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Abstract

Inferring the position of objects and their rigid transformations is still an open problem
in visual scene understanding. Here we propose a neuromorphic framework that poses scene
understanding as a factorization problem and uses a resonator network to extract object
identities and their transformations. The framework uses vector binding operations to
produce generative image models in which binding acts as the equivariant operation for
geometric transformations. A scene can therefore be described as a sum of vector products,
which in turn can be efficiently factorized by a resonator network to infer objects and their
poses. We also describe a hierarchical resonator network that enables the definition of a
partitioned architecture in which vector binding is equivariant for horizontal and vertical
translation within one partition, and for rotation and scaling within the other partition. We
demonstrate our approach using synthetic scenes composed of simple 2D shapes undergoing
rigid geometric transformations and color changes.

Introduction

Visual scene understanding is a long-standing problem of machine vision and artificial intelligence.
It is a notoriously hard – and largely unsolved – computational problem, as it requires searching over
a very large space of possible configurations for how objects may be combined along with variations
in pose, color, lighting, and other features. It has long been proposed that the brain solves the
visual scene understanding problem via “analysis by synthesis” whereby a generative model that
holds knowledge of scene components and their combinations is used to infer the components of
a scene based on how well they explain the image data (MacKay, 1956; Neisser, 1966; Yuille and
Kersten, 2006).

However, the high computational cost associated with these models has prevented their widespread
deployment. Recent work has shown that for such types of workloads neuromorphic computing
can outperform CPU and GPU-based approaches. Specifically, custom spike-based neuromorphic
chips (Merolla et al., 2014; Furber et al., 2014; Pei et al., 2019; Davies et al., 2021) can accelerate
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computing times and reduce power consumption thanks to their parallelism, in-memory processing,
sparsity, and event-based nature (Indiveri and Liu, 2015; Gallego et al., 2020).

To leverage the advantages of neuromorphic hardware (Kleyko et al., 2021), we base our approach
to scene analysis on a programming framework stemming from Cognitive Science now referred to as
Vector Symbolic Architectures (VSAs) (Gayler, 2003), or Hyperdimensional Computing (HC) (Kan-
erva, 2009). Here we leverage results based on VSA/HC to design an algorithm for scene analysis
that is optimally suited for neuromorphic hardware implementations. The first development enables
us to encode an image in a VSA hypervector representation such that binding (vector multiplication)
acts as the equivariant operation for specific geometric transformations (Frady et al., 2021), while
the second one makes it tractable to infer objects and their transformations via vector factoriza-
tion (Frady et al., 2020; Kent et al., 2020).

Representing images in hypervectors

To encode an image as a hypervector, VFA index vectors are created to encode pixel location
(Frady et al., 2021). We choose two fixed complex-valued FHRR vectors (Plate, 1995) h (i.e.
hj = eıϕj , ϕj ∼ U [0, 2π]) and v. A pixel at the Cartesian image coordinates x and y is represented
by the index vector hx⊙vy Further, we form a codebook with random vectors for indexing the three
color channels (R/G/B) G = [r,g,b] ∈ CN×3. The hypervector representation of a color image is
then given as:

s =
∑
x,y,c

Im(x, y, c) ·Gc ⊙ hx ⊙ vy =: Φ I. (1)

The right hand side of (1) makes explicit that hypervector encoding is linear, with I ∈ R(3PxPy)

the image reshaped as a vector, and Φ ∈ CN×(3PxPy) the codebook matrix of hypervectors for
each index configuration {x, y, c}. Conversely, decoding the image from the hypervector uses the
conjugate transpose as the linear transform: I = 1

Nℜ(Φ†s).

Image encoding with (1) has pivotal properties for the scene factorization algorithm we propose.
Most importantly, it ensures that the equivariant vector operation for image translation is the binding
operation, i.e. s⊙ h∆x ⊙ v∆y is the VFA representation of the image translated by ∆x,∆y, since

s⊙ h∆x ⊙ v∆y =
∑
x,y

Im(x, y) · hx+∆x ⊙ vy+∆y =
∑
x,y

Im(x−∆x, y −∆y) · hx ⊙ vy. (2)

Also, note that image translation is well-defined for continuous values of ∆x, ∆y, allowing the
recognition of shapes shifted by fractions of a pixel.

A generative model of scenes using VSA vector operations

To demonstrate scene factorization, we focus on synthetic images of simple visual scenes composed
of object templates, in our case letters, that are translated and given one of 7 colors. Multiple
objects are independently generated and then added to the scene. The task is to extract from an
input image the identities, colors, and locations of the objects.

We can use the VFA framework to build a generative model for such simple synthetic images.
The set of letter templates forms a matrix P ∈ R(PxPy)×D, where D = 26 is the number of different
templates. As in (1), templates of the letters can be encoded as hypervectors via da =

∑
x,y Pa(x, y)·

hx ⊙ vy.

The equivariance property of vector binding can be used to color and position a template in
the scene. Furthermore, vector superposition is employed for adding different objects. We sample
each generative factor of variation (pi, xi, yi, ci) uniformly. The resulting generative VFA model for
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Figure 1: Resonator network for inferring shape, color, and translation.

a synthetic scene composed of L objects is:

s =

L∑
i=1

dpi
⊙ hxi ⊙ vyi ⊙ cci . (3)

Inference with the resonator network

The generative model (3) allows one to easily compose and render a synthetic scene, but inference
in generative models is computationally expensive (Teh et al., 2003) as it involves a combinatorial
search across all templates in all possible poses. Conveniently, the VSA formulation (3) permits
fast parallel implementations of this search. In particular, each term of the sum in (3) represents
an image component formed by the product of hypervectors that encode object class, color, and
pose. Thus, inference essentially is the factorization of s into specific hypervectors that satisfy the
optimization constraints.

This kind of vector factorization problem is very common in VSA algorithms, and recurrent
resonator networks have been proposed to solve it efficiently (Frady et al., 2020; Kent et al., 2020).
A given synthetic pixel image to be analyzed is first transformed by (1) into a hypervector s. The
network contains one resonator module that produces an estimate for each factor in the generative
model. A resonator network module contains three stages: a VSA binding stage, a linear transform,
and a component-wise saturation function or normalization (Fig. 1B).

For inference in (3), the dynamic equations of the resonator network are:

ĉ(t+ 1) = f
(
ĆĆ†

(
s⊙ d̂∗(t)⊙ v̂∗(t)⊙ ĥ∗(t)

))
,

d̂(t+ 1) = f
(
D́D́†

(
s⊙ ĉ∗(t)⊙ v̂∗(t)⊙ ĥ∗(t)

))
,

v̂(t+ 1) = f
(
VV†

(
s⊙ d̂∗(t)⊙ ĉ∗(t)⊙ ĥ∗(t)

))
,

ĥ(t+ 1) = f
(
HH†

(
s⊙ d̂∗(t)⊙ v̂∗(t)⊙ ĉ∗(t)

))
,

(4)
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Figure 2: The hierarchical resonator network for inferring rigid transforms.

with f(x) = x/|x| and V, H, Ć, D́ the codebooks of uncorrelated vectors representing valid con-
straint vectors. A linear transform of the form VV† is essentially a linear auto-associative memory
(Kohonen, 1974) that aligns the input to the span of the vectors stored in V. The resonator net-
work (4) solves the inference problem dynamically. Starting from random seeds, in each iteration, a
module decodes its own factor from s by unbinding the estimates from all other modules. Based on
vector similarity, the associative memory cleans up the decoded vector to resemble one or a super-
position of valid codebook vectors. After applying the transfer function f , the new estimate is sent
to the other modules.

This distributed dynamic process successively improves the joint estimate of all factors (Fig.
1C). Importantly, individual modules do not settle immediately at a single estimate for their factor
(like in a Hopfield memory network). In early iteration steps, they produce a superposition of
many possible factors, which enables parallel search through the combinatoric solution space. In
the later iterations, the interaction between modules narrows the search down to a single estimate
of the identity, pose, and color of one scene component, and the network converges to a stable
equilibrium (Fig. 1D, E). To analyze other scene components, the previously identified components
are subtracted from s, similar to “explaining away” or “deflation.”

Analyzing scenes composed from rigid, non-commutative transforms

The next step toward analyzing realistic scenes is to identify object templates transformed by arbi-
trary rigid transforms, including translation, rotation, scale, and color. Our approach relies on the
fact that scaling and rotation are equivalent to translation in log-polar space. The generative model
of an image synthesized from such rigid transforms of shape templates can be written as:

s =
∑
i

cci ⊙ hxi ⊙ vyi ⊙Λ−1(rri ⊙mmi ⊙ dpi
), (5)

where Λ is the log-polar transform matrix. For performing inference in this generative model, one
can again construct a corresponding resonator network. Describing the six factors in (5), the network
consists of six fully connected factor modules that all require coordinate transforms, Λ or Λ−1, in
their binding stages. Interestingly, the structure of these equations suggests a partitioned network
architecture that avoids redundant coordinate transforms.

The final network consists of two partitions, each fully connected internally: one operating in
Cartesian and one in log-polar coordinates. Each partition has an additional module that serves as
the communication bridge. Conveniently, the bridge modules have exactly the same internal stages
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as other resonator modules, a binding stage followed by a linear transform:

l̂(t+ 1) = Λ−1
(
r̂(t)⊙ m̂(t)⊙ d̂(t)

)
, (6)

p̂(t+ 1) = Λ
(
s⊙ ĉ∗(t)⊙ ĥ∗(t)⊙ v̂∗(t)

)
. (7)

We describe the schematic of the partitioned resonator network in Fig. 2A. The log-polar parti-
tion, the right column of modules in Fig. 2A, contains the “top-down” bridge module (6) and modules
for inferring identity, rotation and scaling of objects. The Cartesian partition, the left column of
modules in Fig. 2A, contains the “bottom-up” bridge module (7) and modules for inferring color
and translation. We call the architecture in Fig. 2A the hierarchical resonator network because the
bidirectionally connected partitions assume different hierarchy levels by the definition of Felleman
and Van Essen (Felleman and Van Essen, 1991).

A successful example of inference with the hierarchical resonator network is shown in Fig. 2B.
The upper row shows a factorization process, revealing the letter “k”, and the lower row shows a
second factorization process, revealing the letter “m”. Note how the estimates of all factors are
undecided and blurry in early iteration steps and become sharp quite suddenly during iteration.
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