates that the pretraining step can extract useful informa-
tion and enables the followed fine-tuning to boost performance for downstream tasks. From the
error curves during training, we also observe that models tend to overfit quickly without pretraining.
The pretrained UserBERT model achieves more generic user representations and yields significant
accuracy improvements when adapted to new downstream tasks.

Next Genre Prediction. The test dataset contains 586,130 users, and we run 10 epochs of fine-
tuning for each pretrained model. The mean average precision (mAP) comparison is shown in
Table 2. The UserBERT model outperforms baseline models by a large margin. This task requires
understanding of both long-term preferences as well as recent interests of customers. Prediction
models should be able to pick out candidate genres from user habits over a longer time range,
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Table 2: mAP@10 comparison after 10-epoch
fine-tuning on next genre prediction task.

Model mAP(%)
Wide&Deep+MTL 7.65
LSTM+MTL 6.90
Transformer+MTL 7.10
UserBERT 8.97 Figure 6: ROC AUC comparison on attribute pre-

diction task.

and then identify likely ones as prediction results from latest interest trends. More specifically, a
model should understand how users typically use services in the ecosystem as well as what they
are currently interested in. The architecture of the baseline models learns from different types of
user data separately and combines the last-layer representations for training. It fails to sufficiently
capture the correlations. On the contrary, UserBERT benefits from the unified structure of the user
data and captures more accurate correlations, not only within certain types of user behavior, but also
between different behavior types via attention networks.

Since it is common that users make purchases from only a subset of genres, we also built an intuitive
but strong baseline that sets predictions as the most popular genres ranked in descending order by the
total number of purchases, and compared it against all pretrained models. The mAP@10 is 4.22%,
demonstrating the effectiveness of the pretrained models.

Attribute Prediction. In general, it is challenging to predict user attributes because the predictive
signals in the behavior data are very sparse. In other words, the target user attributes may not be
strongly correlated to behavior data. Therefore, this prediction task evaluates the model’s ability to
discover hidden explanatory factors in the raw data. We show experimental results of two use cases:
one is to predict whether a user has a car while the other one is to predict if a user is a parent. These
two tasks are denoted as has car and is parent.

The dataset for the has car task contains 448,501 samples and the one for the is parent task contains
400,268. The classification results of 10-epoch fine-tuning are shown in Figure 6. From the has car
results, we observe that the Wide&Deep model shows good performance, although other models
eventually reach similar accuracy. We believe this is due to the fact that user demographics like age
and living area are important features for this task. It seems challenging for models to extract other
decisive patterns from either long-term or short-term user behavior. On the other hand, whether a
user is a parent or not seems to present different characteristics in terms of how they behave on an e-
commerce or travel booking platform. These patterns can be captured by deep learning models like
UserBERT and Transformer-based models. UserBERT is able to match and eventually outperform
the baseline models.

5 CONCLUSIONS

This paper introduces a novel paradigm to understand user behavior by using the analogy to language
understanding. We present UserBERT, an extension of the BERT model to user data, for pretraining
user representations in a self-supervised way. It explores and demonstrates the possibility for user-
oriented machine learning tasks to alleviate the dependency on large annotated datasets. Extensive
experiments show that a well-designed pretrained model with self-supervision is able to outperform
fully supervised learning models when transferred to downstream applications.

REFERENCES

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, 2013. ISSN 0162-8828.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

9



Under review as a conference paper at ICLR 2021

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan
Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender
systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp.
7–10, 2016.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning
by context prediction. In Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1422–1430, 2015.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Dar-
rell. Decaf: A deep convolutional activation feature for generic visual recognition. In Proceedings
of the 31st International Conference on Machine Learning, pp. 647–655, 2014.

Deepti Ghadiyaram, Matt Feiszli, Du Tran, Xueting Yan, H. Wang, and D. Mahajan. Large-scale
weakly-supervised pre-training for video action recognition. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 12038–12047, 2019.

Mihajlo Grbovic and Haibin Cheng. Real-time personalization using embeddings for search ranking
at airbnb. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 311–320, 2018.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task prioriti-
zation for multitask learning. In ECCV, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. In ICML, 2019.

Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In ICLR, 2019.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7482–7491, 2018.

Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual repre-
sentation learning. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1920–1929, 2019.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In ICLR, 2020.

Zhouhan Lin, Minwei Feng, C. D. Santos, Mo Yu, B. Xiang, Bowen Zhou, and Yoshua Bengio. A
structured self-attentive sentence embedding. In International Conference on Learning Represen-
tations, 2017.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang. Representation
learning using multi-task deep neural networks for semantic classification and information re-
trieval. In Proceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 912–921, 2015.

10



Under review as a conference paper at ICLR 2021

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4487–4496, 2019.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. In Advances in Neural Information Processing
Systems, pp. 13–23, 2019.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representa-
tions of words and phrases and their compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems, pp. 3111–3119, 2013.

Yabo Ni, Dan Ou, Shichen Liu, Xiang Li, Wenwu Ou, Anxiang Zeng, and Luo Si. Perceive your
users in depth: Learning universal user representations from multiple e-commerce tasks. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 596–605, 2018.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representions by solving jigsaw
puzzles. In ECCV, 2016.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. 2014 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1717–1724, 2014.
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