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ABSTRACT

Diffusion generative models transform noise into data by inverting a process that
progressively adds noise to data samples. Inspired by concepts from the renor-
malization group in physics, which analyzes systems across different scales, we
revisit diffusion models by exploring three key design aspects: 1) the choice of
representation in which the diffusion process operates (e.g. pixel-, PCA-, Fourier-,
or wavelet-basis), 2) the prior distribution that data is transformed into during dif-
fusion (e.g. Gaussian with covariance Σ), and most importantly 3) the schedul-
ing of noise levels applied separately to different parts of the data, captured by
a component-wise noise schedule. Incorporating the flexibility in these choices,
we develop a unified framework for diffusion generative models with greatly en-
hanced design freedom. In particular, we introduce soft-conditioning models that
smoothly interpolate between standard diffusion models and autoregressive mod-
els (in any basis), conceptually bridging these two approaches. Our framework
opens up a wide design space which may lead to more efficient training and data
generation, and paves the way to novel architectures integrating different genera-
tive approaches and generation tasks.

1 INTRODUCTION

Diffusion-based generative models, first introduced in Sohl-Dickstein et al. (2015), have seen great
successes in recent years since the works of Song & Ermon (2019); Ho et al. (2020). In these mod-
els, data are transformed into noise following a diffusion process, and a transformation simulating
the reverse process is learned which is then used to map noise into generated samples. In physics,
the theory of renormalization group (RG) flows has been a basic tool in the study of a wide range
of physical phenomena, including phase transitions and fundamental physics, both in theoretical as
well as numerical approaches. In short, an RG flow prescribes a way of erasing the high-frequency
information of a physical theory, while retaining the information relevant for the long-wavelength
physics. As such, there are clear analogs between score-based generative models and RG flows, at
least at a conceptual level. Indeed, it has been known for a long time that RG flows in quantum
field theories can also be described as a diffusive process (Zinn-Justin, 2002; Gaite, 2001; Cotler
& Rezchikov, 2023; Berman et al., 2023). In both cases, information gets erased along the flow
and many different initial distributions get mapped into the same final distribution – a feature of-
ten referred to as “universality” in the physics literature. In the diffusion context, the “universal”
distribution is given by the chosen noise distribution, independent of the data distribution.

However, there are salient differences between the ways diffusion models and RG erase information.
First, the basis: the diffusive RG process is diagonal in the frequency-basis while the standard
diffusion models typically diffuse diagonally in the pixel-basis. Second, the prior distribution: the
endpoint of RG is a scale-invariant distribution, often with the same second-order statistics as the
distribution one starts with at the beginning of the RG flow. The standard diffusion models on the
other hand indiscriminately map all data distributions to that of white noise. Third, the component-
wise noising schedule: RG flows erase information sequentially from high to low frequencies,
while the original diffusion model has the same noise schedule for all pixels. In our chosen basis,
we allow each component to have its own noising schedule. Given a choice of diagonal basis and
prior distribution, this third aspect provides our model with its novel flexibility, which in particular
enables us to continuously interpolate between autoregressive generation and standard diffusion
models. These considerations lead us to the framework of generative unified diffusion (GUD)
models which incorporate the freedom in design choices in the above three aspects.
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Autoregressive models, such as next-token prediction models, play an increasingly dominant role
in modern-day machine-learning applications such as LLMs, and seem to be distinct from diffusion
models at first glance. In autoregressive models, tokens are generated one at a time, conditional on
previously generated ones, while diffusion models generate information in all components simul-
taneously. We will show that the two can in fact be unified in our framework, which in particular
allows for soft-conditioning generative processes. Intuitively, this means that we can condition on
partial information from other components as long as that information has already been generated
in the diffusion process.

To probe the impact of the different choices, in particular of different soft-conditioning schedules,
and to provide a setup for numerically exploring these choices, we perform numerical experiments
with a noising-state-conditioned model in §5.

2 RELATED WORK

Prior Distribution. The choice of the noise distribution was first discussed in (Song & Ermon,
2020), in which the Technique 1 involves choosing a given isotropic variance for the prior nor-
mal distribution. Non-isotropic noise was explored in (Voleti et al., 2022), however without a
component-wise schedule. In this work we explain and demonstrate via numerical experiments that
variance-matching noise should be accompanied by a suitably chosen component-wise schedule in
order to achieve a hierarchical structure of the generative model, which is to some extent inherent in
the standard diffusion model with an isotropic noise distribution.

Basis. The idea that diffusion models can incorporate the multi-scale nature of the dataset has in-
spired various models with non-standard choices of data representation, including Guth et al. (2022);
Ryu & Ye (2022); Ho et al. (2022). In these works, the generation is sharply autoregressive between
different hierarchies of generation (between different resolutions, for instance). Our model accom-
modates these data representations as special examples, and moreover allows for soft-conditioning
between different hierarchies. Particularly relevant work is the Blurring Diffusion Models (Hooge-
boom & Salimans, 2024), following earlier work (Rissanen et al., 2023), where the authors proposed
diffusion models in the frequency basis. In (Hoogeboom & Salimans, 2024), §4.2, the authors briefly
pointed out that these are special cases of a diagonalizable linear SDE without further exploring the
general cases.

Component-Wise Noising Schedule. In (Lee et al., 2023) it was pointed out that autoregressive
generation in the diffusion model framework by noising/denoising a group of degrees of freedom
at a time, though the authors did not discuss how to choose such groups or the possibility to soft-
condition different degrees of freedom. Explicitly sequential diffusion has been explored in (Ruhe
et al., 2024) for sequences of image frames. The possibility of interpolating between the standard
diffusion models and token-wise autoregressive models has also been recently explored in Chen
et al. (2024) in the context of causal sequence generation, in which the authors work with a chosen
token-wise noising schedule and capture the information of the (partially noised) previous tokens in
latent variables, on which the denoising process depends. As opposed to these work which focus
on causal sequences, our work considers arbitrary hierarchies of generation, with the flexibility to
tune how sharply autoregressive the generative process is. In particular, as we demonstrate in ex-
periments, it is possible to integrate multi-scale and spatially sequential generation processes in our
framework. More generally, finding an optimal component-wise noising schedule, corresponding to
a path between the prior and target distribution, remains an open question. In (Das et al., 2023), a
path inspired by the shortest distance path between Gaussian distributions was proposed for image
generation tasks. We discuss desirable quantative features a good component-wise noising schedule
should possess, based on ideas from the physics of RG flows decribed in §3.2, and provide concrete
examples of schedule improvements in our numerical experiments in §5.

Latent Space Diffusion. In practice, for applications with high-dimensional data, the diffusion
generation often takes place in a lower-dimensional latent space (Rombach et al., 2021; Sinha et al.,
2021; Vahdat et al., 2021). The freedom to choose the basis proposed in our work is not to be
understood as replacing latent space diffusion. Rather, our framework can straightforwardly be used
in the latent space, leading to a latent GUD model.
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3 PRELIMINARIES

3.1 STOCHASTIC DIFFERENTIAL EQUATIONS

In continuous time, the general diffusion setup can be described by the following Itô stochastic
differential equation (SDE):

dϕ = f(ϕ, t) dt+G(ϕ, t) dw , (1)

where dw represents a white noise Wiener process. We use ϕ ∈ Rd to denote a vector. In the
above, we have f( · , t) : Rd → Rd and G( · , t) : Rd → Rd×d. The reverse-time SDE is given by
(Anderson, 1982)

dϕ =
(
f(ϕ, t)−∇ · (GGT )(ϕ, t)−GGT∇ϕ log pt(ϕ)

)
dt+G(ϕ, t)dw̄ (2)

where w̄ is the inverse Wiener process.

The probability density p(ϕ, t) corresponding to the SDE equation 1 solves the following Fokker-
Planck equation (or Kolmogorov’s forward equation) (Oksendal, 1992)

∂

∂t
p(ϕ(t)) = −

d∑
i=1

∂

∂ϕi
(fi(ϕ, t)p(ϕ(t))) +

1

2

d∑
i=1

d∑
j=1

∂2

∂ϕi∂ϕj

(
d∑

k=1

GikGjk p(ϕ(t))

)
, (3)

where ϕi denotes the component of ϕ in a given basis.

3.2 RENORMALIZATION GROUP (RG) FLOWS

As mentioned in the introduction, the renormalization group refers to a collection of methods in
physics that aim to progressively remove the high-frequency degrees of freedom while retaining
the relevant low-frequency ones. In other words, one aims to remove the irrelevant details of the
physical system without altering the physics at the larger scale one is interested in. By doing so, one
hopes to be able to robustly calculate the universal macroscopic features of the physical systems.

There are many ways physicists have proposed to achieve this goal, starting with the seminal work of
Kadanoff (1966) and Wilson (1971a;b). How to improve the understanding and the implementation
of RG flows, including efforts involving machine learning methods, remains an active topic of in-
vestigation in physics.Here we consider the exact RG (ERG) formalism, a non-perturbative method
pioneered by Polchinski (1984) for quantum field theories. In this RG method, one implements
Wilson’s idea of RG by specifying a cutoff kernel Kk(Λ) := K(k2/Λ2) for a given cutoff scale for
each frequency k, with the property that Kk(Λ) → 1 when k ≪ Λ and Kk(Λ) → 0 when k ≫ Λ.
With this, one erases information on frequencies much larger than Λ. One example of such cutoff
kernels is the sigmoid function.

Given a physical theory and a choice of cutoff kernel, one can define physical probability distri-
butions pΛ[ϕ] that satisfy a differential equation which is an infinite-dimensional version of the
Fokker-Planck equation 3, where the role of diffusion time is played by t = − log(Λ/Λ0) for some
reference scale Λ0.

3.3 STANDARD DIFFUSION MODELS

In diffusion-based generative models, a forward diffusion process that gradually transforms data
samples into noise following a particularly simple SDE is inverted to transform noise into images.
A commonly used forward SDE is the finite-variance1 SDE (Song et al., 2021) defined as:

dϕ = − 1
2β(t)ϕ dt+

√
β(t) dw, (4)

where the initial vector ϕ(0) ∈ Rd represents the data sample and dw denotes the standard Wiener
process. The function β : [0, T ] → R+ which determines the SDE is the predefined noise schedule.

1This is referred to as the “variance-preserving” (VP) diffusion in some literature. We will reserve the term
to cases when the variance is actually strictly constant throughout the diffusion process, which we will discuss
in §4.4.

3
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The reverse-time SDE follows from specializing equation 2 and reads

dϕ =
[
− 1

2β(t)ϕ− β(t)∇ϕ log pt(ϕ)
]
dt+

√
β(t)dw̄ , (5)

where dw̄ is a reverse-time Wiener process, and ∇ϕ log pt(ϕ) is the score function of the marginal
distribution at time t. The task for machine learning is thus to approximate the score function, which
can be achieved by denoising score matching (Vincent, 2011) with the objective function

LDSM = Et,ϕ(0),ϵ

[
λ(t)

∥∥sθ(ϕ(t), t)−∇ϕ(t) log pt(ϕ(t)|ϕ(0))
∥∥2] , (6)

where ϵ ∼ N (0, I) is Gaussian white noise, ϕ(t) = α(t)ϕ(0) + σ(t)ϵ is the noised data at time
t, λ : [0, T ] → R+ is a weighting function, and α(t), σ(t), and β(t) are functions capturing the
equivalent information about the noising schedule. They are defined in equation 14 by specializing
βi = β etc. Importantly, the choice of SDE (4) leads to an Ornstein-Uhlenbeck (OU) process and
the conditional score ∇ϕ(t) log pt(ϕ(t)|ϕ(0)) can be computed analytically (Song et al., 2021).

4 METHODS

4.1 DIAGONALIZABLE ORNSTEIN UHLENBECK PROCESS

Returning to the general diffusion SDE (1), we now consider the special case in which f = Fϕ
and F is ϕ-independent . This guarantees that the SDE describes a Ornstein-Uhlenbeck process
admitting analytical solutions for the conditional distribution pt(ϕ(t)|ϕ(0)) required for denoising
score matching. Moreover, we consider a choice of simultaneously diagonalizable F and G:

F = M−1F̃M, G = M−1
√
β (7)

with some constant matrix M and diagonal β = diag(βi) and F̃ = diag(F̃i).

In terms of the parameterization χ := Mϕ, the SDE equation 2 is equivalent to d decoupled SDEs
of the form

dχi = F̃i(t)χidt+
√

βi(t) dw (8)
with the reverse SDE given by

dχi =
(
F̃i(t)χi − βi(t)∇χi log pt(χ)

)
dt+

√
βi(t)dw̄ . (9)

The choice of the transformation matrix M is a choice of data representation in which the diagonal
score-based diffusion based on the SDE equation 8 and equation 9 can be efficiently performed.

In particular, as the Wiener process is invariant under orthogonal transformations, it is convenient to
view the change of basis (given by M ) as the composition of an orthogonal (U ) and a scaling (S)
transformation: M = S−1U . In terms of the original ϕ variables, the forward SDE then reads

dϕ = Fϕ dt+ U−1S
√

β dw = U−1F̃Uϕ dt+
√
β′ dw′ (10)

where
√
β′ = U−1

√
βU and dw′ =

√
Σprior dw is a Wiener process with covariance matrix

Σprior = U−1S2U .

The choice of M , particularly the orthogonal part U , captures the freedom in our unified framework
to choose the basis in which the diffusion process is diagonal. Moreover, the scaling S then deter-
mines the choice of the noise (prior) distribution pprior = N (0,Σprior), which the forward process
approaches at late times. Finally, note that βi(t) are a priori independent functions of t for each
component i. The choice of βi(t) thus captures the choice of a component-wise noising schedule.

Due to the diagonal property of the SDE, the denoising score matching loss function equation 6 for
learning the Stein score ∇χi log pt(χ) can be straightforwardly generalized to the GUD models:

LGUD = Et,χ(0),ϵ

∑
i=1,...,d

λi(t)
∣∣∣si,θ(χ(t), t)−∇χi(t) log pt(χ(t)|χ(0))

∣∣∣2 (11)

where the λ = (λ1, . . . , λd) : [0, T ] → Rd
+ is the weighting vector. In our experiments, we let

λi(t) = σ2
i (t), with the aim to scale the loss to be an order-one quantity and generalizing the

4
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common weighting factor λ(t) = σ2(t) in the standard diffusion loss (6) (Song & Ermon, 2019).
The SDE (9) with the learned score, when discretized, leads to a hierarchical generative model with
model density

p̃(χ(0)) =

∫ ( T∏
k=1

ddχ( k
T )

) (
T−1∏
ℓ=0

p(χ( ℓ
T )|χ(

ℓ+1
T ))

)
p̃(χ(1)) (12)

where T is the number of steps in the discretization, and the prior distribution is given by the noise
distribution p̃(χ(1)) = N (0, I).

4.2 FINITE-VARIANCE DIFFUSION AND THE SIGNAL TO NOISE RATIO

In the coordinate given by χ, we now further specialize equation 8 to the following finite-variance
diffusion process: with F̃ (t) = − 1

2β(t), the corresponding SDE reads

dχi = −1

2
βi(t)χidt+

√
βi(t)dw. (13)

Integrating the above gives χi(t) = αi(t)χi(0) + σi(t)ϵ, where ϵ ∼ N (0, 1) and

αi(t) = exp

(
−1

2

∫ t

0

βi(s) ds

)
, and σi(t)

2 = 1− αi(t)
2 . (14)

It follows that the variance
Var(χi(t)) = αi(t)

2(Σ(χ)(0))ii + σi(t)
2 (15)

interpolates between 1 and the data variance (Σ(χ)(0))ii, and is in particular finite at all stages of
diffusion. In the above, we have used the following notation for the data covariance matrix

(Σ(χ)(0))ij := Epdata(χ(0))

[
(χi(0)− χi(0))(χj(0)− χj(0))

]
, where χi(0) := Epdata(χ0)[χ0,i],

An important quantity signifying the stage of the diffusion process (for each component) is the time
evolution of the ratio between the signal and the noise, captured by the signal-to-noise ratio,

SNRi(t) := E
(
(αi(t)χi(0))

2

σi(t)2

)
= (Σ(χ)(0))ii

α2
i (t)

σ2
i (t)

, (16)

where the expectation is with respect to the data and the noise distribution, and we have assumed
that the data mean vanishes (which can always be made to be the case by subtracting the mean).
Note that this is different from the signal-to-noise ratio quoted in some diffusion model contexts,

snri(t) := α2
i (t)/σ

2
i (t) = e−γi(t), (17)

as this version does not take into account the magnitude of the signal in the data. As they depend
only on the schedule, we note that the functions βi, αi, σi and γi all contain the same information.

pdata; α = 1, γ → −∞

pprior; α = 0, γ → ∞

Figure 1: Different noising
schedules γ(t).

At a given time t ∈ [0, T ] in the diffusion process, the information
of γ(t) = (γ1, . . . , γd)(t) ∈ Rd is what we call the noising state,
indicating the extent to which information in the data has been re-
placed by noise at that time. As a function of t, the evolution of
the noising state traces out a path connecting the data distribution
pdata, corresponding to

α(γ) = (α1, . . . , αd) = (1, . . . , 1),

and the prior distribution pprior, corresponding to α = (0, . . . , 0),
where αi = sigmoid(−γi)

1/2 as in equation 17. The different paths
correspond to different Ornstein-Uhlenbeck processes, as defined in
equation 13, with different diffusion dynamics.

This highlights the fact that the freedom in component-wise noising schedules in the GUD model is
fundamentally larger than the freedom in the noising schedule in standard diffusion models, which
is given by different choices of the function γ(t) with γi(t) = γj(t) = γ(t). In this case, all choices
of γ(t) trace out the same diagonal path (as long as the boundary values γ(0), γ(T ) are held fixed)
and merely amount to different time parameterizations (Kingma et al., 2023). In contrast, different
component-wise schedules generically correspond to genuinely different paths, as illustrated in the
schematic Figure 1 where the continuous line corresponds to the standard diffusion schedule (with
any time parametrization) and the dashed lines represent other possible component-wise schedules.
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4.3 UNIFICATION VIA SOFT-CONDITIONING

The above form of SNR clarifies an implicit hierarchical structure of the standard diffusion models:
even when γi(t) = γ(t) is identical for all components i, the components with larger amplitudes
have larger signal-to-noise ratio SNRi(t) = (Σ(χ)(0))iie

−γ(t), and are in this sense less “noised”
throughout the diffusion process. As a result, the generation process equation 12 and in particular the
modeling of the probability p(χ( ℓ

T )|χ(
ℓ+1
T )) conditional on the previous state is implicitly a process

of generating the less important features (with smaller amplitude) conditional on the more important
features (with larger amplitude) that have already been partially generated. It is clear that by making
more general choices of component-dependent noising schedules γi(t) one can tune the degree of
this soft-conditioning property, as we will explore in the experiments below. In the extreme case
when the support of βi(t) and βi̸=j(t), namely the “active time” for the ith resp. jth component,
do not overlap, we arrive at autoregressive generation, in which one feature/token (or one group of
features/tokens) is generated at each time, conditional on those that have been generated already. See
Figure 6 for the visualization of a specific example. In this way, the freedom to choose a component-
dependent noising schedule in our GUD model enables us to interpolate between standard diffusion
and autoregressive generation.

4.4 WHITENING

A particularly interesting choice for the matrix M = S−1U is the orthogonal transformation U
that diagonalizes the data covariance matrix Σ(ϕ)(0), and the diagonal matrix S−1 that performs
a whitening transformation. In other words, we choose S and U such that the data covariance
matrix matches Σ(ϕ)(0) = U−1S2U . Note that M is then precisely the familiar PCA transfor-
mation followed by a whitening transformation which makes the variance uniform. In the context
of diffusive generation, such a basis has the following appealing features. First, the softness of
the soft-conditioning, manifested via the evolution of the signal-to-noise ratio equation 16, is now
completely controlled by the component-wise schedule γi(t), which can make the design process
of the diffusion modeled more streamlined and uniform across different applications with different
datasets. Second, with such a choice the covariance matrix actually remains constant throughout
the diffusion process as the data covariance Σ(χ)(0) = I is now the same as the noise covariance,
and the finite-diffusion equation 13 is variance preserving in the strict sense. In other words, the
conditional number of the covariance matrix is always one and the generative process does not need
to alter the second-order statistics. We expect this property to be beneficial in some situations for
learning and discretization.

4.5 NOISING-STATE CONDITIONAL NETWORK ARCHITECTURE

For the score network architecture, we follow the approach of predicting the noise ϵ given a noised
image (Ho et al., 2020), trained via denoising score matching (Vincent, 2011). In standard diffusion
models, this score network is typically conditioned on the time variable or an equivalent object such
as γ(t) (Kingma et al., 2023). The introduction of a component-wise schedule in our framework
suggests generalizing this by conditioning the model on the more informative component-wise nois-
ing state, represented by the component-wise noise state γ(t) = (γ1, . . . , γd)(t). Since this is a
vector of the same dimension as the data and not a scalar, a modification of the network architecture
is required. We have implemented this by incorporating cross-attention between the data and the
noising state, further details can be found in section A of the appendix.

Since any choice of the noising schedule γi(t) = γ(t) in standard diffusion models can be thought
of as just a reparametrization of time (Kingma et al., 2023) (cf. §4.2), the diffusion time t itself
suffices as a feature for the network to indicate the noising state. For our GUD models, this is true
only for a fixed schedule choice. By conditioning directly on γ instead of t, our score network is
directly conditioned on the instantaneous noising state, and not on the totality of its path, namely the
schedule γ(t). This enables us to train a single network for a range of schedules, as we will do in
the experiments described in the next section. The set of values γ ∈ Rd used during training bound
a region, visualized schematically by the shaded area in Fig. 1. This is implicitly the region of the
values of γ ∈ Rd where the score function has been learned. This suggests the possibility of using
any particular path within the shaded region for generation, which might differ from the path used

6
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for training (indicated by the dashed lines in Fig. 1). This feature of the GUD model may facilitate
the numerical optimization of component-wise schedules in future work.

In our experiments, we also use a minimally modified version of the NSCN++ architecture from
Song et al. (2021) with no cross-attention. We found that it is sufficiently expressive as long as we
consider a low-dimensional family of schedules. We attribute that to the fact that in this case not all
information encoded in γ is needed to determine the noising state.

5 EXPERIMENTS

We will now showcase the flexibility of the GUD model with some examples, and conduct prelim-
inary investigations into the effects of these different design choices on the behavior of diffusion
models and their resulting sampling quality. An overview of the experiments, highlighting the rele-
vant design choices, is given in the following table.

§5.1 §5.2 §5.3

basis pixel, PCA , FFT column wavelet ⊗ column

prior isotropic Gaussian and isotropic Gaussian isotropic Gaussianvariance-matching Gaussian

noising schedule varying softness varying softness varying softnessand ordering variables

other applications image extension

5.1 SOFT-CONDITIONING SCHEDULES

-15

0

15

(t)
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0.5

1.0

(t)

unwhitened, a=1

0.0 0.5 1.0
Time t

0

20
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g 

SN
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t)

unwhitened, a=0

0.0 0.5 1.0
Time t

whitened, a=1

0.0 0.5 1.0
Time t

whitened, a=0

0.0 0.5 1.0
Time t

denoise

noise

Figure 2: For eight of the PCA components χi of CIFAR-10, we visualize the OU noise level σi(t), the
corresponding noising path γi(t) = logit(σ2

i (t)) for the linear schedule of equation 18, and the correspond-
ing signal-to-noise ratio, for the following four choices. Blue dashed lines indicate chosen minimal nois-
ing/reconstruction levels. From left to right: (a) Standard diffusion. (b) Hierarchy-less generation with γ cho-
sen such that log SNRi(t) = log SNRj(t). (c) With whitened data, and with γ chosen such that log SNRi(t)
is identical to the column (a). (d) Hierarchy-less generation with whitened data.

First, we investigate the effect of choosing different bases, priors, and schedules by conducting
experiments on the unconditional generation of CIFAR-10 images. We choose the simplest example
of a linear noise schedules γi(t) (cf. equation 18). We can then change the time weighting with
a non-linear time reparametrization γi(s(t)), where s monotonously increasing function preserving
the interval [0, T ]. In the first setup, we choose the basis, given by the orthogonal transformation U
described in §4.1, to be the PCA basis. For the prior, we choose our noise distributions to be either
isotropic Gaussian or Gaussian with covariance matching that of the data. As explained in §4.1, the
latter is equivalent to whitening the data (in the PCA basis) and using isotropic Gaussian noise. We
will therefore refer to the two choices of priors as whitened and unwhitened.
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In the second setup, we use the Fourier basis and consider a two-parameter family of component-
wise noising schedules, where we vary the precise ordering of the different Fourier components
(given by the “ordering variables”) as well as the softness parameter of the soft-conditioning sched-
ule.

Linear component-wise schedules. We define our schedules with the linear functions with the
same slope for different components i

γi(t) = γmin,i + t∆γ , with t ∈ [0, T ] = [0, 1]. (18)

To determine the values for γmin,i and γmax,i = γmin,i + ∆γ, we have the following two consid-
erations. First, the endpoints must guarantee sufficient noising and denoising for each i. Secondly,
the relative offset of the linear functions between components determines the ordering and level of
autoregressiveness or softness of the generative process. Examples of linear schedules are visualized
in Figure 2.

Denoting the variance of the component χi by Σi := (Σ(χ)(0))ii, the signal-to-noise ratio becomes
log SNRi(t) = −γi(t)+logΣi as discussed in §4.2. We thus define the minimal levels of denoising
and noising that we require at initial and final times, respectively:

γ̃denoise = −min
i

log SNRi(t = 0) and γ̃noise = −max
i

log SNRi(t = 1). (19)

Fixing these values defines a constraint on the schedule. Moreover, to employ the inverse process as
a generative model, the distribution at the final time must also be sufficiently close to the prior normal
distribution from which we draw initial samples. We therefore also require σi(t = 1) ≥ σmin,
translating to γ̃noise ≥ logit(σ2

min)−mini log Σi.

0.75 1.00 1.25
Inverse softness a

3.1

3.2
NLL (bits/dim)

0.75 1.00 1.25
Inverse softness a

6

7

FID
unwhitened whitened

Figure 3: Dependence of model quality in terms of
negative log-likelihood (left) and FID (right) on the
softness parameter for the linear schedule in §5.1.
The schedule is defined in PCA components and re-
sults are shown both for unwhitened and whitened
data scaling (i.e. white and data-matching priors).
Training on CIFAR-10 using a single score-network
for each choice of scaling. Standard diffusion corre-
sponds to a = 1 in the unwhitened case.

To parameterize the hierarchical structure of the
generative process, we associate an ordering vari-
able li to each component that determines the hi-
erarchy between them. Like many (natural) image
datasets, CIFAR-10 is an example of what might
be called frequency-based datasets, by which we
mean datasets with a natural meaning of locality,
whose covariance is approximately diagonalized
in the Fourier basis and whose variance is gener-
ally decreasing with increasing frequencies (Tol-
hurst et al., 1992; Field, 1987). For these datasets,
the hierarchical structure can naturally be speci-
fied in terms of the related notions of variance,
frequencies, and resolution, as familiar from im-
age processing. We choose our ordering variable
li to capture this notion of hierarchy.

To parametrize the level of autoregressiveness of
the soft-conditioning linear schedule, we introduce a parameter a > 0 by which we multiply the li.
Together they determine the slope and the offset in the following way. Letting lmax = maxi li and
lmin = mini li, we set

γmin,i = γ̃denoise + logΣi + a(li − lmax)

∆γ = γ̃noise − γ̃denoise + a(lmax − lmin)
(20)

The larger a is, i.e. the smaller the softness 1/a, the more autoregressive the schedule becomes.
Conversely, in the limit of extreme softness (small a) the hierarchical nature of the generative model
disappears. The parameters of our linear schedules are thus the ordering variables li, the parameter
a, and the SNR endpoints given by γ̃denoise, γ̃noise.

Softness in PCA space. In the first experiment, we apply the above linear schedule in the whitened
and unwhitened PCA bases. We choose the ordering variable to be given by li = − log Σi, which
allows for the trajectory of the signal-to-noise ratio of the standard diffusion model to be reproduced
at a = 1, also when the prior has been changed to have the same covariance as the data (see Fig. 2
(c)). We trained a single score network for the (inverse) softness parameter in the range a ∈ [0.4, 1.6]

8
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(d)

(c)(a)

(b)

Figure 4: Diffusion forward process for a single image of CIFAR-10: (a) standard diffusion, (b) variance-
matching Gaussian noise with same SNR as standard diffusion, (c) column-wise sequential schedule of §5.2
with b = 0.5, (d) combination of Haar wavelet and column-sequential schedule of §5.3 with a = 0.5, and with
variance-matching Gaussian noise.

0.75 1.00 1.25
Inverse softness a

0.2

0.0

0.2

Or
de

rin
g 

in
te

rp
ol

at
io

n 
r

0.9 1.0 1.1
0.0

0.2
zoomed in region

3.1

3.2

Figure 5: The model quality with a two-parameter
family of schedules controlling the softness and the or-
dering parameters. The right figure is the region in
the box on the left and the same color map is shared.
The black dots indicate the parameters corresponding
to standard diffusion models.

0

50

(t)

b = 0.4

0 1
Time t

0

1

(t)

b = 0.7

0 1
Time t

Figure 6: An illustration of column-wise schedule
of §5.2 for 5 columns and different softness param-
eter b−1. The larger b, the more autoregressive the
model is, as the overlap of the “active” times with
noising rate βi > 0 decreases, and similarly for the
suppression factors αi.

by randomly sampling a at each training step. Figure 3 shows the negative log-likelihood (NLL) and
FID evaluated for different values of a. Interestingly, the unwhitened configuration performs better
when measured by NLL, but worse in terms of FID, with the standard diffusion setup (a = 1)
appearing close to optimal. See section B of the appendix for further experimental details.

Ordering variables. We also perform experiments in the Fourier (FFT) basis, for which the RG
physics reviewed in §3.2 naturally suggests an ordering of noising based on the frequency |ki|.
To test the dependence of the quality of the model on ordering parameters, we consider ordering
variables li = (1 − r)(− log Σi) + r(|ki| + δ)/κ, parametrized by r ∈ [0, 1] and interpolating
between li = − log Σi as in the PCA experiments and the frequencies |ki|. The slope and offset
parameters, κ and δ, are chosen such that the range of li are the same at r = 1 as at r = 0. We
trained a score network for a range of values of r in addition to the softness parameter a−1 on
CIFAR-10, with evaluation results shown in Figure 5. We find the optimal performance in terms of
NLL is located slightly away but close to standard diffusion. In this experiment, we choose the prior
to be the isotropic Gaussian (i.e. unwhitened).

5.2 SEQUENTIAL GENERATION IN REAL SPACE

While the previous experiment explores the GUD model in the context of multi-scale hierarchical
generation, it can equally be applied to perform sequential generation in pixel space, as we will now
demonstrate with a soft-conditioning column-wise generation model. Grouping the components
according to their column in the pixel space of size L × L, we index the schedules according to
the columns labeled by i = 1, . . . L. In the experiments we use component-wise linear schedules
equation 21 similar to the ones described in §5.1, with the parameter b controlling the degree of
softness/autoregressivity. Besides the soft-conditioning schedules in §5.1, this example also serves
as a demonstration of how GUD model is capable of interpolating between standard diffusion and
autoregressive generation.

Training on PCAM dataset. We trained separate score networks at b = 0.3 and b = 0.5 on
the PCAM dataset (Veeling et al., 2018), downscaled to 32 × 32 pixels, obtaining negative log-
likelihoods of 3.90 and 3.94 bits/dim, respectively.

9
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denoise
"active"

noisefrozen

crop & repeat

extend with noise
Figure 7: Left: Images generated with the column-wise schedule and a score network trained on square data.
Right: Visualization of the soft column-wise generation applied to image extension. The yellow part of the
image has already been generated and is hence “frozen” and the blue region corresponds to the part of the
image that is yet to be generated. The middle part with green color is the active region where βi ̸= 0.

Image extension. The column-wise schedule can be employed to extend images in the following
iterative way. We use the schedule with the property that the SDE is frozen, i.e. βi ≈ 0, except
for a subset of columns, corresponding to a range of i and colored in green hues in the right panel
of Figure 5.2, that are being actively noised or denoised. After the active region sweeps from left
to right through the whole square, the process can be repeated by sliding the constant-sized score
network to the right to generate an extension of the image. The locality property of the image makes
it possible to generate a new column depending only on a subset of its left-side neighbors which fit
into the truncated input of the constant-sized score network. The left panel of Figure 5.2 shows
three examples of image strips generated in this manner, using the score network trained on 32× 32
images at b = 0.5. More details can be found in section C of the appendix.

5.3 HAAR WAVELETS

To further showcase the versatility of our unified framework, we integrate Haar wavelet decompo-
sition with a column-wise noise schedule among the wavelet components at each hierarchical level.
This extends the wavelet-conditioned score matching of Guth et al. (2022) by including a parameter
allowing for soft-conditioning, and incorporating column-wise sequential noising at each level.

Concretely, we use two parameters a and b to parametrize the (inverse) softness among the different
levels of wavelet components and the columns within each level, respectively, parametrizing a linear
schedule equation 22 similar to the one in §5.1.

We trained a score network for a ∈ [0.3, 0.7] and b ∈ [0.3, 0.7] on CIFAR-10 for 300k steps and
using N = 3 hierarchical levels, with the linear schedule given in equation 22. See Figure 4(d) for
a visualization of this schedule. Similar to the results in §5.1, the model quality again depends on
the softness parameters, with the lowest NLL value reached being 3.17 bits/dim.

6 CONCLUSIONS

In this work, we proposed the GUD framework, which naturally integrates novel design freedoms in
diffusion-based generation. Notably, the framework eliminates the rigid boundary between diffusive
and autoregressive generation methods and instead offers a continuous interpolation between the
two. This flexibility paves the way for a broad range of potential applications.

First, our experiments indicate that choices in all three aspects we investigate in the present work –
the diagonal basis, the prior distribution, and the component-wise schedule – do have an influence
on the final quality of the model. As a result, there is potentially vast room to improve the quality of
diffusion models. In future work, we will address the question of the optimization of these design
choices.

Second, the flexibility of our framework enables seamless integration of various approaches to gen-
erative models. For instance, we illustrated in §5.3 the possibility to combine hierarchical generation
(in the wavelet basis) with sequential generation, and in §5.2 how our framework can readily be used
to extend images. Similarly, the inpainting, coloring, upscaling, and conditional generation tasks can
all be realized and generalized within the GUD framework, via an appropriate choice of basis and
component-wise schedules.

While the scope of our numerical experimentations and our ability to optimize important hyper-
parameters has been limited by the compute resources available to us, we believe our theoretical
framework has the potential to lead to more efficient diffusion models, a wide range of applications,
and novel architecture designs.
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A NOISING STATE CONDITIONAL SCORE NETWORK ARCHITECTURE

Inspired by techniques in conditional generation tasks (Rombach et al., 2021), we introduced a cross-
attention mechanism between the intermediate embeddings of the image and the component-wise
noising state γ, allowing the network to effectively modulate its predictions based on the noising
state at each stage of the diffusion process. Otherwise, we follow a U-Net architecture similar to
Song et al. (2021),

To incorporate additional information on the structure of the data, we first concatenate the noising
state γ with position labels specific to the application and the choice of basis. For instance, for the
PCA example in §5.1 this is the negative logarithm of the variance of each component, which is
also used as the ordering variable. For the experiment in Fourier space, we used the FFT frequency
label |k|. In §5.2-5.3 we used a sequence of integers which increments by one for each subsequent
column and adjacent group of Haar wavelet components, respectively. The concatenated inputs are
then processed through MLP-Mixer layers to facilitate learned embeddings of γ. Along the depth
of the U-Net, a single dense layer is used to reduce the spatial extent to that of the coarse images at
that level, before they are input into the cross-attention.

B EXPERIMENTAL DETAILS

PCA and Fourier bases. In our experiments we make use of datasets of colored images, which
have pixel and color channel indices. Among our choices of basis is the Fourier basis. The Fourier
transform (specifically the fast Fourier transform) is applied independently in each color channel.
To have an analogous PCA basis, we have decided to perform the same orthogonal transformation
– the one corresponding the PCA basis of the color-averaged data – in each color channel. It could
be interesting to investigate further choices, including the PCA transformation that mixes the color
channels.

Linear schedules for sequential generation and wavelet basis. In what follows we first record
the component-wise noising schedule used in sequential generation experiments described in §5.2.
With the parameter b controlling the varying degree of softness/autoregressivity, we define the fol-
lowing scheule

γi(t) = clipγmin,γmax

(
γmin + (t− ti)

γmax − γmin

1− b

)
, with ti = b

L− i

L− 1
. (21)

The clipping, defined by the clipping function clipy,z(x) := max(y,min(z, x)), has the effect of
freezing the columns when the designated noising (γmax) or reconstruction level (γmin) is reached.

Next we record the component-wise noising schedule used in experiments with the wavelet basis,
described in §5.3. Suppose there are N hierarchical levels of wavelet decompositions, labeled by
i = 1, . . . ,N , and there are Li columns in the i-th level, indexed by j = 1, . . . , Li, we define the
offsets

ci = a
N − i

N − 1
, cij = b

Li − j

Li − 1
.

With this, we specify the linear schedule for a, b ∈ [0, 1] to be

γij(t) = clipγmin,γmax

(
γmin + (γmax − γmin)

ti − cij
1− b

)
, (22)

where ti = clip0,1(t− ci
1−a ).

Training. Unless specified otherwise, training was done with a batch size of 128 using the Adam
optimizer with a learning rate of 5×10−4. The validation parameters used to evaluate sample quality
are exponentially moving averages updated at a rate of 0.999. The diffusion times for denoising
score matching are sampled uniformly in [0, 1], and schedule parameters (where applicable) were
drawn uniformly from the specified range for each training batch of samples.

The score networks for both CIFAR-10 and PCAM were trained for 300k training steps on NVIDIA
A100 and H100s.
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Except for the scan over a shown in Figure 3, in all experiments we fix γ̃denoise = −7 and
γ̃noise = max[3, logit(σ2

min) − mini log Σi] with σmin = 0.99. For these, we use our score net-
work architecture with cross attention between image and γ as described in section A.

For the NLL and FID scan of Figure 3, we obtained better training results with γ̃denoise = −3 and
using a minimally modified version of the NSCN++ architecture of Song et al. (2021). Using the
positional embedding of this architecture, the diffusion time t is mapped to an embedding vector of a
fixed dimension. We use the same embedding starting with 1

N

∑N
i γi as a proxy for the time, since it

is a monotonous function of t, and concatenate in addition with a ResNet embedding of γ. The rest
of the model architecture is unmodified. In addition, we define a non-linear time parametrization
via s(t) = tα

tα+(1−t)α such that the schedule becomes γ(s(t)). Although we have not tested the
choices of α exhaustively, we obtain a qualitatively similar shape as the cosine schedule of Nichol
& Dhariwal for α = 0.5. We used this value for training and sampling to obtain the results in Figure
3.

Dataset processing. We have used a uniformly dequantized version of the dataset, both for train-
ing and evaluation, by first adding uniform noise to each quantized pixel value and then rescaling it
to [−1, 1]. We have additionally removed the empirical mean of the dataset, computed on all train-
ing data. Otherwise, the mean would have to be taken into account when defining the magnitude-
sensitive SNR, instead of just the variances as discussed in §4.2, and dividing by the mean when
“whitening” could lead to extremely large values when the variance of a component is much smaller
than its mean.

Scores representations. The scores in different data representations, e.g. the original data ϕ and
the chosen components χ in the notation of §4.1, are related by

∇χ log pt(χ) = SU†∇ϕ log pt(ϕ) , (23)

and we can always go back-and-forth between the scores in both basis.

As we base our architecture on the commonly used convolutional U-net architecture as in (Song
et al., 2021), which implicitly assumes the locality and approximately shift-symmetric properties,
we let the inputs and outputs of the score network to be always represented in the original image
space and not the chosen PCA, Fourier, or other basis.

Evaluation and sampling. Evaluation of the negative log-likelihood was done using the ODE
corresponding to the reverse SDE equation 9. Specifically, the SDE of equation 13, i.e.

dχi = −1

2
βi(t)χidt+

√
βi(t) dw (24)

has a corresponding deterministic ODE that produces the same marginal probabilities, given by

dχi = −1

2
βi(t)(χi +∇χi log pt(χ)) dt . (25)

We use the above ODE to compute the log-likelihoods of the data under the trained models, with the
score above replaced by its learned approximation (for more details we refer to Song et al. (2021)).
We used 6144 samples in each computation, averaging over 3 different slices of the Hessian in
Hutchinson’s trace estimator for each sample. For the integrator, we used Tsitouras’ 5/4 method as
implemented in Kidger (2021) with adaptive step size and both relative and absolute tolerance of
1 × 10−4. To generate samples for the FID evaluations we use the Euler–Maruyama method with
1000 steps, discretizing the SDE form of the reverse process.

C REPEATED COLUMN-WISE GENERATION

The real-space sequential column of §5.2 generates images conditional on the left part of the image
that has already been denoised, after an initial stage in which the first columns get denoised. This
immediately suggests an application in reconstructing an image that is only partially available. Fig-
ure 8 shows how partially noised images can be reconstructed by filling in the right hand side of the
image. Different choices of random key then generate slightly different completions.
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The linear column-wise schedule in equation 21 is defined such that by integrating the diffusion
process by a time ∆t = b/(L − 1), the “noising front” is effectively moved by one pixel. In other
words, in the forward process, a particular column after this time has reached the same SNR its left
neighbor had at the previous time. Starting from an image at noising time t > 0, we can generate in
principal infinitely long strips of texture. First, we denoise using the learned score from t to t+k∆t
with k < L a positive integer. Then, we cut off the first k columns and store them for the final
image. Next, we append k columns of noise drawn from the prior to the right of the image. As
long as the softness parameter b was chosen sufficiently large given the particular k, this effectively
restores the image to the noising state at the original time t. This process can thus be repeated, and
by concatenating the previously generated left-side columns, a connected rectangular stripe of image
is constructed. As an example, in Figure 5.2 we show the results with b = 0.5 and k = 9. Finally,
note that this procedure only works if the training data is approximately translationally invariant.

Figure 8: Reconstruction of images from the test set (left column) partially noised to t = 0.5 (second column)
using a sequential schedule in real space as described in §5.2. The different reconstructions shown on the right
differ by random key used.

D HAAR WAVELETS

The 2D Haar wavelet transform decomposes an image X ∈ RN×N×C into low- and high-frequency
components across multiple scales. We apply the same wavelet transform to each color channel
c = 1, . . . , C (for us C = 3) separately. Therefore, to ease the notation we will suppress the color
index in what follows. The wavelet transform at level n is defined recursively as follows:

1. Row Transformation Apply the 1D Haar transform along the rows:

L
(n)
i,k = 1√

2

(
X

(n−1)
2i,k +X

(n−1)
2i+1,k

)
,

H
(n)
i,k = 1√

2

(
X

(n−1)
2i,k −X

(n−1)
2i+1,k

)
,

where i = 0, . . . , N
2n − 1 and k = 0, . . . , N − 1.

2. Column Transforms Apply the 1D Haar transform along the columns to the results of the row
transformation:

LL
(n)
i,j = 1√

2

(
L
(n)
i,2j + L

(n)
i,2j+1

)
,

LH
(n)
i,j = 1√

2

(
L
(n)
i,2j − L

(n)
i,2j+1

)
,

HL
(n)
i,j = 1√

2

(
H

(n)
i,2j +H

(n)
i,2j+1

)
,

HH
(n)
i,j = 1√

2

(
H

(n)
i,2j −H

(n)
i,2j+1

)
,

(26)

where j = 0, . . . , N
2n − 1.
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3. High-Frequency Component: Stack the high-frequency sub-bands into a single high-
frequency array at level n:

HF (n) = concat
(
LH(n), HL(n), HH(n)

)
. (27)

4. Recursive Decomposition The low-frequency component LL(n) becomes the input for the
next level:

X(n) = LL(n) . (28)

At each level, the transform produces one array of low-frequency components LL(n) and one array
of high-frequency components HF (n). This process can be recursively applied up to a desired depth
N , resulting in a hierarchical decomposition of the image.

After level N , the original image is represented by one lowest-frequency array and N higher-
frequency arrays.

For example, for level 3 one obtains three high-frequency arrays HF (1), HF (2), HF (3), and one
coarse array LL(3). To accommodate images with multiple color channels C, the transform is
applied independently to each channel, and the resulting components are concatenated along the
channel dimension. The factors of

√
2 make sure that the transform is an orthogonal transformation,

whose inverse can be computed analogously.

E OTHER EXPERIMENTS

As suggested by one of the reviewers, we have conducted an exploratory numerical experiment for
the CelebA-HQ dataset (resized to 256× 256) to investigate the effect and applicability of the GUD
framework to larger-sized datasets. We have trained a score-conditioned network, based on the
NSCN++ architecture and enhanced with a ResNet embedding of γ and for the linear γ schedule
described in section 5.1, parametrized by a single parameter a controlling the autoregressiveness, as
defined in equation 20. Here we define the components in terms of the Fourier (FFT) basis.

While a rigorous numerical investigation is beyond our resource- and time-constraints, we have
made notable qualitative observations. We observed that training was improved if we use a prior
that matches the power spectrum of the data. Figure 9 shows samples generated for a fixed random
key and using the range of autoregressiveness parameters a ∈ [0.7, 1.4] that we trained the score
network for. The top row of the image shows samples generated using the deterministic inverse
ODE flow, while the bottom row uses the inverse SDE. We observe samples generated with lower
values of a, i.e. less autoregressive schedules, to be softer and have more residual noise. In contrast,
larger a appear to lead to sharper images with more artifacts. In the case of the ODE, the features
of the generated faces appear more stable over choices of a, whereas there are visible changes in the
case of the SDE.

O
D
E

S
D
E

Figure 9: Samples generated at a fixed, selected random key with the inverse ODE (top row) and SDE (bottom
row) flow, using a single γ-conditional score network for a range of levels of autoregressiveness a ∈ [0.7, 1.3].
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