A Survey on Enhancing Large Language Models with Symbolic Reasoning

Anonymous ACL submission

Abstract

Reasoning is one of the fundamental human
abilities, central to problem-solving, decision-
making, and planning. With the development
of large language models (LLMs), significant
attention has been paid to enhancing and un-
derstanding their reasoning capabilities. Most
existing works attempt to directly use LLMs
for natural-language-based reasoning. How-
ever, due to the inherent semantic ambiguity
and complexity of natural language, LLMs of-
ten struggle with complex problems, leading
to challenges such as hallucinations and incon-
sistent reasoning. Therefore, techniques for
constructing formal language representations,
most of which are symbolic languages, have
emerged. In this work, we focus on symbolic
reasoning in LLMs and provide a comprehen-
sive review of the related research. This in-
cludes the types of symbolic languages used,
different symbolic reasoning tasks and related
benchmarks, and typical techniques for enhanc-
ing LL.Ms’ symbolic reasoning abilities. Our
goal is to offer a thorough review of symbolic
reasoning in LLMs, highlighting key findings
and challenges while providing a reference for
future research in this area.

1 Introduction

Reasoning involves deriving conclusions or solu-
tions from limited information by applying logical
analysis, pattern recognition, and knowledge inte-
gration. Researchers have found that once large
language models (LLMs) reach a certain threshold
in terms of parameters and training data, they can
exhibit reasoning capabilities (Wei et al., 2022),
leading researchers to explore a variety of tech-
niques to enhance the reasoning capabilities of
LLMs (Zhang et al., 2022; Yao et al., 2024; Ning
et al., 2023). However, LLMs face significant chal-
lenges in their reasoning processes, with halluci-
nation being one of the most notable. This issue
becomes especially prominent in complex reason-
ing tasks, where LLMs may fail to account for all

relevant factors, omit key information, or fall into
logical traps.

To address these challenges and further enhance
the reasoning capabilities of LLMs, researchers
have begun to explore an innovative framework that
enables LLMs to focus on question comprehension
and symbolic representation generation, while del-
egating the execution of reasoning steps to external
solvers (Olausson et al., 2023; Pan et al., 2023; Gao
et al., 2023). This framework stems from classic
neuro-symbolic approaches (Andreas et al., 2016;
Liang et al., 2017; Ebrahimi et al., 2021) and effec-
tively alleviates the limitations of LLMs in reason-
ing tasks by integrating the strengths of symbolic
representation and specialized solvers.

As long as LLLMs generate accurate symbolic
representations, external solvers can take over and
efficiently solve complex reasoning tasks based on
these representations. This technique not only re-
duces the burden on the language model but also
fully leverages the professional advantages of the
external solver in dealing with specific problems,
achieving complementary advantages and collab-
orative work between the LLMs and the external
solver. Symbolic languages, with their precision,
interpretability, and logicality, bring significant ad-
vantages to the reasoning process (Olausson et al.,
2023; Lyu et al., 2023a; Chen et al., 2022).

Research on LLMs reasoning has progressed
significantly, and numerous review articles have
discussed it from different perspectives. Some pa-
pers provide an overall review of reasoning tasks
(Plaat et al., 2024; Xu et al., 2025; Huang and
Chang, 2022). Others focus on specific reasoning
tasks and deeply analyze the technological advance-
ments within particular fields (Lu et al., 2022). Yu
et al. conduct a comprehensive review of natural
language reasoning (Yu et al., 2024). However,
despite its potential to greatly enhance LLMs rea-
soning, symbolic reasoning remains underexplored
in terms of systematic review and analysis, leaving
a gap in understanding its full impact and utility in
complex reasoning tasks.
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Figure 1: The structure of this survey.

To address this research gap, we present this
comprehensive survey that systematically exam-
ines how to use symbolic language to enhance the
reasoning capabilities of LLMs. As illustrated in
Figure 1, we systematically organize these stud-
ies along three dimensions: symbolic languages,
tasks and benchmarks, and techniques. Through
an extensive synthesis and forward-looking anal-
ysis of existing research, this paper aims to es-
tablish a clear conceptual framework for future
researchers, thereby facilitating further advance-
ments and breakthroughs in the application of sym-
bolic languages for LLMs reasoning.

2 Symbolic Languages

Symbolic languages serve as vital tools within the
realms of artificial intelligence and logic. When
faced with a variety of reasoning tasks, selecting
the appropriate symbolic language becomes par-
ticularly crucial. In the following text, we will
introduce various symbolic languages.

2.1 Logical Symbolic Languages

In Principia Mathematica (Newton, 1934), the lan-
guage of logical symbols is rigorously defined, en-
compassing both the symbols and the rules. Com-
mon logical symbols include conjunction (A), dis-
junction (V), negation (—), and quantifiers (V, 3).
These symbols form the foundation of logical ex-
pressions and, through precise rules, ensure the



rigor and consistency of logical reasoning. Com-
pared to natural language, the language of logical
symbols adheres to strict rules of reasoning. As
long as the premises are correct, it ensures that the
derivation of conclusions is error-free.

It is pointed out in LINC (Olausson et al., 2023)
that utilizing LLMs to transform natural language
into first-order logic and then processing them with
Prover9 can help improve the accuracy of logi-
cal reasoning tasks. The programming language
Prolog, based on first-order logic and known for
its powerful logical reasoning capabilities, is also
widely applied in reasoning tasks (Borazjanizadeh
and Piantadosi, 2024; Yang et al., 2023a; Tan et al.,
2024; Wang et al., 2024c).

2.2 Programming Symbolic Languages

A programming language is a formal language
specifically designed for writing computer pro-
grams, aimed at enabling computers to execute
tasks with precision and efficiency. Nowadays,
there is a wide variety of programming languages,
yet they share some common characteristics. First,
programming languages establish rigorous syntac-
tic rules. Moreover, they commonly incorporate
fundamental logical constructs, including selection
and loop structures. The advantage of program-
ming languages lies in their capability to handle
various complex reasoning tasks with the assistance
of data structures and algorithms.

Different programming languages possess
unique advantages. For example, Matlab is bet-
ter at matrix operations than Java, while Python
provides a rich library for number theory (Li et al.,
2024a). These advantages make Matlab and Python
excel in mathematical reasoning tasks. The experi-
mental results conducted by Luo et al. (Luo et al.,
2024) indicate that Java performs the best in table
reasoning tasks, and C++ demonstrates higher ef-
ficiency in mathematical applications and spatial
reasoning tasks.

2.3 Mathematical Symbolic Language

Mathematical Symbolic Language is the corner-
stone of mathematical expression and communi-
cation. It utilizes a standardized set of symbols
(such as 4+, —, x, +) and rules to precisely de-
scribe mathematical concepts, relationships, and
operations (Newton, 1934). Mathematical Sym-
bolic Language is characterized by its exceptional
conciseness and precision, making it highly effec-
tive in enhancing the accuracy of LLMs when tack-
ling reasoning tasks, particularly those involving
mathematical reasoning.

When faced with mathematical problems, He et
al. (He-Yueya et al., 2023) and Wang et al. (Wang
et al., 2023a) advocate LLMs should transform
these problems into mathematical equations and
subsequently solve them using external solvers.

2.4 Others

There are other symbolic languages specifically tai-
lored for specialized domains. Answer Set Pro-
gramming (ASP) is a declarative programming
paradigm. In [LLM]+ASP (Yang et al., 2023b),
prompts are employed to steer LLMs in transform-
ing natural language to ASP code and then invok-
ing a solver to obtain faithful results. Wang et
al. (Wang et al., 2024a) introduces DSPy (Declara-
tive Self-improving Language Programs in Python)
to conduct self-refinement on the prompts to better
obtain the ASP code.

Planning Domain Definition Language (PDDL)
is a formal language for describing planning prob-
lems. The approach proposed by LLM+P (Liu
et al., 2023a) uses PDDL to formally describe
planning tasks and relies on prompts to gener-
ate the problem code. LLMs-World-Models-for-
Planning (Guan et al., 2023) takes the LLMs
as an intermediate layer. It also brings in hu-
man experts to modify the generated PDDL code.
LLM+AL (Ishay and Lee, 2025) expounds on the
limitations of the PDDL and proposes Action Lan-
guage (AL) as an alternative. This language is de-
signed to be more flexible than PDDL, capable of
expressing complex causal relationships, temporal
constraints, and uncertain events, while maintain-
ing the rigor of formalization.

SQL is a declarative language specifically de-
signed for managing and manipulating relational
databases, widely used in table reasoning (Nahid
and Rafiei, 2024a; Ye et al., 2023; Cheng et al.,
2022).

3 Tasks and Benchmarks

This section focuses on the symbolic reasoning
tasks of LLMs and their associated datasets and
benchmarks. Each task faces unique challenges and
has specific requirements. Detailed information
about these datasets is presented in Table 1.

3.1 Logical Reasoning

Logical reasoning tasks (Pan et al., 2023; Xu et al.,
2024; Lyu et al., 2023a) require LLMs to infer the
truth value of a conclusion from a set of rules and
conditions. This critically depends on the LLMs’
capability to understand logical rules and condi-
tions while consistently upholding rigor throughout



Domains Benchmarks Size

Representative Works

500K
10K

1435
2046
8678
10K

Logical Reasoning ProofWriter (Tafjord et al., 2020)
PrOntoQA (Saparov and He, 2022)
FOLIO (Han et al., 2022)
AR-LSAT (Zhong et al., 2022)
LogiQA (Liu et al., 2020)
CLUTRR (Sinha et al., 2019)

(Yang et al., 2023a; Lee and Hwang, 2024; Pan et al., 2023; Xu et al., 2024)
(Pan et al., 2023; Xu et al., 2024; Tan et al., 2024)
(Li et al., 2024b; Kalyanpur et al., 2024; Liu et al., 2025)
(Pan et al., 2023; Xu et al., 2024; Wang et al., 2024b)
(Liu et al., 2025; Li et al., 2024b; Bao et al., 2024)
(Ye et al., 2024; Yang et al., 2023b)

Mathematical Reasoning GSMEK (Cobbe et al., 2021) 8.5K (Borazjanizadeh and Piantadosi, 2024; Lyu et al., 2023a; Chen et al., 2022; Gao et al., 2023)
Math (Hendrycks et al., 2021) 12.5K (Zhou et al., 2023; Wang et al., 2023b; Li et al., 2024a; Tan et al., 2024)
AQuA (Ling et al., 2017) 100K (Lyu et al., 2023a; Chen et al., 2022; Leang et al., 2024)
SVAMP (Patel et al., 2021) 1K (Lyu et al., 2023a; Chen et al., 2022; Gao et al., 2023; Leang et al., 2024)
ASDiv (Miao et al., 2020) 2305 (Lyu et al., 2023a; Gao et al., 2023)
MAWPS (Koncel-Kedziorski et al., 2016) 3320 (Gao et al., 2023)
ALGEBRA (He-Yueya et al., 2023) 222 (He-Yueya et al., 2023; Wang et al., 2023a)
Spatial Reasoning StepGame (Shi et al., 2022) 6.1K (Wang et al., 2024a; Yang et al., 2023b)
SparTUN (Mirzaee and Kordjamshidi, 2022) 50K (Wang et al., 2024a)
Planning ‘ International Planning Competition (IPC) domains (Seipp et al., 2022) ‘ - ‘ (Liu et al., 2023a; Guan et al., 2023)
Table Reasoning WikiTQ (Pasupat and Liang, 2015) 22033 | (Zhang et al., 2023; Nahid and Rafiei, 2024b; Mouravieff et al., 2024; Cheng et al., 2022; Zhang et al., 2024)
FetaQA (Nan et al., 2022) 10K (Ye et al., 2023; Zhang et al., 2023; Nahid and Rafiei, 2024b)

117854
80654

TabFact (Chen et al., 2020)
WikiSQL (Zhong et al., 2017)

(Ye et al., 2023; Nahid and Rafiei, 2024b; Wang et al., 2024d; Cheng et al., 2022; Zhang et al., 2024)
(Nahid and Rafiei, 2024b)

Others BIG-bench (Srivastava et al., 2022)
Fruit Shop (Hu et al., 2023)

VQAV2 (Goyal et al., 2017)

70

1105904

(Borazjanizadeh and Piantadosi, 2024; Gao et al., 2023; Li et al., 2023)
(Hu et al., 2023)
(Hu et al., 2024b)

Table 1: Common datasets and benchmarks used to evaluate the symbolic reasoning capabilities of LLMs. We
classify these datasets into different domains, mark their sizes, and note some representative works that used them

for evaluation.

the reasoning process. However, due to the ambigu-
ity and complexity of natural language, LLMs are
prone to generating hallucinations and errors. Sym-
bolic reasoning effectively mitigates this ambigu-
ity by employing precise symbolic representations
and formal rules to express concepts and relation-
ships (Olausson et al., 2023; Tan et al., 2024; Ye
et al., 2024).

The content of the datasets used for logical
reasoning tasks mainly includes rules, condi-
tions, conclusions, and conclusion validity labels.
ProofWriter (Tafjord et al., 2020) is a synthetic
dataset dedicated to multi-step logical reasoning.
PrOntoQA (Saparov and He, 2022) is a logical
reasoning dataset constructed based on formal on-
tology structures. FOLIO (Han et al., 2022) is a
natural language inference benchmark constructed
based on first-order logic. AR-LSAT (Zhong et al.,
2022) serves as a benchmark formulated around the
analytical reasoning questions of the Law School
Admission Test. LogiQA (Liu et al., 2020) is a
logical reasoning question-answering dataset con-
structed based on legal and daily scenarios.

3.2 Mathematical Reasoning

Mathematical tasks (Zhou et al., 2023; He-Yueya
et al., 2023; Wang et al., 2023a) encompass a wide
range of problems, including algebra, geometry,
and calculus. During the reasoning process, pre-
cise analysis of mathematical conditions is essen-
tial, often accompanied by extensive computations.
This poses significant challenges to LLMs, demand-
ing both strong analytical understanding and accu-
rate computational capabilities (Chen et al., 2022).
Therefore, by guiding LLMs to focus on generat-
ing symbolic representations (such as mathemati-

cal formulas or Python code) and leveraging these
representations to delegate specific computational
tasks to external solvers, not only is the burden
on LLMs reduced, but the accuracy of mathemati-
cal reasoning is also significantly enhanced (Wang
et al., 2023b; Chen et al., 2022).

The content of the datasets used for mathemat-
ical reasoning tasks consists of problem descrip-
tions, rationales, and answers. The ASDiv (Miao
et al., 2020), SVAMP (Patel et al., 2021), and
GSMSK (Cobbe et al., 2021) are primarily com-
posed of primary-school-level math word prob-
lems. Math (Hendrycks et al., 2021) mainly con-
sists of challenging math competition problems.
AQuA (Ling et al., 2017) contains multiple-choice
math reasoning questions and detailed explana-
tions. MAWPS (Koncel-Kedziorski et al., 2016) is
a benchmark that contains various math word prob-
lems and their solutions. ALGEBRA (He-Yueya
et al., 2023) mainly focuses on algebraic problems.

3.3 Spatial Reasoning

Spatial reasoning (Hu et al., 2024a; Xiao et al.,
2025) is a fundamental aspect of human cognition,
enabling human to interact effectively with the envi-
ronment. It plays a crucial role in tasks that involve
understanding and reasoning about the spatial re-
lationships between objects and their movements.
However, spatial reasoning tasks pose a signifi-
cant challenge for LLMs. It is usually hard for
LLMs to understand the complex relationship de-
scriptions formed by natural language in spatial
reasoning. Utilizing specialized symbolic expres-
sions to model spatial relationships helps to achieve
reliable results (Yang et al., 2023b; Wang et al.,
2024a).



The data format of the spatial reasoning datasets
are composed of scene descriptions, questions, and
answers. StepGame (Shi et al., 2022) is designed
to test the ability to multi-hop spatial reasoning,
SparTUN (Mirzaee and Kordjamshidi, 2022) is
built upon the NLVR (Natural Language for Visual
Reasoning) images.

3.4 Planning

At the heart of planning tasks (Liu et al., 2023a;
Guan et al., 2023; Ishay and Lee, 2025) is craft-
ing a viable path from the initial state to the goal.
This requires guiding the system or environment to-
wards the desired outcome based on the initial state,
through a series of carefully selected actions. Sym-
bolic languages enable the flexible construction of
planning algorithms tailored to specific needs, al-
lowing for precise definition and optimization of
state transitions. This significantly enhances the
executability and reliability of plans.

Planning datasets contain a scenario in which
some decisions need to be made by robots. Some
works conduct experiments in the domains (e.g.,
GRIPPERS, TYREWORLD) of the International
Planning Competition (IPC) (Seipp et al., 2022).

3.5 Table Reasoning

The task of table reasoning (Zhang et al., 2023;
Zhao et al., 2024; Nahid and Rafiei, 2024b; Ye et al.,
2023; Zhang et al., 2024) aims to enable models
to generate corresponding results as answers based
on task requirements when receiving one or more
tables as input (Wang et al., 2024d).

The complexity and huge volume of information
in table may obscure key details, potentially weak-
ening the decision-making ability of LLMs (Liu
et al., 2023c). Compared to relying on natural
language processing, employing domain-specific
symbolic languages designed for structured data,
such as SQL, can effectively reduce the burden on
LLMs.

The content of the datasets used for table rea-
soning tasks consists of tables, questions, and an-
swers. WikiTQ (Pasupat and Liang, 2015) is con-
structed from Wikipedia tables. FetaQA (Nan et al.,
2022) is built based on multi-source factual ta-
bles. TabFact (Chen et al., 2020) is a fact-checking
dataset constructed from Wikipedia tables. Wik-
iSQL (Zhong et al., 2017) is a large-scale text-to-
SQL dataset built upon Wikipedia tables.

3.6 Others

Given that multi-modal reasoning tasks (Suris et al.,
2023; Hu et al., 2024b) typically span multiple cate-

gories discussed previously, they cannot be strictly
classified into a single specific category. The main
challenge in multi-modal reasoning lies in how
to efficiently integrate information from different
modalities. Leveraging symbolic languages en-
able seamless interaction and collaborative cooper-
ation among different modalities, thereby enhanc-
ing the overall reasoning capabilities(Gupta and
Kembhavi, 2023).

The content of the datasets used for multi-modal
reasoning tasks consists of visual information and
textual information. The NLVR2 dataset (Suhr
et al., 2018) consists of images and their corre-
sponding descriptive sentences. The CoVR dataset
(Ventura et al., 2024) is a dataset for composite
video retrieval tasks.

Some datasets are challenging to precisely match
with specific tasks. We provide a brief introduction
here. BIG-bench (Srivastava et al., 2022) encom-
passes over 200 tasks designed to test various rea-
soning capabilities of LLMs. Some benchmarks
are designed for testing the performance of the
framework they proposed to solve some real-world
problems (Hu et al., 2023). There are correspond-
ing datasets available for testing some works that
apply VLMs (Goyal et al., 2017).

4 Techniques

In general, four typical techniques are used to en-
hance the reasoning capabilities of LLMs, includ-
ing task decomposition, symbolic translation, lever-
aging external solvers, and self-revision. The typ-
ical processes of enhancing LLMs with symbolic
reasoning are shown in Figure 2. Many works
adopt task decomposition as a fundamental tech-
nique. Symbolic translation and leveraging exter-
nal solvers are usually used together. The mapping
relationship between techniques and tasks is shown
in Table 2.

4.1 Task Decomposition

By decomposing problems into smaller and man-
ageable sub-problems, LLMs can handle these
problems effectively, which makes the problem-
solving process clear and trackable. Task decom-
position can serve as a fundamental technique, fol-
lowed by the deployment of symbolic languages.
Bridge (Wang et al., 2023a) improves the accuracy
of generating equations by decomposing complex
problems into independent sub-problems. VIS-
PROG (Gupta and Kembhavi, 2023) addresses
complex tasks by decomposing them into multi-
ple modules, each processing using visual models,
Python, and other tools.
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Figure 2: Typical processes of enhancing LLMs with symbolic reasoning.

Task decomposition is widely used in table rea-
soning. The implementation forms of task de-
composition in table reasoning include problem
decomposition and table decomposition. Chain-
of-Table (Wang et al., 2024d) framework decom-
poses tables by dynamically generating a chain of
table operations, and presents intermediate reason-
ing results in the form of structured tables. Aim-
ing at long-form table question answering, TA-
PERA (Zhao et al., 2024) decomposes complex
questions into sub-problems through three modules:
QA content planner, executable table reasoner, and
answer generator. In TabSQLIify (Nahid and Rafiei,
2024b) and ReAcTable (Zhang et al., 2023), sym-
bolic languages have been used to decompose the
large tables into small sub-tables containing only
the essential information required to answer ques-
tions. DATER (Ye et al., 2023) and ALTER (Zhang
et al., 2024) adopt a dual decomposition mecha-
nism, extracting sub-tables relevant to the question
from large tables and breaking down complex prob-
lems into logical sub-problems. The issue of table
structure has been addressed by NormTab (Nahid
and Rafiei, 2024a), which optimizes tables through
value normalization and structural normalization,
and decomposes tables into sub-tables.

4.2 Symbolic Translation

In most of the works, symbolic translation appears
together with leveraging external solvers. The pro-
cess of these two techniques is first to use LLMs
to translate the natural language into symbolic ex-
pressions, then select an appropriate solver to ad-
dress the problem. There are some differences in
the implementation forms of symbolic translation.
Some works use prompts to guide LLMs to con-
duct symbolic translation, while some works adopt
fine-tuning to enhance the translation capabilities
of LLMs.

Translating natural language into logical expres-
sions is a prevalent practice in logical reasoning.

Logic-LM (Pan et al., 2023) and LINC (Olaus-
son et al., 2023) generate a symbolic represen-
tation for the input problem with LLMs via in-
context learning. Faithful CoT (Lyu et al., 2023b)
prompts LL.Ms to translate the problems into a
reasoning chain, which interleaves natural lan-
guage comments and symbolic language programs.
SatLM (Ye et al., 2024) uses LLMs to parse natural
language problems into declarative task specifica-
tions (e.g., logical formulas), which have relative
solvers.

Programming symbolic languages and mathe-
matical symbolic languages can represent quan-
titative relationships and are suitable for solving
mathematical problems. PoT (Chen et al., 2022)
prompts LL.Ms to generate Python code. Consider-
ing the differences between programming symbolic
languages, MultiLingPoT (Li et al., 2024a) fine-
tunes LLMs to generate code in four distinct pro-
gramming symbolic languages. Declarative-math-
word-problem (He-Yueya et al., 2023) translates
natural language problems into systems of equa-
tions according to set principles. Bridge (Wang
et al., 2023a) erases information irrelevant to equa-
tion generation from the sub-problems and trans-
forms them into equations.

Spatial reasoning and planning have domain-
specific symbolic languages. CoS has been pro-
posed by (Hu et al., 2024a), leveraging specific
symbols to simplify the spatial-relationship in-
formation expressed in natural language in CoT.
[LLM]+ASP and DSPy-based LLM+ASP (Yang
et al., 2023b; Wang et al., 2024a) introduces ASP
(Answer Set Programming), translates the natural
language into ASP code. VAP (Xiao et al., 2025)
guides the LLMs to call upon Multi-Modal Large
Language Model (MLLM) to understand image
information and assist in plan generation.

Compared to other tasks, planning is more depen-
dent on symbolic languages because it is necessary
to ensure that the plans are executable and reliable.



Tasks Papers

Techniques

Logical Reasoning Logic-LM (Pan et al., 2023)
SymbCoT (Xu et al., 2024)
LINC (Olausson et al., 2023)
AMR-LDA (Bao et al., 2024)
Faithful CoT (Lyu et al., 2023b)
SatLM (Ye et al., 2024)

LoT (Liu et al., 2025)
AMR-LDA (Bao et al., 2024)
Thought-Like-Pro (Tan et al., 2024)

Symbolic Translation, Leveraging External Solvers
Self-Revision
Symbolic Translation, Leveraging External Solvers
Symbolic Translation
Symbolic Translation, Leveraging External Solvers
Symbolic Translation, Leveraging External Solvers
Symbolic Translation
Symbolic Translation
Symbolic Translation

Mathematical Reasoning PoT (Chen et al., 2022)
CSV (Zhou et al., 2023)
MultiLingPoT (Li et al., 2024a)

Bridge (Wang et al., 2023a)

Symbolic Translation, Leveraging External Solvers
Leveraging External Solvers, Self-Revision
Symbolic Translation, Leveraging External Solvers

Declarative-math-word-problem (He-Yueya et al., 2023) Symbolic Translation

Task Decomposition, Symbolic Translation

Spatial Reasoning CoS (Hu et al., 2024a)
[LLM]+ASP (Yang et al., 2023b)
DSPy-based LLM+ASP (Wang et al., 2024a)
VAP (Xiao et al., 2025)

Symbolic Translation
Symbolic Translation, Leveraging External Solvers
Symbolic Translation, Leveraging External Solvers, Self-Revision
Symbolic Translation, Leveraging External Solvers

Planning LLM+P (Liu et al., 2023a)
LLMs-World-Models-for-Planning (Guan et al., 2!
LLM+AL (Ishay and Lee, 2025)

Symbolic Translation, Leveraging External Solvers
023) | Symbolic Translation, Leveraging External Solvers, Self-Revision
Symbolic Translation, Leveraging External Solvers, Self-Revision

Table Reasoning Chain-of-Table (Wang et al., 2024d)
TAPERA (Zhao et al., 2024)
TabSQLify (Nahid and Rafiei, 2024b)
ReAcTable (Zhang et al., 2023)
DATER (Ye et al., 2023)
ALTER (Zhang et al., 2024)
NormTab (Nahid and Rafiei, 2024a)

Task Decomposition
Task Decomposition, Leveraging External Solvers
Task Decomposition
Task Decomposition
Task Decomposition
Task Decomposition
Task Decomposition

Others VISPROG (Gupta and Kembhavi, 2023)
CodeVQA (Subramanian et al., 2023)
CodeSteer (Chen et al., 2025)
ViperGPT (Suris et al., 2023)

PAL (Gao et al., 2023)

Task Decomposition
Leveraging External Solvers
Self-Revision
Leveraging External Solvers
Leveraging External Solvers

Table 2: Techniques used in different reasoning tasks.

Symbolic languages enable flexible construction
of planning algorithms, allowing for the precise
definition and optimization of state transitions. The
approach proposed by LLM+P (Liu et al., 2023a)
converts natural language into PDDL using LLMs.
LLMs-World-Models-for-Planning (Guan et al.,
2023) incorporates corrections for errors in the con-
tent translated by LLMs. LLM+AL (Ishay and Lee,
2025) introduces an AL called BC+ (Babb and
Lee, 2020) as an alternative to PDDL and prompts
LLMs to translate natural language into AL.

Logical expansion based on symbolic represen-
tation provides a more complete semantic expres-
sion, reducing the risk of semantic conversion er-
rors in LLMs (Liu et al., 2025). LoT (Liu et al.,
2025) utilizes LLLMs to extract sentences contain-
ing conditional reasoning relationships from the in-
put and implement logical expansion using Python.
According to AMR-LDA (Bao et al., 2024), the
Abstract Meaning Representation (AMR) graph is
used to carry out logical expansion by applying the
principle of logical equivalence. Imitation learn-
ing has been leveraged by Thought-Like-Pro (Tan
etal., 2024) to enable LLMs to mimic the reasoning
trajectories generated by the Prolog logic engine.

4.3 Leveraging External Solvers

Leveraging external solvers is a technique that uses
solvers to address formal symbolic expressions.
This technique has effectively addressed the limita-
tions of LLMs in terms of precise computation. By
guiding the LLMs to generate content in the input
format required by these solvers, reliable results
can be obtained.

For logical reasoning problems, after obtain-
ing the symbolic expressions, using a solver to
derive the answers is prevalent. LINC (Olaus-
son et al., 2023) focuses on first-order logic and
Logic-LM (Pan et al., 2023) adopts various solvers
to address different kinds of problems. Faith-
ful CoT (Lyu et al., 2023b) incorporates external
solvers and ensures that the answer is the deter-
ministic result of executing the reasoning chain.
SatLM (Ye et al., 2024) adopts relative solvers to
derive answers based on logical formulas.

Programming symbolic languages are suitable
for solving mathematical problems. PoT (Chen
et al., 2022) executes the generated Python code
to solve mathematical problems. PAL (Gao et al.,
2023) and CSV (Zhou et al., 2023) use generated
Python code as intermediate reasoning steps. Mul-



tiLingPoT (Li et al., 2024a) considers multiple pro-
gramming symbolic languages, selects an appropri-
ate one from four different options.

Spatial reasoning and planning require con-
sidering complex spatial relationships, and
have exclusive symbolic languages and solvers.
[LLM]+ASP (Yang et al., 2023b) and DSPy-based
LLM+ASP (Wang et al., 2024a) obtain results us-
ing an ASP solver. Visual Question Answering
(VQA) is transformed into a modular code gener-
ation task, where CodeVQA (Subramanian et al.,
2023) and ViperGPT (Suris et al., 2023) prompt
the LLMs to generate Python code that invokes the
APIs of visual language models (VLMs) to process
images. LLM+P (Liu et al., 2023a) and LLMs-
World-Models-for-Planning (Guan et al., 2023) em-
ploy a planner to generate a plan after the symbolic
translation. LLM+AL (Ishay and Lee, 2025) in-
vokes a BC+ solver to obtain plans.

4.4 Self-Revision

For some complex problems, due to issues such as
hallucinations, using LLMs to conduct symbolic
translation or leveraging external solvers may re-
sult in errors. Self-Revision can be used multiple
times within the framework to correct these errors.
Logic-LM (Pan et al., 2023) designs a module to
modify inaccurate logical formulations using the er-
ror messages from the symbolic solver as feedback.
SymbCoT (Xu et al., 2024) designs a Verifier in the
framework. For the found invalid logic, the Verifier
refines the reasoning steps. CSV (Zhou et al., 2023)
proposes "code-based explicit self-verification",
which introduces an additional verification stage.
Iteratively refining the generated ASP programs
and employing the DSPy framework, DSPy-based
LLM+ASP (Wang et al., 2024a) manages complex
workflows and optimizes prompts effectively. By
fine-tuning a small model CodeSteerLLM as an
assistant, combined with a symbolic checker and a
self-answer verifier, CodeSteer (Chen et al., 2025)
guides LLMs to switch between text reasoning and
code generation and continuously refines the re-
sults.

For the planning task, it is prone to result in
factual errors and syntax errors when generating
plans. Introducing a self-revision module is a preva-
lent practice in planning. LLMs-World-Models-
for-Planning (Guan et al., 2023) combines the
PDDL verification tool with the feedback from
human domain experts to correct model errors.
LLM+AL (Ishay and Lee, 2025) introduces multi-
ple verification processes to ensure the executabil-
ity and correctness of the plan.

5 Future Directions

Customized Symbolic Languages and Solvers.
Recent research relies mainly on existing formal
symbolic languages to assist in reasoning, without
innovating the grammar for specific tasks (Olaus-
son et al., 2023; Yang et al., 2023b; Liu et al,,
2023a). However, these existing formal symbolic
languages cannot fully cover all application scenar-
ios in the real world (Ishay and Lee, 2025) and are
unable to entirely meet the requirements. There-
fore, customizing language parsers and related sym-
bolic grammar according to application scenarios
may be the focus of future work.

Multi-Symbolic Language Integration. Rea-
soning tasks are inherently complex and typically
cannot be effectively addressed using a single lan-
guage alone. Multi-Symbolic language integration
can fully leverage the strengths of each symbolic
language, but current methods are superficial in in-
tegration and lack flexibility (Li et al., 2024a; Pan
et al., 2023; Zhang et al., 2023). We encourage
researchers to explore better ways of multilingual
integration to resolve the grammatical and semantic
conflicts between symbolic languages.

Inherent Structured Languages for LLMs.
When leveraging symbolic languages for reasoning
in LLMs, many errors stem from how these models
generate task-specific symbolic expressions. The
currently proposed methods of generating code in
multiple steps (Zhou et al., 2023) and human-like
debugging (Zhong et al., 2024) cannot fully resolve
the problem. We encourage researchers to explore
alternatives that either replace symbolic languages
altogether or imbue LLLMs with inherent structured
and rigorous reasoning capabilities. A possible di-
rection is to design a neuro-symbolic framework
that enables LLLMs to implicitly align free-form
reasoning processes with symbolic representations.

6 Conclusion

In this paper, we conduct a systematic review of
the symbolic reasoning in LLMs. We summarize
the types of symbolic languages used in reason-
ing, illustrate different reasoning tasks and relative
benchmarks, and discuss the typical techniques for
enhancing the symbolic reasoning capabilities of
LLMs. We also discuss the promising future direc-
tions of symbolic reasoning. We hope this paper
can offer a comprehensive and valuable overview
of the present status of the field and facilitate fur-
ther advancements in the application of symbolic
language for LLM reasoning.



7 Limitations

While this survey aims to provide a comprehensive
overview of the integration of symbolic reason-
ing with large language models (LLMs), it has its
limitations, which we acknowledge to provide a
balanced perspective on our work.

First, the field of enhancing LLMs with sym-
bolic reasoning is evolving at an unprecedented
pace. New methodologies, frameworks, and ap-
plications are being published frequently, making
it challenging to capture the most recent advance-
ments. Despite our rigorous efforts to include the
latest research up to the submission deadline, some
cutting-edge developments may have emerged dur-
ing the final stages of this survey’s preparation.

Second, in an effort to provide a broad overview
of the field, this survey categorizes the research
from three perspectives: symbolic languages, tasks
and benchmarks, and techniques. While this ap-
proach offers a structured framework for under-
standing the landscape, the breadth of coverage
inevitably comes at the expense of depth in certain
areas. Some technical nuances, domain-specific
challenges, and emerging sub-fields may have been
underexplored or oversimplified.

Finally, the majority of reasoning benchmarks
are collected and categorized from the experimental
sections of mainstream industry works, potentially
leading to insufficient coverage of niche or domain-
specific reasoning tasks.

Despite these limitations, we believe this survey
provides a valuable foundation for understanding
the current state of research and identifying future
directions in symbolic reasoning with LLMs. We
encourage researchers to build upon this work and
address the gaps identified here to further advance
the field.
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