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ABSTRACT

Recent Transformer-based large language models (LLMs) demonstrate in-context
learning ability to perform various functions based solely on the provided context,
without updating model parameters. To fully utilize the in-context capabilities
in time series forecasting (TSF) problems, unlike previous Transformer-based or
LLM-based time series forecasting methods, we reformulate "time series fore-
casting tasks" as input tokens by constructing a series of (lookback, future) pairs
within the tokens. This method aligns more closely with the inherent in-context
mechanisms, and is more parameter-efficient without the need of using pre-trained
LLM parameters. Furthermore, it addresses issues such as overfitting in existing
Transformer-based TSF models, consistently achieving better performance across
full-data, few-shot, and zero-shot settings compared to previous architectures 1.

1 INTRODUCTION

Transformer-based large language models (LLMs) have significantly impacted various research
and application areas (Brown et al., 2020). Their inherent in-context learning (ICL) capabilities
highlighted by previous studies (Müller et al., 2022; Min et al., 2022; Wei et al., 2023; Xie et al.,
2022) allow them to adapt and generalize from context examples provided in input prompts without
any parameter updates. This enables LLMs to effectively handle few-shot and zero-shot tasks. Recent
research on ICL (Zhang et al., 2023; Garg et al., 2022; Akyürek et al., 2023; Li et al., 2023; Dai et al.,
2023; Bai et al., 2023) has shown that Transformers can adaptively learn to perform various functions
including linear predictors, shallow MLPs, gradient descent, algorithm selection, etc., based on a
series of (input, label) pairs as input tokens, as shown in Figure 1 (a).
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Target
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(a) In-context Learning (b) In-context Time Series Predictor

Context Forecasting Example Tokens
(Ground Truth)

Figure 1: Overview of in-context TSF learning in our setup.

Time series forecasting (TSF) is criti-
cal in fields like epidemiology, finance,
and traffic (Kaastra & Boyd, 1996; Lana
et al., 2018; Yang et al., 2015; Ma et al.,
2022), predicting future values from his-
torical data. Temporal-wise Transform-
ers, which build input tokens from se-
ries values at each timestep, have been
widely researched in TSF (Li et al.,
2019; Zhou et al., 2021; Wu et al., 2021;
Nie et al., 2022). Some studies have
identified several issues with such Transformers, like timestep mixing and permutation invariance
(Zeng et al., 2023), leading to overfitting and underperformance on real-world datasets compared to
simpler models like linear predictors. Previously proposed solutions include channel independence
(Nie et al., 2022), random channel dropout (Lu et al., 2024), and using Series-wise Transformers
(Liu et al., 2024a; Wang et al., 2024), which consider each series as a token. Yet, their underlying
mechanisms are not well explained. Additionally, the fixed structure of input series of these existing
Transformers restricts their adaptability in few-shot and zero-shot learning for multivariate TSF.

Moreover, recent research have expanded the application of Transformer-based LLMs to TSF (Zhang
et al., 2024), achieving improvements in few-shot and zero-shot generalization. They use the methods
like prompt engineering (Gruver et al., 2023), fine-tuning and embedding inversion (Zhou et al., 2023;
Jin et al., 2024) to integrate time series context into prompts, improving forecasting accuracy for new

1Code implementation is available at: https://anonymous.4open.science/r/ICTSP-C995
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data. However, these methods are designed to adapt LLMs to TSF tasks rather than directly addressing
the core aspects of TSF problems. This adaptation leads to inefficient use of LLM parameters and
substantially increased computational costs.

In this study, we apply the most fundamental ICL settings in TSF problems to construct the In-context
Time Series Predictor (ICTSP). This structure allows us to leverage the in-context generalization
capabilities of Transformers efficiently without relying on large-scale LLM parameters. In ICTSP,
we generate a sequence of (lookback, future) pairs, representing "time series forecasting tasks," from
the original time series data, which are used as input tokens for the Transformer, as shown 1 (b).
This setup enables the Transformer to adaptively learn the most effective predictor for the target
tasks based on the ground truth forecasting examples as context. Additionally, the ICTSP effectively
resolves aforementioned longstanding issues in previous TSF Trasnformers, significantly enhancing
the performance in few-shot and zero-shot learning scenarios in multivariate TSF settings.

The main contributions of this paper are summarized as follows:

a) We innovatively use forecasting tasks — instead of traditional timestep values or single series —
as input tokens to construct the ICTSP structure. By utilizing ground truth (lookback, future) pairs
as context examples, we fundamentally and efficiently leverage ICL abilities for TSF tasks. ICTSP
outperforms previous methods across full-data, few-shot, and zero-shot scenarios, positioning it as a
potential solution for building universal large TSF models.

b) From an ICL perspective, we explain that issues in existing TSF Transformers, like timestep
mixing, permutation invariance, and channel structure restriction, are caused by inappropriate token
formulation. We show how previous solutions have partially addressed these issues and how ICTSP
effectively solves them without the drawbacks of previous approaches.

c) We show that the ICTSP structure encompasses several simpler models as special cases, allowing
for a sequential adaptive reduction in complexity: i) predictors learned from context examples through
ICL, ii) a series-wise Transformer without context examples (Liu et al., 2024a), and iii) univariate
MLPs or linear predictors (Zeng et al., 2023). This connection ensures stable performance across
different complexities of time series dataset and prevents the significant overfitting that has previously
hindered Transformers from outperforming simpler models consistently in real-world datasets.

2 METHOD

2.1 PRELIMINARIES

Time Series Forecasting Let X ∈ RC×L represent a multivariate time series, where L is the total
length and C is the number of channels of input series. X is split into historical input XI ∈ RC×LI

and future data XP ∈ RC×LP , with L = LI + LP . Here, LI and LP represent the lengths of the
historical and forecasting periods, respectively. The value at the t-th timestep in the j-th channel
is X(t)

j , where t ∈ {1, . . . , L} and j ∈ {1, . . . , C}. The objective is to develop the best predictor
f : RC×LI → RC×LP that maps historical inputs to future outputs, yielding X̂P = f(XI).

Transformer Architecture In this study, we employ a Transformer architecture with pre-
normalization settings, processing D-dimensional input tokens {zi}Ni=1 from the input matrix
ZD×N = [z1, . . . , zN ] ∈ RD×N . Each token zi passes through K layers of the Transformer. Each
layer begins with layer normalization LN(·), followed by self-attention Attn(·) and a feed-forward
network FFN(·). The output Zk for each Transformer layer, TFk, is computed as:

Zk = TFk(Zk−1) = Zk−1 + Attnk (LN(Zk−1)) + LN (FFNk (Zk−1 + Attnk (LN(Zk−1)))) , (1)

with Z0 = Z and the first addition of Zk−1 providing a residual shortcut directly from input to output.
The Transformer’s final output is TF(Z0) = ZK .

In-context Learning ICL involves each datapoint (xi,yi) ∈ Ra × Rb from a dataset {(xi,yi)}Ni=1.
Unlike traditional supervised learning that learns direct mappings from xi to yi, ICL predicts yi

using both historical observations {(xj ,yj)}j<i and the current input xi. The input format for the

2
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Figure 2: Architecture and characteristic comparison among the three main TSF Transformer struc-
tures. Please note that, for simple illustration, the ICTSP part present a special case, where the
sampling steps equal to Lb + LP , creating non-overlapping context forecasting examples.

i-th datapoint in the ICL settings is structured as:

Z(a+b)×i = [z1, . . . , zi] =

[
p1 p2 . . . pi−1 pi

x1 x2 . . . xi−1 xi

y1 y2 . . . yi−1 o

]
, (2)

where p· are positional embeddings and o is a placeholder embedding for the target, typically zero-
filled. Note that in some ICL settings, x· and y· may be divided into separate tokens, which is
proved interchangeable with our expression above (Bai et al., 2023; Guo et al., 2024). The positional
embeddings p· are added to the tokens and shown concatenated here just for illustration. Finally,
the predicted output for the i-th data point, ŷi, can be extracted from the corresponding token in
the transformer’s output Ẑ = TF(Z). For simplicity, we have omitted the input and output linear
projections for matrices Z and Ẑ in this description. In practice, these projections map the tokens to
a d-dimensional latent space. The computation is formulated as Ẑ = WoutTF(WinZ+ bin) + bout,
where Win ∈ Rd×(a+b) and Wout ∈ R(a+b)×d are the linear layer weights, and bin and bout are the
biases. The ICL settings allow the model to use {x1,y1, · · · ,xi−1,yi−1,xi} to determine the best
predictor f∗

i : xi → yi.

2.2 FORMULATION OF TSF TRANSFORMERS

In this section, we present the existing Temporal-wise and Series-wise Transformers for TSF from an
ICL perspective. Building on this, we introduce the In-context Time Series Predictor (ICTSP). In
§2.3, we discuss the issues within existing structures and the advantages of ICTSP for TSF problems.

Temporal-wise Transformer This type of method, as shown in Figure 2 (a), typically constructs
input tokens based on the values of multiple time series channels at timesteps or within intervals

3
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along the temporal dimension. The format of these input tokens can be represented as:

ZC×L = [z1, . . . , zL] =

[
P1:LI

PLI+1:LI+LP

XI O

]
=


p1 . . . pLI

pLI+1 . . . pLI+LP

X
(1)
1 . . . X

(LI)
1 o1 . . . o1

...
. . .

...
...

. . .
...

X
(1)
C . . . X

(LI)
C oC . . . oC

 , (3)

where O and {o1, · · · , oC} represent zero-padding over the forecasting horizon. Again, the added
positional embeddings p· are shown concatenated here just for illustration. Each token represents
the time series channel structure at a specific timestep. Therefore, from the ICL perspective, the
Transformer doesn’t learn the necessary prediction from XI to XP for TSF. Instead, it learns the
mapping f∗

t : pt → [X
(t)
1 , · · · , X(t)

C ]⊤, which tries to find the underlying dynamic of the channel
structure determined by the position from the context and applies it to the outputs. If true dependencies
between the input series are lacking, which frequently occurs in real-world data, its focus on channel
structure over temporal dependencies leads to significant overfitting. In §2.3, we will explain how
existing methods like channel independence can partially address overfitting while introducing new
issues. In the last part of §3, we will use examples to show that Temporal-wise Transformers perform
well with strong channel dependencies but overfit when these dependencies are weak. Previous
models using this architecture include LogTrans(Li et al., 2019), Informer (Zhou et al., 2021),
Autoformer (Wu et al., 2021), etc. Note that while some of these models use an encoder-decoder
structure, their token construction based on multi-channel values along the temporal dimension shares
the same issues we highlight.

Series-wise Transformer Some recent methods (Liu et al., 2024a; Wang et al., 2024) transpose the
input format above so each token represents an individual series, forming the Series-wise Transformer.
This format, shown in Figure 2 (b), can be expressed as follows:

ZL×C = [z1, . . . , zC ] =

P1:C

X⊤
I
O

 =

p1 X
(1)
1 . . . X

(LI)
1 oLI+1 . . . oL

...
...

. . .
...

...
. . .

...
pC X

(1)
C . . . X

(LI)
C oLI+1 . . . oL


⊤

. (4)

However, iTransformer (Liu et al., 2024a) introduced this formulation believing it enhances modeling
of inter-series dependencies compared to the Temporal-wise Transformer, which contrasts with
our ICL analysis. Each token in the Series-wise Transformer represents an entire input series,
capturing relationships between timesteps within that series. For series j, the Transformer learns
a predictor f∗

j : X
(1:LI)
j → X

(LI+1:LI+LP )
j , which also adjusts its own parameters to the inputs

{X(1:LI)
i }i̸=j from other series. Essentially, it acts more like a univariate predictor capable of

adapting its parameters based on the context series. It is capable of modeling temporally-aligned
inter-series dependencies, but it is difficult to model shifted dependencies across timesteps.Similar to
supervised learning, ICL treats each input within a token as independent features. This means that
values across different timesteps are considered distinct features. The algorithm or model generated
by ICL excels at building relationships within input features and can build relationship on the same
feature (i.e. same timestep) across different data points (different series here) by performing linear
combinations. However, it is less inclined to establish relationships between different features across
different data points. In traditional supervised learning settings, different features from different
data points are usually unrelated, so no relationship is built, but this contradicts the requirements of
multivariate TSF settings when using this series-as-datapoint setting. We show in the last part of
§3 that the Series-wise Transformer is better suited for real-world datasets with weak multivariate
relationships than those with strong shifted inter-series dependencies, supporting our view from
ICL. Also from this perspective, the Series-wise Transformer lacks ground truth context examples
for the predictor, meaning it doesn’t fully utilize the Transformer’s ICL abilities. This limits its
generalization and few-shot learning capabilities.

In-context Time Series Predictor To fully exploit the Transformer’s ICL capabilities, we treat
forecasting tasks, instead of timestep values or input series, as tokens. For each input series j, we use
a lookback length Lb < LI to construct context examples based on input data X

(1:LI)
j . We perform

stepwise sampling on input, obtaining N = LI − Lb − LP ground truth training samples with their
lookback and future parts span of length Lb + LP . By combining each series’ output target token

4
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with the context examples to form each series’ input Hj , we concatenate these into the multivariate
input token matrix Z for the ICTSP as follows:

Z(Lb+LP )×(N+1)C = [z1, . . . , z(N+1)C ] = [H1, . . . ,HC ]

H
(Lb+LP )×(N+1)
j =


pj,1 X

(1)
j . . . X

(Lb)
j X

(Lb+1)
j . . . X

(Lb+LP )
j

pj,2 X
(2)
j . . . X

(Lb+1)
j X

(Lb+2)
j . . . X

(Lb+LP+1)
j

...
...

. . .
...

...
. . .

...
pj,N X

(LI−LP−Lb)
j . . . X

(LI−LP )
j X

(LI−LP+1)
j . . . X

(LI)
j

pj,target X
(LI−Lb)
j . . . X

(LI)
j oLI+1 . . . oLI+LP



⊤

(5)

where pj,· represents the positional embedding for each token on the j-th series illustrated as
concatenation. Therefore, Z contains (N+1)C tokens, with NC context tokens. We can increase the
step size in stepwise sampling to reduce computational costs, retaining one sample for every m steps
among N samples per series. Figure 2 (c) shows a special case with no overlap between samples for
simplicity, achievable when m = Lb + LP . ICTSP flexibly forms ground truth forecasting examples
to learn the predictor f∗

j : X
(t+1:t+Lb)
j → X

(t+Lb+1:t+Lb+LP )
j . Since ICTSP does not restrict the

input channel structure (with pj,· serving only to distinguish) and can construct context examples
during inference, it generalizes well across different multivariate datasets, exhibiting robust zero-shot
learning capabilities.

Adaptive Model Reduction of ICTSP Existing complex Temporal-wise Transformers often struggle
to outperform simple baselines, like linear predictors, in noisy datasets lacking clear temporal-wise
and channel-wise dependencies. In contrast, ICTSP adapts to different dataset complexities and
reduces to simpler models when necessary. Specifically: i) When temporal-wise dependencies are
weak, ICTSP can adaptively select simpler functions for TSF, such as linear predictors and shallow
MLPs, as achievable by ICL. ii) When series patterns change greatly over time where the impact
of context examples is weak, ICTSP can reduce to a Series-wise Transformer focusing only on
local lookback of target tokens without context tokens. iii) When local lookback from other series
have minimal contribution, ICTSP degrades to a simple univariate MLP, in which case the inter-
token information in attention term from Eq.equation 1 disappears, and token j at layer k becomes
zj,k = zj,k−1 + LN(FFNj,k(zj,k−1)). If FFN also becomes ineffective, ICTSP processes target tokens
only with input and output linear projections outside the Transformer. At this stage, the model reduces
to a linear predictor, effective for highly noisy time series data. ICTSP’s design provides appropriate
shortcuts to enhance adaptability. We further explain in §A.4.1 how inappropriate shortcuts in the
model reduction of the Temporal-wise Transformer limit its ability to learn dynamic patterns.

Sampling and Token Retrieval We can reduce computational costs of ICTSP by sampling one
context token every m steps from the total N tokens for each series. For very large token amount, to
avoid losing information with large sampling steps, we can use token retrieval (TR) to further reduce
token size. We employ a simple method where each token zi is reduced to a δ-dimensional latent
vector z̃i via a linear layer. We calculate the cosine similarity between the z̃i pair of each context
token and target token, averaging the results for each context token. We rank the context tokens by
similarity, select the top q% as context examples, and merge the remaining tokens into r tokens by
grouped weighted averaging, resulting in ⌊q(LI − Lb − LP )/m⌋C + r context tokens. TR reduces
computational costs, preserves enough information, and helps the model infer which examples are
more important with token positions. More details of the ICTSP structure can be found in §A.3.

2.3 SOLVING KEY ISSUES OF TSF TRANSFORMERS

Timestep Mixing and Overfitting From the ICL perspective, the Temporal-wise Transformer’s
token formulation overemphasizes channel relationships within specific timesteps. This leads to
outputs overfitted to the non-existent underlying channel structures of context examples in real-world
datasets with weak inter-series relationships, as shown in Figure 3 (a). Previous studies attribute
this overfitting to the mixing of channel values at timesteps in the attention mechanism, proposing
various solutions. The following analysis shows these partially effective solutions are actually trying
to enhance the focus on temporal dependencies in the token formulation.

5
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Figure 3: Previous solutions of Temporal-wise Transformers’ overfitting issue. From the ICL perspec-
tive, they are actually introducing more learnable temporal dependencies within token formulation.

PatchTST (Nie et al., 2022) suggested that univariate Temporal-wise Transformers, which inputs each
channel independently (Figure 3 (b)), can address overfitting. This approach breaks the series-wise
relationship in the tokens, transforming the ICL predictor into f∗

j,t : pt → X
(t)
j , which predicts

values solely from positions. This shift enhances the model’s focus on temporal dependencies while
ignoring series-wise dependencies, making the formulation more suitable for real-world TSF tasks.
Notably, the prompt structure used by recent LLMs for TSF, "... timestep: value ...", also benefits
from this approach. Existing methods like ForecastPFN (Dooley et al., 2024) use similar structures.

ARM (Lu et al., 2024) introduced random dropping (Figure 3 (c)), which mitigates overfitting by
randomly removing series from both input and output during training. This randomly breaks some
relationships between channels within the tokens. With only positional information consistently
preserved, the model focus more on the temporal generation process and retains only the most likely
channel dependencies, reducing overfitting to non-existent channel relationships. However, the degree
of channel dropout requires further tuning based on different dataset characteristics.

Methods such as LogTrans (Li et al., 2019) and ARM (Lu et al., 2024) use strategies similar to Figure
3 (d) to build local representations for tokens across time intervals instead of single timesteps. This
introduces temporal relationships within the token. For TSF data with weak channel dependencies,
tokens naturally focus on intra-series temporal relationships (solid lines in Figure 3 (d)) rather
than the weak channel-wise relationships (dashed lines in Figure 3 (d)) as in the original token
format. This approach alleviates overfitting but requires careful tuning of the local window selection.
Recent methods like Liu et al. (2024b) tend to combine method (c) and (d) to further improve the
generalization ability.

These previous solutions emphasize temporal dependencies more in tokens but do not address the
fundamental formulation issue. The Series-wise Transformer solve the issue by treating input series
as tokens, helping each token focus on temporal dependencies but lacks contextual examples and ICL
capabilities. In contrast, the ICTSP treats forecasting tasks as tokens, providing context forecasting
examples to help the model learn temporal predictors and potential series dependencies through
interactions between the target token and the historical context of all the series.

Permutation Invariance Studies like DLinear (Zeng et al., 2023) and iTransformer (Liu et al.,
2024a) suggest that the poor performance of Temporal-wise Transformers is partly due to the inherent
permutation invariance issue in Transformer, meaning swapping the positions of input tokens does
not significantly affect the output. The Temporal-wise Transformer treats context tokens more as
representations of the underlying channel structure. Thus, when a dataset lacks a temporally varying
underlying channel structure, pt in f∗

t : pt → [X
(t)
1 , · · · , X(t)

C ]⊤ becomes ineffective, and the output
tends to converge to the context’s average. This is consistent with DLinear observations (Zeng et al.,
2023) where shuffling of input token minimally impact the output. Conversely, in the ICTSP, each
context token represents a forecasting training example, so swapping their positions does not harm
the forecasting. This makes the ICTSP better suited to the Transformer’s characteristics for TSF
compared to previous structures.

Channel Structure Restriction In the Temporal-wise Transformer, the number of input series and
their relative positions within the tokens must be fixed. This limits the model’s ability to adapt to
datasets with varying series numbers. Channel independence (Nie et al., 2022) may simplify the

6
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Temporal-wise Transformer to a univariate model, enhancing generalization but losing the ability
to model inter-series dependencies. The Series-wise Transformer does not restrict the number of
input series structurally but learns the characteristics of C series during training through pj , making
it hard to transfer embeddings to other datasets. Conversely, the ICTSP does not restrict the number
of series and includes in-context training examples within the input, enabling easy transfer to input
data of any size. Here, positional embeddings can be trained to only distinguish between samples
without describing the characteristics of the series. The flexibility in input channel structure provides
zero-shot multivariate forecasting ability, which previous multivariate models could not achieve.

3 EXPERIMENTS

We conduct comprehensive experiments under full-data, few-shot, and zero-shot settings using widely-
used TSF datasets (details in §A.2), including ETTs (Zhou et al., 2021), Traffic, Electricity (ECL),
and Weather. We use K = 3 TF layers with d = 128 and 8 heads. We set LI = 1440, Lb = 512,
and LP ∈ {96, 192, 336, 720}, performing 4 experiments for each dataset. We use sampling step
m = 8 and the token retrieval method with q = 10%, r = 30 in main experiments. See §A.3.2 for
more hyper-parameter and implementation details. We use the same experimental environment as
(Zhou et al., 2023; Jin et al., 2024). Extensive efforts are made to ensure fair comparisons across all
experiments (detailed in §A.3.3).

Baselines We compare our method with previous SOTA models in the categories of LLM for TSF
(Time-LLM (Jin et al., 2024), GPT4TS (Zhou et al., 2023), LLMTime (Gruver et al., 2023)), Temporal-
wise Transformers (PatchTST (Nie et al., 2022), FEDformer (Zhou et al., 2022), Autoformer (Wu
et al., 2021), Informer (Zhou et al., 2021)), Series-wise Transformer (iTransformer (Liu et al., 2024a)),
CNN (TimesNet (Wu et al., 2022)), and simple methods (DLinear (Zeng et al., 2023), Last-value
Repeat). Baseline results are sourced from (Zhou et al., 2023; Jin et al., 2024) when applicable and
rerun for the missing experiments. We report the average test set MSE for each dataset in the main
paper and provide the full raw results in §A.1. The average rank and the number of times each model
is ranked as the best are also summarized in the results.

Full-data TSF Results We train the ICTSP from scratch on TSF datasets, with the results shown
in Table 1. ICTSP consistently shows superior performance compared to previous methods in all
categories. The ICL capability, activated by the context examples, allows it to excel on larger datasets
with stable patterns like ECL and Traffic. Its adaptive model reduction ability, originated from its
token and structure design, ensures strong performance on small and noisy datasets like ETTs.

Table 1: Full-data TSF results. Averaged test set MSE on each dataset is reported. The best and
second-best results are in bold and underlined, respectively. See Table 6 for the original results.

Models ICTSP Time-LLM GPT4TS iTransformer PatchTST FEDformer Autoformer Informer DLinear Repeat

ETTh1 0.404 0.408 0.428 0.454 0.413 0.440 0.496 1.040 0.423 1.321
ETTh2 0.328 0.334 0.355 0.375 0.330 0.437 0.450 4.431 0.431 0.536
ETTm1 0.342 0.329 0.352 0.374 0.351 0.448 0.588 0.961 0.357 1.269
ETTm2 0.247 0.251 0.267 0.269 0.255 0.305 0.327 1.410 0.267 0.385
Weather 0.218 0.226 0.237 0.249 0.226 0.309 0.338 0.634 0.249 0.353
ECL 0.154 0.159 0.167 0.173 0.162 0.214 0.227 0.311 0.166 1.612
Traffic 0.386 0.388 0.414 0.420 0.391 0.610 0.628 0.764 0.434 2.770

AvgRank 1.36 1.93 4.29 5.64 2.79 6.86 7.89 9.43 5.00 9.50
#Rank1 18 8 0 0 2 0 0 0 0 0

Few-shot Learning The few-shot learning ability of ICTSP is tested by training it on only the first
10% or 5% of the training data. ICTSP can flexibly build context samples based on the input data
to perform in-context fitting without parameter updates, which compensates for the lack of training
samples closer to the test set. Thus, it stably outperforms other models in both the 10% and 5%
settings, as shown in Table 2. Note that we ensured ICTSP only uses datapoints perceivable by other
baselines to build the context examples, ensuring a fair comparison, as detailed in A.3.3.

Zero-shot Learning We also test the zero-shot transfer learning ability of ICTSP by training on one
ETT dataset and testing on another ETT dataset. ICTSP surpasses all previous methods by a large
margin in the zero-shot settings, as shown in Table 3. The new patterns in unseen datasets can be
prompted with the forecasting task examples constructed in the tokens of ICTSP, which perfectly fits
the scenario of zero-shot transfer learning.
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Table 2: Few-shot learning results on 10% and 5% training data. The best and second best results are
in bold and underlined, respectively. See Table 7 and 8 for the original results.

Models ICTSP Time-LLM GPT4TS PatchTST FEDformer Autoformer Informer TimesNet DLinear Repeat

ETTh1 (10%) 0.525 0.555 0.590 0.633 0.639 0.702 1.199 0.869 0.691 1.321
ETTh2 (10%) 0.369 0.371 0.397 0.415 0.466 0.488 3.872 0.479 0.605 0.536
ETTm1 (10%) 0.397 0.404 0.464 0.501 0.722 0.802 1.192 0.677 0.411 1.269
ETTm2 (10%) 0.275 0.277 0.293 0.296 0.463 1.342 3.370 0.320 0.316 0.385
Weather (10%) 0.237 0.234 0.238 0.242 0.284 0.300 0.597 0.279 0.241 0.353
ECL (10%) 0.174 0.175 0.176 0.180 0.346 0.431 1.195 0.323 0.180 1.612
Traffic (10%) 0.428 0.429 0.440 0.430 0.663 0.749 1.534 0.951 0.447 2.770

AvgRank (10%) 1.57 1.89 3.21 4.07 6.39 7.46 9.43 6.68 4.93 9.21
#Rank1 (10%) 15 10 1 1 0 0 0 0 0 0

ETTh1 (5%) 0.540 0.627 0.682 0.695 0.659 0.722 1.225 0.926 0.750 1.314
ETTh2 (5%) 0.368 0.382 0.401 0.439 0.441 0.470 3.923 0.464 0.828 0.519
ETTm1 (5%) 0.397 0.425 0.472 0.527 0.731 0.796 1.163 0.717 0.401 1.269
ETTm2 (5%) 0.285 0.274 0.308 0.315 0.381 0.389 3.659 0.345 0.399 0.385
Weather (5%) 0.256 0.261 0.264 0.270 0.310 0.311 0.584 0.298 0.264 0.353
ECL (5%) 0.175 0.177 0.179 0.181 0.267 0.346 1.281 0.402 0.177 1.612
Traffic (5%) 0.418 0.423 0.434 0.418 0.677 0.833 1.591 0.867 0.451 2.757

AvgRank (5%) 1.56 2.36 3.48 3.96 6.04 7.08 9.44 6.80 4.84 9.24
#Rank1 (5%) 12 7 1 2 0 0 0 0 4 0

Table 3: Zero-shot transfer learning results. The best and second best results are in bold and
underlined, respectively. See Table 9 for the original results.

Models ICTSP Time-LLM LLMTime GPT4TS PatchTST Autoformer TimesNet DLinear Repeat

ETTh1→ETTh2 0.337 0.352 0.992 0.407 0.381 0.582 0.421 0.494 0.536
ETTh2→ETTh1 0.441 0.479 1.961 0.758 0.565 0.758 0.866 0.703 1.321
ETTm1→ETTh2 0.356 0.381 0.992 0.433 0.439 0.470 0.454 0.464 0.536
ETTm1→ETTm2 0.255 0.265 1.867 0.314 0.297 0.469 0.322 0.335 0.385
ETTm2→ETTh2 0.352 0.354 0.992 0.435 0.409 0.423 0.435 0.456 0.536
ETTm2→ETTm1 0.408 0.414 1.933 0.769 0.568 0.755 0.769 0.649 1.269

AvgRank 1.13 1.88 8.67 4.54 3.29 6.21 5.75 5.33 7.88
#Rank1 21 3 0 0 0 0 0 0 0

Ablation Studies ICTSP has a concise model structure, with forecasting tasks as input tokens,
enabling efficient transfer of ICL abilities to TSF. We conducted experiments on a) the inclusion
of context examples, b) token retrieval (TR), and c) different sampling steps m, as shown in Table
4. Without context example tokens, ICTSP reduces to a Series-wise Transformer, lacking ground
truth forecasting references, which significantly reduces performance. Token retrieval is used to
lower computational costs while preserving model performance. As observed, using TR in the full
model does not significantly reduce performance compared to the original model without TR. The
sampling step m controls the density of context samples that ICTSP can see. We aim to choose the
largest m that does not lose information to reduce computational cost. Selecting m = 8 does not lose
much performance compared to using full samples with m = 1. while increasing m to 256 degrades
performance to the level close to the scenarios without context examples.

Table 4: Results of the ablation studies of the ICTSP structure with LP ∈ {96, 192, 336, 720}.
Models Full (m = 8) w/o Context w/o TR m = 1 m = 64 m = 256

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather (96) 0.139 0.194 0.150 0.202 0.140 0.200 0.140 0.196 0.140 0.194 0.142 0.195
Weather (192) 0.186 0.236 0.195 0.241 0.188 0.240 0.185 0.233 0.185 0.234 0.187 0.239
Weather (336) 0.239 0.279 0.245 0.280 0.241 0.287 0.240 0.284 0.239 0.281 0.240 0.283
Weather (720) 0.306 0.320 0.309 0.324 0.307 0.328 0.307 0.321 0.310 0.325 0.312 0.327

Weather (Avg) 0.218 0.257 0.225 0.262 0.219 0.264 0.218 0.259 0.219 0.259 0.220 0.261

ETTm2 (96) 0.159 0.248 0.162 0.249 0.159 0.248 0.160 0.249 0.162 0.249 0.162 0.250
ETTm2 (192) 0.212 0.289 0.215 0.295 0.211 0.287 0.209 0.289 0.213 0.287 0.214 0.288
ETTm2 (336) 0.268 0.326 0.273 0.329 0.268 0.330 0.270 0.327 0.269 0.327 0.273 0.327
ETTm2 (720) 0.347 0.382 0.352 0.387 0.345 0.383 0.345 0.381 0.348 0.384 0.350 0.386

ETTm2 (Avg) 0.247 0.311 0.251 0.315 0.246 0.312 0.246 0.312 0.248 0.312 0.250 0.313

Computational Costs In Table 5, we compare the computational costs between different settings of
m and token retrieval (TR), as well as between ICTSP and other TSF Transformers. The total number
of context tokens is ⌊q(LI − Lb − LP )/m⌋C + r. Using m = 8 and token retrieval with q = 10%
reduces the first part of tokens to 1.25% of the original amount without losing much information, as
shown above. These settings effectively reduce computational costs compared to the full context
token scenario, making ICTSP more efficient than most of the previous TSF Transformers. Note that
in our setting with a fixed input length LI , longer forecasting horizon LP result in fewer context
samples and may have less computational costs than shorter LP . We do not include the computational
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costs of LLMs for TSF here, as they usually have thousands of times more parameters, making a
direct comparison unnecessary.

Table 5: Comparison of computational costs. The data format of ETTh2 is utilized to construct model
inputs. The hyper-parameters for every model are set according to their default configurations.

Models ICTSP (m = 8, w/ TR) ICTSP (m = 8, w/o TR) ICTSP (m = 1, w/ TR) ICTSP (m = 1, w/o TR)
Metric FLOPs Params FLOPs Params FLOPs Params FLOPs Params

LP = 96 1.51G 7.35M 11.2G 7.34M 9.58G 7.35M 88.0G 7.34M
LP = 192 1.40G 7.43M 9.96G 7.41M 9.61G 7.43M 78.2G 7.41M
LP = 336 1.20G 7.54M 8.09G 7.52M 8.14G 7.54M 63.2G 7.52M
LP = 720 605M 7.83M 3.02G 7.82M 3.29G 7.83M 22.6G 7.82M

Models Autoformer Informer PatchTST iTransformer
Metric FLOPs Params FLOPs Params FLOPs Params FLOPs Params

LP = 96 10.9G 10.5M 9.41G 11.3M 12.6G 10.7M 148M 6.72M
LP = 192 11.6G 10.5M 10.1G 11.3M 12.7G 15.2M 149M 6.77M
LP = 336 12.7G 10.5M 11.2G 11.3M 12.8G 21.8M 151M 6.85M
LP = 720 15.5G 10.5M 14.0G 11.3M 13.2G 39.5M 155M 7.04M

Analysis of TSF Transformer Characteristics From the ICL perspective, the Temporal-wise
Transformer is better for learning inter-series relationships, while the Series-wise Transformer better
at intra-series relationships. Here, we use a synthesized "Multi" dataset from (Lu et al., 2024) with
strong inter-series dependencies, generated by shifting an random walk process. Fig. 4 (a) and
(b) show that the Temporal-wise Transformer performs well on this dataset, while the Series-wise
Transformer fails to learn the shifting dependencies. ICTSP, with its context tokens featuring a shifting
structure, excels in learning these time-interleaved dependencies. Conversely, the Temporal-wise
Transformer struggles with real-world datasets with weak dependencies comparing to Series-wise
Transformer, such as the ETTm2 datasets in Fig. 4 (c) and (d). ICTSP handles these datasets well,
demonstrating significantly better performance. Note that we build these baselines in this analysis
with the same structure shown in Fig. 2, using LI = 512, LP = 192, K = 3, d = 128 for the 3
models; and Lb = 256 for ICTSP. See §A.4.2 for more discussion about the inter-series learning
abilities of the TSF Transformers.
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Figure 4: Comparison of the 3 architectures. The first 3 series of Multi and ETTm2 are visualized.

Attention Visualization We visualize the attention maps of the three TF layers in ICTSP using the
same forecasting data points from the Multi and ETTm2 datasets as above. We disable token retrieval
to observe the interaction within and between the tokens from each time series. In Fig. 5 (a), it can be
observed that the shifted series 2 and 3 fetch information from the corresponding inter-series context
tokens. In Fig. 5 (b), ICTSP focuses on the first half of the context tokens, aligning with Fig. 4 (d),
where the future shape resembles the earlier part of the input rather than the later part.

4 RELATED WORKS

Extensive research on TSF has been conducted in both traditional statistics (Box et al., 1974; Holt,
2004; Sims, 1980) and deep learning (Hochreiter & Schmidhuber, 1997; Rangapuram et al., 2018;
Salinas et al., 2020). Recent studies have seen a surge in Transformer-based TSF models (Wen et al.,
2022; Li et al., 2019; Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Zhang & Yan, 2023).
However, a study (Zeng et al., 2023) indicated that these complex models might not outperform
linear predictors on real-world datasets, leading to subsequent research (Nie et al., 2022; Liu et al.,
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Figure 5: Visualization of averaged attention maps of the 3 TF layers of ICTSP on Multi and ETTm2.

2024a; Lu et al., 2024) proposing possible solutions. Additionally, due to the significant achievements
of LLMs in various tasks (Brown et al., 2020), several LLM-based TSF models (Gruver et al.,
2023; Zhou et al., 2023; Jin et al., 2024) have been introduced. These models also use Transformer
architectures but rely on pre-trained parameters and fine-tuning to achieve superior few-shot and
zero-shot capabilities (Zhang et al., 2024). While studies (Min et al., 2022; Wei et al., 2023; Xie
et al., 2022; Zhang et al., 2023; Garg et al., 2022) have highlighted that these few-shot abilities in
LLMs stem from ICL, there is a lack of research on how to efficiently implement ICL in TSF.

5 CONCLUSION AND LIMITATION

In this study, we propose the In-context Time Series Predictor (ICTSP) to leverage in-context learning
capabilities for time series forecasting. By treating "forecasting tasks" as tokens, we build context
forecasting examples into the input to activate the ICL abilities. ICTSP addresses issues in TSF
Transformers such as timestep mixing and overfitting with its effective token formulation, achieving
SOTA performance across full-data, few-shot, and zero-shot experiments. For limitation, due to the
lack of large collective TSF datasets, we have not tested ICTSP’s scaling ability with more layers on
larger datasets. We also have not explored the possibility of training a single global model that can
handle different lookback and future length, as allowed by the ICTSP structure.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide the detailed raw experimental results presented in the main paper. Table 6
presents the detailed results in the full-data setting. Tables 7 and 8 demonstrate the results of few-shot
learning. Table 9 shows the results of zero-shot learning.

Table 6: Full-data results with forecasting horizons LP ∈ {96, 192, 336, 720}. The test set MSE and
MAE results are reported. The best and second best results are in bold and underlined, respectively.

Models ICTSP Time-LLM GPT4TS iTransformer PatchTST FedFormer Autoformer Informer TimesNet DLinear Repeat

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 (96) 0.366 0.393 0.362 0.392 0.376 0.397 0.396 0.428 0.370 0.399 0.376 0.419 0.449 0.459 0.865 0.713 0.384 0.402 0.375 0.399 1.295 0.713
ETTh1 (192) 0.399 0.412 0.398 0.418 0.416 0.418 0.431 0.451 0.413 0.421 0.420 0.448 0.500 0.482 1.008 0.792 0.436 0.429 0.405 0.416 1.325 0.733
ETTh1 (336) 0.426 0.427 0.430 0.427 0.442 0.433 0.459 0.470 0.422 0.436 0.459 0.465 0.521 0.496 1.107 0.809 0.491 0.469 0.439 0.443 1.323 0.744
ETTh1 (720) 0.424 0.446 0.442 0.457 0.477 0.456 0.528 0.523 0.447 0.466 0.506 0.507 0.514 0.512 1.181 0.865 0.521 0.500 0.472 0.490 1.339 0.756

ETTh1 (Avg) 0.404 0.420 0.408 0.424 0.428 0.426 0.454 0.468 0.413 0.431 0.440 0.460 0.496 0.487 1.040 0.795 0.458 0.450 0.423 0.437 1.321 0.737

ETTh2 (96) 0.265 0.335 0.268 0.328 0.285 0.342 0.299 0.358 0.274 0.336 0.358 0.397 0.346 0.388 3.755 1.525 0.340 0.374 0.289 0.353 0.432 0.422
ETTh2 (192) 0.326 0.374 0.329 0.375 0.354 0.389 0.365 0.399 0.339 0.379 0.429 0.439 0.456 0.452 5.602 1.931 0.402 0.414 0.383 0.418 0.534 0.473
ETTh2 (336) 0.349 0.396 0.368 0.409 0.373 0.407 0.407 0.429 0.329 0.380 0.496 0.487 0.482 0.486 4.721 1.835 0.452 0.452 0.448 0.465 0.591 0.508
ETTh2 (720) 0.370 0.397 0.372 0.420 0.406 0.441 0.427 0.454 0.379 0.422 0.463 0.474 0.515 0.511 3.647 1.625 0.462 0.468 0.605 0.551 0.588 0.517

ETTh2 (Avg) 0.328 0.376 0.334 0.383 0.355 0.395 0.375 0.410 0.330 0.379 0.437 0.449 0.450 0.459 4.431 1.729 0.414 0.427 0.431 0.447 0.536 0.480

ETTm1 (96) 0.280 0.336 0.272 0.334 0.292 0.346 0.325 0.376 0.290 0.342 0.379 0.419 0.505 0.475 0.672 0.571 0.338 0.375 0.299 0.343 1.214 0.665
ETTm1 (192) 0.318 0.361 0.310 0.358 0.332 0.372 0.356 0.391 0.332 0.369 0.426 0.441 0.553 0.496 0.795 0.669 0.374 0.387 0.335 0.365 1.261 0.690
ETTm1 (336) 0.355 0.383 0.352 0.384 0.366 0.394 0.382 0.405 0.366 0.392 0.445 0.459 0.621 0.537 1.212 0.871 0.410 0.411 0.369 0.386 1.283 0.707
ETTm1 (720) 0.416 0.415 0.383 0.411 0.417 0.421 0.432 0.434 0.416 0.420 0.543 0.490 0.671 0.561 1.166 0.823 0.478 0.450 0.425 0.421 1.319 0.729

ETTm1 (Avg) 0.342 0.374 0.329 0.372 0.352 0.383 0.374 0.402 0.351 0.381 0.448 0.452 0.588 0.517 0.961 0.734 0.400 0.406 0.357 0.379 1.269 0.698

ETTm2 (96) 0.159 0.248 0.161 0.253 0.173 0.262 0.187 0.281 0.165 0.255 0.203 0.287 0.255 0.339 0.365 0.453 0.187 0.267 0.167 0.269 0.266 0.328
ETTm2 (192) 0.212 0.289 0.219 0.293 0.229 0.301 0.238 0.316 0.220 0.292 0.269 0.328 0.281 0.340 0.533 0.563 0.249 0.309 0.224 0.303 0.340 0.371
ETTm2 (336) 0.268 0.326 0.271 0.329 0.286 0.341 0.285 0.344 0.274 0.329 0.325 0.366 0.339 0.372 1.363 0.887 0.321 0.351 0.281 0.342 0.412 0.410
ETTm2 (720) 0.347 0.382 0.352 0.379 0.378 0.401 0.365 0.393 0.362 0.385 0.421 0.415 0.433 0.432 3.379 1.338 0.408 0.403 0.397 0.421 0.521 0.465

ETTm2 (Avg) 0.247 0.311 0.251 0.314 0.267 0.326 0.269 0.334 0.255 0.315 0.305 0.349 0.327 0.371 1.410 0.810 0.291 0.333 0.267 0.334 0.385 0.394

Weather (96) 0.139 0.194 0.147 0.201 0.162 0.212 0.183 0.239 0.149 0.198 0.217 0.296 0.266 0.336 0.300 0.384 0.172 0.220 0.176 0.237 0.259 0.254
Weather (192) 0.186 0.236 0.189 0.234 0.204 0.248 0.225 0.273 0.194 0.241 0.276 0.336 0.307 0.367 0.598 0.544 0.219 0.261 0.220 0.282 0.309 0.292
Weather (336) 0.239 0.279 0.262 0.279 0.254 0.286 0.266 0.302 0.245 0.282 0.339 0.380 0.359 0.395 0.578 0.523 0.280 0.306 0.265 0.319 0.377 0.338
Weather (720) 0.306 0.320 0.304 0.316 0.326 0.337 0.322 0.341 0.314 0.334 0.403 0.428 0.419 0.428 1.059 0.741 0.365 0.359 0.333 0.362 0.465 0.394

Weather (Avg) 0.218 0.257 0.226 0.258 0.237 0.271 0.249 0.289 0.226 0.264 0.309 0.360 0.338 0.382 0.634 0.548 0.259 0.287 0.249 0.300 0.353 0.320

ECL (96) 0.127 0.221 0.131 0.224 0.139 0.238 0.145 0.249 0.129 0.222 0.193 0.308 0.201 0.317 0.274 0.368 0.168 0.272 0.140 0.237 1.588 0.946
ECL (192) 0.148 0.241 0.152 0.241 0.153 0.251 0.166 0.269 0.157 0.240 0.201 0.315 0.222 0.334 0.296 0.386 0.184 0.289 0.153 0.249 1.595 0.950
ECL (336) 0.158 0.257 0.160 0.248 0.169 0.266 0.176 0.270 0.163 0.259 0.214 0.329 0.231 0.338 0.300 0.394 0.198 0.300 0.169 0.267 1.617 0.961
ECL (720) 0.181 0.283 0.192 0.298 0.206 0.297 0.206 0.283 0.197 0.290 0.246 0.355 0.254 0.361 0.373 0.439 0.220 0.320 0.203 0.301 1.647 0.975

ECL (Avg) 0.154 0.251 0.159 0.253 0.167 0.263 0.173 0.268 0.162 0.253 0.214 0.327 0.227 0.338 0.311 0.397 0.193 0.295 0.166 0.264 1.612 0.958

Traffic (96) 0.359 0.251 0.362 0.248 0.388 0.282 0.381 0.266 0.360 0.249 0.587 0.366 0.613 0.388 0.719 0.391 0.593 0.321 0.410 0.282 2.723 1.079
Traffic (192) 0.372 0.256 0.374 0.247 0.407 0.290 0.410 0.278 0.379 0.256 0.604 0.373 0.616 0.382 0.696 0.379 0.617 0.336 0.423 0.287 2.756 1.087
Traffic (336) 0.382 0.273 0.385 0.271 0.412 0.294 0.431 0.281 0.392 0.264 0.621 0.383 0.622 0.337 0.777 0.420 0.629 0.336 0.436 0.296 2.791 1.095
Traffic (720) 0.432 0.291 0.430 0.288 0.450 0.312 0.458 0.299 0.432 0.286 0.626 0.382 0.660 0.408 0.864 0.472 0.640 0.350 0.466 0.315 2.811 1.097

Traffic (Avg) 0.386 0.268 0.388 0.264 0.414 0.295 0.420 0.281 0.391 0.264 0.610 0.376 0.628 0.379 0.764 0.416 0.620 0.336 0.434 0.295 2.770 1.090

A.2 DATASETS

Our main TSF experiments are conducted based on commonly used time series forecasting datasets,
detailed as follows:

ETT Datasets2 (Zhou et al., 2021): This dataset includes load and oil temperature data from
electricity transformers, recorded at 15-minute intervals from July 2016 to July 2018. It comprises
four subsets: ETTm1, ETTm2, ETTh1, and ETTh2, representing two transformers (identified as 1
and 2) and two time resolutions (15 minutes and 1 hour). Each subset contains seven features related
to oil and load of the transformers.

Electricity Dataset3: This dataset covers hourly electricity usage data of 321 consumers from 2012
to 2014 and is frequently used in energy consumption forecasting and analysis.

Traffic Dataset4: Sourced from freeway sensors in the San Francisco Bay area, this dataset provides
hourly road occupancy data from 2015 to 2016, making it a key resource for traffic flow studies.

Weather Dataset5: This dataset captures 21 weather variables, such as temperature and humidity,
recorded every 10 minutes throughout 2020, supporting detailed meteorological studies.

Multi Dataset (Lu et al., 2024) is generated from a master random walk series. The first series is the
master series, while the second to fifth series are created by shifting the master series backward by 96,
192, 336, and 720 steps, respectively. The last three series are combinations of these first five series.

2https://github.com/zhouhaoyi/ETDataset
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4http://pems.dot.ca.gov/
5https://www.bgc-jena.mpg.de/wetter/
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Table 7: Few-shot learning results on 10% training data with forecasting horizons LP ∈
{96, 192, 336, 720}. The best and second best results are in bold and underlined, respectively.

Models ICTSP Time-LLM GPT4TS PatchTST FedFormer Autoformer Informer TimesNet DLinear Repeat

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 (96) 0.411 0.428 0.448 0.460 0.458 0.456 0.516 0.485 0.512 0.499 0.613 0.552 1.179 0.792 0.861 0.628 0.492 0.495 1.295 0.713
ETTh1 (192) 0.465 0.462 0.484 0.483 0.570 0.516 0.598 0.524 0.624 0.555 0.722 0.598 1.199 0.806 0.797 0.593 0.565 0.538 1.325 0.733
ETTh1 (336) 0.512 0.498 0.589 0.540 0.608 0.535 0.657 0.550 0.691 0.574 0.750 0.619 1.202 0.811 0.941 0.648 0.721 0.622 1.323 0.744
ETTh1 (720) 0.710 0.612 0.700 0.604 0.725 0.591 0.762 0.610 0.728 0.614 0.721 0.616 1.217 0.825 0.877 0.641 0.986 0.743 1.339 0.756

ETTh1 (Avg) 0.525 0.500 0.555 0.522 0.590 0.525 0.633 0.542 0.639 0.561 0.702 0.596 1.199 0.809 0.869 0.628 0.691 0.600 1.321 0.737

ETTh2 (96) 0.280 0.335 0.275 0.326 0.331 0.374 0.353 0.389 0.382 0.416 0.413 0.451 3.837 1.508 0.378 0.409 0.357 0.411 0.432 0.422
ETTh2 (192) 0.366 0.385 0.374 0.373 0.402 0.411 0.403 0.414 0.478 0.474 0.474 0.477 3.856 1.513 0.490 0.467 0.569 0.519 0.534 0.473
ETTh2 (336) 0.401 0.433 0.406 0.429 0.406 0.433 0.426 0.441 0.504 0.501 0.547 0.543 3.952 1.526 0.537 0.494 0.671 0.572 0.591 0.508
ETTh2 (720) 0.430 0.451 0.427 0.449 0.449 0.464 0.477 0.480 0.499 0.509 0.516 0.523 3.842 1.503 0.510 0.491 0.824 0.648 0.588 0.517

ETTh2 (Avg) 0.369 0.401 0.371 0.394 0.397 0.421 0.415 0.431 0.466 0.475 0.488 0.499 3.872 1.513 0.479 0.465 0.605 0.538 0.536 0.480

ETTm1 (96) 0.341 0.376 0.346 0.388 0.390 0.404 0.410 0.419 0.578 0.518 0.774 0.614 1.162 0.785 0.583 0.501 0.352 0.392 1.214 0.665
ETTm1 (192) 0.367 0.390 0.373 0.416 0.429 0.423 0.437 0.434 0.617 0.546 0.754 0.592 1.172 0.793 0.630 0.528 0.382 0.412 1.261 0.690
ETTm1 (336) 0.405 0.415 0.413 0.426 0.469 0.439 0.476 0.454 0.998 0.775 0.869 0.677 1.227 0.908 0.725 0.568 0.419 0.434 1.283 0.707
ETTm1 (720) 0.473 0.458 0.485 0.476 0.569 0.498 0.681 0.556 0.693 0.579 0.810 0.630 1.207 0.797 0.769 0.549 0.490 0.477 1.319 0.729

ETTm1 (Avg) 0.397 0.410 0.404 0.427 0.464 0.441 0.501 0.466 0.722 0.605 0.802 0.628 1.192 0.821 0.677 0.537 0.411 0.429 1.269 0.698

ETTm2 (96) 0.176 0.258 0.177 0.261 0.188 0.269 0.191 0.274 0.291 0.399 0.352 0.454 3.203 1.407 0.212 0.285 0.213 0.303 0.266 0.328
ETTm2 (192) 0.239 0.307 0.241 0.314 0.251 0.309 0.252 0.317 0.307 0.379 0.694 0.691 3.112 1.387 0.270 0.323 0.278 0.345 0.340 0.371
ETTm2 (336) 0.288 0.336 0.274 0.327 0.307 0.346 0.306 0.353 0.543 0.559 2.408 1.407 3.255 1.421 0.323 0.353 0.338 0.385 0.412 0.410
ETTm2 (720) 0.395 0.391 0.417 0.390 0.426 0.417 0.433 0.427 0.712 0.614 1.913 1.166 3.909 1.543 0.474 0.449 0.436 0.440 0.521 0.465

ETTm2 (Avg) 0.275 0.323 0.277 0.323 0.293 0.335 0.296 0.343 0.463 0.488 1.342 0.930 3.370 1.440 0.320 0.353 0.316 0.368 0.385 0.394

Weather (96) 0.164 0.214 0.161 0.210 0.163 0.215 0.165 0.215 0.188 0.253 0.221 0.297 0.374 0.401 0.184 0.230 0.171 0.224 0.259 0.254
Weather (192) 0.209 0.252 0.204 0.248 0.210 0.254 0.210 0.257 0.250 0.304 0.270 0.322 0.552 0.478 0.245 0.283 0.215 0.263 0.309 0.292
Weather (336) 0.259 0.294 0.261 0.302 0.256 0.292 0.259 0.297 0.312 0.346 0.320 0.351 0.724 0.541 0.305 0.321 0.258 0.299 0.377 0.338
Weather (720) 0.315 0.333 0.309 0.332 0.321 0.339 0.332 0.346 0.387 0.393 0.390 0.396 0.739 0.558 0.381 0.371 0.320 0.346 0.465 0.394

Weather (Avg) 0.237 0.273 0.234 0.273 0.238 0.275 0.242 0.279 0.284 0.324 0.300 0.342 0.597 0.495 0.279 0.301 0.241 0.283 0.353 0.320

ECL (96) 0.138 0.236 0.139 0.241 0.139 0.237 0.140 0.238 0.231 0.323 0.261 0.348 1.259 0.919 0.299 0.373 0.150 0.253 1.588 0.946
ECL (192) 0.153 0.252 0.151 0.248 0.156 0.252 0.160 0.255 0.261 0.356 0.338 0.406 1.160 0.873 0.305 0.379 0.164 0.264 1.595 0.950
ECL (336) 0.174 0.272 0.169 0.270 0.175 0.270 0.180 0.276 0.360 0.445 0.410 0.474 1.157 0.872 0.319 0.391 0.181 0.282 1.617 0.961
ECL (720) 0.229 0.318 0.240 0.322 0.233 0.317 0.241 0.323 0.530 0.585 0.715 0.685 1.203 0.898 0.369 0.426 0.223 0.321 1.647 0.975

ECL (Avg) 0.174 0.270 0.175 0.270 0.176 0.269 0.180 0.273 0.346 0.427 0.431 0.478 1.195 0.891 0.323 0.392 0.180 0.280 1.612 0.958

Traffic (96) 0.416 0.298 0.418 0.291 0.414 0.297 0.403 0.289 0.639 0.400 0.672 0.405 1.557 0.821 0.719 0.416 0.419 0.298 2.723 1.079
Traffic (192) 0.413 0.306 0.414 0.296 0.426 0.301 0.415 0.296 0.637 0.416 0.727 0.424 1.454 0.765 0.748 0.428 0.434 0.305 2.756 1.087
Traffic (336) 0.422 0.307 0.421 0.311 0.434 0.303 0.426 0.304 0.655 0.427 0.749 0.454 1.521 0.812 0.853 0.471 0.449 0.313 2.791 1.095
Traffic (720) 0.460 0.330 0.462 0.327 0.487 0.337 0.474 0.331 0.722 0.456 0.847 0.499 1.605 0.846 1.485 0.825 0.484 0.336 2.811 1.097

Traffic (Avg) 0.428 0.310 0.429 0.306 0.440 0.310 0.430 0.305 0.663 0.425 0.749 0.446 1.534 0.811 0.951 0.535 0.447 0.313 2.770 1.090

Table 8: Few-shot learning results on 5% training data with forecasting horizons LP ∈
{96, 192, 336, 720}. The best and second best results are in bold and underlined, respectively.
"-" means the lacking of data to build the training set in the 5% scenario.

Models ICTSP Time-LLM GPT4TS PatchTST FedFormer Autoformer Informer TimesNet DLinear Repeat

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 (96) 0.499 0.468 0.483 0.464 0.543 0.506 0.557 0.519 0.593 0.529 0.681 0.570 1.225 0.812 0.547 0.503 0.892 0.625 1.295 0.713
ETTh1 (192) 0.550 0.497 0.629 0.540 0.748 0.580 0.711 0.570 0.652 0.563 0.725 0.602 1.249 0.828 0.720 0.604 0.940 0.665 1.325 0.733
ETTh1 (336) 0.572 0.500 0.768 0.626 0.754 0.595 0.816 0.619 0.731 0.594 0.761 0.624 1.202 0.811 0.984 0.727 0.945 0.653 1.323 0.744
ETTh1 (720) - - - - - - - - - - - - - - - - - - - -

ETTh1 (Avg) 0.540 0.488 0.627 0.543 0.682 0.560 0.695 0.569 0.659 0.562 0.722 0.599 1.225 0.817 0.750 0.611 0.926 0.648 1.314 0.730

ETTh2 (96) 0.304 0.360 0.336 0.397 0.376 0.421 0.401 0.421 0.390 0.424 0.428 0.468 3.837 1.508 0.442 0.456 0.409 0.420 0.432 0.422
ETTh2 (192) 0.381 0.408 0.406 0.425 0.418 0.441 0.452 0.455 0.457 0.465 0.496 0.504 3.975 1.933 0.617 0.542 0.483 0.464 0.534 0.473
ETTh2 (336) 0.419 0.430 0.405 0.432 0.408 0.439 0.464 0.469 0.477 0.483 0.486 0.496 3.956 1.520 1.424 0.849 0.499 0.479 0.591 0.508
ETTh2 (720) - - - - - - - - - - - - - - - - - - - -

ETTh2 (Avg) 0.368 0.399 0.382 0.418 0.401 0.434 0.439 0.448 0.441 0.457 0.470 0.489 3.923 1.654 0.828 0.616 0.464 0.454 0.519 0.468

ETTm1 (96) 0.331 0.372 0.316 0.377 0.386 0.405 0.399 0.414 0.628 0.544 0.726 0.578 1.130 0.775 0.332 0.374 0.606 0.518 1.214 0.665
ETTm1 (192) 0.363 0.376 0.450 0.464 0.440 0.438 0.441 0.436 0.666 0.566 0.750 0.591 1.150 0.788 0.358 0.390 0.681 0.539 1.261 0.690
ETTm1 (336) 0.413 0.418 0.450 0.424 0.485 0.459 0.499 0.467 0.807 0.628 0.851 0.659 1.198 0.809 0.402 0.416 0.786 0.597 1.283 0.707
ETTm1 (720) 0.481 0.472 0.483 0.471 0.577 0.499 0.767 0.587 0.822 0.633 0.857 0.655 1.175 0.794 0.511 0.489 0.796 0.593 1.319 0.729

ETTm1 (Avg) 0.397 0.410 0.425 0.434 0.472 0.450 0.527 0.476 0.731 0.593 0.796 0.621 1.163 0.792 0.401 0.417 0.717 0.562 1.269 0.698

ETTm2 (96) 0.181 0.265 0.174 0.261 0.199 0.280 0.206 0.288 0.229 0.320 0.232 0.322 3.599 1.478 0.236 0.326 0.220 0.299 0.266 0.328
ETTm2 (192) 0.244 0.310 0.215 0.287 0.256 0.316 0.264 0.324 0.394 0.361 0.291 0.357 3.578 1.475 0.306 0.373 0.311 0.361 0.340 0.371
ETTm2 (336) 0.301 0.378 0.273 0.330 0.318 0.353 0.334 0.367 0.378 0.427 0.478 0.517 3.561 1.473 0.380 0.423 0.338 0.366 0.412 0.410
ETTm2 (720) 0.412 0.410 0.433 0.412 0.460 0.436 0.454 0.432 0.523 0.510 0.553 0.538 3.896 1.533 0.674 0.583 0.509 0.465 0.521 0.465

ETTm2 (Avg) 0.285 0.341 0.274 0.323 0.308 0.346 0.315 0.353 0.381 0.405 0.389 0.434 3.659 1.490 0.399 0.426 0.345 0.373 0.385 0.394

Weather (96) 0.170 0.225 0.172 0.263 0.175 0.230 0.171 0.224 0.229 0.309 0.227 0.299 0.497 0.497 0.184 0.242 0.207 0.253 0.259 0.254
Weather (192) 0.219 0.267 0.224 0.271 0.227 0.276 0.230 0.277 0.265 0.317 0.278 0.333 0.620 0.545 0.228 0.283 0.272 0.307 0.309 0.292
Weather (336) 0.278 0.313 0.282 0.321 0.286 0.322 0.294 0.326 0.353 0.392 0.351 0.393 0.649 0.547 0.279 0.322 0.313 0.328 0.377 0.338
Weather (720) 0.358 0.371 0.366 0.381 0.366 0.379 0.384 0.387 0.391 0.394 0.387 0.389 0.570 0.522 0.364 0.388 0.400 0.385 0.465 0.394

Weather (Avg) 0.256 0.294 0.261 0.309 0.264 0.302 0.270 0.304 0.310 0.353 0.311 0.354 0.584 0.528 0.264 0.309 0.298 0.318 0.353 0.320

ECL (96) 0.145 0.240 0.147 0.242 0.143 0.241 0.145 0.244 0.235 0.322 0.297 0.367 1.265 0.919 0.150 0.251 0.315 0.389 1.588 0.946
ECL (192) 0.158 0.246 0.158 0.241 0.159 0.255 0.163 0.260 0.247 0.341 0.308 0.375 1.298 0.939 0.163 0.263 0.318 0.396 1.595 0.950
ECL (336) 0.177 0.273 0.178 0.277 0.179 0.274 0.183 0.281 0.267 0.356 0.354 0.411 1.302 0.942 0.175 0.278 0.340 0.415 1.617 0.961
ECL (720) 0.221 0.315 0.224 0.312 0.233 0.323 0.233 0.323 0.318 0.394 0.426 0.466 1.259 0.919 0.219 0.311 0.635 0.613 1.647 0.975

ECL (Avg) 0.175 0.269 0.177 0.268 0.179 0.273 0.181 0.277 0.267 0.353 0.346 0.405 1.281 0.930 0.177 0.276 0.402 0.453 1.612 0.958

Traffic (96) 0.406 0.293 0.414 0.291 0.419 0.298 0.404 0.286 0.670 0.421 0.795 0.481 1.557 0.821 0.427 0.304 0.854 0.492 2.723 1.079
Traffic (192) 0.415 0.295 0.419 0.291 0.434 0.305 0.412 0.294 0.653 0.405 0.837 0.503 1.596 0.834 0.447 0.315 0.894 0.517 2.756 1.087
Traffic (336) 0.432 0.311 0.437 0.314 0.449 0.313 0.439 0.310 0.707 0.445 0.867 0.523 1.621 0.841 0.478 0.333 0.853 0.471 2.791 1.095
Traffic (720) - - - - - - - - - - - - - - - - - - - -

Traffic (Avg) 0.418 0.300 0.423 0.299 0.434 0.305 0.418 0.297 0.677 0.424 0.833 0.502 1.591 0.832 0.451 0.317 0.867 0.493 2.757 1.087
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Table 9: Zero-shot tranfer learning results between ETT datasets with forecasting horizons LP ∈
{96, 192, 336, 720}. The best and second best results are in bold and underlined, respectively.

Models ICTSP Time-LLM LLMTime GPT4TS PatchTST Autoformer TimesNet DLinear Repeat

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

h1→h2 (96) 0.272 0.335 0.279 0.337 0.510 0.576 0.335 0.374 0.304 0.350 0.469 0.486 0.358 0.387 0.347 0.400 0.432 0.422
h1→h2 (192) 0.330 0.373 0.351 0.374 0.523 0.586 0.412 0.417 0.386 0.400 0.634 0.567 0.427 0.429 0.447 0.460 0.534 0.473
h1→h2 (336) 0.359 0.402 0.388 0.415 0.640 0.637 0.441 0.444 0.414 0.428 0.655 0.588 0.449 0.451 0.515 0.505 0.591 0.508
h1→h2 (720) 0.387 0.431 0.391 0.420 2.296 1.034 0.438 0.452 0.419 0.443 0.570 0.549 0.448 0.458 0.665 0.589 0.588 0.517

h1→h2 (Avg) 0.337 0.385 0.352 0.387 0.992 0.708 0.407 0.422 0.381 0.405 0.582 0.548 0.421 0.431 0.494 0.489 0.536 0.480

h2→h1 (96) 0.411 0.426 0.450 0.452 1.130 0.777 0.732 0.577 0.485 0.465 0.693 0.569 0.848 0.601 0.689 0.555 1.295 0.713
h2→h1 (192) 0.435 0.447 0.465 0.461 1.242 0.820 0.758 0.559 0.565 0.509 0.760 0.601 0.860 0.610 0.707 0.568 1.325 0.733
h2→h1 (336) 0.448 0.461 0.501 0.482 1.328 0.864 0.759 0.578 0.581 0.515 0.781 0.619 0.867 0.626 0.710 0.577 1.323 0.744
h2→h1 (720) 0.469 0.481 0.501 0.502 4.145 1.461 0.781 0.597 0.628 0.561 0.796 0.644 0.887 0.648 0.704 0.596 1.339 0.756

h2→h1 (Avg) 0.441 0.454 0.479 0.474 1.961 0.981 0.758 0.578 0.565 0.513 0.758 0.608 0.866 0.621 0.703 0.574 1.321 0.737

m1→h2 (96) 0.299 0.359 0.321 0.369 0.510 0.576 0.353 0.392 0.354 0.385 0.435 0.470 0.377 0.407 0.365 0.415 0.432 0.422
m1→h2 (192) 0.361 0.394 0.389 0.410 0.523 0.586 0.443 0.437 0.447 0.434 0.495 0.489 0.471 0.453 0.454 0.462 0.534 0.473
m1→h2 (336) 0.376 0.412 0.408 0.433 0.640 0.637 0.469 0.461 0.481 0.463 0.470 0.472 0.472 0.484 0.496 0.494 0.591 0.508
m1→h2 (720) 0.388 0.431 0.406 0.436 2.296 1.034 0.466 0.468 0.474 0.471 0.480 0.485 0.495 0.482 0.541 0.529 0.588 0.517

m1→h2 (Avg) 0.356 0.399 0.381 0.412 0.992 0.708 0.433 0.440 0.439 0.438 0.470 0.479 0.454 0.457 0.464 0.475 0.536 0.480

m1→m2 (96) 0.168 0.255 0.169 0.257 0.646 0.563 0.217 0.294 0.195 0.271 0.385 0.457 0.222 0.295 0.221 0.314 0.266 0.328
m1→m2 (192) 0.223 0.293 0.227 0.318 0.934 0.654 0.277 0.327 0.258 0.311 0.433 0.469 0.288 0.337 0.286 0.359 0.340 0.371
m1→m2 (336) 0.273 0.329 0.290 0.338 1.157 0.728 0.331 0.360 0.317 0.348 0.476 0.477 0.341 0.367 0.357 0.406 0.412 0.410
m1→m2 (720) 0.355 0.384 0.375 0.367 4.730 1.531 0.429 0.413 0.416 0.404 0.582 0.535 0.436 0.418 0.476 0.476 0.521 0.465

m1→m2 (Avg) 0.255 0.315 0.265 0.320 1.867 0.869 0.314 0.349 0.297 0.334 0.469 0.485 0.322 0.354 0.335 0.389 0.385 0.394

m2→h2 (96) 0.288 0.351 0.298 0.356 0.510 0.576 0.360 0.401 0.327 0.367 0.353 0.393 0.360 0.401 0.333 0.391 0.432 0.422
m2→h2 (192) 0.352 0.395 0.359 0.397 0.523 0.586 0.434 0.437 0.411 0.418 0.432 0.437 0.434 0.437 0.441 0.456 0.534 0.473
m2→h2 (336) 0.371 0.415 0.367 0.412 0.640 0.637 0.460 0.459 0.439 0.447 0.452 0.459 0.460 0.459 0.505 0.503 0.591 0.508
m2→h2 (720) 0.398 0.445 0.393 0.434 2.296 1.034 0.485 0.477 0.459 0.470 0.453 0.467 0.485 0.477 0.543 0.534 0.588 0.517

m2→h2 (Avg) 0.352 0.402 0.354 0.400 0.992 0.708 0.435 0.444 0.409 0.426 0.423 0.439 0.435 0.444 0.456 0.471 0.536 0.480

m2→m1 (96) 0.371 0.395 0.359 0.397 1.179 0.781 0.747 0.558 0.491 0.437 0.735 0.576 0.747 0.558 0.570 0.490 1.214 0.665
m2→m1 (192) 0.387 0.411 0.390 0.420 1.327 0.846 0.781 0.560 0.530 0.470 0.753 0.586 0.781 0.560 0.590 0.506 1.261 0.690
m2→m1 (336) 0.416 0.427 0.421 0.445 1.478 0.902 0.778 0.578 0.565 0.497 0.750 0.593 0.778 0.578 0.706 0.567 1.283 0.707
m2→m1 (720) 0.456 0.444 0.487 0.488 3.749 1.408 0.769 0.573 0.686 0.565 0.782 0.609 0.769 0.573 0.731 0.584 1.319 0.729

m2→m1 (Avg) 0.408 0.419 0.414 0.438 1.933 0.984 0.769 0.567 0.568 0.492 0.755 0.591 0.769 0.567 0.649 0.537 1.269 0.698

A.3 IMPLEMENTATION DETAILS

A.3.1 MORE DETAILS OF MODEL IMPLEMENTATION

Token Construction Figure 6 provides another illustration of how to construct the input tokens in
ICTSP. In the implementation, we first concatenate the output embedding to the input series. Then
we cut the last Lb + LP part as the target tokens. We perform stepwise sampling from the end part to
the initial part of XI . If the remaining initial part of XI cannot constitute a token with the required
length of Lb + LP , we drop these initial steps in XI .

Context

Target

...

...

TargetContext

Input
Output

Embedding

...

Tim
estep

Timestep

Figure 6: Another illustration of the process of sampling the context examples from the input time
series in ICTSP.

Trainable Embeddings As illustrated in Equation 5, we use two types of trainable positional
embeddings in the token construction. One embedding represents the series source of a token, and
the other represents the position of the token within the entire input. All the positional embeddings
have the same d dimension and are added to the latent tokens.

Randomized Training During training, we can introduce some random shifting r ∈ {0, · · · ,m− 1}
to the sampling start point to expose the model to varied context examples. To prevent the positional
embedding from learning information with specific time series channel, we randomly shuffle the
order of series in the input to make the series show up in different position each training step. This
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can slightly enhance the performance in the few-shot and zero-shot tasks and for small datasets. Since
ICTSP does not restrict the number of series in each input, we can randomly pick subsets of input
series to build the tokens during training. This random selection slightly improves performance in
few-shot learning with small datasets that have weak dependencies, while not significantly affecting
performance on larger datasets with stable dependencies.

Token Retrieval We can reduce the computational costs of ICTSP by sampling one context token
every m steps from the total N tokens for each series. For very large token amounts, to avoid losing
information with large sampling steps, we use token retrieval (TR) to further reduce token size. Below,
we provide a detailed description of the TR process.

Let zi be the i-th token in the context. Each token zi is reduced to a δ-dimensional latent vector z̃i
via a linear layer:

z̃i = Wzi + b (6)
where W ∈ Rδ×d and b ∈ Rδ are the weights and biases of the linear layer. We calculate the cosine
similarity between the z̃i of each context token and each target token z̃c:

cosine_similarity(z̃i, z̃c) =
z̃i · z̃c

∥z̃i∥∥z̃c∥
(7)

Next, we average the cosine similarity results for each context token:

average_similarity(zi) =
1

C

C∑
c=1

cosine_similarity(z̃i, z̃c) (8)

where C is the number of target tokens. We then rank the context tokens by their average similarity
and select the top q% as context examples.

The remaining tokens are merged into r tokens by grouped weighted averaging. Let k = ⌊qN⌋ be
the number of selected tokens, and let p = N − k be the number of remaining tokens. The r merged
tokens are obtained as follows:

zmerged
i =

∑
j∈Gi

αjzj (9)

where Gi is the set of tokens in group i, determined by the ranked order, and αj are the weights
obtained from a softmax over the cosine similarities:

αj =
ecosine_similarity(z̃j ,z̃j′ )∑

k∈Gi
ecosine_similarity(z̃k,z̃j′ )

(10)

The final set of context tokens includes the selected k tokens and the r merged tokens:

Zfinal = {z1, . . . , zk, zmerged
1 , . . . , zmerged

r } (11)
This results in ⌊q(LI − Lb − LP )/m⌋C + r context tokens.

Token Rationalization and Linear Layer Warm-up ICTSP excels at handling datasets with varied
characteristics and performing transfer learning across different datasets. The robustness of ICTSP,
when facing small and noisy datasets, is further enhanced with following training strategies. For
each context or target token zi, we can subtract the last value in its lookback from all values to align
forecasting tasks across all tokens. This reduces the impact of mean shifting within or across series,
serving as a naive repeat method baseline. Additionally, as mentioned earlier, the direct shortcut in
Equation 1 helps ICTSP achieve a simple linear baseline in weak dependency scenarios. To prevent
the attention and FFN terms from learning noise patterns too fast, we can initially train only the
shortcut: for the first W steps, remove the transformer layers and train only the input and output
projections on the target tokens. After this warm-up, reintroduce the transformer blocks with context
examples, gradually increasing the model’s complexity to adapt to small and noisy data. Figure
7 shows three cases: i) not using linear layer warm-up (W = 0), ii) using linear layer warm-up
(W = 5000), and iii) only using the linear layer (W = ∞). We trained the ICTSP with these settings
on ECL (LP = 192) with reduced input (LI = 512, Lb = 256). The model with initialized weights
for the input and output projection shortcut outperforms the models without warm-up and with only
the linear layer as a baseline comparison. The linear layer warm-up stage structures the embedding
space into a forecasting task, guiding the model to build tokens that focus on temporal forecasting
power. The effectiveness of this warm-up stage is due to the token design and the shortcuts in the
model structure.
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Figure 7: The effects of using linear layer warm-up to initialize the embedding space as forecasting
tasks with the input and output projection shortcut. Using a warm-up step W = 5000 helps the model
structure the embedding space as forecasting tasks before fitting the entire transformer structure,
gaining performance margin and preventing overfitting. These three model are trained on ECL
(LP = 192) with reduced ICTSP settings (LI = 512, Lb = 256).

A.3.2 HYPERPARAMETER SETTINGS AND TRAINING DETAILS

Model Training Setup The ICTSP model is trained using the Adam optimizer and MSE loss in
Pytorch, with a learning rate of 0.0005 each dataset. We test the model every 200 training steps with
a early-stopping patience being 30× 200 steps. The first 1000 steps are for learning rate warm-up,
followed by a linear decay of learning rate. We set the random seed as 2024. Our models are
trained on single Nvidia RTX 4090 GPU with a batch size equals to 32 for most of the datasets. We
decrease the batch size to 16 and 8 for the larger dataset ECL and Traffic, respectively. In the full-data
experiment setting, we split each dataset with 70% training set, 10% validation, set and 20% test set.
We fit a standardization scaler on the training set and apply it to the whole dataset. This setting is
applied in consistent with previous studies like (Wu et al., 2021; 2022; Nie et al., 2022; Jin et al.,
2024).

Hyper-parameters of ICTSP For the hyper-parameters of ICTSP, we use LI = 1440 and Lb = 512
for all the experiments. We use the pre-normalization Transformer with K = 3 layers, d = 128
latent dimension, and 8 heads. The hidden dimension of FFN is set to 4 times of latent dimension
d and the dropout rate of Transformer layers is set to 0.5. We use m = 8 as the sampling step and
q = 10%, r = 30 for the token retrieval module.

Randomness of Training We test the randomness of training the ICTSP by alternating the random
seed among {2022, 2023, 2024, 2025, 2026} and conducting multiple training runs on the same
dataset settings. The error bars of the results with the five random seeds on the Weather and ECL
datasets are shown in Figure 8, alongside the results of the two best previous baselines, Time-LLM
(Jin et al., 2024) and PatchTST (Nie et al., 2022). The results show that ICTSP can stably surpass
previous methods, even with the worst results among the five random seeds, indicating the robustness
of ICTSP in performance improvement.

A.3.3 DISCUSSION OF FAIR COMPARISON

Our experimental environment aligns with the codes used by previous studies, including (Wu et al.,
2021; Zeng et al., 2023; Wu et al., 2022; Nie et al., 2022; Zhou et al., 2023; Jin et al., 2024). Our
few-shot and zero-shot learning setups follow (Zhou et al., 2023; Jin et al., 2024).

In the full-data experiment, for the input length LI setting, previous studies like (Nie et al., 2022;
Zhou et al., 2023) suggest that LI should be considered a hyper-parameter that needs tuning for each
dataset. Therefore, we chose to directly source their results where applicable, to avoid underestimating
their performance when rerunning with a fixed LI .
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Figure 8: Randomness in Training ICTSP. The error bars for training ICTSP on the Weather and
ECL datasets with random seeds {2022, 2023, 2024, 2025, 2026} are illustrated, compared with
the previous best two baselines, Time-LLM and PatchTST. The results show that ICTSP can stably
surpass previous baselines even in the worst training cases, demonstrating the robustness of the
ICTSP structure.

In the few-shot experiment, careful consideration of LI is very crucial. Since (Zhou et al., 2023; Jin
et al., 2024) use the first 10% or 5% of the training set for few-shot training data, this represents a
scenario where the model’s forecasting time is far from the training data collection. Thus, we should
avoid leaking too much recent data to the model, especially for ICTSP. Because ICTSP can use
historical input as in-context training samples, increasing LI too much might leak data that should be
invisible to the model, defeating the purpose of the few-shot experiment.

Given the difference between LI = 512 used by (Zhou et al., 2023; Jin et al., 2024) and LI =
1440, Lb = 512 for ICTSP, we chose to mask the part of the test set input data not visible to the
LI = 512 setting in (Zhou et al., 2023; Jin et al., 2024) with zero-filling for ICTSP. This ensures that
no unseen data for (Zhou et al., 2023; Jin et al., 2024) is used by ICTSP. As a result, there are no
context examples for ICTSP (which reduces it to a Series-wise Transformer) at the very beginning
of the test set input data, and the number of context examples gradually increases in the subsequent
test set input data points. Thus, the few-shot learning results in Tables 2, 7, and 8 can be regarded as
results from a weakened version of ICTSP, yet still achieving SOTA performance.

A.4 ADDITIONAL ANALYSIS OF TSF TRANSFORMERS

A.4.1 DIRECT SHORTCUT IN TEMPORAL-WISE TRANSFORMERS

Revisiting the expression of Temporal-wise Transformer in Equation 3, it is clear that if context
tokens become ineffective, the remaining MLPs or linear predictors are essentially guessing channel
values and structures based solely on target positional embeddings. Past studies often found such
Transformers to produce output resembling a flat line of input means rather than learning dynamic
patterns, which could be explained by a failure of context and ineffective learning from positional
embeddings.

A.4.2 MORE DISCUSSION OF INTER-SERIES MODELING ABILITY

From the ICL perspective, the Series-wise Transformer primarily learns temporal dependencies rather
than inter-series dependencies. This is evident in the "Multi" dataset with simple shifting inter-series
dependencies, as shown in Figure 4 (b). This may indicate a lack of representation ability in the
series token construction. Transformers can easily transfer information within the same token vector
channel between different tokens via multi-head attention. When building the token example pool for
ICTSP, a shifting process inherently exposes inter-series time-interleaved dependencies directly in
the token representations, making it easy to capture these dependencies.
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However, if these dependencies can be directly modeled into a single token dimension rather than
between tokens, the Series-wise Transformer with enlarged tokens may still acquire inter-series
learning ability alongside its inherent temporal learning ability. In a scenario with a very large latent
dimension for the input token, where the token vector encompasses every shifting possibility of the
input series, multi-head attention can find the alignment of possible inter-series time-interleaved
dependencies between tokens by exploring this high dimension and fixing these alignments into the
learned token embedding. This analysis suggests that increasing the token dimension of the Series-
wise Transformer may enhance its inter-series modeling capability on specific datasets. Nonetheless,
since these inter-series dependencies are learned and fixed in the token representation space, this
capability cannot be transferred to other datasets in few-shot or zero-shot scenarios, unlike ICTSP.

A.5 COMPARISON SUMMARY OF DIFFERENT TRANSFORMER-BASED TSF STRUCTURES

Table 10: Summary of the characteristics of Transformer-based TSF structures
Methods Temporal-wise

Transformer
Temporal-wise
Transformer
(with Channel
Independence)

Temporal-wise
Transformer
(with Patching)

Series-wise Trans-
former

ICTSP

Tokenization Timestep embed-
ding

Scalar embedding Patch embedding Series embedding Embedding of forecast-
ing tasks

ICL (x, y)
Pair

(Timestep index,
Multi-channel val-
ues)

(Timestep index,
Single-channel
value)

(Timestep index,
Multi-channel val-
ues in a temporal
interval)

(Input series, Output
series)

(Input series, Output se-
ries)

Token Repre-
sentation for

Single-step inter-
series dependen-
cies

Scalar value at a
single timestep

Temporal-wise
and series-wise
relationships in a
local interval

Temporal-wise rela-
tionships within a sin-
gle series input

Temporal-wise relation-
ships in a forecasting task

Attention to
Learn

Temporal-wise
dynamics of se-
ries dependencies

Temporal-wise de-
pendencies

Temporal-wise
relationships
between local
intervals

Aligned inter-series
relationships

Forecasting task predic-
tors, considering both
aligned and unaligned
inter-series relationships
in shifted context exam-
ples

Suited For Strong and con-
sistent inter-series
dependencies

Strong and fast-
changing tempo-
ral dependencies

Temporal and se-
ries relationships
can be automati-
cally balanced by
this structure

Real-world datasets
with strong temporal-
wise and aligned
series-wise relation-
ships (e.g., traffic)

Datasets with fast-
changing temporal
relationships, aligned or
unaligned series relation-
ships; transfering to new
datasets with different
channel structures

Not Suited
For

Weak inter-series
dependencies
in real-world
datasets

Strong inter-
series dependen-
cies

Few-shot/zero-
shot cases with
different series
relationship char-
acteristics

Unaligned series-
wise relationships,
such as shifting
effects between series

/

ICL Context
Examples De-
scribing

Underlying inter-
series effects vary
with the time
indices in the
context lookback
(likely nonexis-
tent or weak)

Temporal relation-
ships within the
context for one se-
ries

Temporal-wise
relationships
between local
intervals

No context examples Historical ground truth
forecasting tasks as refer-
ences

Channel
Structure

Fixed Fixed Fixed Flexible but requires
additional training to
adapt to datasets with
new channel structure

Flexible; additional train-
ing is not necessary since
context examples exist

Problem Only series re-
lationships in
tokenization;
risks overfitting
to series-wise
effects from the
input context

Unable to model
series-wise rela-
tionships

Fixed channel
structure in tok-
enization prevents
generalization to
datasets with dif-
ferent structures

Restricted to specific
dataset channel struc-
tures; unable to learn
unaligned series-wise
effects

/
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A.6 ADDITIONAL ABLATION STUDY: ICTSP WITH LIMITED (MASKED) LOOKBACK
INFORMATION

To fully align with the LI = 512 used in the baseline models, we relax the design of ICTSP, which
originally required all context tokens to be ground truth for forecasting tasks. We allow some
forecasting tasks to contain incomplete information. In this case, we still use LI = 1440, but mask
all information from the first 1440− 512 = 928 timesteps in the input, ensuring that only the last
512-step true information remains in the input. For the masked portion of the first 928 steps, we fill it
with the mean value of each series token from the last 512 steps.

To maintain the presence of some true forecasting task tokens for shorter LP , we shorten Lb to 336.
All other hyperparameter settings remain unchanged. We denote this structure as ICTSP (Limited).
We repeated the experiments on the ETTm2 and Weather datasets, including full data, few-shot 10%
(FS10%), few-shot 5% (FS05%), and zero-shot (ZS) experiments on the ETT datasets. The results
are shown in the Table A.6.

Table 11: Performance comparison of ICTSP (Limited) with six baselines on ETTm2 and Weather
datasets across full data, few-shot (FS10% and FS5%), and zero-shot (ZS) settings.

Methods ICTSP ICTSP (Limited) Time-LLM GPT4TS PatchTST TimesNet DLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Full ETTm2 (96) 0.159 0.248 0.160 0.241 0.161 0.253 0.173 0.262 0.165 0.255 0.187 0.267 0.167 0.269
Full ETTm2 (192) 0.212 0.289 0.216 0.290 0.219 0.293 0.229 0.301 0.220 0.292 0.249 0.309 0.224 0.303
Full ETTm2 (336) 0.268 0.326 0.268 0.326 0.271 0.329 0.286 0.341 0.274 0.329 0.321 0.351 0.281 0.342
Full ETTm2 (720) 0.347 0.382 0.354 0.383 0.352 0.379 0.378 0.401 0.362 0.385 0.408 0.403 0.397 0.421
Full ETTm2 (Avg) 0.247 0.311 0.250 0.310 0.251 0.314 0.267 0.326 0.255 0.315 0.291 0.333 0.267 0.334

Full Weather (96) 0.139 0.194 0.142 0.198 0.147 0.201 0.162 0.212 0.149 0.198 0.172 0.220 0.176 0.237
Full Weather (192) 0.186 0.236 0.187 0.237 0.189 0.234 0.204 0.248 0.194 0.241 0.219 0.261 0.220 0.282
Full Weather (336) 0.239 0.279 0.242 0.281 0.262 0.279 0.254 0.286 0.245 0.282 0.280 0.306 0.265 0.319
Full Weather (720) 0.306 0.320 0.308 0.322 0.304 0.316 0.326 0.337 0.314 0.334 0.365 0.359 0.333 0.362
Full Weather (Avg) 0.218 0.257 0.220 0.260 0.226 0.258 0.237 0.271 0.226 0.264 0.259 0.287 0.249 0.300

FS10% ETTm2 (96) 0.176 0.258 0.176 0.263 0.177 0.261 0.188 0.269 0.191 0.274 0.212 0.285 0.213 0.303
FS10% ETTm2 (192) 0.239 0.307 0.238 0.308 0.241 0.314 0.251 0.309 0.252 0.317 0.270 0.323 0.278 0.345
FS10% ETTm2 (336) 0.288 0.336 0.286 0.334 0.274 0.327 0.307 0.346 0.306 0.353 0.323 0.353 0.338 0.385
FS10% ETTm2 (720) 0.395 0.391 0.394 0.403 0.417 0.390 0.426 0.417 0.433 0.427 0.474 0.449 0.436 0.440
FS10% ETTm2 (Avg) 0.275 0.323 0.274 0.327 0.277 0.323 0.293 0.335 0.296 0.343 0.320 0.353 0.316 0.368

FS10% Weather (96) 0.164 0.214 0.165 0.212 0.161 0.210 0.163 0.215 0.165 0.215 0.184 0.230 0.171 0.224
FS10% Weather (192) 0.209 0.252 0.208 0.253 0.204 0.248 0.210 0.254 0.210 0.257 0.245 0.283 0.215 0.263
FS10% Weather (336) 0.259 0.294 0.261 0.295 0.261 0.302 0.256 0.292 0.259 0.297 0.305 0.321 0.258 0.299
FS10% Weather (720) 0.315 0.333 0.319 0.336 0.309 0.332 0.321 0.339 0.332 0.346 0.381 0.371 0.320 0.346
FS10% Weather (Avg) 0.237 0.273 0.238 0.274 0.234 0.273 0.238 0.275 0.242 0.279 0.279 0.301 0.241 0.283

FS05% ETTm2 (96) 0.181 0.265 0.179 0.264 0.174 0.261 0.199 0.280 0.206 0.288 0.236 0.326 0.220 0.299
FS05% ETTm2 (192) 0.244 0.310 0.241 0.312 0.215 0.287 0.256 0.316 0.264 0.324 0.306 0.373 0.311 0.361
FS05% ETTm2 (336) 0.301 0.378 0.299 0.341 0.273 0.330 0.318 0.353 0.334 0.367 0.380 0.423 0.338 0.366
FS05% ETTm2 (720) 0.412 0.410 0.405 0.408 0.433 0.412 0.460 0.436 0.454 0.432 0.674 0.583 0.509 0.465
FS05% ETTm2 (Avg) 0.285 0.341 0.281 0.331 0.274 0.323 0.308 0.346 0.315 0.353 0.399 0.426 0.345 0.373

FS05% Weather (96) 0.170 0.225 0.170 0.223 0.172 0.263 0.175 0.230 0.171 0.224 0.184 0.242 0.207 0.253
FS05% Weather (192) 0.219 0.267 0.223 0.269 0.224 0.271 0.227 0.276 0.230 0.277 0.228 0.283 0.272 0.307
FS05% Weather (336) 0.278 0.313 0.277 0.310 0.282 0.321 0.286 0.322 0.294 0.326 0.279 0.322 0.313 0.328
FS05% Weather (720) 0.358 0.371 0.355 0.368 0.366 0.381 0.366 0.379 0.384 0.387 0.364 0.388 0.400 0.385
FS05% Weather (Avg) 0.256 0.294 0.256 0.293 0.261 0.309 0.264 0.302 0.270 0.304 0.264 0.309 0.298 0.318

m1→m2 (96) 0.168 0.255 0.169 0.261 0.169 0.257 0.217 0.294 0.195 0.271 0.222 0.295 0.221 0.314
m1→m2 (192) 0.223 0.293 0.223 0.295 0.227 0.318 0.277 0.327 0.258 0.311 0.288 0.337 0.286 0.359
m1→m2 (336) 0.273 0.329 0.276 0.335 0.290 0.338 0.331 0.360 0.317 0.348 0.341 0.367 0.357 0.406
m1→m2 (720) 0.355 0.384 0.362 0.381 0.375 0.367 0.429 0.413 0.416 0.404 0.436 0.418 0.476 0.476
m1→m2 (Avg) 0.255 0.315 0.258 0.318 0.265 0.320 0.314 0.349 0.297 0.334 0.322 0.354 0.335 0.389

h1→h2 (96) 0.272 0.335 0.274 0.336 0.279 0.337 0.335 0.374 0.304 0.350 0.358 0.387 0.347 0.400
h1→h2 (192) 0.330 0.373 0.332 0.375 0.351 0.374 0.412 0.417 0.386 0.400 0.427 0.429 0.447 0.460
h1→h2 (336) 0.359 0.402 0.361 0.406 0.388 0.415 0.441 0.444 0.414 0.428 0.449 0.451 0.515 0.505
h1→h2 (720) 0.387 0.431 0.388 0.437 0.391 0.420 0.438 0.452 0.419 0.443 0.448 0.458 0.665 0.589
h1→h2 (Avg) 0.337 0.385 0.339 0.389 0.352 0.387 0.407 0.422 0.381 0.405 0.421 0.431 0.494 0.489

From the average ranking, it can be observed that even with masking applied to information prior
to the 512-step window, the limited ICTSP still significantly outperforms all baselines. In the full
data and zero-shot experiments, limited ICTSP performs slightly weaker than the original ICTSP but
remains superior to all previous baselines. However, in the few-shot training experiments, limited
ICTSP surpasses the original ICTSP to some extent. It is important to note that this improvement
is due to an additional constraint in the original ICTSP, which, despite using LI = 1440, imposes
zero-filling restrictions outside of Lb = 512 to ensure fair comparison with baselines using LI = 512
(see Section A.3.3 Discussion of fair comparison for details on few-shot experiments).
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In the full data and zero-shot experiments, all data can be used with any LI without causing data
leakage. However, in the few-shot scenario, due to the skipping nature of data sampling, a longer LI

accesses more lookback data (in val/test set), creating an unfair advantage over models with shorter
LI . To eliminate this effect, in the original method, the input to the original ICTSP for few-shot
experiments was subjected to zero-masking, ensuring that it could access at most 512 timesteps of
data before the start of the validation and test sets, avoiding any unfair data usage. This means that
in the first few datapoints, the original ICTSP could only see 512 timesteps of valid data, gradually
expanding to LI = 1440 as valid data became available.

However, since the model applies a last-value demeaning operation to the forecasting task tokens,
the initial zero-filling leads to meaningless negative last values being filled in those positions. This
effectively suppresses the model’s performance. In ICTSP (Limited), we address this issue by using
mean-value filling, ensuring that the filled values in the forecasting task tokens are more reasonable.
This adjustment allows ICTSP (Limited) to outperform the original ICTSP in few-shot experiments.

To clarify this, we replaced the zero-filling used for fair comparison in original ICTSP with mean-
filling and present the results below. The results show that ICTSP with mean-filling for fair comparison
significantly outperforms all models, including Time-LLM, in all experiments. This demonstrates
that ICTSP’s few-shot capability is inherently stronger than the zero-filling results presented in the
original paper when proper mean-filling strategies are used to handle unknown values in forecasting
tasks. This result further enhances the significance of ICTSP. The results can be found in Table A.6.

Table 12: Results of using mean-filling strategy for the 512-step data retaining of fair comparison in
the few-shot experiments.

Methods ICTSP (Zero-filling) ICTSP (Mean-filling) ICTSP (Limited) Time-LLM GPT4TS PatchTST TimesNet DLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
FS10% ETTm2 (96) 0.176 0.258 0.173 0.259 0.176 0.263 0.177 0.261 0.188 0.269 0.191 0.274 0.212 0.285 0.213 0.303
FS10% ETTm2 (192) 0.239 0.307 0.226 0.298 0.238 0.308 0.241 0.314 0.251 0.309 0.252 0.317 0.270 0.323 0.278 0.345
FS10% ETTm2 (336) 0.288 0.336 0.276 0.329 0.286 0.334 0.274 0.327 0.307 0.346 0.306 0.353 0.323 0.353 0.338 0.385
FS10% ETTm2 (720) 0.395 0.391 0.381 0.388 0.394 0.403 0.417 0.390 0.426 0.417 0.433 0.427 0.474 0.449 0.436 0.440
FS10% ETTm2 (Avg) 0.275 0.323 0.264 0.319 0.274 0.327 0.277 0.323 0.293 0.335 0.296 0.343 0.320 0.353 0.316 0.368

FS10% Weather (96) 0.164 0.214 0.164 0.214 0.165 0.212 0.161 0.210 0.163 0.215 0.165 0.215 0.184 0.230 0.171 0.224
FS10% Weather (192) 0.209 0.252 0.204 0.250 0.208 0.253 0.204 0.248 0.210 0.254 0.210 0.257 0.245 0.283 0.215 0.263
FS10% Weather (336) 0.259 0.294 0.259 0.293 0.261 0.295 0.261 0.302 0.256 0.292 0.259 0.297 0.305 0.321 0.258 0.299
FS10% Weather (720) 0.315 0.333 0.310 0.332 0.319 0.336 0.309 0.332 0.321 0.339 0.332 0.346 0.381 0.371 0.320 0.346
FS10% Weather (Avg) 0.237 0.273 0.234 0.272 0.238 0.274 0.234 0.273 0.238 0.275 0.242 0.279 0.279 0.301 0.241 0.283

FS05% ETTm2 (96) 0.181 0.265 0.177 0.263 0.179 0.264 0.174 0.261 0.199 0.280 0.206 0.288 0.236 0.326 0.220 0.299
FS05% ETTm2 (192) 0.244 0.310 0.234 0.306 0.241 0.312 0.215 0.287 0.256 0.316 0.264 0.324 0.306 0.373 0.311 0.361
FS05% ETTm2 (336) 0.301 0.378 0.287 0.341 0.299 0.341 0.273 0.330 0.318 0.353 0.334 0.367 0.380 0.423 0.338 0.366
FS05% ETTm2 (720) 0.412 0.410 0.391 0.406 0.405 0.408 0.433 0.412 0.460 0.436 0.454 0.432 0.674 0.583 0.509 0.465
FS05% ETTm2 (Avg) 0.285 0.341 0.272 0.329 0.281 0.331 0.274 0.323 0.308 0.346 0.315 0.353 0.399 0.426 0.345 0.373

FS05% Weather (96) 0.170 0.225 0.167 0.215 0.170 0.223 0.172 0.263 0.175 0.230 0.171 0.224 0.184 0.242 0.207 0.253
FS05% Weather (192) 0.219 0.267 0.217 0.265 0.223 0.269 0.224 0.271 0.227 0.276 0.230 0.277 0.228 0.283 0.272 0.307
FS05% Weather (336) 0.278 0.313 0.268 0.299 0.277 0.310 0.282 0.321 0.286 0.322 0.294 0.326 0.279 0.322 0.313 0.328
FS05% Weather (720) 0.358 0.371 0.341 0.348 0.355 0.368 0.366 0.381 0.366 0.379 0.384 0.387 0.364 0.388 0.400 0.385
FS05% Weather (Avg) 0.256 0.294 0.248 0.282 0.256 0.293 0.261 0.309 0.264 0.302 0.270 0.304 0.264 0.309 0.298 0.318

A.7 ADDITIONAL ABLATION STUDY: ADAPTIVE MODEL REDUCTION AND RANDOM
SELECTION OF CONTEXT EXAMPLES

Regarding the Adaptive Model Reduction of ICTSP, because we use a pre-LayerNorm Transformer
as described in Eq. 1, it inherently maintains a direct residual shortcut from the input token to the
output token.

a) With small-scale initialization, if the Transformer layer does not introduce any residual effects, the
model can be approximated as having only a linear projection from input to output. This is similar to
a single linear layer NLinear model (as we apply last-value demeaning for tokens). b) If all attention
layers in ICTSP are bypassed during training, the model can be viewed as a pure univariate MLP
predictor, which many recent TSF structures consider the core temporal predictor [5-7]. Note that
neither of above scenarios utilizes context tokens. c) If the information in context examples provides
no benefit for predicting the target token, the context information is entirely bypassed, reducing
the model to a Series-wise Transformer (like iTransformer). In these cases, the target token can
be directly interpreted as the series embedding since the future portion of the target token is not
trained in-context. d) When context forecasting task tokens are helpful in determining the in-context
predictor for target tokens, ICTSP adjusts its prediction for the target token based on the context
forecasting tasks. Here, context examples can be viewed as training samples in a supervised learning
setup. Even when only a subset of context examples is used, ICTSP can still perform in-context
predictor updates based on the provided few samples, achieving better performance than models that
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completely disregard context examples. However, its performance will not match that of the full
ICTSP, which uses more in-context training samples.

Based on the above discussion, we designed the following progressive experiments to compare the
performance differences resulting from using only a subset of the model structure. The experiments
were conducted on the Weather and ETTm2 datasets, as shown in Table A.7.

A. We remove all Transformer blocks from ICTSP. In this case, the model only includes the input and
output linear layers for the target token, effectively reducing it to an NLinear model.

B. We retain only the MLP feedforward layers within the Transformer blocks of ICTSP. The model
can then be considered a univariate MLP predictor.

C. We retain the Transformer blocks in ICTSP but drop all context tokens. The model then reduces to
a Series-wise Transformer (iTransformer).

D. We retain the full ICTSP structure but randomly keep only 25% of the context tokens in the context
examples. The model sees randomly incomplete in-context forecasting task samples.

E. We increase the random retention rate of context tokens to 50%.

F. We further increase the random retention rate of context tokens to 75%.

G. We use all context tokens, representing the full ICTSP model.

Table 13: Ablation study results of the adaptive model reduction and random selection of context
examples

Methods A. B. C. D. E. F. G.
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Weather (96) 0.168 0.216 0.148 0.200 0.145 0.205 0.146 0.203 0.140 0.199 0.140 0.198 0.139 0.194
Weather (192) 0.213 0.259 0.191 0.247 0.193 0.253 0.190 0.248 0.188 0.245 0.185 0.238 0.186 0.236
Weather (336) 0.259 0.294 0.245 0.295 0.249 0.302 0.244 0.295 0.241 0.286 0.240 0.283 0.239 0.279
Weather (720) 0.325 0.344 0.319 0.349 0.314 0.343 0.311 0.341 0.312 0.339 0.309 0.335 0.306 0.320
Weather (Avg) 0.241 0.278 0.226 0.273 0.225 0.276 0.223 0.272 0.220 0.267 0.219 0.264 0.218 0.257

ETTm2 (96) 0.163 0.253 0.163 0.255 0.165 0.258 0.162 0.255 0.161 0.253 0.161 0.251 0.159 0.248
ETTm2 (192) 0.219 0.290 0.219 0.298 0.220 0.301 0.216 0.297 0.214 0.295 0.215 0.294 0.212 0.289
ETTm2 (336) 0.274 0.328 0.272 0.331 0.271 0.331 0.267 0.329 0.268 0.330 0.268 0.328 0.268 0.326
ETTm2 (720) 0.361 0.385 0.354 0.387 0.361 0.386 0.358 0.386 0.355 0.388 0.349 0.385 0.347 0.382
ETTm2 (Avg) 0.254 0.314 0.252 0.318 0.254 0.319 0.251 0.317 0.250 0.317 0.248 0.315 0.247 0.311

It can be observed that when the model transitions from A. NLinear to B. Univariate MLP, there is a
significant performance improvement. This is because the MLP introduces more weights, enabling it
to more effectively handle the temporal relationships within tokenization.

When the model transitions from B. Univariate MLP to C. Series-wise Transformer, the performance
improvement is less significant. This indicates that on weakly correlated real-world datasets, the
primary improvement of the Series-wise Transformer compared to a Temporal-wise Transformer
comes from the use of series tokenization for better handling of temporal relationship, rather than
using the attention layers to capture aligned series-wise relationships. The MLP structure in B. alone
is sufficient for this architecture to achieve performance comparable to the Series-wise Transformer.

As the model expands from C. to D., E., F., and G., the number of visible context examples gradually
increases. It can be seen that using only 25%-50% of randomly selected context tokens is sufficient
for ICTSP to significantly outperform the Series-wise Transformer without any context examples.
This demonstrates that the attention layers in the model effectively perform the task of in-context
predictor determination. Moreover, increasing the proportion of context tokens to 75% yields further
performance improvements, with the model’s performance closely approaching that of the full ICTSP
utilizing all context tokens.

A.8 EXPLAINING THE EFFECTIVE CAPTURING OF SERIES-WISE RELATIONSHIP OF ICTSP
THROUGH A FEATURE SPACE PERSPECTIVE

We propose a feature space perspective to explain why ICTSP effectively models both temporal-wise
and series-wise relationships.
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• From the ICL perspective, the attention layers in Transformers construct algorithms (e.g.,
linear regression, shallow MLPs) between the input (x, y) pairs. These layers can be seen as
dynamically solving a supervised learning problem based on the input datapoint tokens.

• Temporal-wise Transformers can be viewed as solving a regression problem where the input
is temporal indices (x), and the output is multi-channel values (y).

• Series-wise Transformers and ICTSP, on the other hand, can be seen as solving a regression
problem where the input is a time series segment (x), and the output is another time series
segment (y).

• In the default assumptions of regression problems, it is relatively straightforward to model
relationships between input features within the same datapoint and relationships between the
same input features across different datapoints (e.g., through linear combinations). However,
it is much harder to model relationships between different input features across different
datapoints.

• For Series-wise Transformers and ICTSP, we want the input time series segment (x) to
have shifting lag effects between its features (similar to the classic Box–Jenkins method).
However, without explicitly indicating this, the default assumptions of regression problems
make it easier for ICL to model:

– Relationships between features within the same datapoint (temporal dependencies).
– Relationships between the same features across different datapoints (temporal-aligned

inter-series dependencies).
However, it is much harder for ICL to recognize that relationships may exist between
different features across different datapoints (unaligned inter-series dependencies). This is a
key limitation of Series-wise Transformers when modeling cross-channel dependencies.

• ICTSP addresses this limitation by explicitly providing historical forecasting tasks as context
example tokens. These historical forecasting tasks inherently have a shifted structure, which
directly prompts the model to consider the necessity of unaligned inter-series relationships.

• As a result, ICTSP achieves:
– The ability to model temporal relationships through its tokenization approach.
– The ability to model aligned inter-series dependencies through its output token formu-

lation.
– The ability to model unaligned inter-series dependencies through the provision of

shifted context forecasting examples.

The underlying cause of these challenges lies in the shifting time-dependent structure unique to time
series data. In other supervised learning problems, we typically do not consider shifting certain
features to analyze their relationships with others. Therefore, in ICL problems where each datapoint
is treated as a token, ICTSP outperforms Series-wise Transformers by effectively teaching the model
to learn these shifting dependencies.
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