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Abstract
How to learn similar representations for spo-001
ken utterances and their written text? We002
believe a unified and aligned representation003
of speech and text will lead to improvement004
in speech translation. To this end, we pro-005
pose ConST, a cross-modal contrastive learn-006
ing method for end-to-end speech-to-text trans-007
lation. We evaluate ConST and a variety of008
previous baselines on multiple language direc-009
tions (En-De/Fr/Ru) of a popular benchmark010
MuST-C. Experiments show that the proposed011
ConST consistently outperforms all previous012
methods, and achieves the state-of-the-art av-013
erage BLEU of 28.5. The analysis further ver-014
ifies that ConST indeed closes the representa-015
tion gap of different modalities — its learned016
representation improves the accuracy of cross-017
modal text retrieval from 4% to 88%.018

1 Introduction019

End-to-end speech-to-text translation (E2E ST) has020

been becoming important in many products and021

real applications. An E2E ST system accepts audio022

signals as the input and generates the target trans-023

lation using a single model. Compared with the024

conventional cascade ST models, E2E ST models025

have achieved almost comparable (Bentivogli et al.,026

2021; Dong et al., 2018) or even superior (Ansari027

et al., 2020; Potapczyk and Przybysz, 2020; Xu028

et al., 2021) performance.029

The performance of an E2E ST model is still030

restricted by the relatively small parallel data, com-031

pared to text machine translation (MT). Exist-032

ing approaches for ST focus on using additional033

data from MT and automatic speech recognition034

(ASR). This can be realized through pre-training035

approaches (Zheng et al., 2021) or multi-task train-036

ing frameworks (Tang et al., 2021b; Ye et al., 2021;037

Han et al., 2021).038

Different from the data perspective, this paper039

investigates the bottleneck of E2E ST from the neu-040

ral representation perspective. We believe that a041
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transcript text (projected to 2D). (a) representations
learned by existing models. (b) an ideal representation
that we expect, where different modalities with same
meaning should stay close to each other.

right representation for audio input is fundamental 042

to effective speech translation. What is the right 043

representation? A recent neurocognitive study re- 044

veals that the human brain processes speech and 045

written text at the same region of the cortex (Regev 046

et al., 2013). Listening to spoken utterance and 047

reading its corresponding sentence result in the 048

same activation patterns in the superior temporal 049

sulcus (Wilson et al., 2018). Drawing an analogy 050

from the human brain to artificial neurons, does this 051

unified representation benefit speech translation? 052

With this hint from the human brain, we ana- 053

lyze Transformer models for speech translation. 054

We observe a noticeable modality gap between en- 055

coder representations of speech and text ( Sec. 6 056

has more details) from existing ST models. An 057

ideal representation should satisfy: if the content 058

of the speech and transcription are similar, their 059

encoded representations should likewise be close 060

to each other. Nevertheless, how to learn unified 061

and aligned speech-text representations? 062

Inspired by the recent progress of contrastive 063

learning approaches in cross-lingual (Lample and 064

Conneau, 2019; Pan et al., 2021) and cross-modal 065

vision-and-language domains (Li et al., 2021; Zhou 066

et al., 2020; Dong et al., 2019), we designed a sim- 067

ple contrastive learning method for ST (ConST) 068

to learn the representations that meet the afore- 069
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mentioned conditions explicitly. On the one hand,070

our model inherits the advantages of the previous071

multi-task learning methods. On the other hand,072

it reduces the gap between the representations of073

speech and its corresponding transcription.074

Our contributions are as follows.075

• We develop ConST for speech translation, a076

cross-modal contrastive learning method, on top077

of the multi-task training framework.078

• Our experiments on the MuST-C benchmark to079

show ConST achieves an average BLEU score of080

28.5, outperforming the best previous baseline.081

• We conduct a cross-modal retrieval experiment082

and demonstrate that ConST closes the represen-083

tation gap of two modalities by projecting them084

into a unified space.085

2 Related Work086

End-to-end ST To alleviate the error propaga-087

tion in the cascaded ST systems and to make the088

deployment simpler, Bérard et al. (2016); Weiss089

et al. (2017) proposed to use an end-to-end archi-090

tecture to directly translate speech into text in an-091

other language, without the intermediate transcrip-092

tion. Kano et al. (2017); Berard et al. (2018); In-093

aguma et al. (2020); Wang et al. (2020a); Zhao et al.094

(2021a) implemented several off-the-shelf encoder-095

decoder E2E-ST models, such as BiLSTM (Greff096

et al., 2016) and Speech-Transformer (Dong et al.,097

2018). However, training an end-to-end speech098

translation model is difficult because we need to099

design a cross-modal cross-language model, mean-100

while, the speech-transcription-translation super-101

vised data for speech translation is significantly102

less than that of MT and ASR. Methods, like data103

augmentation (Park et al., 2019; Pino et al., 2020;104

Chen et al., 2021), pre-training (Weiss et al., 2017;105

Berard et al., 2018; Bansal et al., 2019; Wang et al.,106

2020b; Alinejad and Sarkar, 2020; Dong et al.,107

2021a; Zheng et al., 2021), self-training (Pino et al.,108

2020; Wang et al., 2021), utilizing self-supervised109

pre-trained audio representation (Wu et al., 2020;110

Han et al., 2021; Ye et al., 2021; Wang et al., 2021),111

are proved to be effective. Meanwhile, some work112

has shown that the encoder-decoder model with113

a single encoder cannot encode speech informa-114

tion well. For example, Dong et al. (2021b) first115

proposed a second encoder to further extract seman-116

tic information of the speech sequence. Xu et al.117

(2021) proposed a stacked acoustic-and-textual en-118

coder and introduced large-scale out-of-domain119

data. Also, multi-task frameworks (Le et al., 2020; 120

Tang et al., 2021b; Ye et al., 2021) are widely ap- 121

plied to further enhance the robustness for ST. As a 122

cross-modal task, some work has noted the problem 123

of the modality gap. (Han et al., 2021) designed a 124

fix-size semantic memory module to bridge such a 125

gap, from the neuroscience perspective. However, 126

we find that this approach actually sacrifices the 127

effect of MT. So in this paper, we propose a simple 128

yet effective contrastive learning method to bridge 129

the gap and to improve ST performance. 130

Contrastive learning Our method is motivated 131

by the recent success in contrastive representa- 132

tion learning. The contrastive learning method 133

was first proposed to learn representations from 134

unlabeled datasets (hence the term, self-supervised 135

learning) by telling which data points are similar 136

or distinct, especially in the field of computer vi- 137

sion (Chopra et al., 2005; Gutmann and Hyväri- 138

nen, 2010; Schroff et al., 2015; Sohn, 2016; Oord 139

et al., 2018). Khosla et al. (2020) extended the 140

self-supervised batch contrastive approach to the 141

fully-supervised setting and proposed a supervised 142

contrastive learning method. In speech process- 143

ing, representative methods focused on speaker 144

identification (Ravanelli and Bengio, 2018), speech 145

recognition (Schneider et al., 2019), and audio rep- 146

resentation learning (van den Oord et al., 2018; 147

Baevski et al., 2020). In the NLP area, the con- 148

trastive framework is used for sentence represen- 149

tation learning (Fang and Xie, 2020; Shen et al., 150

2020; Gao et al., 2021; Wu et al., 2021; Yan et al., 151

2021) and machine translation Pan et al. (2021). 152

Very recently, contrastive learning is also applied 153

to learning a unified representation of image and 154

text (Dong et al., 2019; Zhou et al., 2020; Li et al., 155

2021). Motivated by the contrastive learning frame- 156

works in cross-lingual and cross-modal topics, we 157

introduce a similar idea in speech translation. 158

3 The ConST Approach 159

An end-to-end speech translation model directly 160

translates audio sequence s = (s1, ..., s|s|) to 161

the text y = (y1, ..., y|y|) in the target language. 162

Speech translation corpus D = {(s,x,y)} pro- 163

vides transcript x = (x1, ..., x|x|) in the source 164

language, as well. 165

In this section, we present the overall speech 166

translation model and cross-modal contrastive 167

learning. We also provide several feasible strate- 168

gies to construct more positive and negative pairs 169
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Figure 2: Left: Model structure of ConST. The gray shaded modules are the optional data augmentation operations
introduced in Section 3.3. Right: An illustration of cross-modal contrastive learning.

to enhance the contrastive learning.170

3.1 Model Framework171

Our model consists fout sub-modules: a speech172

encoder, a word embedding layer, a Transformer173

Encoder and a Transformer decoder (Figure 2). It174

is designed to take either speech or a sentence as175

input, and to output either source transcript or tar-176

get translation text. Such architecture enables a177

universal framework for multiple tasks, including178

ST, MT and ASR.179

The speech encoder module (S-Enc) is designed180

to extract low-level features for speech signals. It181

contains Wav2vec2.0 (Baevski et al., 2020) and182

two additional convolutional layers. The input is183

raw waveform signal sampled at 16kHz. Each con-184

volutional layer has a stride of 4 and d channels. In185

total, it shrinks the time dimension by a factor of 4.186

Denote a = S-Enc(s) as the audio representation187

of the speech, |a| � |s|.188

Parallel to the speech encoder is the word em-189

beeding layer. It is the same as word embedding190

for text translation.191

Both the speech encoder and word embedding192

layer are connect to Transformer encoder and then193

passed to the Transformer decoder. The Trans-194

former encoder and decoder are using the same195

configuration as the original (Vaswani et al., 2017).196

To explain, the Transformer encoder further ex-197

tracts the high-level semantic hidden representation198

of two modalities. The Transformer decoder gener-199

ates the word sequences (transcription and transla-200

tion) for ST, MT and ASR tasks. Since our model201

has a complete Transformer encoder-decoder as202

a sub-module, this makes it possible to pre-train 203

using large-scale extra MT parallel data. 204

Previous work has shown that multi-task learn- 205

ing on ST, MT and ASR improves translation per- 206

formance (Indurthi et al., 2020; Tang et al., 2021b; 207

Ye et al., 2021). Our training loss consists of the 208

following elements. 209

L = LST + LASR + LMT + λLCTR (1) 210

where 211

LST = −
∑
n

logP (yn|sn) 212

LASR = −
∑
n

logP (xn|sn) 213

LMT = −
∑
n

logP (yn|xn) 214

The first three elements are cross-entropy losses 215

on <speech, target text>, <speech, source text> 216

and <source text, target text> pairs. These pairs 217

are built from the triplet ST data. We also intro- 218

duce a cross-modal contrastive loss term LCTR (see 219

Section 3.2 for details). It aims to bring the repre- 220

sentation between the speech and textual transcrip- 221

tion modalities closer (its effect will be analyzed in 222

detail in Section 6). λ is a tuned hyper-parameter 223

of the weighted contrastive loss term. 224

3.2 Cross-modal Contrastive Learning 225

As mentioned in the beginning, since we need to 226

produce similar representations for the speech and 227

transcript sharing the same semantic meanings, we 228

propose cross-modal contrastive learning method 229

to bring their representations closer together. The 230
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main idea of cross-modal contrastive learning is231

to introduce a loss that brings speech and its cor-232

responding transcript (positive example) near to-233

gether while pushing irrelevant ones (negative ex-234

amples) far apart.235

Given a positive example of such a speech-236

transcript pair (s,x), we randomly pick a set of237

N − 1 transcripts {x−i }
N−1
i=1 from the same batch238

as negative examples. For speech s and its tran-239

script x, we first average them in terms of the time240

dimension,241

u = MeanPool(S-Enc(s)) (2)242

v = MeanPool(Emb(x)) (3)243

and apply the multi-class N-pair contrastive244

loss (Sohn, 2016):245

LCTR = −
∑
s,x

log
exp(sim(u, v)/τ)∑

xj∈A exp(sim(u, v(xj))/τ)

(4)246

where A = {x} ∪ {x−i }
N−1
i=1 , τ is the temperature247

hyper-parameter, and sim is the cosine similarity248

function sim(a, b) = a>b/‖a‖‖b‖. In the imple-249

mentation, negative examples {x−i }
N−1
i=1 are from250

the same training batch of data (Figure 2(b)).251

3.3 Mining Hard Examples for Contrastive252

Learning253

To further enhance the contrastive learning, we254

introduce three strategies to mine additional hard255

examples. These strategies are at input and rep-256

resentation (gray shaded modules in Figure 2(a)).257

Specific schematic illustrations of each operations258

are shown in Figure 3.259

Span-Masked Augmentation We mask consec-260

utive segments of an original audio waveform261

sequence s to obtain a new modified speech s′.262

We take s′ as an input to the model, and com-263

pute the contrastive loss its original corresponding264

transcript. We randomly sample without replace-265

ment all time steps in the original waveform of266

the speech to be the starting indices with a prob-267

ability p, and then we set the sub-sequence M268

successive time steps to be blank. In the exper-269

iment, we tried multiple configurations, and found270

p = 0.25,M = 3600 the best, resulting in a271

masked span of 0.225 second. Since the masked272

speech fragment is very short, we consider the273

masked speech and the original transcript to be274

positive pairs, and the remaining transcripts in the275

same batch to be negative pairs.276

Input-level 
Data Augmentation

Representation-level 
Data Augmentation

T

d

T

Sequence
Cut-off

Feature
Cut-off

S-Enc

𝑇×𝑑	Representation

(1) (2)

▁This ▁is ▁an ▁English ▁sentence .

▁This ▁is ▁is ▁an ▁English ▁English ▁sentence .

(b) Word repetition

(a) Span-Masked Augmentation

0.23s

(c) Cut-off

Figure 3: Schematic illustration of the data augmenta-
tion strategies. In the cut-off strategy, the gray shaded
grid represents the zero-out element.

Word Repetition The word repetition strategy ran- 277

domly replicates some words (or sub-words) in the 278

original sentences, with two advantages for improv- 279

ing representation robustness. First, as the length 280

of the sentence is shorter than that of its audio 281

representation, randomly repeating the words in 282

the sentence is a simple yet useful technique to 283

increase the length. Second, repeating words does 284

not change the semantics and is suitable as an ex- 285

tra positive example of the corresponding speech. 286

Specifically, given sentence x, each sub-word to- 287

ken xi can be duplicated k more times, resulting 288

in the duplicated sentence x′, where k = 0, 1, 2, ... 289

and k ∼ Poisson(1). We regard x′ as the additional 290

positive example for the speech s and the samples 291

with the same operation in the same batch as the 292

negative examples. 293

Cut-off strategy Recent studies on natural lan- 294

guage understanding and generation have proved 295

cut-off data augmentation strategy to be success- 296

ful (Shen et al., 2020; Yan et al., 2021). We analo- 297

gize a similar idea to the cut-off data augment ap- 298

proach for speech representation. We entirely erase 299

the T × d representation matrix along each dimen- 300

sion and set the erased terms to 0. Here, we present 301

two variants: sequence cut-off , which erases some 302

sequence dimension, and feature cut-off , which 303

erases some feature dimension. Note that there is a 304

difference between cut-off and dropout. Dropout 305

randomly sets some elements to 0, while cut-off is 306

a dimensional “block" dropout. Similarly, we treat 307

the cut-off audio representation and the original 308

transcribed sentence as positive pairs, and the rest 309

sentences in the same batch as negative pairs. 310

4 Experiments 311

4.1 Experimental Setups 312

ST datasets We conduct experiments on 313

three representative directions from MuST-C 314
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dataset 1 (Di Gangi et al., 2019): En-De, En-Fr315

and En-Ru. Due to the computation limatation, we316

do not preform for the rest language directions. As317

one of the largest ST benchmarks, MuST-C con-318

tains more than 385 hours of TED talks for each319

direction.320

MT datasets We introduce external WMT321

datasets (Bojar et al., 2016) for each translation322

direction, as the expanded setup.323

Table 6 (in Appendix. A) lists the statistics of all324

the datasets included.325

Model Configurations The Wav2vec2.0 in the326

S-Enc is only pre-trained on Librispeech (Panay-327

otov et al., 2015) speech only without any down-328

stream fine-tuning2. Two layers of CNNs after the329

Wav2vec2.0 are set to kernel size 5, stride size 2330

and hidden size 512. The Transformer follows the331

base configuration, with 6 layers of encoder and332

decoder, hidden size d = 512, 8 attention heads,333

and 2048 FFN hidden states. We use pre-layer334

normalization for stable training.335

Experiment Details We evaluate case-sensitive336

detokenized BLEU using sacreBLEU3 (Post, 2018)337

on MuST-C tst-COMMON set. We also report338

the ChrF++ score 4 (Popović, 2017) and transla-339

tion error rate (TER) 5 in the analysis. We use340

the raw 16-bit 16kHz mono-channel speech input.341

We jointly tokenize the bilingual text using Sen-342

tencePiece (Kudo and Richardson, 2018), with a343

vocabulary size of 10k. For the training loss, we344

set contrastive temperature τ = 0.02 and weight of345

contrastive term λ = 1.5.346

Appendix B contains more detailed settings and347

explanations for the baseline models in Table 1.348

Appendix C shows the experiments on the choice349

of the hyper-parameters.350

4.2 Main Results351

Comparison with end-to-end ST models Table 1352

shows the main results. Since many existing works353

regard “leveraging external data” to be one of their354

model’s features, their strong performances are355

largely predicated on the utilization of auxiliary356

1We use v1.0. https://ict.fbk.eu/must-c/
2https://dl.fbaipublicfiles.com/

fairseq/wav2vec/wav2vec_small.pt
3https://github.com/mjpost/sacrebleu,

BLEU Signature: nrefs:1 | bs:1000 | seed:12345 | case:mixed
| eff:no | tok:13a | smooth:exp | version:2.0.0

4ChrF2++ Signature: nrefs:1 | bs:1000 | seed:12345 |
case:mixed | eff:yes | nc:6 | nw:2 | space:no | version:2.0.0

5TER Signature: nrefs:1 | bs:1000 | seed:12345 | case:lc |
tok:tercom | norm:no | punct:yes | asian:no | version:2.0.0

data, especially large-scale MT data. For a rela- 357

tively fair comparison, we investigate two cases: 358

(1) without external MT data and (2) with exter- 359

nal MT data. Without the external MT data, our 360

method already gains an average improvement of 361

0.5 BLEU over the previous best models. Also 362

when speech data is introduced for pre-training, 363

our method works better than others (Self-training, 364

W-Transf. and XSTNet). When extra MT data are 365

introduced, our method also outperforms SOTA by 366

an average of 0.7 BLEU. Among the benchmark 367

models, with the same goal of closing two modal- 368

ity gaps, Chimera (Han et al., 2021) constructed 369

an extra fixed-length shared semantic space. How- 370

ever, the shared memory with fixed size actually 371

compromises the MT performance, while our con- 372

trastive learning approach is more straightforward 373

and effective. 374

Comparison with cascaded ST systems We com- 375

pare our method with several cascade baselines, 376

where Ye et al. (2021) and Xu et al. (2021) provided 377

two strong cascade systems trained using MuST- 378

C and external ASR and MT data (LibriSpeech, 379

WMT, and Opensubtitles). From Table 2, we find 380

that as an end-to-end model, ConST can outper- 381

form these strong cascade models. In Appendix E, 382

we provide a case study to show such improvement. 383

5 Analysis 384

5.1 Is contrastive loss effective? 385

With the same model architecture and the same 386

pre-training + fine-tuning procedure, the main dif- 387

ference between ConST and XSTNet (Ye et al., 388

2021) is whether we use the contrastive loss term 389

during the fine-tuning or not. Comparing the BLEU 390

results of w/o and w/ external MT data situations in 391

Table 1, we find that ConST further improves 0.5 392

and 0.7 BLEU scores in terms of three translation 393

directions on average. This demonstrates the effec- 394

tiveness of the cross-modal contrastive learning. 395

5.2 Which layer to contrast on? 396

An intriguing question is which representations 397

should be considered in the contrastive loss func- 398

tion. In the method part (Section 3.2), we use aver- 399

aged audio representation u for speech s (Eq.(2)) 400

and averaged lexical embedding v for the transcript 401

x (Eq.(3)), denoted as low-level repr.. Whereas 402

inspired by a recent study in multilingual MT (Pan 403

et al., 2021), we also provide an alternative con- 404

trastive loss as a comparison, whose speech and 405

5
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Models External Data BLEU
Speech Text ASR MT En-De En-Fr En-Ru Avg.

w/o external MT data

Fairseq ST (Wang et al., 2020a) - - - - 22.7 32.9 15.3 23.6
NeurST (Zhao et al., 2021a) - - - - 22.8 33.3 15.1 23.7
Espnet ST (Inaguma et al., 2020) - - - - 22.9 32.8 15.6 23.8
Dual Decoder (Le et al., 2020) - - - - 23.6 33.5 15.2 24.1
W-Transf. (Ye et al., 2021) X - - - 23.6 34.6 14.4 24.2
Speechformer (Papi et al., 2021) - - - - 23.6 - - -
Self-training (Pino et al., 2020) X - X - 25.2 34.5 - -
SATE (Xu et al., 2021) - - - - 25.2 - - -
BiKD (Inaguma et al., 2021) - - - - 25.3 35.3 - -
XSTNet (Ye et al., 2021) X - - - 25.5 36.0 16.9 26.1
Mutual-learning (Zhao et al., 2021b) - - - - - 36.3 - -
ConST X - - - 25.7 36.8 17.3 26.6

w/ external MT data

MTL (Tang et al., 2021b) - - - X 23.9 33.1 - -
LightweightAdaptor (Le et al., 2021) X X - X 24.6 35.0 16.4 25.3
FAT-ST (Big) (Zheng et al., 2021) X X X X 25.5 - - -
JT-S-MT (Tang et al., 2021a) - - - X 26.8 37.4 - -
Chimera (Han et al., 2021) X - - X 27.1† 35.6 17.4 26.7
XSTNet (Ye et al., 2021) X - - X 27.1 38.0 18.4 27.8
SATE (Xu et al., 2021) - - X X 28.1† - - -
ConST X - - X 28.3 38.3 18.9 28.5

Table 1: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON set. "Speech" denotes unlabeled
speech data. "Text" means unlabeled text data, e.g. Europarl V7 (Koehn et al., 2005), CC25 (Liu et al., 2020a). †
use external 40M OpenSubtitles (Lison and Tiedemann, 2016) MT data. Other models only use WMT data.

Models En-De En-Fr En-Ru

Cascaded
Espnet(Inaguma et al., 2020) 23.6 33.8 16.4
(Ye et al., 2021) 25.2 34.9 17.0
(Xu et al., 2021) 28.1 - -

End-to-end
ConST 28.3 38.3 18.9

Table 2: ConST versus the cascaded ST systems on
MuST-C En-De/Fr/Ru test sets. Ye et al. (2021) and
Xu et al. (2021) are two strong cascaded models.

text features are average-pooled semantic repre-406

sentations derived from the Transformer encoder,407

denoted as high-level repr..408

Table 3 shows that contrastive learning using409

the low-level representations (Line 1) is better410

than using the high-level ones (Line 2). On the411

other hand, although the performance of Line 2 is412

relatively inferior, it still outperforms the multi-task413

model without the contrastive loss (Line 3).414

5.3 Is contrastive loss better than other415

losses?416

Our goal for introducing the contrastive loss term417

(denoted as CTR Loss) is to close the distance be-418

tween speech and text representations. Whereas,419

Representations BLEU ChrF++ TER

low-level repr. 28.3* 53.2* 59.4*
high-level repr. 27.5† 52.6† 61.0
w/o contrative loss 27.1 52.1 61.0

Table 3: BLEU, ChrF++ and TER (%) on En-De test
set. Different representations are tested. *: ConST is
significantly better than the other two baselines (p <
0.01). †: the model is significantly better the baseline
model without contrastive loss (p < 0.05).

there are other options to achieve this goal, such as 420

L2 loss and CTC loss. 421

• L2 Loss: Without introducing any negative sam- 422

ples, L2 loss directly reduces the Euclidean dis- 423

tance between the representations of two modali- 424

ties by minimizing L = ‖u − v‖2. L2 loss can 425

be viewed as an implementation based on the 426

idea of knowledge distillation (Heo et al., 2019; 427

Dong et al., 2021b). 428

• CTC Loss: The connectionist temporal classifi- 429

cation (CTC) loss (Graves et al., 2006) is com- 430

monly used in speech-related tasks (Xu et al., 431

2021; Dong et al., 2021b). Unlike contrastive 432

loss that cares about the representation, CTC 433

loss connects the two modalities by establishing 434

speech-text alignment and maximizing p(x|a) = 435
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Figure 4: The heat map visualization of the BLEU
scores on En-De test set, with 5×5 combinations of the
original contrastive loss (Original) and data augmen-
tation methods – word repetition (Rep), span-masked
augmentation (SMA), sequence cut-off (SCut) and fea-
ture cut-off (FCut). * and ** mean the improvements
over the baseline without contrastive loss are statisti-
cally significant (*:p < 0.05, **:p < 0.01).∑

π∈Πs,a

∏T
t=1 pt(πt|a), where Πs,a is the set of436

all valid alignments.437

Compared to the other two ways of bridging the438

modality gap, L2 and CTC loss, is the contrastive439

loss term better? The answer is yes according to the440

results in Table 4. Our explanation is that informa-441

tion on the negative samples benefits the contrastive442

loss, bringing the the distance between the speech443

and its corresponding transcription closer while444

pushing the distance to the irrelevant text farther.445

Extra Loss BLEU ChrF++ TER

CTR Loss 28.3* 53.2 59.4*
CTC Loss 27.5† 53.0† 60.1†

L2 Loss 27.3 52.4 60.7
- 27.1 52.1 61.0

Table 4: BLEU, ChrF++ and TER (%) on En-De test
set under different loss terms other than the basic multi-
task NLL loss. *: ConST is significantly (p < 0.01)
better than the other three alternatives. †: the improve-
ment from CTC loss over the baseline without extra
loss is significant (p < 0.01).

5.4 Analysis on the data augmentation446

strategies447

In Section 3.3, we proposed four methods to mine448

the hard examples for contrastive learning, namely449

span-masked augmentation (SMA), word repeti-450

tion (Rep), sequence cut-off (SCut), and feature451

cut-off (FCut). In this section, we study how effec-452

tive these methods are, and to do so, we consider453

the BLEU performances of their 5×5 combinations454

(Figure 4). Note that “Original” means the original455

contrastive loss in Eq.(4) without any data augmen-456
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Figure 5: Bivariate KDE contour plot of the represen-
tation of speech and transcript in source language En-
glish. T-SNE is used to reduce into 2D. The blue lines
are the audio representations and the red dashed lines
stand for text. (a) for the vanilla multi-task framework
without any extra supervision. (b) for our proposed
ConST model. Sentences are from En-De test set.

tation, and the diagonal in the heat map represents 457

only one strategy used. For an easy and fair com- 458

parison, we set the weight of the contrastive term to 459

1.0 uniformly. We have the following observations. 460

All the data augmentation methods are effec- 461

tive. All the BLEU scores in Figure 4 exceed the 462

strong multi-task model trained without contrastive 463

learning (27.1). Among all the strategies, the com- 464

bination of the original and SCut reaches the best 465

result (28.3), and is better than the model without 466

any expanded operations (p < 0.01). Generally, to 467

find the best model, we suggest adopting multiple 468

strategies and choosing the best checkpoint on the 469

dev-set. 470

The combinations of the data augmentation 471

methods and the “original” have relatively bet- 472

ter performances. We argue that we need the orig- 473

inal positive and negative examples to give more 474

accurate representations (without any dropout) for 475

contrastive learning. On the contrary, without the 476

help of “original” loss, the performance with both 477

sequence cut-off and feature cut-off is the worst in 478

Figure 4, probably because too much information 479

is lost by superimposing the two. 480

6 Why does cross-modal contrastive 481

learning work? — Analysis on the 482

Modality Gap 483

As mentioned earlier, the existing multi-task train- 484

ing models cannot address the speech-text modality 485

gap. Does ConST reduce the representation gap 486

between speech and text? 487
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6.1 Visualization of Representation488

Does the speech-text modality gap exist without489

explicitly bridging the two? Speech-text modal-490

ity gap means the discrepancy between the audio491

representations and transcription sentence embed-492

dings. To visualize it, we plot the bivariate ker-493

nel density estimation (Parzen, 1962) (KDE) con-494

tour of the dim-reduced feature of them, where T-495

SNE (Van der Maaten and Hinton, 2008) is used to496

reduce the dimension into two (Figure 5). Ideally, if497

the representations of speech and its corresponding498

transcript are similar, their KDEs will be similar,499

and thus the contour lines will overlap as much as500

possible. However, Figure 5(a) is the KDE contour501

of the multi-task framework without any explicit502

modeling to bring two modalities together (Ye et al.,503

2021). It shows that the representations are so dis-504

similar that they are organically divided into two505

clusters, i.e. speech-text modality gap exists.506

Does ConST reduce the modality gap? As507

shown in Figure 5(b), compared to the baseline508

model without contrastive learning, ConST with509

cross-modal contrastive learning is able to bring510

representations of different modalities much closer.511

This means that the audio representation contains512

more linguistic information similar to that of the513

textual transcription, which is more advantageous514

for the downstream ST generation through the515

shared Transformer encoder and Transformer de-516

coder.517

6.2 Cross-modal Retrieval518

How good is the cross-modal representation519

space learned from ConST? To answer this ques-520

tion, we conduct a retrieval experiment, i.e. find-521

ing the nearest (smallest cosine similarity) tran-522

script based on the speech representation. We com-523

pare ConST model with the baseline without cross-524

modal contrastive learning and report the top-1 re-525

trieval accuracy using (1) the low-level represen-526

tations and (2) the high-level semantic representa-527

tions, in Table 5.528

When retrieving the text using low-level rep-529

resentations, our method gains a substantial 79%530

increase over the baseline. In addition, we find that531

without explicit contrastive modeling, the baseline532

can achieve retrieval accuracy up to 94% according533

to the semantic representations outputted from the534

Transformer encoder. We believe that such high535

accuracy is automatically learned from the triple-536

supervised data itself under the multi-task learning537

framework. With such a degree of cross-modal 538

alignment, if we construct the contrastive loss with 539

semantic representations, its gain to the ST per- 540

formance turns out to be limited, which exactly 541

corroborates the findings in Section 5.2 – low-level 542

representations are preferred in the cross-modal 543

contrastive learning. 544

Representations CTR loss Acc.

low-level repr. × 9.4
X 88.6

high-level repr. × 94.7
X 95.0

Table 5: Cross-modal top-1 retrieval accuracy (%) on
En-De test set. Two different representations are used,
based on which, ConST achieves huge accuracy im-
provements.

7 Conclusion 545

In this paper, we propose ConST, a simple yet ef- 546

fective contrastive learning framework bridging the 547

speech-text representation gap and facilitating the 548

ST with limited data. We also provide feasible data 549

augmentation methods to learn robust representa- 550

tions. The results on the MuST-C ST dataset prove 551

the effectiveness of the method. 552

8 Broader Impact 553

This work improves the performance of ST tasks on 554

public datasets by learning speech representations 555

that are more similar to text representations, but 556

the model is far from being achieved for industrial- 557

grade implementations. In real scenarios, for exam- 558

ple, the original voice is noisier and the distribution 559

of speech lengths is more complex than in the pub- 560

lic dataset, which cannot be handled by an end-to- 561

end model alone. The shortcoming of this model is 562

that it still needs a certain amount of labeled data 563

for training, especially <speech,transcription> to 564

learn better speech representation, and for the more 565

than 7, 000 languages and dialects in the world, 566

most of them do not have corresponding transla- 567

tions or even transcriptions, our method does not 568

work in untranscribed scenarios. In this paper, we 569

focus on the improvement brought by the better 570

speech representation on the ST task, and obtained 571

good results with hundreds of hours of speech data. 572

We hope that our work achieves better results using 573

more data (e.g. raw speech, raw text, ASR, MT 574

data) in the future. 575
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A Statistics of all datasets887

ST (MuST-C) MT
En→ hours #sents name #sents

De 408 234K WMT16 4.6M
Fr 492 292K WMT14 40.8M
Ru 489 270K WMT16 2.5M

Table 6: Statistics of all datasets

B Experimental Details888

Training and Implementation Details We use889

Adam optimizer (β1 = 0.9, β2 = 0.98) with learn-890

ing rate = 1e−4 and warmup 25k steps during the891

ST training. We also implement the expanded set-892

ting with the introduction of external WMT to train893

the Transformer module. In the pre-training stage,894

we set the learning rate = 7e−4 and warmup 4000895

steps. For robust training, we set label smoothing to896

0.1, and dropout rate to 0.1. The hyper-parameters897

for different data augmentation methods are as fol-898

lows: for masked audio span strategy, we set mask-899

ing probability p = 0.25 and masking span length900

M = 3600 frames; for both sequence and feature901

cut-off, we set the cut-off dropout rate as 0.1. We902

save the checkpoint with the best BLEU on dev-set903

and average the last 10 checkpoints. For decoding,904

we use a beam size of 10 and length penalty 0.7 for905

German, 1.0 for French, and 0.4 for Russian. We906

train the models in 8 Nvidia Tesla V100 GPUs for907

each experiment. We use Fairseq (Ott et al., 2019)908

as the code-base for our implementation.909

Baseline Models In Table 1, we compared910

our method with end-to-end baseline models911

whose audio inputs are 80-channel log Mel-filter912

bank, including: FairseqST (Wang et al., 2020a),913

NeurST (Zhao et al., 2021a), Espnet ST (In-914

aguma et al., 2020), Dual-decoder Transformer (Le915

et al., 2020), SATE (Xu et al., 2021), Speech-916

former (Papi et al., 2021), self training (Pino et al.,917

2020) and mutual learning (Zhao et al., 2021b)918

method, STAST (Liu et al., 2020b), bi-KD (In-919

aguma et al., 2021), MLT method (Tang et al.,920

2021b), Lightweight Adaptor (Le et al., 2021), and921

JT-S-MT (Tang et al., 2021a), FAT-ST (Zheng et al.,922

2021), We also compare our method to baseline923

models that have pretrained Wav2vec2.0 as a mod-924

ule, including:925

• W-Transf. (Ye et al., 2021): the model has the926

same structure as ours, but is only trained on 927

<speech, translation> parallel data. 928

• Chimera-ST (Han et al., 2021): the model that 929

builds a shared semantic memory for both audio 930

and text modalities. 931

• XSTNet (Ye et al., 2021): the model has the 932

same structure as ours, and adopted a multi-task 933

fine-tuning strategy. 934

C The Choice for Hyper-parameters 935

Influence of Temperature In the contrastive loss, 936

the temperature hyper-parameter is provided to con- 937

trol the smoothness of the distribution normalized 938

by softmax operation. A high temperature helps 939

to smooth the distribution, making it more difficult 940

for the model to distinguish between positive and 941

negative samples (corresponding to correct tran- 942

scriptions and other transcriptions in this work), 943

while the low temperature behaves just the opposite. 944

We choose several temperature hyper-parameters 945

ranging from 0.01 to 0.5, and Figure 6 shows their 946

BLEUs on the test and dev sets . We find that (1) 947

the choice of the temperature does not drastically 948

affect the final BLEU score, and (2) we recommend 949

that the temperature τ be set between 0.02 and 0.05 950

to ensure a relatively good ST performance. In the 951

experiment, we use τ = 0.02.
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Figure 6: En-De BLEU scores on tst-COMMON and
Dev set. the x-axis is the choices of different tempera-
ture τ in Eq.(4) varying from 0.01 to 0.5.

952
Influence of Contrastive Loss Weight The total 953

loss we optimize, Eq.(1), is a linear combination of 954

the multi-task cross-entropy losses LMLT and the 955

contrastive term LCTR. To investigate how much 956

the contrastive terms affect BLEU, we fix its tem- 957

perature τ = 0.02, adjust the values of its loss 958

weight λ from 0.1 to 2.0, performed three experi- 959

ments for each value, and test the average BLEU on 960

En-De tst-COMMON set. Figure 7 depicts the per- 961

formances. First, all objective functions containing 962
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LCTR, even if their weights λ take different values,963

are apparently better than the baseline model with964

LMLT only LCTR. Then, the best BLEU score is965

achieved at loss weight λ = 1.5, corresponding966

to the results in Table 1. And when analyzing the967

effect of data augmentation strategies (Section 5.4),968

since we need to consider the combination between969

them, which is more complicated. Therefore, we970

set the loss weight to 1.0 uniformly for simplicity.971

In general, we recommend that the weight hyper-972

parameter takes a value between 0.8 and 1.5.973
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Figure 7: En-De BLEU scores on tst-COMMON and
Dev sets. The x-axis is the weight of the contrastive
loss term λ in Eq.(1). Experiments are performed under
the fix temperature hyper-parameter τ = 0.02.

D Data Scale for Fine-tuning974

The experiments in the main paper show that our975

model can perform well by introducing external976

MT data pre-training. Here, we simulate the sce-977

nario with plenty of MT and speech data and lim-978

ited ST triple-labeled data, and does ConST have979

the ability of low-resource learning? In the ex-980

periment, we reduce the labeled ST data to 1, 10,981

and 100 hours, corresponding to sentence counts of982

about 500, 5k, and 50k sentences. For a fair com-983

parison, we use the same MT pre-trained Trans-984

former module as in the main paper. We find985

the contrastive loss particularly helpful when the986

amount of speech data is extremely small, like only987

1 hour of speech. Second, the multi-task training988

strategy is also very effective in improving the ro-989

bustness of the model performance. We also find990

that by using easily accessible MT and speech pre-991

training, our model could reach the previous base-992

line results without pre-training using only 1/4 of993

the original data, i.e. 100 hours of labeled ST data.994
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Figure 8: En-De BLEU scores on tst-COMMON sets.
The horizontal axis is the amount of ST data (in hours
of speech).

E Case Analysis 995

In this section, we use several cased that our pro- 996

posed ConST model generates to compare our 997

model with the cascaded model and the previous 998

end-to-end model, XSTNet6 (Ye et al., 2021). 999

For this first case, the cascaded system fails to 1000

give a right translation due to the mis-punctuation 1001

issue (klingt is a verb), while the end-to-end model, 1002

XSTNet and ConST translate correctly. For the sec- 1003

ond case, the previous end-to-end XSTNet model 1004

cannot accurately translate the phrase “started ex- 1005

ploring this idea of”, which performs worse than 1006

the cascaded one. Whereas ConST successfully 1007

conveys the meaning of “this idea” , and translates 1008

more accurately than XSTNet. We believe this im- 1009

provement comes from the cross-modal contrastive 1010

learning. 1011

6The generation cases of the previous models can be
found at https://reneeye.github.io/projects/
XSTNet.
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Models

CASE 1

Ref. src: Lights, sounds, solar panels, motors — everything should be accessible.
tgt: Lichter, Töne, Solarelemente, Motoren — alles sollte verfügbar sein.

Cascaded src: Lights sounds solar panels motors everything should be accessible.
tgt: Licht klingt Solarpaneele, Motoren; alles sollte zugänglich sein.

XSTNet tgt: Licht, Geräusche, Solarkollektoren, Motoren — alles sollte zugänglich sein.

ConST tgt: Licht, Geräusche, Solarpanele, Motoren, alles sollte zugänglich sein.

CASE 2

Ref.

src: Eight years ago when I was at the Media Lab, I started exploring this idea of how to put
the power of engineers in the hands of artists and designers.

tgt: Vor acht Jahren war ich am Media Lab und ich begann diese Idee zu erforschen, wie
man die Macht der Ingenieure in die Hand von Künstlern und Designern legen könnte.

Cascaded

src: Eight years ago when I was at the Media Lab, I started exploring this idea of how to put
the power of engineers in the hands of artists and designers.

tgt: Vor 8 Jahren, als ich im Media Lab war, begann ich, diese Idee zu erforschen, wie man
die Macht der Ingenieure in die Hände von Künstlern und Designern legte.

XSTNet tgt: Vor acht Jahren, als ich im Media Lab war, begann ich zu erforschen, wie man die Kraft
der Ingenieure in die Hände von Künstlern und Designern legt.

ConST tgt: Vor acht Jahren, als ich im Media Lab war, begann ich, diese Idee zu erforschen, wie
man die Macht von Ingenieuren in die Hände von Künstlern und Designern legt.

Table 7: En-De test cases that generated from the cascaded model, XSTNet (both provided by Ye et al. (2021)) and
our ConST model.
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