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Abstract001

Reasoning is one of the fundamental human002
abilities, central to problem-solving, decision-003
making, and planning. With the development004
of large language models (LLMs), significant005
attention has been paid to enhancing and un-006
derstanding their reasoning capabilities. Most007
existing works attempt to directly use LLMs008
for natural-language-based reasoning. How-009
ever, due to the inherent semantic ambiguity010
and complexity of natural language, LLMs of-011
ten struggle with complex problems, leading012
to challenges such as hallucinations and incon-013
sistent reasoning. Therefore, techniques for014
constructing formal language representations,015
most of which are symbolic languages, have016
emerged. In this work, we focus on symbolic017
reasoning in LLMs and provide a comprehen-018
sive review of the related research. This in-019
cludes the types of symbolic languages used,020
different symbolic reasoning tasks and related021
benchmarks, and typical techniques for enhanc-022
ing LLMs’ symbolic reasoning abilities. Our023
goal is to offer a thorough review of symbolic024
reasoning in LLMs, highlighting key findings025
and challenges while providing a reference for026
future research in this area.027

1 Introduction028

Reasoning involves deriving conclusions or solu-029

tions from limited information by applying logical030

analysis, pattern recognition, and knowledge inte-031

gration. Researchers have found that once large032

language models (LLMs) reach a certain threshold033

in terms of parameters and training data, they can034

exhibit reasoning capabilities (Wei et al., 2022),035

leading researchers to explore a variety of tech-036

niques to enhance the reasoning capabilities of037

LLMs (Zhang et al., 2022; Yao et al., 2024; Ning038

et al., 2023). However, LLMs face significant chal-039

lenges in their reasoning processes, with halluci-040

nation being one of the most notable. This issue041

becomes especially prominent in complex reason-042

ing tasks, where LLMs may fail to account for all043

relevant factors, omit key information, or fall into 044

logical traps. 045

To address these challenges and further enhance 046

the reasoning capabilities of LLMs, researchers 047

have begun to explore an innovative framework that 048

enables LLMs to focus on question comprehension 049

and symbolic representation generation, while del- 050

egating the execution of reasoning steps to external 051

solvers (Olausson et al., 2023; Pan et al., 2023; Gao 052

et al., 2023). This framework stems from classic 053

neuro-symbolic approaches (Andreas et al., 2016; 054

Liang et al., 2017; Ebrahimi et al., 2021) and effec- 055

tively alleviates the limitations of LLMs in reason- 056

ing tasks by integrating the strengths of symbolic 057

representation and specialized solvers. 058

As long as LLMs generate accurate symbolic 059

representations, external solvers can take over and 060

efficiently solve complex reasoning tasks based on 061

these representations. This technique not only re- 062

duces the burden on the language model but also 063

fully leverages the professional advantages of the 064

external solver in dealing with specific problems, 065

achieving complementary advantages and collab- 066

orative work between the LLMs and the external 067

solver. Symbolic languages, with their precision, 068

interpretability, and logicality, bring significant ad- 069

vantages to the reasoning process (Olausson et al., 070

2023; Lyu et al., 2023a; Chen et al., 2022). 071

Research on LLMs reasoning has progressed 072

significantly, and numerous review articles have 073

discussed it from different perspectives. Some pa- 074

pers provide an overall review of reasoning tasks 075

(Plaat et al., 2024; Xu et al., 2025; Huang and 076

Chang, 2022). Others focus on specific reasoning 077

tasks and deeply analyze the technological advance- 078

ments within particular fields (Lu et al., 2022). Yu 079

et al. conduct a comprehensive review of natural 080

language reasoning (Yu et al., 2024). However, 081

despite its potential to greatly enhance LLMs rea- 082

soning, symbolic reasoning remains underexplored 083

in terms of systematic review and analysis, leaving 084

a gap in understanding its full impact and utility in 085

complex reasoning tasks. 086
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Figure 1: The structure of this survey.

To address this research gap, we present this087

comprehensive survey that systematically exam-088

ines how to use symbolic language to enhance the089

reasoning capabilities of LLMs. As illustrated in090

Figure 1, we systematically organize these stud-091

ies along three dimensions: symbolic languages,092

tasks and benchmarks, and techniques. Through093

an extensive synthesis and forward-looking anal-094

ysis of existing research, this paper aims to es-095

tablish a clear conceptual framework for future096

researchers, thereby facilitating further advance-097

ments and breakthroughs in the application of sym-098

bolic languages for LLMs reasoning.099

2 Symbolic Languages 100

Symbolic languages serve as vital tools within the 101

realms of artificial intelligence and logic. When 102

faced with a variety of reasoning tasks, selecting 103

the appropriate symbolic language becomes par- 104

ticularly crucial. In the following text, we will 105

introduce various symbolic languages. 106

2.1 Logical Symbolic Languages 107

In Principia Mathematica (Newton, 1934), the lan- 108

guage of logical symbols is rigorously defined, en- 109

compassing both the symbols and the rules. Com- 110

mon logical symbols include conjunction (∧), dis- 111

junction (∨), negation (¬), and quantifiers (∀, ∃). 112

These symbols form the foundation of logical ex- 113

pressions and, through precise rules, ensure the 114
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rigor and consistency of logical reasoning. Com-115

pared to natural language, the language of logical116

symbols adheres to strict rules of reasoning. As117

long as the premises are correct, it ensures that the118

derivation of conclusions is error-free.119

It is pointed out in LINC (Olausson et al., 2023)120

that utilizing LLMs to transform natural language121

into first-order logic and then processing them with122

Prover9 can help improve the accuracy of logi-123

cal reasoning tasks. The programming language124

Prolog, based on first-order logic and known for125

its powerful logical reasoning capabilities, is also126

widely applied in reasoning tasks (Borazjanizadeh127

and Piantadosi, 2024; Yang et al., 2023a; Tan et al.,128

2024; Wang et al., 2024c).129

2.2 Programming Symbolic Languages130

A programming language is a formal language131

specifically designed for writing computer pro-132

grams, aimed at enabling computers to execute133

tasks with precision and efficiency. Nowadays,134

there is a wide variety of programming languages,135

yet they share some common characteristics. First,136

programming languages establish rigorous syntac-137

tic rules. Moreover, they commonly incorporate138

fundamental logical constructs, including selection139

and loop structures. The advantage of program-140

ming languages lies in their capability to handle141

various complex reasoning tasks with the assistance142

of data structures and algorithms.143

Different programming languages possess144

unique advantages. For example, Matlab is bet-145

ter at matrix operations than Java, while Python146

provides a rich library for number theory (Li et al.,147

2024a). These advantages make Matlab and Python148

excel in mathematical reasoning tasks. The experi-149

mental results conducted by Luo et al. (Luo et al.,150

2024) indicate that Java performs the best in table151

reasoning tasks, and C++ demonstrates higher ef-152

ficiency in mathematical applications and spatial153

reasoning tasks.154

2.3 Mathematical Symbolic Language155

Mathematical Symbolic Language is the corner-156

stone of mathematical expression and communi-157

cation. It utilizes a standardized set of symbols158

(such as +, −, ×, ÷) and rules to precisely de-159

scribe mathematical concepts, relationships, and160

operations (Newton, 1934). Mathematical Sym-161

bolic Language is characterized by its exceptional162

conciseness and precision, making it highly effec-163

tive in enhancing the accuracy of LLMs when tack-164

ling reasoning tasks, particularly those involving165

mathematical reasoning.166

When faced with mathematical problems, He et 167

al. (He-Yueya et al., 2023) and Wang et al. (Wang 168

et al., 2023a) advocate LLMs should transform 169

these problems into mathematical equations and 170

subsequently solve them using external solvers. 171

2.4 Others 172

There are other symbolic languages specifically tai- 173

lored for specialized domains. Answer Set Pro- 174

gramming (ASP) is a declarative programming 175

paradigm. In [LLM]+ASP (Yang et al., 2023b), 176

prompts are employed to steer LLMs in transform- 177

ing natural language to ASP code and then invok- 178

ing a solver to obtain faithful results. Wang et 179

al. (Wang et al., 2024a) introduces DSPy (Declara- 180

tive Self-improving Language Programs in Python) 181

to conduct self-refinement on the prompts to better 182

obtain the ASP code. 183

Planning Domain Definition Language (PDDL) 184

is a formal language for describing planning prob- 185

lems. The approach proposed by LLM+P (Liu 186

et al., 2023a) uses PDDL to formally describe 187

planning tasks and relies on prompts to gener- 188

ate the problem code. LLMs-World-Models-for- 189

Planning (Guan et al., 2023) takes the LLMs 190

as an intermediate layer. It also brings in hu- 191

man experts to modify the generated PDDL code. 192

LLM+AL (Ishay and Lee, 2025) expounds on the 193

limitations of the PDDL and proposes Action Lan- 194

guage (AL) as an alternative. This language is de- 195

signed to be more flexible than PDDL, capable of 196

expressing complex causal relationships, temporal 197

constraints, and uncertain events, while maintain- 198

ing the rigor of formalization. 199

SQL is a declarative language specifically de- 200

signed for managing and manipulating relational 201

databases, widely used in table reasoning (Nahid 202

and Rafiei, 2024a; Ye et al., 2023; Cheng et al., 203

2022). 204

3 Tasks and Benchmarks 205

This section focuses on the symbolic reasoning 206

tasks of LLMs and their associated datasets and 207

benchmarks. Each task faces unique challenges and 208

has specific requirements. Detailed information 209

about these datasets is presented in Table 1. 210

3.1 Logical Reasoning 211

Logical reasoning tasks (Pan et al., 2023; Xu et al., 212

2024; Lyu et al., 2023a) require LLMs to infer the 213

truth value of a conclusion from a set of rules and 214

conditions. This critically depends on the LLMs’ 215

capability to understand logical rules and condi- 216

tions while consistently upholding rigor throughout 217
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Domains Benchmarks Size Representative Works

Logical Reasoning ProofWriter (Tafjord et al., 2020) 500K (Yang et al., 2023a; Lee and Hwang, 2024; Pan et al., 2023; Xu et al., 2024)
PrOntoQA (Saparov and He, 2022) 10K (Pan et al., 2023; Xu et al., 2024; Tan et al., 2024)

FOLIO (Han et al., 2022) 1435 (Li et al., 2024b; Kalyanpur et al., 2024; Liu et al., 2025)
AR-LSAT (Zhong et al., 2022) 2046 (Pan et al., 2023; Xu et al., 2024; Wang et al., 2024b)

LogiQA (Liu et al., 2020) 8678 (Liu et al., 2025; Li et al., 2024b; Bao et al., 2024)
CLUTRR (Sinha et al., 2019) 10K (Ye et al., 2024; Yang et al., 2023b)

Mathematical Reasoning GSM8K (Cobbe et al., 2021) 8.5K (Borazjanizadeh and Piantadosi, 2024; Lyu et al., 2023a; Chen et al., 2022; Gao et al., 2023)
Math (Hendrycks et al., 2021) 12.5K (Zhou et al., 2023; Wang et al., 2023b; Li et al., 2024a; Tan et al., 2024)

AQuA (Ling et al., 2017) 100K (Lyu et al., 2023a; Chen et al., 2022; Leang et al., 2024)
SVAMP (Patel et al., 2021) 1K (Lyu et al., 2023a; Chen et al., 2022; Gao et al., 2023; Leang et al., 2024)
ASDiv (Miao et al., 2020) 2305 (Lyu et al., 2023a; Gao et al., 2023)

MAWPS (Koncel-Kedziorski et al., 2016) 3320 (Gao et al., 2023)
ALGEBRA (He-Yueya et al., 2023) 222 (He-Yueya et al., 2023; Wang et al., 2023a)

Spatial Reasoning StepGame (Shi et al., 2022) 6.1K (Wang et al., 2024a; Yang et al., 2023b)
SparTUN (Mirzaee and Kordjamshidi, 2022) 50K (Wang et al., 2024a)

Planning International Planning Competition (IPC) domains (Seipp et al., 2022) - (Liu et al., 2023a; Guan et al., 2023)

Table Reasoning WikiTQ (Pasupat and Liang, 2015) 22033 (Zhang et al., 2023; Nahid and Rafiei, 2024b; Mouravieff et al., 2024; Cheng et al., 2022; Zhang et al., 2024)
FetaQA (Nan et al., 2022) 10K (Ye et al., 2023; Zhang et al., 2023; Nahid and Rafiei, 2024b)
TabFact (Chen et al., 2020) 117854 (Ye et al., 2023; Nahid and Rafiei, 2024b; Wang et al., 2024d; Cheng et al., 2022; Zhang et al., 2024)

WikiSQL (Zhong et al., 2017) 80654 (Nahid and Rafiei, 2024b)

Others BIG-bench (Srivastava et al., 2022) - (Borazjanizadeh and Piantadosi, 2024; Gao et al., 2023; Li et al., 2023)
Fruit Shop (Hu et al., 2023) 70 (Hu et al., 2023)
VQAv2 (Goyal et al., 2017) 1105904 (Hu et al., 2024b)

Table 1: Common datasets and benchmarks used to evaluate the symbolic reasoning capabilities of LLMs. We
classify these datasets into different domains, mark their sizes, and note some representative works that used them
for evaluation.

the reasoning process. However, due to the ambigu-218

ity and complexity of natural language, LLMs are219

prone to generating hallucinations and errors. Sym-220

bolic reasoning effectively mitigates this ambigu-221

ity by employing precise symbolic representations222

and formal rules to express concepts and relation-223

ships (Olausson et al., 2023; Tan et al., 2024; Ye224

et al., 2024).225

The content of the datasets used for logical226

reasoning tasks mainly includes rules, condi-227

tions, conclusions, and conclusion validity labels.228

ProofWriter (Tafjord et al., 2020) is a synthetic229

dataset dedicated to multi-step logical reasoning.230

PrOntoQA (Saparov and He, 2022) is a logical231

reasoning dataset constructed based on formal on-232

tology structures. FOLIO (Han et al., 2022) is a233

natural language inference benchmark constructed234

based on first-order logic. AR-LSAT (Zhong et al.,235

2022) serves as a benchmark formulated around the236

analytical reasoning questions of the Law School237

Admission Test. LogiQA (Liu et al., 2020) is a238

logical reasoning question-answering dataset con-239

structed based on legal and daily scenarios.240

3.2 Mathematical Reasoning241

Mathematical tasks (Zhou et al., 2023; He-Yueya242

et al., 2023; Wang et al., 2023a) encompass a wide243

range of problems, including algebra, geometry,244

and calculus. During the reasoning process, pre-245

cise analysis of mathematical conditions is essen-246

tial, often accompanied by extensive computations.247

This poses significant challenges to LLMs, demand-248

ing both strong analytical understanding and accu-249

rate computational capabilities (Chen et al., 2022).250

Therefore, by guiding LLMs to focus on generat-251

ing symbolic representations (such as mathemati-252

cal formulas or Python code) and leveraging these 253

representations to delegate specific computational 254

tasks to external solvers, not only is the burden 255

on LLMs reduced, but the accuracy of mathemati- 256

cal reasoning is also significantly enhanced (Wang 257

et al., 2023b; Chen et al., 2022). 258

The content of the datasets used for mathemat- 259

ical reasoning tasks consists of problem descrip- 260

tions, rationales, and answers. The ASDiv (Miao 261

et al., 2020), SVAMP (Patel et al., 2021), and 262

GSM8K (Cobbe et al., 2021) are primarily com- 263

posed of primary-school-level math word prob- 264

lems. Math (Hendrycks et al., 2021) mainly con- 265

sists of challenging math competition problems. 266

AQuA (Ling et al., 2017) contains multiple-choice 267

math reasoning questions and detailed explana- 268

tions. MAWPS (Koncel-Kedziorski et al., 2016) is 269

a benchmark that contains various math word prob- 270

lems and their solutions. ALGEBRA (He-Yueya 271

et al., 2023) mainly focuses on algebraic problems. 272

3.3 Spatial Reasoning 273

Spatial reasoning (Hu et al., 2024a; Xiao et al., 274

2025) is a fundamental aspect of human cognition, 275

enabling human to interact effectively with the envi- 276

ronment. It plays a crucial role in tasks that involve 277

understanding and reasoning about the spatial re- 278

lationships between objects and their movements. 279

However, spatial reasoning tasks pose a signifi- 280

cant challenge for LLMs. It is usually hard for 281

LLMs to understand the complex relationship de- 282

scriptions formed by natural language in spatial 283

reasoning. Utilizing specialized symbolic expres- 284

sions to model spatial relationships helps to achieve 285

reliable results (Yang et al., 2023b; Wang et al., 286

2024a). 287

4



The data format of the spatial reasoning datasets288

are composed of scene descriptions, questions, and289

answers. StepGame (Shi et al., 2022) is designed290

to test the ability to multi-hop spatial reasoning,291

SparTUN (Mirzaee and Kordjamshidi, 2022) is292

built upon the NLVR (Natural Language for Visual293

Reasoning) images.294

3.4 Planning295

At the heart of planning tasks (Liu et al., 2023a;296

Guan et al., 2023; Ishay and Lee, 2025) is craft-297

ing a viable path from the initial state to the goal.298

This requires guiding the system or environment to-299

wards the desired outcome based on the initial state,300

through a series of carefully selected actions. Sym-301

bolic languages enable the flexible construction of302

planning algorithms tailored to specific needs, al-303

lowing for precise definition and optimization of304

state transitions. This significantly enhances the305

executability and reliability of plans.306

Planning datasets contain a scenario in which307

some decisions need to be made by robots. Some308

works conduct experiments in the domains (e.g.,309

GRIPPERS, TYREWORLD) of the International310

Planning Competition (IPC) (Seipp et al., 2022).311

3.5 Table Reasoning312

The task of table reasoning (Zhang et al., 2023;313

Zhao et al., 2024; Nahid and Rafiei, 2024b; Ye et al.,314

2023; Zhang et al., 2024) aims to enable models315

to generate corresponding results as answers based316

on task requirements when receiving one or more317

tables as input (Wang et al., 2024d).318

The complexity and huge volume of information319

in table may obscure key details, potentially weak-320

ening the decision-making ability of LLMs (Liu321

et al., 2023c). Compared to relying on natural322

language processing, employing domain-specific323

symbolic languages designed for structured data,324

such as SQL, can effectively reduce the burden on325

LLMs.326

The content of the datasets used for table rea-327

soning tasks consists of tables, questions, and an-328

swers. WikiTQ (Pasupat and Liang, 2015) is con-329

structed from Wikipedia tables. FetaQA (Nan et al.,330

2022) is built based on multi-source factual ta-331

bles. TabFact (Chen et al., 2020) is a fact-checking332

dataset constructed from Wikipedia tables. Wik-333

iSQL (Zhong et al., 2017) is a large-scale text-to-334

SQL dataset built upon Wikipedia tables.335

3.6 Others336

Given that multi-modal reasoning tasks (Surís et al.,337

2023; Hu et al., 2024b) typically span multiple cate-338

gories discussed previously, they cannot be strictly 339

classified into a single specific category. The main 340

challenge in multi-modal reasoning lies in how 341

to efficiently integrate information from different 342

modalities. Leveraging symbolic languages en- 343

able seamless interaction and collaborative cooper- 344

ation among different modalities, thereby enhanc- 345

ing the overall reasoning capabilities(Gupta and 346

Kembhavi, 2023). 347

The content of the datasets used for multi-modal 348

reasoning tasks consists of visual information and 349

textual information. The NLVR2 dataset (Suhr 350

et al., 2018) consists of images and their corre- 351

sponding descriptive sentences. The CoVR dataset 352

(Ventura et al., 2024) is a dataset for composite 353

video retrieval tasks. 354

Some datasets are challenging to precisely match 355

with specific tasks. We provide a brief introduction 356

here. BIG-bench (Srivastava et al., 2022) encom- 357

passes over 200 tasks designed to test various rea- 358

soning capabilities of LLMs. Some benchmarks 359

are designed for testing the performance of the 360

framework they proposed to solve some real-world 361

problems (Hu et al., 2023). There are correspond- 362

ing datasets available for testing some works that 363

apply VLMs (Goyal et al., 2017). 364

4 Techniques 365

In general, four typical techniques are used to en- 366

hance the reasoning capabilities of LLMs, includ- 367

ing task decomposition, symbolic translation, lever- 368

aging external solvers, and self-revision. The typ- 369

ical processes of enhancing LLMs with symbolic 370

reasoning are shown in Figure 2. Many works 371

adopt task decomposition as a fundamental tech- 372

nique. Symbolic translation and leveraging exter- 373

nal solvers are usually used together. The mapping 374

relationship between techniques and tasks is shown 375

in Table 2. 376

4.1 Task Decomposition 377

By decomposing problems into smaller and man- 378

ageable sub-problems, LLMs can handle these 379

problems effectively, which makes the problem- 380

solving process clear and trackable. Task decom- 381

position can serve as a fundamental technique, fol- 382

lowed by the deployment of symbolic languages. 383

Bridge (Wang et al., 2023a) improves the accuracy 384

of generating equations by decomposing complex 385

problems into independent sub-problems. VIS- 386

PROG (Gupta and Kembhavi, 2023) addresses 387

complex tasks by decomposing them into multi- 388

ple modules, each processing using visual models, 389

Python, and other tools. 390
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Figure 2: Typical processes of enhancing LLMs with symbolic reasoning.

Task decomposition is widely used in table rea-391

soning. The implementation forms of task de-392

composition in table reasoning include problem393

decomposition and table decomposition. Chain-394

of-Table (Wang et al., 2024d) framework decom-395

poses tables by dynamically generating a chain of396

table operations, and presents intermediate reason-397

ing results in the form of structured tables. Aim-398

ing at long-form table question answering, TA-399

PERA (Zhao et al., 2024) decomposes complex400

questions into sub-problems through three modules:401

QA content planner, executable table reasoner, and402

answer generator. In TabSQLify (Nahid and Rafiei,403

2024b) and ReAcTable (Zhang et al., 2023), sym-404

bolic languages have been used to decompose the405

large tables into small sub-tables containing only406

the essential information required to answer ques-407

tions. DATER (Ye et al., 2023) and ALTER (Zhang408

et al., 2024) adopt a dual decomposition mecha-409

nism, extracting sub-tables relevant to the question410

from large tables and breaking down complex prob-411

lems into logical sub-problems. The issue of table412

structure has been addressed by NormTab (Nahid413

and Rafiei, 2024a), which optimizes tables through414

value normalization and structural normalization,415

and decomposes tables into sub-tables.416

4.2 Symbolic Translation417

In most of the works, symbolic translation appears418

together with leveraging external solvers. The pro-419

cess of these two techniques is first to use LLMs420

to translate the natural language into symbolic ex-421

pressions, then select an appropriate solver to ad-422

dress the problem. There are some differences in423

the implementation forms of symbolic translation.424

Some works use prompts to guide LLMs to con-425

duct symbolic translation, while some works adopt426

fine-tuning to enhance the translation capabilities427

of LLMs.428

Translating natural language into logical expres-429

sions is a prevalent practice in logical reasoning.430

Logic-LM (Pan et al., 2023) and LINC (Olaus- 431

son et al., 2023) generate a symbolic represen- 432

tation for the input problem with LLMs via in- 433

context learning. Faithful CoT (Lyu et al., 2023b) 434

prompts LLMs to translate the problems into a 435

reasoning chain, which interleaves natural lan- 436

guage comments and symbolic language programs. 437

SatLM (Ye et al., 2024) uses LLMs to parse natural 438

language problems into declarative task specifica- 439

tions (e.g., logical formulas), which have relative 440

solvers. 441

Programming symbolic languages and mathe- 442

matical symbolic languages can represent quan- 443

titative relationships and are suitable for solving 444

mathematical problems. PoT (Chen et al., 2022) 445

prompts LLMs to generate Python code. Consider- 446

ing the differences between programming symbolic 447

languages, MultiLingPoT (Li et al., 2024a) fine- 448

tunes LLMs to generate code in four distinct pro- 449

gramming symbolic languages. Declarative-math- 450

word-problem (He-Yueya et al., 2023) translates 451

natural language problems into systems of equa- 452

tions according to set principles. Bridge (Wang 453

et al., 2023a) erases information irrelevant to equa- 454

tion generation from the sub-problems and trans- 455

forms them into equations. 456

Spatial reasoning and planning have domain- 457

specific symbolic languages. CoS has been pro- 458

posed by (Hu et al., 2024a), leveraging specific 459

symbols to simplify the spatial-relationship in- 460

formation expressed in natural language in CoT. 461

[LLM]+ASP and DSPy-based LLM+ASP (Yang 462

et al., 2023b; Wang et al., 2024a) introduces ASP 463

(Answer Set Programming), translates the natural 464

language into ASP code. VAP (Xiao et al., 2025) 465

guides the LLMs to call upon Multi-Modal Large 466

Language Model (MLLM) to understand image 467

information and assist in plan generation. 468

Compared to other tasks, planning is more depen- 469

dent on symbolic languages because it is necessary 470

to ensure that the plans are executable and reliable. 471
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Tasks Papers Techniques

Logical Reasoning Logic-LM (Pan et al., 2023) Symbolic Translation, Leveraging External Solvers
SymbCoT (Xu et al., 2024) Self-Revision

LINC (Olausson et al., 2023) Symbolic Translation, Leveraging External Solvers
AMR-LDA (Bao et al., 2024) Symbolic Translation

Faithful CoT (Lyu et al., 2023b) Symbolic Translation, Leveraging External Solvers
SatLM (Ye et al., 2024) Symbolic Translation, Leveraging External Solvers
LoT (Liu et al., 2025) Symbolic Translation

AMR-LDA (Bao et al., 2024) Symbolic Translation
Thought-Like-Pro (Tan et al., 2024) Symbolic Translation

Mathematical Reasoning PoT (Chen et al., 2022) Symbolic Translation, Leveraging External Solvers
CSV (Zhou et al., 2023) Leveraging External Solvers, Self-Revision

MultiLingPoT (Li et al., 2024a) Symbolic Translation, Leveraging External Solvers
Declarative-math-word-problem (He-Yueya et al., 2023) Symbolic Translation

Bridge (Wang et al., 2023a) Task Decomposition, Symbolic Translation

Spatial Reasoning CoS (Hu et al., 2024a) Symbolic Translation
[LLM]+ASP (Yang et al., 2023b) Symbolic Translation, Leveraging External Solvers

DSPy-based LLM+ASP (Wang et al., 2024a) Symbolic Translation, Leveraging External Solvers, Self-Revision
VAP (Xiao et al., 2025) Symbolic Translation, Leveraging External Solvers

Planning LLM+P (Liu et al., 2023a) Symbolic Translation, Leveraging External Solvers
LLMs-World-Models-for-Planning (Guan et al., 2023) Symbolic Translation, Leveraging External Solvers, Self-Revision

LLM+AL (Ishay and Lee, 2025) Symbolic Translation, Leveraging External Solvers, Self-Revision

Table Reasoning Chain-of-Table (Wang et al., 2024d) Task Decomposition
TAPERA (Zhao et al., 2024) Task Decomposition, Leveraging External Solvers

TabSQLify (Nahid and Rafiei, 2024b) Task Decomposition
ReAcTable (Zhang et al., 2023) Task Decomposition

DATER (Ye et al., 2023) Task Decomposition
ALTER (Zhang et al., 2024) Task Decomposition

NormTab (Nahid and Rafiei, 2024a) Task Decomposition

Others VISPROG (Gupta and Kembhavi, 2023) Task Decomposition
CodeVQA (Subramanian et al., 2023) Leveraging External Solvers

CodeSteer (Chen et al., 2025) Self-Revision
ViperGPT (Surís et al., 2023) Leveraging External Solvers

PAL (Gao et al., 2023) Leveraging External Solvers

Table 2: Techniques used in different reasoning tasks.

Symbolic languages enable flexible construction472

of planning algorithms, allowing for the precise473

definition and optimization of state transitions. The474

approach proposed by LLM+P (Liu et al., 2023a)475

converts natural language into PDDL using LLMs.476

LLMs-World-Models-for-Planning (Guan et al.,477

2023) incorporates corrections for errors in the con-478

tent translated by LLMs. LLM+AL (Ishay and Lee,479

2025) introduces an AL called BC+ (Babb and480

Lee, 2020) as an alternative to PDDL and prompts481

LLMs to translate natural language into AL.482

Logical expansion based on symbolic represen-483

tation provides a more complete semantic expres-484

sion, reducing the risk of semantic conversion er-485

rors in LLMs (Liu et al., 2025). LoT (Liu et al.,486

2025) utilizes LLMs to extract sentences contain-487

ing conditional reasoning relationships from the in-488

put and implement logical expansion using Python.489

According to AMR-LDA (Bao et al., 2024), the490

Abstract Meaning Representation (AMR) graph is491

used to carry out logical expansion by applying the492

principle of logical equivalence. Imitation learn-493

ing has been leveraged by Thought-Like-Pro (Tan494

et al., 2024) to enable LLMs to mimic the reasoning495

trajectories generated by the Prolog logic engine.496

4.3 Leveraging External Solvers 497

Leveraging external solvers is a technique that uses 498

solvers to address formal symbolic expressions. 499

This technique has effectively addressed the limita- 500

tions of LLMs in terms of precise computation. By 501

guiding the LLMs to generate content in the input 502

format required by these solvers, reliable results 503

can be obtained. 504

For logical reasoning problems, after obtain- 505

ing the symbolic expressions, using a solver to 506

derive the answers is prevalent. LINC (Olaus- 507

son et al., 2023) focuses on first-order logic and 508

Logic-LM (Pan et al., 2023) adopts various solvers 509

to address different kinds of problems. Faith- 510

ful CoT (Lyu et al., 2023b) incorporates external 511

solvers and ensures that the answer is the deter- 512

ministic result of executing the reasoning chain. 513

SatLM (Ye et al., 2024) adopts relative solvers to 514

derive answers based on logical formulas. 515

Programming symbolic languages are suitable 516

for solving mathematical problems. PoT (Chen 517

et al., 2022) executes the generated Python code 518

to solve mathematical problems. PAL (Gao et al., 519

2023) and CSV (Zhou et al., 2023) use generated 520

Python code as intermediate reasoning steps. Mul- 521
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tiLingPoT (Li et al., 2024a) considers multiple pro-522

gramming symbolic languages, selects an appropri-523

ate one from four different options.524

Spatial reasoning and planning require con-525

sidering complex spatial relationships, and526

have exclusive symbolic languages and solvers.527

[LLM]+ASP (Yang et al., 2023b) and DSPy-based528

LLM+ASP (Wang et al., 2024a) obtain results us-529

ing an ASP solver. Visual Question Answering530

(VQA) is transformed into a modular code gener-531

ation task, where CodeVQA (Subramanian et al.,532

2023) and ViperGPT (Surís et al., 2023) prompt533

the LLMs to generate Python code that invokes the534

APIs of visual language models (VLMs) to process535

images. LLM+P (Liu et al., 2023a) and LLMs-536

World-Models-for-Planning (Guan et al., 2023) em-537

ploy a planner to generate a plan after the symbolic538

translation. LLM+AL (Ishay and Lee, 2025) in-539

vokes a BC+ solver to obtain plans.540

4.4 Self-Revision541

For some complex problems, due to issues such as542

hallucinations, using LLMs to conduct symbolic543

translation or leveraging external solvers may re-544

sult in errors. Self-Revision can be used multiple545

times within the framework to correct these errors.546

Logic-LM (Pan et al., 2023) designs a module to547

modify inaccurate logical formulations using the er-548

ror messages from the symbolic solver as feedback.549

SymbCoT (Xu et al., 2024) designs a Verifier in the550

framework. For the found invalid logic, the Verifier551

refines the reasoning steps. CSV (Zhou et al., 2023)552

proposes "code-based explicit self-verification",553

which introduces an additional verification stage.554

Iteratively refining the generated ASP programs555

and employing the DSPy framework, DSPy-based556

LLM+ASP (Wang et al., 2024a) manages complex557

workflows and optimizes prompts effectively. By558

fine-tuning a small model CodeSteerLLM as an559

assistant, combined with a symbolic checker and a560

self-answer verifier, CodeSteer (Chen et al., 2025)561

guides LLMs to switch between text reasoning and562

code generation and continuously refines the re-563

sults.564

For the planning task, it is prone to result in565

factual errors and syntax errors when generating566

plans. Introducing a self-revision module is a preva-567

lent practice in planning. LLMs-World-Models-568

for-Planning (Guan et al., 2023) combines the569

PDDL verification tool with the feedback from570

human domain experts to correct model errors.571

LLM+AL (Ishay and Lee, 2025) introduces multi-572

ple verification processes to ensure the executabil-573

ity and correctness of the plan.574

5 Future Directions 575

Customized Symbolic Languages and Solvers. 576

Recent research relies mainly on existing formal 577

symbolic languages to assist in reasoning, without 578

innovating the grammar for specific tasks (Olaus- 579

son et al., 2023; Yang et al., 2023b; Liu et al., 580

2023a). However, these existing formal symbolic 581

languages cannot fully cover all application scenar- 582

ios in the real world (Ishay and Lee, 2025) and are 583

unable to entirely meet the requirements. There- 584

fore, customizing language parsers and related sym- 585

bolic grammar according to application scenarios 586

may be the focus of future work. 587

Multi-Symbolic Language Integration. Rea- 588

soning tasks are inherently complex and typically 589

cannot be effectively addressed using a single lan- 590

guage alone. Multi-Symbolic language integration 591

can fully leverage the strengths of each symbolic 592

language, but current methods are superficial in in- 593

tegration and lack flexibility (Li et al., 2024a; Pan 594

et al., 2023; Zhang et al., 2023). We encourage 595

researchers to explore better ways of multilingual 596

integration to resolve the grammatical and semantic 597

conflicts between symbolic languages. 598

Inherent Structured Languages for LLMs. 599

When leveraging symbolic languages for reasoning 600

in LLMs, many errors stem from how these models 601

generate task-specific symbolic expressions. The 602

currently proposed methods of generating code in 603

multiple steps (Zhou et al., 2023) and human-like 604

debugging (Zhong et al., 2024) cannot fully resolve 605

the problem. We encourage researchers to explore 606

alternatives that either replace symbolic languages 607

altogether or imbue LLMs with inherent structured 608

and rigorous reasoning capabilities. A possible di- 609

rection is to design a neuro-symbolic framework 610

that enables LLMs to implicitly align free-form 611

reasoning processes with symbolic representations. 612

6 Conclusion 613

In this paper, we conduct a systematic review of 614

the symbolic reasoning in LLMs. We summarize 615

the types of symbolic languages used in reason- 616

ing, illustrate different reasoning tasks and relative 617

benchmarks, and discuss the typical techniques for 618

enhancing the symbolic reasoning capabilities of 619

LLMs. We also discuss the promising future direc- 620

tions of symbolic reasoning. We hope this paper 621

can offer a comprehensive and valuable overview 622

of the present status of the field and facilitate fur- 623

ther advancements in the application of symbolic 624

language for LLM reasoning. 625
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7 Limitations626

While this survey aims to provide a comprehensive627

overview of the integration of symbolic reason-628

ing with large language models (LLMs), it has its629

limitations, which we acknowledge to provide a630

balanced perspective on our work.631

First, the field of enhancing LLMs with sym-632

bolic reasoning is evolving at an unprecedented633

pace. New methodologies, frameworks, and ap-634

plications are being published frequently, making635

it challenging to capture the most recent advance-636

ments. Despite our rigorous efforts to include the637

latest research up to the submission deadline, some638

cutting-edge developments may have emerged dur-639

ing the final stages of this survey’s preparation.640

Second, in an effort to provide a broad overview641

of the field, this survey categorizes the research642

from three perspectives: symbolic languages, tasks643

and benchmarks, and techniques. While this ap-644

proach offers a structured framework for under-645

standing the landscape, the breadth of coverage646

inevitably comes at the expense of depth in certain647

areas. Some technical nuances, domain-specific648

challenges, and emerging sub-fields may have been649

underexplored or oversimplified.650

Finally, the majority of reasoning benchmarks651

are collected and categorized from the experimental652

sections of mainstream industry works, potentially653

leading to insufficient coverage of niche or domain-654

specific reasoning tasks.655

Despite these limitations, we believe this survey656

provides a valuable foundation for understanding657

the current state of research and identifying future658

directions in symbolic reasoning with LLMs. We659

encourage researchers to build upon this work and660

address the gaps identified here to further advance661

the field.662
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