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Abstract: The RNA inverse folding problem involves a
challenging one-to-many problem space, where countless
RNA sequences can fold into a central secondary struc-
ture. The central methodology for generating a varied set
of solutions involves an algorithmic approach to navigate
the search space. The broad set of solutions thus allows
for the optimisation of sequences to improve function and
efficacy. Despite a range of impressive algorithms, the
lack of a unified platform for comparing models and tech-
niques hinders comprehensive analysis. To address this,
we propose RNAInvBench, an open-source framework for
Inverse RNA Design, which comprises of two focused tasks,
pseudoknot-free and pseudoknot-inclusive design, two es-
sential tasks for understanding and benchmarking model
efficacy and accuracy. We further collate and organise key
datasets for future model training and testing, and provide
several detailed metrics for evaluating the success, func-
tion and efficiency of the generated sequences. We provide
package environments through dockerfiles, to facilitate easy
access for researchers. All source code is publicly avail-
able for use and download at: https://github.com/
COLA-Laboratory/RNAInvBench

Keywords: Benchmark, bioinformatics, evolutionary strat-
egy, reinforcement learning, adaptive walk, model-based,
RNA design, RNA inverse folding

1. Introduction
Ribonucleic Acid (RNA), a significant biological molecule
fundamental to the function and regulation of living organ-
isms, has recently garnered interest due to its applicability in
therapeutics and vaccine design. (Wang and Farhana, 2024).
Composed of a sequence of nucleotides, RNA molecules
fold into secondary or tertiary structures to facilitate in-
teractions with other cellular components and perform its
biological roles effectively (Ganser et al., 2019). The fold-
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ing process is achieved through base-pairing interactions,
with the length of the sequence and the specific types of
interactions being crucial for the folded RNA’s stability and
function. The secondary structure begins the creation of
local structures and motifs within the RNA (Tinoco and
Bustamante, 1999). By using a secondary structure with
useful interaction regions, we can guide the formation of the
final tertiary structure, thereby producing efficient, useful,
stable RNA structures.

Inverse RNA folding describes the reverse of the traditional
RNA problem; where an RNA sequence is folded into a
secondary structure (Hofacker et al., 1994). By reversing
this process and taking a secondary structure with a known
useful function, we can find RNA sequences that will fold
into this structure. This allows biologists to create artificial
RNA molecules to complete a specific function, such as arti-
ficial ribozymes (Bauer and Suess, 2006), miRNAs (Schwab
et al., 2006), or riboswitches (Findeiß et al., 2017). This
problem has been proved NP-hard (Bonnet et al., 2020), and
thus simple brute-force search is implausible, which has
spurred interest and development of a variety of algorithmic
and deep learning approaches (Runge et al., 2019; Shi et al.,
2018; Minuesa et al., 2021).

The problem complexity is further exacerbated with the
inclusion of pseudoknots, a key part of an RNA structure
proven to have a profound impact on an RNA’s functionality
and efficiency (Giedroc et al., 2000). There are four types
of pseudoknots discovered thus far, which are classified in
terms of complexity by (Kucharík et al., 2016). These being
the commonly found H-type (Hairpin) and K-type (Kissing
Hairpin), and rarer L-type and M-type pseudoknots (Staple
and Butcher, 2005). Despite the importance of pseudoknots
within the RNA secondary structure, the majority of inverse
RNA folding tools do not consider them when constructing
sequences (Runge et al., 2019; Koodli et al., 2019; Lyngsø
et al., 2012; Minuesa et al., 2021; Reinharz et al., 2013).

Previous Inverse Folding RNA comparisons have been es-
tablished, such as (Churkin et al., 2017), however, several
new approaches and algorithms have been introduced since,
such as Reinforcement Learning (Runge et al., 2019) and
Model-based optimisation (Shi et al., 2018) approaches.
Further to this, the previously popular benchmark dataset,
Eterna100v1, was proven to have 19 unsolvable sequences
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Figure 1. RNAInvBench benchmarks. RNAInvBench is composed of three layers. The data layer encompasses the gathering of publicly
available datasets for the two key tasks of inverse RNA design, the pseudoknot-free and pseudoknot-inclusive tasks. The baseline
algorithms layer is comprised of a diverse set of algorithms, idealised for the pseudoknot-free task, although two algorithms are provided
for the pseudoknot-inclusive task. Lastly, the evaluation metrics layer demonstrates the two key metrics we use on-top of success rate, to
allow for further analysis into the effectiveness and efficacy of the algorithms.

when using the Vienna 2.4 folding engine (Koodli et al.,
2021), resulting in a lowered standard of results for the al-
gorithms used. Whilst a brief update to some algorithms
(RNAinverse, EternaBrain, LEARNA, SentRNA, NEMO)
was conducted, this was not comprehensive for the current
landscape, and as such we aim to update these results with
the newly redesigned Eterna100v2, where all 100 sequences
are solvable with Vienna 2. We aim to provide results for
both newly developed and historically strong approaches
and algorithms.

A central contribution of this work is the open-source re-
lease of a framework that will allow researchers to examine
and evaluate key algorithmic approaches within this field.
Previous work such as (Churkin et al., 2017) have provided
a comparison, but have not provided a framework that fa-
cilitates further use from other researchers. A more recent
work, RnaBench (Runge et al., 2024) provides an open-
source framework for inverse-folding algorithms to be run
and utilised, however these algorithms are limited to evolu-
tionary (antaRNA), model-based (SentRNA, EternaBrain),
adaptive walk methods (RNAInverse), and Monte-Carlo
Tree Search (MCTS). Further, a comparison of the results of
these algorithms using this benchmark has yet to be included
within this paper.

Further to this is the benchmark of algorithms that can con-

sider pseudoknots within their designed RNA sequences.
Although it has been proven that pseudoknots can have a
profound impact on an RNA’s functionality and efficiency
(Giedroc et al., 2000; Brierley et al., 2007), a comprehensive
comparison of pseudoknot algorithms has yet to be under-
taken in academic literature, resulting in a critical gap in
our understanding of their efficacy and performance. In this
work, we provide a novel comparison between the most pop-
ular pseudoknot solving algorithms, and include this within
our open-source framework to facilitate future research.

This work aims to provide a standardised open-source plat-
form for using, comparing, and bench-marking secondary
structure RNA inverse folding algorithms, with datasets that
can be easily re-implemented. We include both pseudoknot-
free and pseudoknot-inclusive algorithms, as outlined in our
experimental design.

2. Benchmarks and Evaluation framework
Within RNAInvBench we propose two key tasks, inverse
RNA design, and inverse RNA design with pseudoknots.
Both tasks follow a general principle: initialise the algo-
rithms with a target secondary structure stored using dot-
bracket notation; choose the algorithm to utilise; narrow
down the search space with the algorithm; fold the se-

2



Figure 2. RNA inverse design methodology. We provide an outline of the RNA inverse design problem formulation. An initial target
structure is identified, and an algorithmic approach is selected. The algorithm is used to narrow down the search space of the problem, and
it returns several possible sequences that fit the criteria (e.g., matches the target structure and GC-Content). To select the best sequence
out of the ones returned, we first fold the sequence using a folding algorithm, and then compare the hamming distance with the target
structure. Finally, the best sequence is returned to the user.

quences using a folding algorithm; evaluate the sequences
using hamming distance; return the best sequence to the
user. This methodology is outlined in fig. 2.

The folding algorithm that we use to fold our generated
sequences is vital to the accuracy of our algorithms. Current
work mostly uses ViennaRNA 2 (Lorenz et al., 2011), as
it is easy to integrate, fast (as it has a time complexity of
O(n3)), and efficient. ViennaRNA 2 converts the sequence
to the dot-bracket notation, unable to incorporate pseudo-
knots within the structures it outputs. Alternatively, we use
the pKiss package (Janssen and Giegerich, 2014) to predict
the pseudoknots, which increases the time complexity from
O(n3) for pseudoknot-free structures to O(n4) for predict-
ing pseudoknot inclusive structures with heuristics. The
algorithms used in for the pseudoknot problem within this
benchmark include antaRNA (Kleinkauf et al., 2015) and
MCTS (Yang et al., 2017).

2.1. Dataset types

In this section we describe the variety of datasets that
we have collated for the purposes of training and test-
ing both algorithms for both the pseudoknot-free and
pseudoknot-inclusive benchmarks. We further describe the
two datasets used for benchmarking these algorithms. The

Eterna100v2 dataset (Koodli et al., 2021) was used for the
non-pseudoknot problem, and PseudoBase++ (Kleinkauf
et al., 2015) was used for the pseudoknot problem. Whilst
we include the Eterna100v1 (Anderson-Lee et al., 2016)
dataset in the benchmark framework, it was notably ex-
cluded from this benchmark, due to the usage of the Vienna
2 Folding Engine for the algorithms, as (Koodli et al., 2021)
found that 19 sequences within the Eterna100v1 dataset are
unsolvable with the Vienna 2 Folding Engine. A complete
table of the dataset information is included within table 4.

Pseudoknot-free Training. We include the Rfam-learn
set, which consists of 65, 000 sequences, established by
(Runge et al., 2019). This dataset was created through
folding Rfam sequences with the ViennaRNA package, and
as such it is not reliable to use for testing, but can be used
to generalise algorithm training.

Pseudoknot-free Testing. We include several test sets
gathered from current literature. The Eterna100v1
(Anderson-Lee et al., 2016) and Eterna100v2 (Koodli et al.,
2021) test sets are included, each consisting of 100 struc-
tures each (although 81 of these sequences are the same).
We provide Eterna100v1 to allow for future benchmarks
that use a different folding engine to be compared and con-
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trasted with the unsolvable sequences. Eterna100v2 was
provided as it consists of a varied sequence length and dif-
ficulty, allowing for a robust test set. We further include
RNA-Strand provided by (Kleinkauf et al., 2015), which
contains 50 short-length structures, where the longest struc-
tures are only 98 nucleotides. This is provided to be used
as a benchmark for short-length structures. We include the
Rfam-Test set provided by (Kleinkauf et al., 2015), and
the Rfam-Taneda set provided by (Taneda, 2011), with the
Rfam-Test set consisting of 63 structures, with a max-length
for 273 nucleotides, which is ideal for benchmarking the
middle-length structures. Rfam-Taneda is provided as an
additional test set alongside Eterna100-v2, consisting of 29
structures with a max-length of 451 nucleotides. Lastly, we
include the Rfam-Learn-Test set, containing 100 structures
constructed in the same way as Rfam-Learn-Train (Runge
et al., 2019). This set is aimed at providing initial testing for
algorithms that plan to use the Rfam-Learn-Train dataset.

PseudoBase++. PseudoBase++ (van Batenburg et al.,
2000) contains a much smaller set of sequences than
Eterna100, with the largest being only 137 nucleotides long,
but 252 sequences rather than only 100. Each sequence
within this dataset contains a pseudoknot, thereby restricting
it’s usage to only algorithms that can handle pseudoknots.

2.2. Baselines

We have selected nine RNA inverse design baselines for
our benchmark. They are ▶ RNAInverse (Lorenz et al.,
2011; Hofacker et al., 1994) as the adaptive walk method;
▶ antaRNA (Kleinkauf et al., 2015) and SAMFEO (Zhou
et al., 2023a) as evolutionary algorithms; ▶ SentRNA (Shi
et al., 2018) as a model-based method; ▶ LEARNA, Meta-
LEARNA, and Meta-LEARNA-Adapt (Runge et al., 2019)
as reinforcement learning-based methods; ▶ MCTS (Yang
et al., 2017) as monte carlo based methods; and ▶ IncaRNA-
tion (Reinharz et al., 2013) as the sampling-based method.
The details of each algorithm are described in appendix A.2.
Below, we provide an explanation of each type of method.

2.2.1. ADAPTIVE WALK METHODS

The adaptive walk method involves two primary steps. In the
first step, the algorithm establishes a starting point by gen-
erating a random seed sequence. The second step involves
progressively modifying or mutating this seed sequence to
align it with the target structure through a stochastic search
process (Lorenz et al., 2011; Hofacker et al., 1994; An-
dronescu et al., 2004).

2.2.2. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms solve the RNA inverse design prob-
lem primarily through iterative optimisation of candidate

sequences against predefined structural and functional ob-
jectives (Taneda, 2011; Lyngsø et al., 2012; Kleinkauf et al.,
2015; Zhou et al., 2023a; Merleau and Smerlak, 2022).

2.2.3. MODEL-BASED METHOD

Model-based methods approach the RNA inverse design
problem by employing surrogate models that leverage ex-
isting data to predict and optimise RNA sequences. These
methods train models such as neural networks (Shi et al.,
2018) or convolutional neural networks (Koodli et al., 2019)
on datasets comprised of RNA sequences and structures,
enabling them to learn the underlying patterns critical for
effective RNA design. Once trained, these models can gen-
erate new RNA sequences that are then iteratively refined
through techniques like adaptive walks, which involve mak-
ing small, random changes to the sequences to enhance their
alignment with the target structures. This process allows
for the systematic improvement of RNA designs towards
optimal configurations that meet predefined criteria.

2.2.4. REINFORCEMENT LEARNING

Reinforcement Learning (RL) methods rely on an RL algo-
rithm (in this case, Proximal Policy Optimisation (Schul-
man et al., 2017)) to create an optimal policy through online
learning, which is followed by a deep neural network. Be-
fore RL can be used, we must first model the problem as
a Markov Decision Process (MDP), achieved through the
following equation, where T represents the current target
structure T . MDP = (S,A,RT , PT ) (Sutton and Barto,
2018). The state-of-the-art RL-based algorithms were de-
veloped by (Runge et al., 2019), although these algorithms
require a large amount of computation time to be accurate
with long sequences (>=1 hour per sequence).

2.2.5. MONTE CARLO

Monte Carlo methods can leverage random sampling and
probabilistic modeling to narrow down the search space to
only the most promising reasons. Monte Carlo sampling
methods are used in-tandem with a search-based method,
e.g., tree search (Yang et al., 2017) or heuristics to guide
the search and mutations of the sequence (Portela, 2018).
These algorithms allow for a more efficient form of solving
the search space, but still require significant computational
time to fully explore the possible transitions.

2.2.6. SAMPLING-BASED

Sampling-based approaches generally use a type of sam-
pling to gather different options for improving the sequence,
and select the best sample through a cost or objective func-
tion. These techniques fall into two categories: random-
based and sample-based. Random-based methods, such
as RNAInverse (Lorenz et al., 2011; Andronescu et al.,
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2004) generate mutations randomly within the initial se-
quence and then evaluate these changes against a cost or
objective function to assess their goodness. Conversely,
sample-based methods like IncaRNAtion (Reinharz et al.,
2013) use a weighted distribution for more efficient sam-
pling, or a heuristic to guide sampling to more efficient and
effective.

2.3. Evaluation frameworks

A significant problem with the collation of differing algo-
rithmic approaches is the amount of time required for algo-
rithms to find the RNA sequence (Aguirre-Hernández et al.,
2007). The length of the sequence will have a massive ef-
fect on the overall required computation time (Schnall-Levin
et al., 2008), as for each nucleotide in the sequence, there
are 4 possible values (G, C, A, U), and 6 possible pairings
(GC, CG, AU, UA, GU, UG) (Höner zu Siederdissen et al.,
2011). This is represented as 4u · 6p/2, where u represents
the number of unpaired nucleotides, and p represents the
number of paired nucleotides within the sequence. The ex-
ponential growth in computational complexity have resulted
in algorithms that require a lengthy run period to produce
accurate sequences.

Despite this, we challenge the assumption that the ex-
treme amount of computation time used by previous studies
(Runge et al., 2019; Churkin et al., 2017; Kleinkauf et al.,
2015; Hofacker et al., 1994; Garcia-Martin et al., 2013) is re-
quired to properly benchmark these algorithms. By utilising
the novel metric, number of solved sequences per length, we
conduct further analysis into the efficacy of the algorithms
on longer and shorter sequences. We further separate our
analysis into key periods of time to demonstrate the effect
that computation time has on the efficacy of the algorithms
on various sequence lengths. This allows us to identify key
areas where performance on sequence types begins to fall
off. Furthermore, by restricting the algorithms to the same
run-time, we can ensure that the comparison is fair between
techniques.

Here we describe the metrics used to evaluate the perfor-
mance of the algorithms. Computation time was included
as part of the ablation study, to show how the difference in
computation time affects model performance.

Number of successfully solved sequences (within a time
limit): Here we report the percentage of sequences that were
successfully solved, where a successful solve is defined
as when the Hamming Distance between the target and
predicted structure is 0, or the normalised hamming distance
is 1. We report this for several time limits, using 1-second as
a k-shot benchmark, and 1-hour as our longest benchmark.

Number of solved sequences of a particular length: We
report the number of solved sequences within the length

categories identified in Table 2. This provides further insight
into the type of sequences that the algorithms are struggling
to predict.

GC-Content GC-content represents the amount of G and C
nucleotide pairs within a sequence. Previous studies (Isaacs
et al., 2006; Chan et al., 2009) have shown that a higher
concentration of GC pairs could have a strong impact on the
function of an RNA, and therefore it is important to include
when considering the application of the methods evaluated.

Table 1. Eterna100v2 Sequence Length Distribution

Sequence Length Number of Sequences

350-400 19
150-349 15
100-149 26
50-99 23
0-49 17

3. Experimental Design
In this section, we demonstrate the usage of our benchmarks
to showcase it’s applicability in solving research and bi-
ological questions. We use our benchmark suite to run a
large-scale empirical study on two central tasks, pseudoknot-
free RNA design, and pseudoknot-inclusive RNA design.

As the experimental design, and thereby analysis of
the results, will differ between the pseudoknot-free and
pseudoknot-inclusive tasks, we divide this section accord-
ing to these two problems, as to present our findings in a
clear and concise manner.

Pseudoknot-free. For the pseudoknot-free problem, we
aim to evaluate the performance of our baseline algorithms,
and quantify the relationship between sequence length and
algorithm efficacy. The folding algorithm utilised was kept
as ViennaRNA 2 throughout, in order to keep consistent
results. We utilise an average of 3 runs with randomised
seeds for these results, as to ensure reproducibility and
mitigate potential outliers.

Pseudoknot-inclusive. For the pseudoknot-inclusive
problem, we aim to evaluate the effectiveness of our algo-
rithms at producing useful sequences through the measure
of GC Content, and assess the performance of the algorithm
on data that includes varying types of pseudoknots. We do
not utilise the short computation times shown within the
first benchmark, due to the additional computation required
for the analysis of pseudoknot RNA structures. It should
be noted that the folding algorithm utilised was kept as
pKiss throughout, to ensure for a fair comparison between
algorithms.
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3.1. Data for experiments

Pseudobase++ We provide the Pseudobase++ training set
first released by (Kleinkauf et al., 2015), which consists
of 304 structures, of which 37 were excluded for having
no base-pairings. We have split the data into training and
testing using the same conditions as (Kleinkauf et al., 2015).
The training data consists of 13 structures containing H-
type pseudoknots, and 3 structures containing bulge hair-pin
pseudoknots (B-type). The testing data consists of 251
sequences, of which there are 219 H-type, 29 B-type, and 3
K-type structures.

Eterna100v2 Eterna100v1 was previously used as a
benchmark (Runge et al., 2019; Eastman et al., 2018; Koodli
et al., 2019; Shi et al., 2018; Yang et al., 2017), however
with the introduction of Eterna100v2 and several new al-
gorithms claiming state-of-the-art (Merleau and Smerlak,
2022; Minuesa et al., 2021; Zhou et al., 2023a), this bench-
mark must be updated to provide a complete comparison.
This dataset consists of 100 synthetic RNA sequences, and
does not consist of any training data. The sequences used
were split into five categories to represent the difference in
length for each sequence. The histogram below showcases
the distribution of sequences, and table 2 shows the number
of sequences per split.

3.2. Baselines

For the pseudoknot-free problem, we implement a diverse
set of algorithms according to the types set out previously.
As model-based approaches such as Reinforcement Learn-
ing (Eastman et al., 2018; Runge et al., 2019) or Model-
based Optimisation (Zhou et al., 2023b; Zhang et al., 2023)
provide pre-trained models, we utilise the reported model
in our experiments. The other approaches, Sampling-based
(Reinharz et al., 2013), Evolutionary (Zhou et al., 2023a;
Kleinkauf et al., 2015), Monte Carlo (Yang et al., 2017) and
Adaptive Walk (Lorenz et al., 2011), do not require a model,
and as such, we utilise the reported layout for model use, as
to ensure our results are as close to reported as possible. The
run-time for each algorithm was kept consistent, and each
algorithm was run using 3 seeds for each computational
time given. We take the rounded mean of the 3 seeds, and
match this with the sequence length results. It should be
noted that the computational hardware utilised in this paper
is likely poorer than those used to report previous results
of the algorithms, and there may be a slight variation of
results over reported results due to this. We detail hardware
specification in appendix A.3.

For the pseudoknot-inclusive problem, we implement two
popular baseline algorithms that are widely regarded by
current literature, MCTS and antaRNA (Yang et al., 2017;
Kleinkauf et al., 2015). We use the same run-time for both

algorithms, and each run-time reported was averaged across
3 seeds.

3.3. Metrics

The central metric for measuring the success of the
pseudoknot-free tasks is the success rate, i.e., the amount
of sequences that successfully fold into the same target se-
quence (Esmaili-Taheri et al., 2014). We report this as a
percentage, however since the result is out of 100, it can
also be interpreted as a raw number. To gain further insight
into algorithm performance, we further utilise the number
of solved sequences by length, according to the layout pre-
sented in table 1.

The pseudoknot-inclusive problem is slightly different, as
we use Pseudobase++, the length of the sequences is not
nearly as diverse, only between 20-136 nucleotides, thereby
making length analysis redundant. We instead utilise the
GC-Content, as both algorithms benchmarked can incorpo-
rate a target GC-Content, where they aim to use as high
a percentage of G and C nucleotides as possible, which
will increase the efficiency and stability of the overall RNA
structure. By using this combination of success rate and
GC-Content, we can explore both the performance of the al-
gorithms and the quality of the sequences provided (Merleau
and Smerlak, 2022).

4. Results
In this section, we present the results of the algorithms used
within the benchmark. We split this section in accordance
with our research questions as presented earlier, to clearly
provide an answer for each one proposed. The complete
set of results for the Eterna100v2 benchmark is shown in
fig. 3, and table 3, and the set of results for the Pseudobase++
benchmark is shown in table 2.

4.1. Pseudoknot-Free

We find that SAMFEO performs exceptionally well for the
low computation time benchmarks, even solving 47% of
puzzles with just a 10 second computation time. We find that
each approach clearly beats our original baseline, RNAIn-
verse, as expected, although some older-style algorithms
have improved, with MCTS outperforming the reinforce-
ment learning (LEARNA, Meta-LEARNA, Meta-LEARNA-
Adapt) approaches. We find that the evolutionary algorithm
approaches are not as heavily affected by the computation
time, as the other algorithms, perhaps due to other param-
eters such as population count having a larger affect on
the results. IncaRNAtion, our sampling-based approach,
was unable to be run on a lower computation time (due to
the way in which it is laid out), however the performance
demonstrated was not competitive with the current methods,
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Figure 3. Graphical representation of the baseline RNA inverse design algorithms and their success rates over different computation times.

with only 38% of puzzles completed.

We find that almost every algorithm sees a drop-off in perfor-
mance for all algorithms on the longest sequence category
(350-400), and although the general trend is a decrease in
performance as the sequence gets longer, it is not necessarily
the case that the algorithms perform better on the shorter
sequences. Most top performing algorithms performed very
similarly across the 0-149 sequence length benchmark, only
beginning to see a drop-off in performance at the 150+ mark.
The collapse in performance for the longest sequence length
is likely due to the increased computational time and re-
sources required for solving them.

The drop in performance for the reinforcement learning al-
gorithms is due to being unable to generalise to the longest
sequences (350-400). This is likely due to lack of compu-
tational time, although this is contrary to results initially
reported by (Runge et al., 2019).

4.2. Pseudoknot-inclusive

We find that MCTS is consistently outperformed by an-
taRNA across all 3 analyses run, with antaRNA consistently
having a higher number of solved sequences, and a much
closer target to the actual GC Content. This likely comes
down to the function of the methods, as MCTS uses ham-
ming distance as the central termination condition, it doesn’t
continue to optimise the sequence (i.e., increase/decrease

GC content) after the hamming distance is confirmed to
be zero. This is the opposite case for antaRNA, where a
termination potential is used, and the maximum number
of solutions, structural distance, and if GC-Content is met.
Thereby antaRNA is more likely to prioritise GC-Content
over matching the structure if the structure is difficult to
match. This suggests that, if we were to re-run the tests with
a much higher maximum computation time, MCTS may end
up with a higher success rate, but the GC Content is always
likely to end up lower than antaRNA.

Table 2. Results showcasing the performance of different algo-
rithms on Pseudobase sequences and their G-C content.

Algorithm Target GC
Content

Num
Solved

Actual GC
Content

antaRNA 25% 170 25.54%
antaRNA 50% 174 49.93%
antaRNA 75% 173 74.70%

MCTS 25% 134 38.96%
MCTS 50% 129 39.45%
MCTS 75% 141 39.29%

5. Resources
We outline our source code and provide a docker en-
vironment to allow users to reproduce the results of

7



Table 3. Pseudoknot-free, Eterna100v2 1-Hour Sequence Length Results

Algorithm Method Sequence Length

0-49 50-99 100-149 150-349 350-400 Total

Reinforcement Learning
LEARNA 13 14 16 14 0 57
Meta-LEARNA 13 15 18 11 1 58
Meta-LEARNA-Adapt 13 15 18 8 0 54

Monte Carlo MCTS 13 15 18 12 6 64

Adaptive Walk RNAInverse 8 5 4 3 1 21

Evolutionary Algorithm SAMFEO 12 17 18 14 6 67
antaRNA 8 4 1 0 0 13

Model-based SentRNA 13 14 17 10 9 63

Sampling-based IncaRNAtion 11 8 10 6 3 38

our analysis. We include an example jupyter notebook
or main.py file for users to gather results in the same
way as we have presented the data. The code can be
found in our public GitHub: https://github.com/
COLA-Laboratory/RNAInvBench

6. Discussion and Future Work
We proposed RNAInvBench, an open-source framework
for solving the inverse design problem with RNA sec-
ondary structures. It serves three key purposes: (a) to
provide open-access to data and baseline algorithms, (b)
to simplify installation and use by containerising them in
a docker-container, and (c) to provide standardised metrics
for measuring the performance of both pseudoknot-free and
pseudoknot-inclusive algorithms.

Although we provide a framework for both pseudoknot-free
and pseudoknot-inclusive algorithms, we do not discuss the
constrained problem, where part of the RNA sequence is
provided to limit the search space for the algorithms. Future
work can extend the baseline algorithms to this problem and
include both training and testing datasets.

We have conducted a large-scale study of our framework by
benchmarking and evaluating the nine baseline algorithms,
thereby demonstrating their performance and robustness
across both pseudoknot-free and pseudoknot-inclusive chal-
lenges. This demonstrates the suitability of our framework
for future research and use. Lastly, our framework is open-
source, thus future contributions of new algorithms and data
sources can ensure it remains up-to-date.
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A. Appendix
A.1. Technical Details and Code Availability

Data For the pseudoknot-free analysis, we utilised Eterna100v2 as our benchmark data (Koodli et al., 2021), which can be
found at the EternaGame github: https://github.com/eternagame/eterna100-benchmarking

For the pseudoknot-inclusive analysis, we utilised Pseudobase++ as our benchmark data (Taufer et al., 2009), which can be
found at the Pseudobase++2.0 website: https://rnavlab.utep.edu/database

Code Availability All of our code is open-source and available for download and use through the github page: https:
//github.com/COLA-Laboratory/RNAInvBench

A.2. Baselines for Inverse RNA Design

• RNAInverse (Lorenz et al., 2011; Hofacker et al., 1994; Andronescu et al., 2004), one of the first inverse folding
algorithms, initializes the sequence randomly and then uses a simple adaptive walk to randomly sample better sequences.

• antaRNA (Kleinkauf et al., 2015) employs ant-colony optimization where initial sequences are generated through
a weighted random search, and the quality of these sequences guides the adjustment of search weights, iteratively
refining the sequences towards the target structure.

• MCTS (Yang et al., 2017) employs monte-carlo tree search, where each node in the tree corresponds to an assigned
nucleotide in the sequence. The initial sequence is randomly generated, and MCTS guides iterative mutation towards
the target structure.

• SentRNA (Shi et al., 2018) is a design agent consisting of a fully-connected neural network trained end-to-end using
human-designed RNA sequences.

• LEARNA (Runge et al., 2019) employs a deep neural network with an embedding layer for the input state for its policy
function, and uses Proximal Policy Optimisation (PPO) to train the policy through online interaction.

• Meta-LEARNA (Runge et al., 2019) employs a meta-learning approach that views each RNA structure as a task, and
transfers knowledge across each task. As each structure has a different MDP (Markov Decision Process), PPO is used
asynchronously to train a single policy network across all the tasks. After training, the parameters are fixed and applied
to a new sequence (modelled by a decision process).

• Meta-LEARNA-Adapt (Runge et al., 2019) combines Meta-LEARNA and LEARNA. It uses Meta-LEARNA to
obtain the initial policy parameters, and LEARNA is used to further adapt the policy parameters.

• IncaRNAtion (Reinharz et al., 2013) is a successor of RNA-ensign that can specifically design sequences with a
specified GC content using a GC-weighted Boltzmann ensemble and stochastic backtracking.

• SAMFEO (Zhou et al., 2023a) leverages both structure-level and ensemble-level information to guide iterative searches,
optimizing objectives through cycles of sampling, mutation, and updating to produce a large number of successfully
designed RNA sequences.

A.3. Hardware Details

All computations were completed using an 24-Core Intel(R) Xeon(R) Gold 6248R CPU (3.00GHz), with 252GB of RAM.
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A.4. Benchmark data specification

Table 4. Benchmark data details, including the task, the range of sequence lengths, and the number of sequences within the dataset.

Dataset Pseudoknot Type Task Count Range

Eterna100-v1 Pseudoknot-free Test 100 11-399
Eterna100-v2 Pseudoknot-free Test 100 11-399
Pseudobase++-Test Pseudoknot-inclusive Test 251 20-136
Pseudobase++-Train Pseudoknot-inclusive Train 16 24-134
Rfam-Learn-Test Pseudoknot-free Test 100 50-446
Rfam-Learn-Train Pseudoknot-free Train 65000 50-450
Rfam-Test Pseudoknot-free Test 63 35-273
Rfam-Taneda Pseudoknot-free Test 29 54-451
RNA-Strand Pseudoknot-free Test 50 20-98

A.5. Dataset Pre-Processing

The RNA families used (Rfam, Strand, and Pseudobase) are highly redundant. Rfam, which compiles data from Wikipedia,
taxonomy, and ontology resources and is manually curated (Nawrocki et al., 2015). Strand is compiled of a wide collection
of secondary structures collated from public databases (Andronescu et al., 2008). Pseudobase consists of a database of
pseudoknot secondary structures developed from Leiden University through crystallography, NMR, mutational experiments
and sequence comparisons (Taufer et al., 2009). Therefore, pre-processing is required to ensure structural and sequential
diversity. Below, we provide the pre-processing steps to maintain this.

• RNA-Strand and Rfam: For each family, (Kleinkauf et al., 2015) obtained the seed alignment, and removed all
alignments with less than 21 entries. From here, the sequence and structure were aligned to ensure that the structural
elements were correctly mapped to the nucleotide sequence. This keeps the sequence and structure length consistent,
and ensures they are accurately aligned.

• Pseudobase++: Cases where non-canonical base pairs were identified and removed by (Kleinkauf et al., 2015). The
remaining pseudoknots fall into four categories, simple hairpin, complex hairpin, kissing hairpin and bulge hairpin
pseudoknots. Pseudoknots of other categories were excluded.

• Eterna100v1/v2: This dataset consists of 100 synthetic RNA sequences. For Eterna100v1, all 100 synthetic RNA
sequences were created by (Anderson-Lee et al., 2016), considering a diverse range of sequence and mean stem
length, symmetry and specific difficult-to-design motifs. For Eterna100v2, the 19 sequences that were unsolvable were
replaced with synthetically created sequences by the Eterna community, which were then validated and selected by
(Koodli et al., 2021).
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