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Abstract

We present a benchmark suite of four datasets001
for evaluating the fairness of pre-trained le-002
gal language models and the techniques used003
to fine-tune them for downstream tasks. Our004
benchmarks cover four jurisdictions (Euro-005
pean Council, USA, Swiss, and Chinese), five006
languages (English, German, French, Italian007
and Chinese) and fairness across five attributes008
(gender, age, nationality/region, language, and009
legal area). In our experiments, we evalu-010
ate pre-trained language models using several011
group-robust fine-tuning techniques and show012
that none of these combinations guarantee fair-013
ness, nor consistently mitigate group dispari-014
ties. Furthermore, we analyze what causes per-015
formance differences across groups, and how016
group-robust fine-tuning techniques fail to mit-017
igate group disparities under both representa-018
tion inequality and temporal distribution swift.019

1 Introduction020

The sector of law produces massive volumes of021

textual data (Katz et al., 2020), and as a result, le-022

gal research for settling personal injury claims, for023

example, can take several years, potentially dis-024

couraging clients. Legal systems around the world,025

e.g., in India,1 Brazil,2 or the US3, experience year-026

long backlogs of pending cases. Natural Language027

Processing (NLP) for law (Chalkidis and Kampas,028

2019; Aletras et al., 2019; Zhong et al., 2020) re-029

ceives increasing attention. Assistive technologies030

can speed up legal research or discovery signifi-031

cantly assisting lawyers, judges and clerks. They032

can also help legal scholars to study case law (Katz,033

2012), improve access of law to laypersons, help so-034

ciologists and research ethicists to expose biases in035

the justice system (Angwin et al., 2016; Dressel and036

Farid, 2018), and even scrutinize decision-making037

itself (Bell et al., 2021).038

1https://tinyurl.com/mjy2uf9a
2https://tinyurl.com/2uttucmn
3https://tinyurl.com/4ybhhff8

Figure 1: Group disparity for defendant state (C.E. Eu-
rope vs. The Rest) in ECtHR and legal area (Penal law
vs. Civil law) in FSCS.

In the context of law, non-discrimination (i.e. 039

equality) is of paramount importance, e.g., EU non- 040

discrimination law (Council of European Union, 041

2000, 2006) prohibits both direct and indirect dis- 042

crimination. Discrimination occurs when one per- 043

son is treated less favourably than others would be 044

treated in comparable situations on grounds of sex, 045

racial or ethnic origin, disability, sexual orienta- 046

tion, religion or belief and age.4 Given the gravity 047

that legal outcomes have for individuals, assistive 048

technologies cannot be adopted to speed up legal 049

research at the expense of fairness (Wachter et al., 050

2021), potentially also decreasing the trust in our 051

legal systems (Barfield, 2020). 052

In recent years, the NLP and machine learning 053

literature has introduced fairness objectives, typ- 054

ically derived from the Rawlsian notion of equal 055

opportunities (Rawls, 1971), to evaluate the extent 056

to which models discriminate across protected at- 057

tributes. Some of these rely on notions of resource 058

allocation, i.e., reflecting the idea that groups are 059

treated fairly if they are equally represented in 060

the training data used to induce our models, or 061

if the same number of training iterations is per- 062

formed per group. This is sometimes referred 063

to as the resource allocation perspective on fair- 064

4An in-depth analysis of the notion of discrimination and
fairness in law is presented in Appendix A.
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ness (Lundgard, 2020). Contrary, there is also a065

capability-centered approach to fairness (Anderson,066

1999; Robeyns, 2009), in which the goal is reserve067

enough resources per group to achieve similar per-068

formance levels, which is ultimately what is im-069

portant for how individuals are treated in legal pro-070

cesses. We adopt a capability-centered approach071

to fairness and define fairness in terms of perfor-072

mance parity (Hashimoto et al., 2018) or equal risk073

(Donini et al., 2018).5074

Performance disparity (Hashimoto et al., 2018)075

refers to the phenomenon of high overall perfor-076

mance, but low performance on minority groups,077

as a result of minimizing risk across samples (not078

groups), Since some groups benefit more than oth-079

ers from models and technologies that exhibit per-080

formance disparity, this likely widens gaps between081

those groups. Performance disparity works against082

the ideal of fair and equal opportunities for all083

groups in our societies. We therefore define a fair084

classifier as one that has similar performance (equal085

risk) across all groups (Donini et al., 2018).086

In sum, we adopt the view that (approximate)087

equality under the law in a modern world requires088

that our NLP technologies exhibit (approximately)089

equal risk across sensitive attributes. For every-090

one to be treated equally under the law, regardless091

of race, gender, nationality, or other characteris-092

tics, NLP technologies need to be (approximately)093

insensitive to these attributes. In a supervised learn-094

ing setting, models are trained on historical data095

that not always represent all groups in our societies096

equally. Moreover, historical legal data tends to097

reflect social biases in our societies and legal in-098

stitutions. For example, criminal justice is already099

often strongly influenced by racial bias, with peo-100

ple of colour being more likely to be arrested and101

receive higher punishments than others, both in the102

US6 and in the UK.7 When models are deployed103

in production, they may reinforce these biases. We104

consider three types of attributes in this work:105

• Demographics: The first category includes demo-106

graphic information of the involved parties, e.g.,107

the gender, sexual orientation, nationality, age, or108

race of the plaintiff/defendant in a case. In this109

case, we aim to mitigate biases against specific110

5The dominant alternative to equal risk is to define fairness
in terms of equal odds. Equal odds fairness does not guarantee
Rawlsian fairness, and often conflicts with the rule of law.

6https://tinyurl.com/4cse552t
7https://tinyurl.com/hkff3zcb

groups, e.g., a model performs worse for female 111

defendants or is biased against black defendants. 112

• Regional: The second category includes regional 113

information of the courts in charge of a case. In 114

this case, we aim to mitigate disparity in-between 115

different regions in a given jurisdiction, e.g., a 116

model performs better in specific cases originated 117

or ruled in courts of specific regions. 118

• Legal Topic: The third category includes legal 119

topic information on the subject matter of the 120

controversy. In this case, we aim to mitigate 121

disparity in-between different topics (areas) of 122

law, e.g., a model performs better in a specific 123

field of law, for example civil cases. 124

Contributions We introduce FairLex, a multilin- 125

gual fairness benchmark of four legal datasets cov- 126

ering four jurisdictions (Council of Europe, United 127

States of America, Swiss Confederation and Peo- 128

ple’s Republic of China), five languages (English, 129

German, French, Italian and Chinese) and vari- 130

ous sensitive attributes (gender, age, region, etc.). 131

We release four pre-trained transformer-based lan- 132

guage models, each tailored for a specific FairLex 133

dataset (task) within our benchmark, which can 134

be used as baseline models (text encoders). We 135

conduct experiments with several group-robust al- 136

gorithms and provide a quantitative and qualita- 137

tive analysis of our results, highlighting open chal- 138

lenges in the development of robustness methods 139

in legal NLP. 140

2 Related Work 141

Fair machine learning The literature on induc- 142

ing approximately fair models from biased data is 143

rapidly growing. See Mehrabi et al. (2021) for a 144

recent survey. We rely on this literature in how 145

we define fairness, and for the algorithms that we 146

compare in our experiments below. As already dis- 147

cussed, we adopt a capability-centered approach 148

to fairness and define fairness in terms of perfor- 149

mance parity (Hashimoto et al., 2018) or equal 150

risk (Donini et al., 2018). The fairness-promoting 151

learning algorithms we evaluate are discussed in 152

detail in §4. Some of these – Group Distribution- 153

ally Robust Optimization (Sagawa et al., 2020) and 154

Invariant Risk Minimization (Arjovsky et al., 2020) 155

– have previously been evaluated for fairness in the 156

context of hate speech (Koh et al., 2021). 157

Fairness in law Studying fair machine learning 158

in the context of legal (computational) applications 159
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Dataset Original Publication Classification Task No of Classes
Attributes

Attribute Type #N

ECtHR (Chalkidis et al., 2021) Legal Judgment Prediction: ECHR Violation Prediction 10+1
Defendant State 2
Applicant Gender 2
Applicant Age 3

SCOTUS (Spaeth et al., 2020) Legal Topic Classification: Issue Area Classification 14
Respondent Type 4
Decision Direction 2

FSCS (Niklaus et al., 2021) Legal Judgment Prediction: Case Approval Prediction 2
Language 3
Region of Origin 6
Legal Area 6

SPC (Wang et al., 2021b) Legal Judgment Prediction: Crime Severity Prediction 6
Defendant Gender 2
Region of Origin 7

Table 1: Main characteristics of FairLex datasets (ECtHR, SCOTUS, FSCS, SPC). We report the examined tasks,
the number of classes, the examined attributes and the number (#N) of groups per attribute.

has a limited history. In a classic study, Angwin160

et al. (2016) analyzed the performance of the Cor-161

rectional Offender Management Profiling for Al-162

ternative Sanctions (COMPAS) system, which was163

used for parole risk assessment (recidivism predic-164

tion) in the US. The system relied on 137 features165

from questionnaires and criminal records. Angwin166

et al. (2016) found that blacks were almost twice167

as likely as whites to be mislabeled as high risk (of168

re-offending), revealing a severe racial bias in the169

system. The system was later compared to crowd-170

workers in Dressel and Farid (2018).171

These studies relied on tabular data and did not172

involve text processing. More recently, Wang et al.173

(2021b) studied legal judgment consistency using a174

dataset of Chinese criminal cases. They evaluated175

the consistency of LSTM-based models across re-176

gion and gender and reported severe fairness gaps177

across gender. They also found that the fairness178

gap was particular severe for more serious crimes.179

Previous work has focused on the analysis of180

specific cases, languages or algorithms, but Fair-181

Lex aims at easing the development and testing182

of bias-mitigation models or algorithms within the183

legal domain. FairLex allows researchers to ex-184

plore fairness across four datasets covering four185

jurisdictions (Council of Europe, United States of186

America, Swiss Confederation and People’s Re-187

public of China), five languages (English, German,188

French, Italian and Chinese) and various sensitive189

attributes (gender, age, region, etc.). Furthermore,190

we provide competitive baselines including state-191

of-the-art transformer-based models, adapted to the192

examined datasets, and an in-dept examination of193

performance of four group robust algorithms de-194

scribed in detail in Section 4.195

3 Benchmark Datasets 196

ECtHR The European Court of Human Rights 197

(ECtHR) hears allegations that a state has breached 198

human rights provisions of the European Conven- 199

tion of Human Rights (ECHR). We use the dataset 200

of Chalkidis et al. (2021), which contains 11K 201

cases from ECtHR’s public database. Each case is 202

mapped to articles of the ECHR that were violated 203

(if any). This is a multi-label text classification task. 204

Given the facts of a case, the goal is to predict the 205

ECHR articles that were violated, if any, as decided 206

(ruled) by the court. The cases are chronologically 207

split into training (9k, 2001–16), development (1k, 208

2016–17), and test (1k, 2017–19) sets. 209

To facilitate the study of fairness of text clas- 210

sifiers, we record for each case the following at- 211

tributes: (a) The defendant states, which are the 212

European states that allegedly violated the ECHR. 213

The defendant states for each case is a subset of the 214

47 Member States of the Council of Europe;8 To 215

have statistical support, we group defendant states 216

in two: Central-Eastern European states, on one 217

hand, and all other states, as classified by the Eu- 218

roVoc thesaurus.9 (b) The applicant’s age at the 219

time of the decision. We extract the birth year of the 220

applicant from the case facts, if possible, and clas- 221

sify its case in an age group (≤35, ≤64, or older) ; 222

and (c) the applicant’s gender, extracted from the 223

facts, if possible based on pronouns, classified in 224

two categories (male, female). 225

SCOTUS The US Supreme Court (SCOTUS) is 226

the highest federal court in the United States of 227

America and generally hears only the most contro- 228

versial or otherwise complex cases which have not 229

been sufficiently well solved by lower courts. We 230

combine information from SCOTUS opinions with 231

8https://www.coe.int/
9https://op.europa.eu/en/web/

eu-vocabularies
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the Supreme Court DataBase (SCDB)10 (Spaeth232

et al., 2020). SCDB provides metadata (e.g., date233

of publication, decisions, issues, decision direc-234

tions and many more) for all cases. We consider235

the available 14 thematic issue areas (e.g, Criminal236

Procedure, Civil Rights, Economic Activity, etc.).237

This is a single-label multi-class document classi-238

fication task. Given the court opinion, the goal is239

to predict the issue area whose focus is on the sub-240

ject matter of the controversy (dispute). SCOTUS241

contains a total of 9,262 cases that we split chrono-242

logically into 80% for training (7.4k, 1946–1982),243

10% for development (914, 1982–1991) and 10%244

for testing (931, 1991–2016).245

From SCDB, we also use the following attributes246

to study fairness: (a) the type of respondent, which247

is a manual categorization of respondents (defen-248

dants) in five categories (person, public entity, or-249

ganization, facility and other); and (c) the direction250

of the decision, i.e., whether the decision is liberal,251

or conservative, provided by SCDB.252

FSCS The Federal Supreme Court of Switzer-253

land (FSCS) is the last level of appeal in Switzer-254

land and similarly to SCOTUS, the court generally255

hears only the most controversial or otherwise com-256

plex cases which have not been sufficiently well257

solved by lower courts. The court often focus only258

on small parts of previous decision, where they dis-259

cuss possible wrong reasoning by the lower court.260

The Swiss-Judgment-Predict dataset (Niklaus et al.,261

2021) contains more than 85K decisions from the262

FSCS written in one of three languages (50K Ger-263

man, 31K French, 4K Italian) from the years 2000264

to 2020. The dataset provides labels for a sim-265

plified binary (approval, dismissal) classification266

task. Given the facts of the case, the goal is to267

predict if the plaintiff’s request is valid or partially268

valid. The cases are also chronologically split into269

training (59.7k, 2000-2014), development (8.2k,270

2015-2016), and test (17.4k, 2017-2020) sets.271

The dataset provides three additional attributes:272

(a) the language of the FSCS written decision, in273

either German, French, or Italian; (b) the legal area274

of the case (public, penal, social, civil, or insurance275

law) derived from the chambers where the deci-276

sions were heard; and (c) the region that denotes in277

which federal region was the case originated.278

SPC The Supreme People’s Court of China279

(SPC) is the last level of appeal in China and con-280

10http://scdb.wustl.edu

siders cases that originated from the high people’s 281

courts concerning matters of national importance. 282

The Chinese AI and Law challenge (CAIL) dataset 283

(Xiao et al., 2018) is a Chinese legal NLP dataset 284

for judgment prediction and contains more 1m 285

criminal cases. The dataset provides labels for 286

relevant article of criminal code prediction, charge 287

(type of crime) prediction, imprisonment term (pe- 288

riod) prediction, and monetary penalty prediction. 289

Recently, Wang et al. (2021b) re-annotated a 290

subset of approx. 100k cases with demographic 291

attributes. Specifically the new dataset has been 292

annotated with: (a) the applicant’s gender, classi- 293

fied in two categories (male, female); and (b) the 294

region of the court that denotes in which out of the 295

7 provincial-level administrative regions was the 296

case judged. We re-split the dataset chronologi- 297

cally into training (80k, 2013-2017), development 298

(12k, 2017-2018), and test (12k, 2018) sets. In our 299

study, we examine a crime severity prediction task, 300

a single-label multi-class classification task, where 301

given the facts of a case, the goal is to predict how 302

severe was the committed crime with respect to the 303

imprisonment term. We approximate crime sever- 304

ity by the length of imprisonment term, split in 6 305

clusters (0, ≤12, ≤36, ≤60, ≤120, >120 months). 306

4 Fine-tuning Algorithms 307

Across experiments, our main goal is to find a hy- 308

pothesis for which the risk R(h) is minimal: 309

h∗ = arg min
h∈H

R(h) (1) 310

R(h) = E(L(h(x), y)) (2) 311

where y are the targets (ground truth) and h(x) = ŷ 312

is the system hypothesis (model’s predictions). 313

Similar to previous studies, R(h) is an expecta- 314

tion of the selected loss function (L). In this work, 315

we study multi-label text classification (Section 3), 316

thus we aim to minimize the binary cross-entropy 317

loss across L classes: 318

L = −y log ŷ − (1 − y) log(1 − ŷ) (3) 319

ERM (Vapnik, 1992), which stands for Empirical 320

Risk Minimization, is the most standard and widely 321

used optimization technique to train neural meth- 322

ods. The loss is calculated as follows: 323

LERM =

N∑
i=1

Li

N
(4) 324

where N is the number of instances (training exam- 325

ples) in a batch, and Li is the loss per instance. 326
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Besides ERM, we also consider a representative327

selection of group-robust fine-tuning algorithms328

which aims at mitigating performance disparities329

with respect to a given attribute (A), e.g., the gender330

of the applicant or the region of the court. Each331

attribute is split into G groups, i.e., male/female for332

gender. All algorithms rely on a balanced group333

sampler, i.e., an equal number of instances (sam-334

ples) per group (NG) are included in each batch.335

Most of the algorithms are built upon group-wise336

losses (Lg), computed as follows:337

L(gi) =
1

Ngi

Ngi∑
j=1

L(x j) (5)338

Group DRO (Sagawa et al., 2020), stands339

for Group Distributionally Robust Optimization340

(DRO). Group DRO is an extension of the Group341

Uniform algorithm, where the group-wise losses342

are weighted inversely proportional to the group343

training performance. The total loss is:344

LDRO =

G∑
i=1

wgi ∗ L(gi), where (6)345

346

wgi =
1
W

(ŵgi ∗ eL(gi)) and W =

G∑
i=1

wgi (7)347

where G is the number of groups (labels), Lg are348

the averaged group-wise (label-wise) losses, wg349

are the group (label) weights, ŵg are the group350

(label) weights as computed in the previous update351

step. Initially the weight mass in equally distributed352

across groups.353

REx (Krueger et al., 2020), which stands for Risk354

Extrapolation, is yet another proposed group-robust355

optimization algorithm. Krueger et al. (2020) hy-356

pothesize that variation across training groups is357

representative of the variation later encountered at358

test time, so they also consider the variance across359

the group-wise losses. In V-REx the total loss is360

calculated as follows:361

LREX = LERM + λ ∗ Var([Lg1 , . . . ,LgG ]) (8)362

where Var is the variance among the group-wise363

losses and λ, a weighting hyper-parameter scalar.364

IRM (Arjovsky et al., 2020), which stands for In-365

variant Risk Minimization, mainly aims to penalize366

variance across multiple training dummy estima-367

tors across groups, i.e., performance cannot vary368

in samples that correspond to the same group. The369

total loss is computed as follows:370

LIRM =
1
G

 G∑
i=1

L(gi) + λ ∗ P(gi)

 (9) 371

Please refer to Arjovsky et al. (2020) for the 372

definition of the group penalty terms (Pg). 373

Adversarial Removal (Elazar and Goldberg, 374

2018) algorithm mitigates group disparities by 375

means of an additional adversarial classifier (Good- 376

fellow et al., 2014). The adversarial classifier share 377

the encoder with the main network and is trained 378

to predict the protected attribute (A) of an instance. 379

The total loss factors in the adversarial one, thus 380

penalizing the model when it is able to discriminate 381

groups. Formally, the total loss is calculated as: 382

LAR = LERM − λ ∗ LADV (10) 383

384LADV = L(ĝi, gi) (11) 385

where ĝi is the adversarial classifier’s prediction for 386

the examined attribute A (in which group (gi) of A, 387

does the example belong to) given the input (x). 388

5 Experimental SetUp 389

Models Since we are interested in classifying 390

long documents (up to 6000 tokens per document, 391

see Figure 2 in Appendix C.1), we developed a 392

hierarchical BERT-based model similar to that of 393

Chalkidis et al. (2021), so as to avoid using only 394

the first 512 tokens of a text. Our hierarchical 395

model, first, encodes the text through a pre-trained 396

Transformer-based architecture, thus representing 397

each paragraph independently with the [CLS] to- 398

ken. Then, the paragraph representations are fed 399

into a two-layers transformer encoder with the ex- 400

act same specifications of the first one (e.g., hidden 401

units, number of attention heads), so as to contex- 402

tualize them, i.e., it makes paragraphs representa- 403

tions aware of the surrounding paragraphs. Finally, 404

the model max-pools the context-aware paragraph 405

representations computing the document-level rep- 406

resentation and feed it to a classification layer. 407

For the purpose of this work, we release four 408

domain-specific BERT models with continued pre- 409

training on the corpora of the examined datasets 410

(ECtHR, SCOTUS, FSCS, SPC).11 We train mini- 411

sized BERT models with 6 Transformer blocks, 412

384 hidden units, and 12 attention heads. We warm- 413

start all models from the public MiniLMv2 models 414

checkpoints (Wang et al., 2021a) using the distilled 415

11All models will be released on Hugging Face upon accep-
tance.
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ECtHR (ECHR Violation Prediction) SCOTUS (Issue Area Classification)

Algorithm Defendant State Applicant Gender Applicant Age Respondent Type Direction
↑ mF1 ↓ GD ↑ mF1W ↑ mF1 ↓ GD ↑ mF1W ↑ mF1 ↓ GD ↑ mF1W ↑ mF1 ↓ GD ↑ mF1W ↑ mF1 ↓ GD ↑ mF1W

Bag-of-Words Linear Classifier
ERM 46.8 3.0 43.8 44.1 4.9 40.6 46.9 6.3 40.9 73.8 6.6 61.8 77.5 2.6 74.9

Transformer-based Classifier
ERM 53.2 8.3 44.9 57.5 3.1 54.4 54.1 5.9 46.2 75.1 4.0 70.8 78.1 1.6 76.6
ERM+GS 54.4 5.5 48.9 57.8 3.3 54.5 56.0 5.6 48.7 75.2 3.9 70.9 77.1 1.3 76.0
ADV-R 53.8 5.8 47.9 54.6 3.2 51.5 48.9 6.1 40.6 56.9 4.7 53.1 41.0 0.8 40.3
G-DRO 55.0 5.2 49.8 56.3 1.9 55.0 52.6 6.2 44.3 74.5 3.3 71.6 77.1 1.7 75.4
IRM 53.8 5.7 48.1 53.8 2.3 52.5 54.8 4.4 49.5 73.4 4.8 68.2 78.1 2.7 75.4
REx 54.6 6.3 48.3 54.6 2.0 53.2 55.0 4.5 49.8 73.8 3.8 68.2 78.2 1.1 77.1

FSCS (Case Approval Prediction) SPC (Criminal Offense Prediction)

Algorithm Language Legal Area Region Defendant Gender Region
↑ mF1 ↓ GD ↑ mF1W ↑ mF1 ↓ GD ↑ mF1W ↑ mF1 ↓ GD ↑ mF1W ↑ mF1 ↓ GD ↑ mF1W ↑ mF1 ↓ GD ↑ mF1W

Bag-of-Words Linear Classifier
ERM 55.5 6.2 46.8 54.4 9.7 40.9 56.8 5.0 46.6 33.5 0.7 32.8 31.7 5.0 25.5

Transformer-based Classifier
ERM 67.8 2.1 65.0 69.4 9.6 56.9 69.7 2.9 63.9 60.2 0.6 60.1 59.3 3.5 56.4
ERM+GS 66.4 3.5 61.7 67.1 9.3 55.5 67.9 3.0 62.3 59.4 0.7 59.1 58.2 3.1 55.9
ADV-R 62.6 5.1 59.0 65.6 12.4 50.0 67.4 3.2 61.5 53.3 1.3 52.1 53.5 2.5 50.8
G-DRO 70.5 0.6 69.9 57.5 5.6 52.6 67.7 4.2 60.2 59.2 1.3 57.9 58.9 3.7 55.7
IRM 68.3 1.9 66.7 67.8 9.5 55.8 68.7 3.0 63.2 56.4 1.5 55.7 58.0 3.1 54.9
REx 67.2 3.5 62.4 66.6 8.9 56.0 68.4 3.1 62.4 58.5 0.7 58.3 58.6 3.3 54.4

Table 2: Test results for all examined group-robust algorithms per dataset attribute. We report the average perfor-
mance across groups (mF1), the group disparity among groups (GD), and the worst-group performance (mF1W ).
↑ denotes that higher scores are better, while ↓ denotes that lower scores are better.

version of RoBERTa (Liu et al., 2019) for the En-416

glish datasets (ECtHR, SCOTUS) and the one dis-417

tilled from XLM-R (Conneau et al., 2020) for the418

rest (trilingual FSCS, and Chinese SPC). Given the419

limited size of these models, we can effectively use420

up to 4096 tokens in ECtHR and SCOTUS and421

up to 2048 tokens in FSCS and SPC for up to 16422

samples per batch in a 24gb nvidia gpu card.12423

For completeness, we also consider linear Bag-424

of Words (BoW) classifiers using TF-IDF scores425

of the most frequent n-grams (where n = 1, 2, 3) in426

the training corpus of each dataset.427

Data Repository and Code We release a uni-428

fied version of the benchmark on Hugging Face429

Datasets (Lhoest et al., 2021).13 In our experi-430

ments, we use and extend the WILDs (Koh et al.,431

2021) library. For reproducibility and further explo-432

ration with new group-robust methods, we release433

our code on Github.12434

Evaluation Details Across experiments we com-435

pute the macro-F1 score per group (mF1i), exclud-436

ing the group of unidentified instances, if any.14437

We report macro-F1 to avoid bias toward majority438

classes because of class imbalance and skewed la-439

bel distributions across train, development, and test440

12This is particularly important for group-robust algorithms
that consider group-wise losses.

13Both links will be revealed upon acceptance.
14The group of unidentified instances includes the instances,

where the value of the examined attribute is unidentifiable
(unknown). See details in Appendix C.2.

subsets. We report the average macro-F1 across 441

groups (mF1) and the group disparity (GD) among 442

groups measured as the group-wise std dev.: 443

GD =

√√√
1
G

G∑
i=1

(mF1i −mF1)2 (12) 444

We also report the worst-group performance 445

(mF1W = min([mF11,mF12, . . .mF1G)). 446

6 Baseline Results 447

Main Results In Table 2, we report the results 448

of all our baselines on the four datasets introduced 449

in this paper. We first observe that the results of 450

linear classifiers trained with the ERM algorithm 451

(top row per dataset) are consistently worse (lower 452

average and worst-case performance, higher group 453

disparity) compared to transformed-based models 454

in the same setting. In other words linear classifier 455

have lower overall performance, while being less 456

fair with respect to the applied definition of fairness 457

(i.e. equal performance across groups). 458

As one can see, transformer-based models 459

trained with the ERM algorithm, i.e., without tak- 460

ing into account information about groups and their 461

distribution, perform either better on in the same 462

ballpark than models trained with methods spe- 463

cialized to mitigate biases (Section 4), with an av- 464

erage loss of 0.17 only in terms of mF1 and of 465

0.78 in terms of mF1W . While, these algorithms 466

6



improve worst case performance in the literature,467

when applied in a controlled experimental environ-468

ment, they fail in a real-world setting, where both469

groups across attributes and labels are imbalanced,470

while also both group and label distribution change471

over time. Furthermore, we cannot identify one472

algorithm that performs better across datasets and473

group with respect to the others, indeed results are474

quite mixed without any recognizable pattern.475

Group Disparity Analysis We identify three476

general (attribute agnostic) factors that could poten-477

tially lead to performance disparity across groups:478

• Representation Inequality: Not all groups are479

equally represented in the training set. To exam-480

ine this aspect, we report the number of training481

cases per group.482

• Temporal Concept Drift: The label distribution483

for a given group changes over time, i.e., in-484

between training and test subsets. To examine485

this aspect, we report per group, the KL diver-486

gence in-between the training and test label dis-487

tribution.488

• Worst Class Influence: The performance is not489

equal across labels (classes), which may dis-490

proportionally affect the macro-averaged perfor-491

mance across groups. To examine this aspect, we492

report the Worst Class Influence (WCI) score per493

group, which is computed as follows:494

WCI(i) =
#test-cases (worst-class)

#test-cases
(13)495

In Table 3, we present the results across all at-496

tributes. We observe that only in 4 out of 10 cases497

(attributes), the less represented groups are those498

with the worst performance compared to the rest.499

It is generally not the case that high KL divergence500

(drift) correlates with low performance. In other501

words, group disparities does not seem to be driven502

by temporal concept drift. Finally, the influence of503

the worst class is relatively uniform across groups504

in most cases, but in the cases where groups differ505

in this regard, worst class influence correlates with506

error in 2 out of 3 cases.15507

In ECtHR, considering performance across de-508

fendant state, we see that all the three factors corre-509

late internally, i.e., the worst performing group is510

15For ECtHR performance across defendant states and SCO-
TUS across directions, but not for ECtHR performance across
applicant age.

ECtHR (ECHR Violation Prediction)
Group mF1 #train-cases (%) (↑) LDKL (↓) WCI (↓)

Defendant State
E.C. European 70.2 7,224 (80%) 0.17 0.07
The Rest 48.7 1,776 (20%) 0.28 0.57

Applicant Gender
Male 54.4 4,187 (77%) 0.17 0.18
Female 60.6 1,507 (23%) 0.26 0.19

Applicant Age
≤ 65 years 59.7 4279 (68%) 0.18 0.15
> 65 years 56.5 1130 (18%) 0.32 0.26
≤ 35 years 46.2 868 (14%) 0.19 0.12

SCOTUS (Issue Area Classification)
Group mF1 #train-cases (%) (↑) LDKL (↓) WCI (↓)

Respondent Type
Public Entity 77.4 2796 (51%) 0.07 0.04
Person 74.9 1847 (34%) 0.05 0.03
Organization 81.1 741 (13%) 0.11 0.03
Facility 80.7 140 (3%) 0.26 0.06

Direction
Liberal 76.2 3335 (52%) 0.04 0.08
Conservative 80.8 3146 (48%) 0.05 0.17

FSCS (Case Approval Prediction)
Group mF1 #train-cases (%) (↑) LDKL (↓) WCI (↓)

Language
German 68.2 35458 (60%) 0.03 0.20
French 70.6 21179 (35%) 0.03 0.19
Italian 65.2 3072 (5%) 0.04 0.19

Legal Area
Penal law 56.9 15173 (31%) 0.00 0.20
Civil law 83.4 11795 (25%) 0.00 0.20
Social law 66.4 11477 (24%) 0.02 0.16
Insurance Law 70.8 9727 (20%) 0.06 0.20

Region
R. Lémanique 71.3 13436 (27%) 0.04 0.20
Zürich 68.5 8788 (18%) 0.04 0.18
E. Mittelland 69.8 8257 (17%) 0.08 0.16
E. Switzerland 73.6 5707 (12%) 0.02 0.24
N.W. Switzerland 72.8 5655 (11%) 0.03 0.19
C. Switzerland 69.5 4779 (10%) 0.03 0.19
Ticino 68.3 2255 (6%) 0.00 0.17
Federation 63.9 1308 (3%) 0.00 0.27

SPC (Criminal Offense Prediction)
Group mF1 #train-cases (%) (↑) LDKL (↓) WCI (↓)

Defendant Gender
Male 60.3 73952 (92%) 0.03 0.01
Female 60.1 6048 (8%) 0.08 0.03

Region
Beijing 66.8 16588 (21%) 0.05 0.02
Liaoning 56.7 13934 (17%) 0.05 0.02
Hunan 59.5 12760 (16%) 0.05 0.02
Guangdong 58.0 12278 (15%) 0.05 0.01
Sichuan 56.4 11606 (14%) 0.06 0.02
Guangxi 58.9 8674 (11%) 0.07 0.02
Zhejiang 58.8 4160 (5%) 0.07 0.02

Table 3: Statistics for the three general (attribute agnos-
tic) cross-examined factors (representation inequality,
temporal concept drift, and worst-class influence), as
introduced in Section 6. We highlight the worst and
best performing group per attribute. In boldface, we

highlight the best (less harmful) value per factor across
groups. Performance (mF1) reported for ERM.
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less represented, has higher temporal drift and has511

more cases in the worst performing class. This is512

not the case considering performance across other513

attributes. It is also not the case for SCOTUS. In514

FSCS, considering the attributes of language and515

region, representation inequality seems to be an516

important factor that leads to group disparity. This517

is not the case for legal area, where the best rep-518

resented group is the worst performing group. In519

other words, there are other reasons that lead to520

performance disparity in this case; for example, in-521

consistencies in rules and gathering of evidence in522

criminal cases potentially affects the predictability523

of rulings (Macula, 2019). In sum, we do not see524

any of these factors fully explain the performance525

disparities across groups.526

Cross-Attribute Influence Analysis We have527

evaluated fairness across attributes that are not nec-528

essarily independent of each other. We therefore529

evaluate the extent to which performance dispar-530

ities along different attributes correlate, i.e., how531

attributes interact, and whether performance differ-532

ences for attribute A1 can potentially explain per-533

formance differences for another attribute A2. We534

examine this for the two attributes with the highest535

group disparity: the defendant state in ECtHR, and536

the legal area in FSCS. For the bins induced by537

these two attributes (A1), we compute mF1 scores538

across other attributes (A2).539

In ECtHR, approx. 83% and 81% of male and540

women applicants are involved in cases against E.C.541

European states (best-performing group). Simi-542

larly, in case of age groups, we observe that ratio of543

cases against E.C. European states is: 87% and 86%544

for ≤65 and ≤35, the best- and worst-performing545

groups respectively.546

In FSCS, the ratio of cases relevant to penal law547

is: approx. 29%, and 41% written in written in548

French (best-performing group) and Italian (worst-549

performing group). Similarly, approx. 27% orig-550

inated in E. Switzerland (best-performing group)551

and 42% in Federation (worst performing group)552

are relevant to penal law. In both attributes, there553

is a 15% increase of cases relevant to penal law554

for the worst performing groups. In other words,555

the group disparity in one attribute A2 (language,556

region) could be also explained by the influence of557

another attribute A1 (legal area).558

In Table 4, we report the performance in the559

aforementioned cross-attribute (A1, A2) pairings.560

With the exception of the (age, defendant state)561

ECtHR (A1: Defendant State)
Group (A2) E.C.E. Rest Avg.

Male 55.8 35.1 54.4
Female 61.3 47.1 60.6
≤35 48.1 44.2 46.2
≤65 61.0 34.7 59.7

FSCS (A1: Legal Area)
Group (A2) Penal Law Civil Law Avg.

French 57.4 82.4 70.6
Italian 56.2 69.4 65.2
E. Switzerland 55.9 87.0 73.6
Federation 54.5 72.8 63.9

Table 4: Results in cross-attribute influence. Scores for
pairings of groups for attributes (A1, A2).

cross-examination in ECtHR, we observe that 562

group disparities in attribute A2 (Table 3) are con- 563

sistent across groups of the plausible influencer (i.e. 564

attribute A1). Hence, cross-attribute influence does 565

not explain the observed group disparities. 566

We believe that such an in-depth analysis of the 567

results is fundamental to understand the influence 568

of different factors in the outcomes. This analysis 569

wouldn’t be possible, if we had “counterfeited” an 570

ideal scenario, where all groups and labels where 571

equally represented. While a controlled experi- 572

mental environment is frequently used to examine 573

specific factors, it could hide, or partially allevi- 574

ate such phenomena, hence producing misleading 575

results on fairness of the examined models. 576

7 Conclusions 577

We introduced FairLex, a multi-lingual benchmark 578

for the development and testing of bias-mitigation 579

models or algorithms within the legal domain, 580

based on four datasets covering four jurisdictions, 581

five languages and various sensitive attributes. Fur- 582

thermore, we provided competitive baselines in- 583

cluding state-of-the-art transformer-based models 584

adapted to the examined datasets, and an in-dept 585

examination of performance of four group robust al- 586

gorithms (Adversarial Removal, IRM, Group DRO, 587

and REx). While, these algorithms improve worst 588

case performance in the literature, when applied in 589

a controlled experimental environment, they fail in 590

a real-world setting, where both groups across at- 591

tributes, and labels are imbalanced, while also both 592

group and label distributions change over time. Fur- 593

thermore, we cannot identify a single algorithm that 594

performs better across datasets and groups com- 595

pared to the rest. 596
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Ethics Statement597

The scope of this work is to provide an evaluation598

framework along with extensive experiments to599

further study fairness within the legal domain. Fol-600

lowing the work of Angwin et al. (2016), Dressel601

and Farid (2018), and (Wang et al., 2021b), we pro-602

vide a diverse benchmark covering multiple tasks,603

jurisdictions, and protected (examined) attributes.604

We conduct experiments based on state-of-the-art605

pre-trained transformer-based language models and606

compare model performance across four represen-607

tative group-robust algorithm, i.e., Adversarial Re-608

moval (Elazar and Goldberg, 2018), Group DRO609

(Sagawa et al., 2020), IRM (Arjovsky et al., 2020)610

and REx (Krueger et al., 2020).611

We standardize and put together four datasets:612

ECtHR (Chalkidis et al., 2021), SCOTUS of613

(Spaeth et al., 2020), FSCS (Niklaus et al., 2021),614

and SCP (Xiao et al., 2018; Wang et al., 2021b)615

that are already publicly available. ECtHR cases616

are partially annonymized by the court. Its data617

is processed and made public in accordance with618

the European Data Protection Law. SCOTUS cases619

may also contain personal information and the data620

is processed and made available by the US Supreme621

Court, whose proceedings are public. In FSCS, the622

names of the parties have been redacted by the623

court according to its official guidelines. The same624

applies for SPC.625

We note that some protected attributes within our626

datasets are extracted automatically, i.e., the gender627

and the age of the ECtHR dataset, by means of628

Regular Expressions, or manually clustered by the629

authors, such as the defendant state in the ECtHR630

dataset and the respondent attribute in the SCOTUS631

dataset. Those assumptions and simplifications can632

hold in an experimental setting only and by no633

means should be used in real-world applications634

where some simplifications, e.g., binary gender,635

would not be appropriate. By no means, we endorse636

the law standards or framework of the examined637

datasets, to any degree rather than the publication638

and use of the data.639

We believe that this work can help practitioners640

to build assisting technology for legal professionals641

- with respect to the legal framework (jurisdiction)642

they operate -; technology that does not only rely643

on performance on majority groups, but also con-644

sidering minorities and the robustness of the devel-645

oped models across them. We believe that this is an646

important application field, where more research647

should be conducted (Tsarapatsanis and Aletras, 648

2021) in order to improve legal services and democ- 649

ratize law, but more importantly highlight (inform 650

the audience on) the various multi-aspect short- 651

comings seeking a responsible and ethical (fair) 652

deployment of technology. 653
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A Discrimination and Fairness in Law 870

The legal notion of discrimination has a different 871

scope and semantics in comparison to the notions 872

of fairness and bias used in the context of machine 873

learning (Gerards and Xenedis, 2020), where the 874

aim usually is to achieve equal odds, e.g. that a 875

court shall rule the same decision for both men and 876

woman based on similar facts, or to have 50/50 877

favourable decisions for both man and woman, but 878

equal opportunities (Rawls, 1971). 879

In particular, EU non-discrimination law (Coun- 880

cil of European Union, 2000, 2006) prohibits both 881

direct and indirect discrimination. Direct discrim- 882

ination occurs when one person is treated “less 883

favourably than another is, has been or would be 884

treated in a comparable situation” on grounds of 885

sex, racial or ethnic origin, disability, sexual orien- 886

tation, religion or belief and age in the context of 887

a protected sector (e.g. the workplace and provi- 888

sion of goods and services) (Wachter et al., 2021). 889

Prohibiting direct discrimination allows to provide 890

people with equal access to opportunities (i.e. for- 891

mal equality). This however does not suffice, nor 892

guarantee to create equality of opportunity (i.e. sub- 893

stantive equality), which can instead be achieved 894

only by accounting for protected attributes and for 895

social and historical realities and by taking positive 896

measures to level the playing field (Fredman, 2016). 897

The notion of indirect discrimination is grounded 898

on achieving substantive equality in practice. Indi- 899

rect discrimination refers to situations in which an 900

apparently neutral provision, criterion or practice 901

would put persons with a protected characteristic 902

at disadvantage in comparison to other persons, 903

unless ‘that provision, criterion or practice is “justi- 904

fied by a legitimate aim and the means of achieving 905

that aim are appropriate and necessary”. 906

Nevertheless, the current EU non-discrimination 907

law framework suffers from limitations, both as 908

regards its personal (i.e. it only protects six char- 909

acteristics) and material scope (i.e. the prohibition 910

on discrimination is limited only to certain fields) 911

(Gerards and Xenedis, 2020). These limitations 912

pose problems in connection to algorithmic dis- 913

crimination. For example, as algorithmic bias of- 914

ten creates seemingly neutral distinctions which 915
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Figure 2: Distribution of sequence (document) length across FairLex datasets (ECtHR, SCOTUS, FSCS).

however often correlate to a protected group (i.e.916

proxy discrimination), the limited list of protected917

grounds renders difficult to tackle the effects of918

algorithmic bias through the concept of direct dis-919

crimination (Prince and Schwarcz, 2019). Indirect920

discrimination can help address those cases. but its921

application in this context poses several challenges.922

In April 2021 the European Commission pre-923

sented a proposal for a Regulation laying down924

harmonized rules on artificial intelligence (AI Act925

/ AIA) (Council of European Union, 2021). The926

proposal aims at avoiding “significant risks to the927

health and safety or fundamental rights of persons”928

and would, once adopted, complement the currently929

applicable legal framework for tackling algorith-930

mic discrimination, thereby overcoming some of931

its existing limitations. The envisaged implemen-932

tation of the proposed AI Act highlights the im-933

portance that the legislator poses in preventing and934

mitigating discrimination and biases arising from935

the development and use of AI systems in several936

areas of application, including in the legal sector937

(Schwemer et al., 2021). AI systems used for the938

administration of justice and democratic processes939

are proposed to be deemed high-risk in order “to940

address the risks of potential biases, errors, and941

opacity” (recital 40 AIA). The consequence is that942

such systems would be subject to a variety of de-943

sign and development requirements, e.g. related to944

the training, validation and testing data sets which945

would have to be examined inter alia in relation to946

possible biases (art. 10(2) lit. f AIA) or related to947

human oversight of such AI system with a view to948

remain aware of automation bias (art. 14(4) lit. b949

AIA).950

The topic deserves great attention because AI951

systems learning from historical data pose the risk952

of transporting biases previously encumbered in953

the data in future decision-making, thereby expo-954

nentially increasing their effect. For example, crim-955

inal justice is already often strongly influenced by956

racial bias, with people of colour being more likely957

to be arrested and receive higher punishments than958

others, both in both in the USA16 and in the UK.17 959

B Train and Evaluation Details 960

We fine-tune all models using the AdamW 961

(Loshchilov and Hutter, 2019) optimizer with a 962

learning rate of 3e-5. We use a batch size of 16 and 963

train models for up to 20 epochs using early stop- 964

ping on validation performance.18 Across datasets 965

and attributes, we run five repetitions with different 966

random seeds and report averaged scores. 967

C Statistics 968

C.1 Distribution of Document Length 969

In Figure 2 we report the distribution of sequence 970

(document) length across FairLex datasets (ECtHR, 971

SCOTUS, FSCS). We observe that the documents 972

are extremely long (3,000-6,000+ words) across 973

datasets. 974

C.2 Group Distribution by Attribute 975

In Tables 5 and 6 we report the group distribu- 976

tion per examined attribute under consideration. In 977

some cases, the extraction of the specific attribute, 978

e.g., gender or age in ECtHR, was not possible, i.e., 979

the applied rules would no suffice, possibly because 980

the information is intentionally missing. During 981

training, the groups of unidentified samples is in- 982

cluded, but we report test scores excluding those, 983

i.e., mF1 and GD do not take into account the F1 984

of these groups. 985

D Label Distribution KL Divergences 986

In Tables 7, 8, 9, and 10, we report the Jensen- 987

Shannon divergences between train-test, train-dev 988

and test-test distribution of labels separately for 989

each protrected attribute values and for each dataset 990

in our framework. 991

16https://tinyurl.com/4cse552t
17https://tinyurl.com/hkff3zcb
18We train all models in a mixed-precision (fp16) setting to

use the maximum available batch size.
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ECtHR

Applicant Age Applicant Gender Defendant State
N/A ≤ 35 ≤ 65 > 65 N/A Male Female East West

2,794 839 4,246 1,121 3,306 4,407 1,287 7,224 1,776

Table 5: Group distribution in training set for each attribute of ECtHR dataset. ‘N/A’ (Not Answered) refers to
samples, where the respected attribute could not be extracted.

SCOTUS

Defendant Direction
Other Facility Organization Person Public Entity Conservative Liberal

957 140 741 1847 2796 3146 3335

Table 6: Group distribution in training set for each attribute of SCOTUS dataset.

Applicant Age Applicant Gender Defendant State
≤ 35 ≤ 65 > 65 Male Female East West

Train-Test 0.19 0.18 0.32 0.17 0.26 0.17 0.28
Train-Dev 0.18 0.19 0.22 0.17 0.22 0.18 0.17
Dev-Test 0.20 0.08 0.19 0.09 0.10 0.09 0.16

Table 7: Jensen-Shannon Divergence of label distribution between training, test and development sets of ECtHR
by protected attribute values. The lower the values the more similar the distributions.

Defendant Direction
Facility Organization Other Person Pub. Entity Conservative Liberal

Train-Test 0.26 0.11 0.09 0.05 0.07 0.05 0.04
Train-Dev 0.28 0.11 0.11 0.07 0.03 0.06 0.05
Dev-Test 0.22 0.17 0.13 0.10 0.07 0.09 0.07

Table 8: Jensen-Shannon Divergence of label distribution between training, test and development set in Scotus by
protected attribute values. The lower the values the more similar the distributions.
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Train-Test Train-Dev Dev-Test

Language
DE 0.0336 0.0275 0.0061
FR 0.0517 0.0301 0.0216
IT 0.0145 0.0405 0.0261

Legal Area

Other 0.1000 — —
Public Law 0.0007 0.0090 0.0083
Penal Law 0.0018 0.0118 0.0136
Civil Law 0.0248 0.0046 0.0202
Social Law 0.0624 0.0570 0.0054

Region

Région lémanique 0.0447 0.0259 0.0188
Zürich 0.0447 0.0345 0.0028
Espace Mittelland 0.0765 0.0435 0.0331
NW Switzerland 0.0280 0.0127 0.0407
E Switzerland 0.0197 0.0394 0.0198
C Switzerland 0.0267 0.0304 0.0036
Ticino 0.0023 0.0284 0.0307
Federation 0.0018 0.0385 0.0404

Table 9: Jensen-Shannon Divergence of label distribution between training, test and development set in FSCS by
protected attribute values. The lower the values the more similar the distributions.

Region Gender
Beijing Liaoning Hunan Guangdong Sichuan Guangxi Zhejiang Male Female

Train-Test 0.0516 0.0458 0.0495 0.0524 0.0559 0.0696 0.0687 0.0345 0.0766
Train-Dev 0.0239 0.0270 0.0406 0.0584 0.0484 0.0426 0.0338 0.0164 0.0318
Dev-Test 0.0469 0.0296 0.0799 0.0431 0.0554 0.0496 0.0633 0.0307 0.0986

Table 10: Jensen-Shannon Divergence of label distribution between training, test and development set in SPC by
protected attribute values. The lower the values the more similar the distributions.
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