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Abstract

Enhancing the generalisation abilities of neural networks (NNs) through integrating noise
such as MixUp or Dropout during training has emerged as a powerful and adaptable tech-
nique. Despite the proven efficacy of noise in NN training, there is no consensus regarding
which noise sources, types and placements yield maximal benefits in generalisation and con-
fidence calibration. This study thoroughly explores diverse noise modalities to evaluate their
impacts on NN’s generalisation and calibration under in-distribution or out-of-distribution
settings, paired with experiments investigating the metric landscapes of the learnt repre-
sentations across a spectrum of NN architectures, tasks, and datasets. Our study shows
that AugMix and weak augmentation exhibit cross-task effectiveness in computer vision,
emphasising the need to tailor noise to specific domains. Our findings emphasise the ef-
ficacy of combining noises and successful hyperparameter transfer within a single domain
but the difficulties in transferring the benefits to other domains. Furthermore, the study
underscores the complexity of simultaneously optimising for both generalisation and cali-
bration, emphasising the need for practitioners to carefully consider noise combinations and
hyperparameter tuning for optimal performance in specific tasks and datasets.

1 Introduction

Neural networks (NNs) have demonstrated remarkable capabilities across various tasks, yet they often grapple
with overfitting to training data, resulting in suboptimal generalisation performance on unseen samples (Sri-
vastava et all 2014; [Bishop, (1995} |Sietsma & Dowl, [1991). Addressing this issue, conventional techniques
such as weight decay (Krogh & Hertz, [1991) and early stopping (Prechelt, |2002) have been employed to
regularise NN training. Alongside these methods, the introduction of noise during the NN’s training has
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emerged as a potent strategy to enhance generalisation (Sietsma & Dowl, [1991; [Neelakantan et al., [2017}
Camuto, 2021; [Kukacka et al.l [2017). The concept of noise injections refers to the deliberate introduction of
artificial perturbations into different aspects of NN training. Note that this is distinct from the concept of
noise in the data itself which originates from the data collection process (Song et al., [2022). Diverging from
weight decay and early stopping that modulate the model’s search within the hypothesis space, noise injec-
tions embrace randomness during training, fostering exploration of a broader array of representations (He
et al.||2019). The appeal of noise injections extends further due to their versatile applicability across diverse
tasks, datasets, and NN architectures. These attributes establish noise injections as a convenient approach
for enhancing NN’s generalisation.

In addition to generalisation, confidence calibration is a desirable model property, especially in safety-critical
applications where confidence scores must be aligned with the model’s accuracy to make informed deci-
sions (Guo et all 2017)). Empirically, noise injections have been shown to improve confidence calibration
by improving the generalisation of the NNs in previously unseen circumstances and inherently reducing
overconfidence in predictions (Guo et al. |2017; Miiller et al.| [2019; Hendrycks et al. 2020; [Zhang et al.|
2018; |Gal & Ghahramani), 2016). However, the relationship between generalisation and calibration is not
straightforward, and the two properties are often at odds with each other (Guo et al.l |2017)).

Various noise injection methodologies have been proposed, encompassing activation techniques such as
Dropout (Srivastava et al., |2014; |Gal & Ghahramani, |2016|) and Gaussian Dropout (Kingma et al.l [2015)),
weight noises such as DropConnect (Wan et al.l [2013)) or additive Gaussian noise (Blundell et al., 2015),
target methods such as label smoothing (Szegedy et al., [2016]), input-target strategies exemplified by
MixUp (Zhang et al., |2018), input modifications such as AugMix (Hendrycks et al., [2020)) or the standard
horizontal flipping and center cropping (Krizhevsky et all [2009), model approaches including weight per-
turbation (Ash & Adams, [2020)), and gradient perturbations involving Gaussian noise (Neelakantan et al.,
2017). Despite the diversity of these techniques, comprehensive and fair comparisons are scarce, leaving a
gap in understanding which approach is helpful for specific datasets, tasks and models in conjunction with
generalisation and calibration.

This study aims to systematically and comprehensively investigate the effects of widely used noise injection
methods on NN generalisation and calibration across multiple datasets, tasks, and architectures. This explo-
ration is predicated on the premise that while generalisation focuses on reducing overfitting and improving
the model’s predictive accuracy, calibration deals with aligning the model’s confidence with its actual perfor-
mance. Rather than focusing on improving state-of-the-art performance, we aim to provide a holistic view
of the effects of noise injections on NNs’ generalisation and calibration for the benefit of practitioners. To
this end, we present the following contributions:

1. The first systematic empirical investigation into the impact of noise injections on NN generalisation and
calibration across diverse datasets, tasks and NN architectures. Our exploration extends to evaluation
under in-distribution (ID) and out-of-distribution (OOD) scenarios and their transferability across archi-
tectures and datasets.

2. A methodological framework for simultaneously combining various noise injection approaches.

3. Visualisation of the learnt representation landscape across noises, jointly comparing calibration and gen-
eralisation performance.

Our investigation reveals that certain types of noise aid in generalisation by introducing robustness against
overfitting and variability in data and potentially improve calibration by mitigating overconfidence in predic-
tions. The findings show that AugMix, weak augmentation and Dropout prove effective across diverse tasks,
emphasising their versatility. Task-specific nuances in noise effectiveness, such as AugMix’s superiority in
computer vision (CV), Dropout in natural language processing (NLP) and Gaussian noise in tabular data
regression, highlight the need for tailored approaches. Combining noises, careful hyperparameter tuning,
and task-specific considerations are crucial for optimising NN’s performance. Our code is publicly available
at https://github.com/martinferianc/noise.
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2 Related Work

In this study, we consider artificial addition of noise into various facets of NN training — including input,
target, input-target, activations, weights, gradients, and model parameters. The noise application
is denoted by cplace>(-,d), where acplace> is the noise application methodology which can be executed
at different places, e.g. Qinpyue for input noise, ciarget for target noise along with - arbitrary arguments,
depending on the noise injection methodology. For example, under this definition, additive input Gaussian
noise samples a Gaussian and adds it to the input @ as qinput(2,6) = = + ;e ~ N(0,0%), where o2 is
the hyperparameter in . Note that this study focuses on artificial noise injections, which are purposely
introduced during training, and not on matural noise, inherent in the data, e.g. label noise in the targets
where the classifying label is incorrect. The natural noise needs to be addressed separately and we refer the
reader to |Song et al.| (2022) for a review of strategies for learning with noisy labels. Under different noise
placements, we review several noise injection strategies. The review focused on the most fundamental noise
injection methodologies, which constitute the building blocks of more complex approaches and represent the
noise injection category.

Input Noise: Pioneering work by [Sietsma & Dow| (1991) demonstrated the benefits of training with added
input Gaussian noise, while Bishop| (1995]) established its linkage to regularisation in the least squares
problems. In CV, weak augmentation, such as random cropping and horizontal flipping, has improved gen-
eralisation (Krizhevsky et al., 2009). AugMix, domain-specific to CV, applies a sequence of image processing
operations to the input, bolstering robustness in OOD settings. From the adversarial robustness domain,
ODS augments inputs conditioned on the prediction, aiming to diversify the inputs (Tashiro et al., 2020]).
Target Noise: Label smoothing (Pereyra et al., [2017) softens the one-hot classification targets by replac-
ing the targets with a categorical distribution with the most mass on the correct class and the rest spread
across the other classes through the addition of constant uniform noise, effectively improving NN’s robust-
ness (Mtller et al.l |2019). This differs from label noise, where the entire probability mass is on an incorrect
class, and the NN must learn to ignore the errors (Song et al., 2022). Input-Target Noise: Variants of
MixUp have exhibited efficacy in augmenting both generalisation and calibration (Zhang et al. [2018; Miiller,
et al.l 2019; |Guo et al} [2019; [Yao et al.| 2022; \Guo et al. |2017)). MixUp adds noise to both the input and the
target via linear interpolation between two samples and their targets, while CMixUp expands this approach
to regression problems. Activation Noise: Widespread activation noise includes Dropout or Gaussian noise
injections. Dropout (Srivastava et al., [2014; [Noh et al., [2017)) randomly deactivates activations through 0-1
noise, while Gaussian noise injections add noise to activations (Kingma et al., [2015} [DeVries & Taylor, 2017)).
Bayesian NNs (Gal & Ghahramani, [2016]) incorporate these injections during training and evaluation, in
contrast to our work’s focus solely on their application in training. Weight Noise: Unlike Dropout, Drop-
Connect (Wan et al.} |2013) randomly deactivates weights or connections between neurons, while Gaussian
noise injections add noise to weights (Blundell et al. [2015). Note that we do not model the variance of
the Gaussian noise through learnable parameters, as in (Blundell et al., 2015)), but rather fix it through a
searchable hyperparameter. We do this to ensure a fair comparison with other noise injection approaches,
such as Dropout, which do not have learnable parameters and would require changing the model architecture
to accommodate them. Gradient Noise: Annealed Gaussian noise added to gradients during training has
demonstrated its efficacy in improving NN generalisation [Neelakantan et al.| (2017)); Welling & Teh| (2011));
Zhou et al.| (2019); |Chaudhari & Soatto| (2015); 'Wu et al.| (2020). Model Noise: A recent contribution,
Gaussian noise injection through periodic weight shrinking and perturbation |Ash & Adams|(2020)), improves
retraining generalisation.

In previous work, the impact of noise per injection type was studied. [Poole et al.| (2014]) show that inject-
ing noise at different layers of autoencoders implements various regularisation techniques and can improve
feature learning and classification performance. |Cohen et al. (2019) show that smoothing classifiers with
Gaussian noise naturally induces robustness in the L2 norm. [Wei et al.| (2020) disentangle and analyti-
cally characterise the explicit regularisation effect from modifying the expected training objective and the
implicit regularisation effect from the stochasticity of Dropout noise in NNs. |Camuto| (2021)); /Camuto et al.
(2020) show that training NNs with Gaussian noise injections on inputs and activations regularises them
to learn lower frequency functions, improves generalisation and calibration on unseen data but also confers
robustness to perturbation. On one hand, |Jang et al|(2021) show that training NNs on noisy images can
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improve their robustness and match human behavioural and neural responses. On the other hand, |[Geirhos
et al.| (2018) demonstrate that adding specific noise to the input can surpass humans in generalisation on
that specific noise, but not to other types of noise, while human vision is robust to a wide range of noise
types. The results of |Geirhos et al.| (2018) are confirmed by the results of |[Kang et al.| (2019), who show that
robustness against one type of noise does not necessarily transfer to robustness against other types of noise.
Furthermore, Kang et al.| (2019) consider adversarial training, where a model is trained to be robust against
noise-based adversarial attacks (Goodfellow et al., 2015). An adversarial attack is a specific type of noise
injection during evaluation, where the noise is designed to fool the model. In comparison, our work focuses
on the generalisation and confidence calibration performance of NNs with respect to domain shift in the
data distribution, rather than adversarial attacks. We consider enhancing robustness to adversarial attacks
through artificial noise injections as future work. Moreover, (Kukacka et al., [2017)) provided a taxonomy of
regularisation in NNs, covering multiple noise-based approaches.

The closest work to ours is (Chun et al.| 2020), which considered regularisation commonly used during
training and its impact on generalisation, confidence calibration and out-of-distribution detection in computer
vision. While their focus was not noise-specific, as in our work, they overlap with our work by considering
input noise: weak augmentation and Gaussian noise, target noise: label smoothing (Miiller et al., [2019)),
input-target noise: MixUp (Zhang et all |[2018]). They show that common regularisation techniques improve
generalisation, confidence calibration and out-of-distribution detection. In comparison to (Chun et al., [2020)),
our work focuses on a broader set of noise injections, network architectures, datasets and tasks, evaluation of
the weight landscapes, and in-depth noise combinations paired with comprehensive hyperparameter search.

Past work has studied noise injection techniques in isolation, mainly focused on generalisation alone, lacked
comprehensive hyperparameter optimisation, and rarely evaluated the robustness of distribution shift. For
example, only MixUp, AugMix and label smoothing have been studied in calibration (Guo et al., |2017}
Miiller et al., 2019; \Guo et al., 2019; [Yao et al., |2022; |Chun et al., |2020)). An exception to this is |Chun et al.
(2020), who studied generalisation, calibration and out-of-distribution detection for some noise injections.
While promising, these methods require further unified analysis to determine their relationships across
datasets, tasks, architectures and across a broader set of noise injections. Our work addresses these gaps
by 1.) studying the impact across datasets, tasks and architectures; 2.) benchmarking the impact of noise
injections’ hyperparameters on transferability between datasets and architectures; 3.) studying confidence-
calibration in addition to generalisation; 4.) performing a comprehensive hyperparameter search with fair
comparisons; 5.) evaluating robustness to distribution shift; 6.) providing a methodological framework for
combining and tuning various noise injection approaches across categories; and lastly 7.) visualising the
learnt representation or learning landscape across noise injections in 1D or 2D (Goodfellow et al.l 2014; |Li
et al.l |2018]|) across both generalisation and calibration.

3 Methodology

We establish a structured methodology to investigate noise injections’ effects on NNs. The noise types are
divided into input, input-target, target, activation, weight, gradient and model, and we enable their
conditional deployment through probabilities {p’ ..} ; in the range 0 < pi ... < 1, where S denotes the
number of noises.

The training allows simultaneous consideration of S noise types, each associated with specific hyperpa-
rameters {§°}5_, and an application function {ai’<p13w>(~,5)}f:1, where a’ ... is the noise application
methodology which can be executed at different places, e.g. ainput for input noise, oiarger for target noise
along with - arbitrary arguments, depending on the noise injection methodology. The different noise types
implement only the relevant aiplace>(~, 0) function, while others are ignored. We encourage the reader to
refer to the code for the implementation details for each noise type. The probabilities {p’ .. }7_, allow us to
tune the frequency of applying each noise type, while the hyperparameters {4° ;521 enable us to adjust the
magnitude of each noise type. This enables us to tune both the magnitude and frequency of noise injections,
unlike, for example, Dropout (Srivastava et al., [2014), which only allows the tuning of the magnitude, and
it is applied every batch. The tuning of the frequency allows us to avoid conflicts between noises, as it can
be set to 0 if the noise is conflicting with other noises.



Published in Transactions on Machine Learning Research (04,/2024)

Algorithm [1] provides a comprehensive overview of the training process, executed throughout E epochs with
L batches processed per epoch. For every batch, input and target data (xp, ys) are randomly drawn from the
training dataset D = {(z,y5)}L_,. For each noise in S, we sample a uniform random variable e ~ U(0, 1),
and if € < p’ .., we enable noise i with hyperparameters §° for the current batch b.

For each noise in S, we sample a uni-
form random variable € ~ U(0, 1), and
if € < P15, We enable noise ¢ through Require: Training dataset D = {(xy, yb)}bLzl7 L batches, number

Algorithm 1 Training of a Neural Network with Noise

setting the toggle ¢’ to 1 for the current of epochs E, network depth D, weights W = {W?}L_  hid-
batch b. The enabled noises are applied den states z, = {2{}2_, activations ¢ = {¢?(-)}2_,, weighted
in the order: 1.) input, target, input- operations f = {f4(-,W%)}L_,, S noise types, probabilities of
target, 2.) weights, 3.) activations, 4.) applying noise to a batch phoise = {1 ;50 }ie1, Noise hyperpa-
gradients and 5.) model through the rameters § = {0'}5_,, Noise application functions a<place> =
apply  <places (-, ¢, 8) procedure. The {0l paces (5 8.

procedure sequentially iterates over the  1: Initialise W randomly
noise types in S and applies the noise 2: for e =1 to F do
if the noise is enabled and the applica- 3. forb=1to L do

tion function ai<p1306> exists. The user  4: Randomly select a batch (xp, yp) from D
specifies the order of the noises in S. 5: Sample € = {¢! ~ U(0,1)}7_,
o ‘ 6: Set toggles t = {t! = ¢ < pi . 13,

ur approach accounts for networks of _ I ¢ noise: ! ' (et 0)
depth D, denoted by {f(-, wd)}p 7 1PUB NO1Se: AP AinputlLh, £
involving weights together with bi- 8 ITarget 11018€: abp lyfataiget (v, 1,9) 5
ases W = {W}P | and activations 12: Zglp:u;;target noise: apply_ dinput-target (L5, Yb, £, 0)

d(H}2 T hidden : b
D esponds to the mpwt 1 ord=110 D do
T bvs;l}?ﬁe 219 represents the output pre- > Weight noise: app ly*aweight(wd’ t,0)
d%” Ve 2 16D putp 13: Compute hidden state z{ = fd(zgl_l,Wd)

iction 4. . . . d .

14: Activation noise: apply aactivation (25, t,9) if d < D

For input noise, we explore Aug- 15: 23 = ¢d(2f)
Mix, ODS, weak augmentation: ran- 16: end for
dom cropping and horizontal flipping, 17: Assign predictions g, = z{
and additive Gaussian noise injec- 1s: Compute loss £(§*,y") and gradients Vyy L
tions (Hendrycks et al., [2020; [Tashiro| 19: Gradient noise: apply  agradient(Vw L, t,0)
et al., [2020; Sietsma & Dow, [1991). For  20: Update weights W

input-target we explore MixUp and 21: end for

CMixUp (Zhang et al.,2018;|Yao et al., 22: Model noise: apply_amodel(W, €,t,0)
2022)). For target noise, we consider 23: end for

label smoothing, and the target noise 24: Procedure: apply acpiaces (-, t,0)

also inherently involves MixUp and 25: fori=1 to S do

CMixUp (Zhang et al][2018}[Yao et al, 26: if ¢* and ai<p1366> exists then

2022; |[Miller et al,[2019). The activa- or. ai<p1ace>(.’ 5%

tion noise examines Dropout and ad- 98. end if

ditive Gaussian noise (Srivastava et al., 29. end for

2014; |[Kingma et al.| [2015]) prior to ac-
tivations for all linear or convolutional
layers, except the last layer. For weight noise, we consider Gaussian noise added to the weights (Blundell
et al., [2015) or DropConnect (Wan et al., [2013)) for all linear or convolutional layers, except the last layer.
We consider gradient Gaussian noise added to all gradients of the loss function (Neelakantan et al., 2017)).
After the update of the weights, the model noise is applied to the weights, for which we consider shrink-
ing the weights and adding Gaussian noise (Ash & Adams)| 2020), but not in the last 25% of the training
epochs. Out of these noises, label smoothing, MixUp and ODS are exclusive to classification, and CMixUp
is applicable only in regression. AugMix and weak augmentation are exclusive to the CV data. The other
noises are broadly applicable across tasks.
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4 Experiments

Next, in Section [£.I] we present the concrete datasets, tasks and architectures used in our experiments,
followed by experiments on ID data in Section [£:2, OOD data in Section [.3] combined noises in Section [4.4]
transferability in Section and lastly the metric landscape visualisations in Section

4.1 Experimental Settings

Tasks, Architectures and Datasets: We consider various setups, including computer vision (CV) clas-
sification and regression, tabular data classification and regression, and natural language processing (NLP)
classification. For CV classification we include datasets such as CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), SVHN (Netzer et al., [2011)), and TinyImageNet (Le & Yang, [2015]), along with neural architectures
such as a fully-connected (FC) net and ResNet (He et al., [2016). For CV regression, we introduce a rotated
version of CIFAR-100 to predict the rotation angle, and we also use the WikiFace dataset (Rothe et al., [2015)),
where the aim is to predict the age based on the image of the face. We use the ResNet model in both cases.
We deem the rotation prediction task compelling to evaluate since it is a common task in the literature for
self-supervised pre-training (Gidaris et al., |2018). In the realm of tabular data classification and regression,
we use an FC network and evaluate noises on diverse datasets, including Wine, Toxicity, Abalone, Students,
Adult for classification and Concrete, Energy, Boston, Wine, Yacht for regression (Asuncion & Newman),
2007)). We explore NLP classification using the NewsGroup and SST-2 datasets (Lang, (1995} [Socher et al.,
2013) paired with global pooling convolutional NN (Kim), 2014) and a transformer (Vaswani et al [2017).
The Appendix details the datasets and architectures and gives the complete numerical results.

Metrics: To assess the effectiveness of the noise injection methods in classification, we measure their
performance using three metrics: Error (., %), Expected Calibration Error (ECE) (Guo et al.l [2017)) (], %)
with 10 bins and the categorical Negative Log-Likelihood (NLL) ({). For regression, we use the Mean Squared
Error (MSE) (J) and the Gaussian NLL (}). We test the generalisation of the models by evaluating their
performance on the ID test set. For CV classification and regression, we test the robustness of the models
by assessing their performance on an OOD test set by applying corruptions (Hendrycks & Dietterich) 2019)
to the ID test set. These corruptions include, for example, adding snow or fog to the image, changing the
brightness or saturation of the image or blurring the image across 5 intensities. We created the OOD test
set for tabular data by adding or multiplying the inputs with Gaussian or Uniform noise or by zeroing some
of the input features with Bernoulli noise, similarly across 5 intensities. While vision data has ImageNet-
C (Hendrycks & Dietterich, [2019)), to the best of our knowledge, there is no similar benchmark for tabular
data. Our methodology for introducing perturbations and zeroing out features is designed to simulate a wide
range of potential distribution shifts in real-world scenarios, such as instrumentation errors, missing data,
and adversarial attacks. We crafted the OOD evaluation to be similar to (Hendrycks & Dietterich| [2019)),
in terms of the magnitude and severity of the noise, allowing us to systematically evaluate the robustness of
the models. To summarise the results, we collect the results for each approach for each dataset and metric
and rank them relative to the no noise baseline. For example, -1 means that the approach is one rank better
than the no noise baseline, and 1 means that the approach is one rank worse than the no noise baseline. We
then average the ranks across the datasets for each task and metric.

Hyperparameter Optimisation: We first tune the learning rate and L2 regularisation of a no noise
network, which are reused when tuning the HPs of each noise injection method. By tuning the learning
rate and L2 regularisation, we wanted to simulate a realistic scenario where the practitioner seeks to add
noise to their existing model and does not want to jointly tune the model’s hyperparameters and the noise
injection method. The tuning was performed with 1 seed, and the winning hyperparameters were retrained
3 times with different seeds. 10% of the training data was used as the validation set to select the best model,
with validation NLL used as the selection objective to combine both generalisation and calibration. The
tuning is performed using model-based Tree-structured Parzen Estimator method (Bergstra et al.|2011)) with
successive halving pruning strategy (Jamieson & Talwalkarl |2016). We evaluate 50 trials for each setting,
which allows us to manage the trade-off between compute costs and a reasonable number of trials.
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(e) NLP classification.

Figure 1: In-domain evaluation of the differences in rankings compared to not using any noise.

4.2 In-Domain Evaluation

In Figure [1} we show the in-domain (ID) performance of NNs trained with various noise injection methods
across CV classification and regression, tabular data classification and regression, and NLP classification.
Overall, we observe that the noise injection methods significantly improve the generalisation and calibration
in many cases, but different noise types are needed for various tasks. In CV classification, almost all noises
improve the error rate, with many simultaneously improving calibration. The most beneficial noises are
AugMix, weak augmentation and Dropout. MixUp and label smoothing are a surprise to a certain extent as
they improved generalisation but not calibration. In CV regression, improving generalisation was challenging,
with no improvement. However, several noises have improved NLL, with AugMix, weak augmentation, and
Dropout achieving the best balance. These results suggest that image augmentation broadly benefits CV,
confirming expectations.

Several noises have improved the error rate to a lesser extent or kept it at a similar level in tabular data clas-
sification. In contrast, almost all noises have improved ECE and NLL. The improvements were particularly
impactful in several cases, with model noise, label smoothing, and Dropout being the best. While ODS is
designed to improve adversarial robustness, it improved ECE and NLL while slightly improving error rates.
All noises improve NLL for tabular regression, and some significantly improve MSE. Gaussian noises applied
to the weights, activations, or inputs are the most useful types of noise for improving the two metrics. In
NLP classification, about half of the noises improve error, with some also improving calibration simultane-
ously. The best noises are Dropout, label smoothing and ODS, which differs from what was the best for CV.
These noises significantly lowered error and NLL, while MixUp and model noise were particularly useful for
reducing ECE. ODS was beneficial for improving error and calibration via NLL, which can be a surprise as
this technique was not previously considered for improving generalisation or calibration.

In Figure 2] we show detailed results for selecting representative datasets across the 5 tasks. We see the
improvements in error can be large for CIFAR-10, for example, halving it in some of the best cases —
weak augmentation and AugMix, with Dropout also leading to a few percentage point improvements. The
situation is similar for ECE, where weak augmentation and AugMix make the ECE one-half or one-third.
Many errors are slightly better, but certain noises, such as MixUp, label smoothing, or Gaussian noise added
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Figure 2: Detailed in-domain performance of NNs trained with various noises across the five tasks.

to the activations, worsen the calibration. For WikiFace, there are more minor improvements in error from
weak augmentation and AugMix with overall similar MSE across different noises. Still, the differences in
calibration as measured using NLL can be considerable, with most noises improving the NLL significantly.

Moving the focus to tabular data, most noises applied to the Adult classification dataset improve the error
marginally. In contrast, many improve ECE significantly, with the best ones being Dropout, model noise and
DropConnect. Most noises have significantly improved MSE for the Yacht regression dataset, but CMixUp
and model noise led to significant increases. The best ones have been gradient Gaussian and Gaussian
noise added to the weights. NLL has been improved in several cases, including gradient Gaussian and
weight Gaussian, demonstrating solid improvements in MSE and NLL. The errors stay similar for NLP
classification on NewsGroup using the global pooling CNN model. ODS leads to the best improvement,
while several noises, specifically Dropout, gradient Gaussian, and model noise, lead to worse generalisation.
ODS and label smoothing have also noticeably improved ECE.

Main Observations: The noises are effective across various tasks and datasets. The shortlist of the most
effective methods is AugMix and weak augmentation in CV, model noise, and Gaussian noise added to
weights for tabular data and dropout in NLP. Different task types benefit from different types of noise.

4.3 Out-of-Domain Evaluation

We evaluate the performance on the ID test set and an augmented OOD set, including an average over
visual corruptions across 19 categories and 5 severities (Hendrycks & Dietterichl [2019). Likewise, we average
the performance across 5 categories and 5 severities for tabular data. The summary of the results is in
Figure [3] with analysis of correlations between ID and OOD rankings via Kendall Tau score in Table
For CV classification, we observe that the generalisation improvements also remain for OOD, but improving
calibration in terms of ECE turns out to be much more challenging. The overall ranking of the best noises
remains similar, with AugMix and weak augmentation remaining the best. MixUp rose to prominence thanks
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(c) Tabular classification. (d) Tabular regression.
Figure 3: OOD evaluation of the differences in rankings compared to not using any noise.
Metric SVHN CIFAR-10 CIFAR-100 TinyImageNet Average Metric Rotated CIFAR-100 WikiFace Average
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(a) CV classification. (b) CV regression.
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(c) Tabular data classification. (d) Tabular data regression.

Table 1: Kendall Tau correlation between ID and OOD rankings of different noise types for various tasks.

to the best OOD calibration and improved errors and NLL. Analysis of Kendall Tau correlation in Table
shows that ID and OOD rankings are strongly correlated for error and NLL, while only moderately for ECE.
CV regression is similar to classification ranking the best noises, with only AugMix leading to improvements
in OOD generalisation. However, calibration is improved by most noises, with AugMix excelling. Only a
minor correlation exists between ID and OOD rankings for MSE and NLL metrics. For tabular classification,
the noises generally improve ECE and NLL but not the error rate under OOD settings, with model noise,
label smoothing, and Dropout being the best. This suggests all of these are among the best noises for
both ID and OOD. ID and OOD rankings show a strong correlation overall. Several noises improve OOD
generalisation and calibration for tabular regression, with DropConnect, Dropout and Gaussian noise added
to the inputs, leading to the best overall improvements. The ID and OOD ranking Kendall Tau correlation
is low in this case. MixUp and CMixUp have improved OOD calibration for both tabular classification and
regression.

We study selected representative datasets regarding OOD performance in Figure[d OOD results on CIFAR-
10 show that AugMix significantly improves both error and ECE, making ECE one-third of the no noise
equivalent. MixUp leads to similarly considerable improvements in ECE and more minor yet significant
improvements in error. Several noises, e.g., Dropout and Gaussian noise, added to activations or weights lead
to a few percentages worse ECE. On WikiFace, most OOD MSE values are similar, but OOD calibration
in NLL is improved significantly for several noises, including AugMix, weak augmentation or Dropout.
Improvements in generalisation for the Adult tabular classification dataset are minor, but the improvements
in calibration can be significant, for example, Dropout and model noise halving the OOD ECE value. For
the Yacht tabular regression dataset, the improvements in generalisation have been more critical, with the
same being true for calibration measured in terms of OOD NLL.
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Figure 4: Detailed OOD performance of NNs trained with various noises across the four tasks.

We include an additional OOD investigation on TinylmageNet, where we study the performance on black and
white sketches. We use the same classes as in TinylmageNet (Wang et al.|[2019) and report the full details and
results in the Appendix. The shift from natural images to sketches represents a more significant domain shift
than our standard OOD shifts (Hendrycks & Dietterichl 2019)), and hence also tests the generalisation of the
noises to a larger degree. We do this to disambiguate the performance of AugMix, which uses augmentations
that may be similar, but are still distinct (Hendrycks et al.l 2020), to the ones used for our OOD evaluation.
The results clearly show that AugMix obtains similar rankings for all three metrics on both the synthetic
OOD and sketch domain evaluations. Overall we see strong Kendall Tau correlation in terms of the error
across all noises, but smaller in terms of ECE and NLL.

Main Observations: We see consistent improvements in OOD generalisation and calibration for tabular
data. Errors and NLL are improved for CV classification, but calibration is generally not improved when
measured via ECE. CV regression usually sees improvements in OOD NLL only. The best ID noise types
have often remained the best OOD, but overall, the correlations between ID and OOD rankings were not
high in all cases. MixUp, or CMixUp for regression, showed surprising behaviour as it was much more helpful
for improving OOD calibration than ID calibration.

4.4 Combination of Noises

Next, we evaluate the combination of noises. We construct them from empirical combinations of the Top
2 or 3 noises from the ID evaluation for each task, based on average rank across respective datasets and
metrics. We consider two cases: 1.) the found hyperparameters of the noises are directly applied, and 2.)
the hyperparameters of the noises are jointly tuned. We utilise the same 50-trial budget to tune the selected
noises jointly. We restricted our experiments to combinations of two or three noises, as we empirically found
that tuning all the noises jointly in our study is not feasible even with a larger computational budget. We
consider the individual noise hyperparameter tuning and then the direct application or joint tuning of their
combination to be a realistic scenario where a practitioner has a limited compute budget and wants to
improve their model’s performance (Godbole et al.l [2023)) iteratively.

The results are already in Figures and @ and denoted as Top-2 Direct, Top-3 Direct for 1.), Top-
2 Optimised and Top-3 Optimised for 2.). The combinations for Top-2 and Top-3 are in Table To
simplify the analysis of how effective the different combinations of noises are, we compute their average rank
improvement compared to no noise and report it in Table [3] Notice that when we choose a combination of
noises to involve noises from the same category, for example, ODS and input Gaussian are both input noises,
these are applied sequentially.
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Task Top-2 Third Method
CV classification Input AugMix, Input Weak Augmentation Activation Dropout
NLP classification Activation Dropout, Target Label Smoothing Input ODS
Tabular classification Model, Target Label Smoothing Activation Dropout
CV regression Input AugMix, Input Weak Augmentation Activation Dropout
Tabular regression Weight Gaussian, Activation Gaussian Input Gaussian

Table 2: Top task and noise combinations. Underlined methods are from the same type.

Scenario Top-2 Direct Top-3 Direct Top-2 Optimised Top-3 Optimised

ID -4.75 -3.69 -4.34 -3.30
OOD -5.24 -4.43 -5.00 -2.59

Table 3: Average rank improvement over no noise for the different combination strategies.

We can draw several observations from Table 3| 1.) Directly combining hyperparameters for the top two or
three noises is a good strategy when considering the same budget for hyperparameter tuning as for one noise.
A significantly larger budget is likely needed for jointly optimising hyperparameters of multiple noises. 2.)
A combination of two noises performs better than a combination of three noises, suggesting there may be
negative interactions when too many noise sources are used without extensive hyperparameter tuning. 3.)
The behaviour of different combination strategies is consistent across ID and OOD settings.

Commenting on the overall performance of the combinations of noises, the combinations are typically better
for classification tasks than the individual noises. Still, the opposite may be true for regression. As observed
in Figures and the combinations are consistently ranked lowest in comparison to using no noise
for classification, showing the effectiveness of the combinations. However, Figures and show that
regression can benefit from only using one noise at a time. OOD analysis in Figure [3] confirms the benefits
of combinations of noises for classification tasks, and it also shows that it can be beneficial for regression,
contrary to the ID behaviour. The combinations are generally ranked lower and can improve calibration and
generalisation, as seen in lower MSE, NLL, or error and ECE simultaneously.

Main Observations: The combination of noises can improve both calibration and generalisation simulta-
neously. Directly combining two noises is better than three, as too many can lead to conflicts. Combining
noises directly with their hyperparameters is generally reasonable and a significantly larger tuning budget
for optimising hyperparameters would be needed for optimising their hyperparameters jointly.

4.5 Transferability of Hyperparameters Across Datasets and Models

Furthermore, we evaluate the transferability of the hyperparameters across datasets and models. We consider
two cases: the transfer of hyperparameters to a new dataset and the transfer of hyperparameters to a
new architecture. For the dataset transfer, we consider the following combinations: SVHN to CIFAR-10,
CIFAR-10 to CIFAR-100, CIFAR-100 to TinylmageNet, and 3 tabular regression datasets combinations,
Concrete to Energy, Boston to Wine, Yacht to Concrete. We consider the following combinations for the
architecture transfer: FC to ResNet-18 for SVHN and ResNet-18 to ResNet-34 for CIFAR-10, CIFAR-100
and TinylmageNet. We use a NN with an additional layer for tabular data, i.e., five layers instead of four.

4.5.1 Dataset Transfer

Figures [5al and [5c| show the dataset transfer results for ID settings, with OOD settings shown in Figures
and We observe generally good transferability of hyperparameters across datasets for CV classification in
ID and OOD settings. In particular, weak augmentation, AugMix and Dropout lead to solid improvements
in the ID setting. AugMix also excels in OOD scenarios under dataset transfer, but weak augmentation and
Dropout are not as strong in calibration measured using ECE. Certain noises are less transferable, including
Gaussian noise added to the input and DropConnect. Hyperparameters for noise in tabular regression are
less transferable because of worse generalisation measured using MSE.
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Figure 5: Transfer of hyperparameters on in-domain (ID) data.
10 10
Error 2.0 -4.0.-3.3 20 -33 -63 23 -13 -3.0 -2.7 Error -1.0 pRy 13 4 By
ECE{1.3 -2.7 3.0 -3.0 -43 -0.7 -53 2.0 0.0 -2.7 -0.3 -3.0| [0 ECE ARl 0-0 B 20 07 0
NLL{-53 2.7 -2. 17 -47 3.0 17 -33 2.7 23 NLL 4 -4. -4.0.-3.7 3.0 -37 07 -40 -3.7 -13
——— -10 — —_— -10
L H & R .O & o oS RO S . &
VQQ &° S & @S @c’b & VQQ &° 0 & N S é\oé &
& &S w é‘“ e & & & & F & & & Q}‘“ <(\0‘3 & & I
&$ s ¥ (\Qo &’&0" NS (\0(\ & & S &$ N (\Qo ,\’b& N \‘00(\ & <& &
NN X O F & ¢ SO > K A IR S & O 9
\QQ A S & 5 S K S \QQ N Q\) K> < &8 K N
S & w0 « N S &
(a) OOD CV classification in dataset transfer. (b) OOD CV classification in architecture transfer.
10 10
MSE mMse{ -15 22 05 02 17 18 -18 -12
0 0
NLL | NLL{ -1.5 32 05 25 20 -25 -12 -32
-10 . . . . . . . . -10
N N e & &
N O & X e
& W & N & o & &
& & & & RO TS &
X X (2 < S X X O
& & & & & S &
N N e & & & & s
& & Ny v < «©
(c) OOD tabular regression in dataset transfer. (d) OOD tabular regression in architecture transfer.

Figure 6: Transfer of hyperparameters on out-of-domain (OOD) data.

Main Observations: The transfer of hyperparameters from dataset to dataset generally works well for
CV classification. However, caution is advised as it is not the case for all noise types. For tabular data
regression, tuning of hyperparameters is recommended.

4.5.2 Architecture Transfer

In Figures [5b and [5d]} we show the ID results for the architecture transfer, with Figures [6D] and [6d] reporting
the OOD results. The transferability of noise hyperparameters is lower than across datasets for CV classi-
fication, but it is still successful, especially for weak augmentation and AugMix for ID settings. Transfer of
hyperparameters for tabular data regression works for certain noise types in the ID setting, including adding
Gaussian noise to the input or the weights, which are among the Top-3 noises for tabular data regression.

12



Published in Transactions on Machine Learning Research (04,/2024)

Main Observations: Transfer of hyperparameters across architectures appears more challenging than
across datasets but can be successful in some instances. Caution is advised, and tuning is recommended.

4.6 Learnt Representation Landscapes

We study the learnt representation landscapes of NNs trained with various noises through the lenses of ID
and OOD performance in terms of error, ECE, NLL or MSE. We consider the noises individually, with the
ID-found hyperparameters starting from the same weight initialisation for fairness. We visualise linear inter-
polation modulated through an « parameter between the final, @« = 0 and initial model, @ = 1 (Goodfellow
et al) 2014). The interpolation empirically investigates the smoothness of the training process. We also
visualise the landscape in 2D (Li et al., 2018} Holbrook, [2020) by saving the network after each epoch and
concatenating the weights. Instead of using random coordinates, we use the first two principal components
of the weights as the coordinates. We normalise them based on the magnitude of the original weights, and
we project all the weights onto these two components in the vicinity of @ and S. The 2D visualisations
show us the exploration and exploitation of the training process. In Figures[7]and [§] we compare the metric
landscapes of no noise with AugMix and Dropout noises, respectively on CIFAR-10 and WikiFace datasets.
We used 20 points for linear interpolation and 100 points for the 2D plots across five selected OOD augmen-
tations and 1000 test data samples for compute efficiency. In red, we show the error or MSE; in green, we
offer the NLL or ECE. In the 1D plots, e and A stand for ID and OOD error or MSE, and x and B stand for
ID and OOD ECE or NLL. In the 2D plots, the darker combined contours signify worse performance than
the lighter parts, and the % in blue or black denotes the start or end weights, respectively. The Appendix
contains the metric landscapes for all other noises, tabular classification — Adult, and regression — Yacht
datasets.

Observing Figures [7] and [§] we first notice the ID and OOD results are similar, with the OOD results
being slightly worse across all metrics. This includes both the 1D plots and the 2D plots. Second, as seen in
Figures[7aland[7D] the curves for error, representing generalisation, and ECE or NLL, representing confidence
calibration, do not share the same shapes or curvatures. MSE and NLL curves in Figure [8a] are more similar
than error and ECE curves. Looking at the 1D plots, for example in Figures [7a][7b] and 8] the error or MSE
can be more smoothly interpolated than ECE or NLL. Figure [8a] shows models trained without noise can
become overconfident, reflected in large NLL and small MSE. Adding noise such as Dropout can fix this,
leading to low NLL for the final model in Figure[8d]l Looking at the 2D plots in Figures[7dand [8B] the error
or MSE valley is wider than the ECE or NLL valley, and they are not aligned. From a detailed comparison
between no noise and AugMix or Dropout in Figures [7] and [8] we observe that AugMix and Dropout can
smoothen the optimisation in the 1D plots, but not for ECE, and decrease the gap between ID and OOD
performance. The 2D plots show that AugMix and Dropout can explore broader metric landscapes than no
noise, shown in ranges of o and 8 in the 2D plots, and marginally align the error or MSE with NLL. Seen
in the lightness of the 2D contour plots, the noises navigate lower NLL or ECE landscapes than no noise.

Our general observations considering both CV and tabular datasets show that while noises such as Aug-
Mix, weak augmentation, MixUp or activation and weight noises based around Dropout can smoothen the
optimisation regarding error or MSE, they rarely smoothen the optimisation regarding ECE. The metric
landscapes often look similar to no noise, but the optimisation ends in more profound valleys. Across the
datasets and tasks, label smoothing, input additive Gaussian and ODS have minimal effect on the 2D land-
scapes or 1D interpolation. The model shrink and perturb make the optimisation more “stairs-like”, and the
metric landscape explored is broader. Together with gradient Gaussian noise, the shrink and perturb noises
explore broader metric landscapes than the others. No method drastically changes the metric landscape or
the interpolation from the default, but they can make the optimisation smoother or broader.

Main Observations: The metric landscapes for error or MSE and ECE or NLL are different, and the
noises can smoothen the optimisation in terms of error or MSE but not necessarily in terms of ECE or NLL.
When a model trained without noise is overconfident, adding noise to the training can resolve it and lead to
a significantly better-calibrated model at the end of training.
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Figure 7: No noise (top) and Input AugMix (bottom) on CIFAR-10.
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Figure 8: No noise (top) and Activation Dropout (bottom) on WikiFace.

5 Conclusion

Key Takeaways: Noise injection methods can improve NN performance across various tasks and datasets.
This is despite the fact L2 regularisation was already tuned to prevent overfitting, indicating noise injection
methods can provide additional benefits beyond standard regularisation. The methods were not equally
efficient across all tasks and datasets, with significant differences in performance between regression and
classification. Nevertheless, out of the considered noise types, the proposed methodology identified at least
one noise or a combination of noises that demonstrated improvements in both calibration and generalisation
over the no noise baseline for all tasks. The most effective noise for CV was AugMix, model shrink and
perturb and Gaussian noise added to weights for tabular data classification and regression, respectively. At
the same time, Dropout and label smoothing worked the best for NLP. Even though ODS was not designed
to improve calibration and generalisation, it has shown promising performance in several cases. Combining
noises outperformed individual noises in most classification cases, with regression often benefitting from using
only one noise at a time. While directly combining hyperparameters of noises is a reasonable strategy, tuning
them can still be valuable if a large budget is used. The noises improved ID and OOD performance, but
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the ID rankings were sometimes inconsistent with the OOD evaluation. AugMix remained highly ranked for
robustness, demonstrating that domain-specific inductive biases are beneficial when crafting noise injection
methods as they can improve generalisation and calibration. Note that our aim was not to add new knowledge
about AugMix’s performance against image corruptions, given its well-documented performance (Hendrycks
et al.| [2020)), but to demonstrate that inductive biases should be considered when generating noise for better
performance. The visualisation showed noises can smoothen the optimisation in terms of error or MSE but
not necessarily in terms of ECE or NLL. It also showed noise can help mitigate overconfidence. Overall,
the results indicate practitioners should consider combining noises, e.g. AugMix and Dropout, and tuning
hyperparameters for their specific problem.

Limitations: To conduct this study, we had to restrict the experiments’ scope. Our scope was limited to
experimental datasets, tasks such as classification and regression, and standard NN architectures. Testing on
more complex data and downstream tasks such as object detection, segmentation, or reinforcement learning
would reveal more profound impacts of noise injection. Furthermore, diving deeper into one particular
domain, such as NLP, could provide more insights into the effectiveness of noise injection methods. Moreover,
we also limited the optimisation to SGD with momentum and a cosine learning rate schedule, which were
tuned beforehand to make the hyperparameter search tractable. To draw practical conclusions, we evaluated
the noise performance by minimising the NLL rather than exploring all possible settings. The costs associated
with adjusting and evaluating different noises limited the scope of the experiments. Consequently, certain
noises might prove more effective with more thorough tuning and a larger budget. This is especially true
for noise combinations, where the number of possible combinations grows exponentially with the number
of noises. Nonetheless, the existing findings offer valuable insights for practitioners by giving a preliminary
indication of the most promising noise sources. This enables users to concentrate their efforts and compute
the budget required for tuning. For example, AugMix, incorporating domain-specific inductive biases, was
transferable and effective even with a limited budget. Developing methods to choose hyperparameters
without the need for extensive tuning would enhance the accessibility of these techniques. Lastly, the out-of-
distribution evaluation was focused on synthetic augmentations, which may not fully capture the real-world
distribution shift, as noticed in (Taori et al., 2020) for computer vision tasks.

Future Directions: The strong performance of AugMix highlights the potential for developing specialised,
domain-specific noise techniques such as DeepAugment (Hendrycks et al. 2021). For example, tailored
domain-specific noise methods could benefit tabular data-based problems and NLP. Future work should also
explore specific data-architecture noise interactions, as the transferability of hyperparameters was limited.
Inspired by the annealed gradient noise, annealing noise levels overtraining may also prove helpful, as early
noise could encourage robustness. In contrast, low late-stage noise could enable convergence on a high-
accuracy solution. The potential for combining noises from the same category should also be investigated
further. The noises affected the entire architecture, but targeting noise injection methods that only affect
specific layers or sections of the network may be possible, requiring more or less regularisation. Specific
noise-based approaches for simultaneously exploring the generalisation and confidence calibration trade-off
should be investigated further. As demonstrated across image and tabular domains, the empirical differ-
ences between many methods seem minor. This indicates that there are more fundamental determinants of
performance. Therefore, theoretical analysis of noise injection methods would be beneficial in understanding
the underlying mechanisms and providing guidance for future research. Lastly, testing on wider-scale out-
of-distribution datasets and real-world distribution shifts would provide a more comprehensive evaluation
of the noise injection methods’ impact on robustness. We hope our study and framework, embedded in our
codebase, will assist further research in this area.
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Appendix

In the Appendix, we first provide the experimental settings and the hyperparameter ranges for all the
experiments in Section[A] We then provide the full numerical results and visualisations for all the experiments
in Section [Bl

A Settings

A.1 General Settings

We used stochastic gradient descent with a momentum of 0.9 to train all the networks. The learning rate
and L2 regularisation were tuned and reused for each noise injection method. We used a cosine annealing
learning rate schedule without restarts (Loshchilov & Hutter) 2017) for all experiments. In most cases,
we used gradient norm clipping of 20.0 to stabilise the training, with gradient clipping of 10.0 for tabular
regression and 5.0 for WikiFace. The batch size was set to 256 for all experiments. The final results are the
average of 3 runs with 3 different seeds. We used cross-entropy loss for all classification experiments. For
regression, we used the Gaussian negative log-likelihood (NLL) loss, where we modelled the variance as an
additional output passed through an exponential function to ensure positivity. We added a small € of 1e~8
to the softmax probabilities to avoid NaNs. We clipped the variance between le=* and le* to avoid NaNs.
The hyperparameter ranges, and the sampling scale for each dataset-architecture pair are in Table [d] The
hyperparameters and implementations of all the noises and experiments can be found in the code, which will
be open-sourced. We used the default PyTorch weight initialisation for all layers.

For the tabular OOD experiments, we constructed custom augmentations where we applied Gaussian or
Uniform noise scaled by the magnitude of the input features across 5 severities for addition: [0.02, 0.04, 0.06,
0.08, 0.1] or multiplication [0.04, 0.08, 0.12, 0.16, 0.2] where the severity scaled the range or the standard
deviation of the noise applied to the input. Additionally, we zeroed out some input features with probability
[0.04, 0.08, 0.12, 0.16, 0.2], denoting 5 severities. In total, there were 5 different input shifts across 5 severities
each. To avoid label-flipping in applying these augmentations, we have introduced an empirically determined
scaling factor for the severity of all noises for a particular dataset. They multiply the [0.02, 0.04, 0.06, 0.08,
0.1] or [0.04, 0.08, 0.12, 0.16, 0.2] by a scaling factor to determine the severity of the noise applied to the
input based on the dataset. We use a K-nearest neighbour (KNN) classifier, specifically a 1-neighbour KNN,
trained on a dataset’s original, unmodified data. This classifier then predicts labels for the augmented data.
We adjust the scaling factor for each dataset so that the KNN classifier’s accuracy on the augmented data
exceeds 99% or the mean squared error is less than 0.01. This approach ensures that the augmentations are
subtle enough to maintain the integrity of the data, meaning the nearest neighbour—the closest match in
the original dataset—remains the same. However, this is not a perfect solution, with an empirical guarantee
that the augmentations are not too severe, and the nearest neighbour’s label remains the same. The found
scaling factors are shown in Table [

Regarding noise implementation details, Dropout, DropConnect, additive weight or activation Gaussian
noise, are applied to all linear and convolutional weights throughout the network, excluding the last layer
and normalisation layers. Both model and Gaussian gradient noise are implemented on all weights within
the network, encompassing affine parameters in normalisation layers. Rotation was omitted from AugMix,
given that one of our tasks involved predicting the rotation angle.

A.2 Vision Experiments

For SVHN, we used a fully connected network with 4 hidden layers of 150 units followed by ReL.U activations.
When we used ResNet-18 we used it with [64, 128, 256, 512] channels in 4 stages with [2, 2, 2, 2] blocks
with strides [1, 2, 2, 2]. When we used ResNet-34, we used it with [64, 128, 256, 512] channels in 4 stages
with [3, 4, 6, 3] blocks with strides [1, 2, 2, 2]. In all cases, we trained the networks for 200 epochs. We
only used 0-1 truncation followed by normalisation for each dataset without further data augmentations
for training, validation and test sets. For rotation experiments, we enabled uniform rotations between (0,
90°) degrees and rescaled the targets accordingly to [-1, 1]. Gaussian noise, motion blur, snow, elastic
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transformation, and JPEG compression were selected as OOD augmentations for visualisation experiments
across all 5 severities. For CIFAR-10, CIFAR-100, and SVHN we used the dedicated test sets as the test
set, while for TinyImageNet we used the official validation set as the test set. We used 10% of the training
data to construct the validation sets. For WikiFace, we used 10% of the data as the test set and 10% of the
remaining data as the validation set and the rest as the training set.

For evaluation on the sketch domain, we utilise ImageNet-Sketch dataset from [Wang et al.| (2019) and derive
our own TinylmageNet-Sketch dataset from it. As the ImageNet-Sketch images are not square, we crop
the centre and then resize to 64 x 64, the same size as TinylmageNet. We only keep the images of the
same 200 classes as used in TinylmageNet, allowing us to directly evaluate pre-trained models on the new
TinyImageNet-Sketch dataset.

A.3 NLP Classification Experiments

For our NLP experiments we used NewsGroup and binary SST datasets. In the NewsGroup dataset we aim
to classify news texts into one of the 20 available categories based on the topic. The task in the binary SST
dataset is to predict the sentiment of a movie review into 2 categories: positive or negative. For SST we
only consider the text itself, rather than also considering the available parse trees, making the task more
challenging.

Each dataset was first pre-processed with respect to glove embeddings (Pennington et al.| [2014) into embed-
dings of dimension 100 and sequence length 100 and 50 for NewsGroup and SST respectively. In both cases,
we trained the networks for 100 epochs. We used the global-pooling convolutional network architecture
from Kim| (2014) with planes [128, 128, 128] and a transformer decoder (Vaswani et all 2017) with embed-
ding dimensions 100, 6 layers, 8 heads, 1024 hidden dimensions, 64 dimensions per head and no dropout. For
the NewsGroup experiments, we used about 5% of the data as the test set, 10% of the remaining data as the
validation set and the rest as the training set. For the SST experiments, we used the original development
set as the test set, for validation we took 10% of the original training set and used the remainder as the
training set. No OOD test was set for the NLP task due to a lack of suitable perturbations to construct
OOD data.

A.4 Tabular Regression Experiments

For the tabular experiments, we used a fully connected network with [100, 100, 100, 100] hidden units and
ReLU activations. In all cases, we trained the networks for 100 epochs. We normalised the input features and
targets to zero mean and unit variance by using the training set statistics and applied the same normalisation
to the validation and test sets. For the tabular experiments, we used 20% of the data as the test set and
10% of the remaining data as the validation set and the rest as the training set. The regression targets were
normalised to zero mean and unit variance.

B Full Results

We provide full results of all experiments in the paper, where the main reported value is the mean across 3
repetitions, followed by the standard deviation. The ranks presented in the main body of the paper can be
obtained by ranking the results in each table by the metric of interest. Following the tables, there are the
visualisations of metric landscapes for CIFAR-10, Adult, WikiFace and Yacht datasets. We encourage the
reader to look at our code for other datasets to regenerate them from there.
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Hyperparameter (¢) Range Scale
Learning rate (LR) [107%,1071]  Log
L2 weight [10-7,1071]  Log
Input Gaussian noise std. [107%,1071] Log
Input AugMix alpha [0,1] Linear
Input AugMix severity [1,10] Linear
Input AugMix width [1,5] Linear
Input AugMix chain-depth [—1,3] Linear
Input ODS epsilon [107%,107Y] Log
Input ODS temperature [0.5,5.0] Log
Input-Target MixUp alpha [0,1] Linear
Input-Target CMixUp alpha [0,1] Linear
Input-Target CMixUp sigma  [107%,102] Log
Target Label Smoothing [0,0.25] Linear
Activation Gaussian noise std [107%,107!]  Log
Activation Dropout rate [0,1] Linear
Gradient Gaussian noise 7 [0,1] Linear
Gradient Gaussian noise [0,1] Linear
Weight Gaussian noise std [107%,1071]  Log
Weight DropConnect rate [0,1] Linear
Model noise shrink factor [0.0,1.0] Linear
Model noise std [1077,107%]  Log
Model noise frequency [0, 20] Linear

Table 4: Hyperparameters (HPs) optimised for individual noises and their range.

Dataset Task Scaling Factor
Adult Classification 0.1438
Abalone  Classification 0.0886
Concrete Regression 0.0207
Energy Regression 0.0546
Wine Classification 0.0078
Wine Regression 0.0048
Yacht Regression 0.0886
Toxicity  Classification 0.3793
Students Classification 0.2336
Boston Regression 0.0886

Table 5: Scaling factors for tabular data.
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. SVHN CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID O0OD ID [010)D) ID OO0D

No Noise 16.33+007  20.18+009  12.04+021 32.32+02¢ 44.69x0s4 61.521052  54.15+036  75.65+0.19
INPUT WEAK AUG. 14.67+0114  18.59+0.14 5.39+017  27.86+037  26.51x010  52.57+013  39.73x02r  67.73+013
INPUT GAUSSIAN 16.454025  20.23+022  12.02+005 31.97x0s1  44.34x170  61.141160 53.28+02¢  75.12x0.06
InpuT ODS 16.35+020  20.13x015  12.01x016 30.42+045 44.281061 61.341056 66.47+1515  82.46+s72
InPUT AUGMIX 12.28 4007 15.67x0.07 7.48+006 18.75x025  30.09x025 46.05+013  42.491020  61.58x0.16
INpPUT-TARGET MixUpP 13.95+001  17.71x011  10.97x013  28.38+070 46.15x005 63.00x002  54.02+055  75.33+0.44
LABEL SMOOTHING 16.35+017  20.10x012  11.88+030 31.63+020 42.48x047 58.41lxoss  52.47x021  73.96x0.15
ACTIVATION (GAUSSIAN 16.33x017  20.14x013  11.44+012  30.71xo20 44.58x02s 61.81x015 53.96x016  75.45+0.14
ACTIVATION DROPOUT 13.83x013  17.43x0.10 8.93+025  29.85+0s6  41.51x0ss  58.92x0s0  43.26+035  69.32x032
GRADIENT GAUSSIAN 17.59+015  22.49x007  16.41x015 37.57x012  45.33x052  62.49102¢ 59.99x03s  80.15x021
MODEL 16.17x025  20.08 %017  10.65x019 32.83x060 35.88x019 56.73x032  49.66+031  72.44+015
WEIGHT GAUSSIAN 16.60x016  20.29x011  10.53x02¢  30.76x055 42.97x051  60.68x02¢  54.20x011  75.71x013
WEIGHT DROPCONNECT 15.824006  19.53+004  12.20+020 31.29+063 42.08x07 59.161030  54.33+x070  75.70x0.43
Topr-2 DIRECT COMBINATION 12.57+01s  16.04+0.19 4.78+012  16.47+02¢4  24.69x022 43.04+02¢  37.18+00¢  58.16x012
Top-3 DIRECT COMBINATION 13.494019  16.95+0.10 5.07+x007  17.72x007  24.88+013 42.99+021  37.431x012  58.73x019

Top-2 OPTIMISED COMBINATION  12.144010 15.51+011 5.154022  15.63x02r  25.28+015  43.86+016  36.88+00s  5H7.90x0.24
Top-3 OPTIMISED COMBINATION 12.66+0.04 16.08+0.04 6.60+0.16 17.91+063 26.19+0.23 43.84+0.30 36.59+0.06 60.36+0.17

Table 6: CV classification: Error (|, %) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.

. SVHN CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID OO0D ID OO0D ID OO0D

No Noise 13.10+005  15.59+0.06 4.02+015  16.40x0.36 5.76+0.25 7.43+000  16.43x027 10.11+011
INPUT WEAK AUG. 6.35+0.19 7.85+0.24 1.924023  15.91x007 4.83x019  13.28x0.14 6.4910.28 11.46+025
INPUT GAUSSIAN 13.244017  15.67+015 4.22+4038  16.65+0.50 5.4240.46 7.70+04s  15.96+137 10.15+0145
InpuT ODS 13.03+0.13 15.43+0.12 4.26+0.13 15.38+0.27 5.86+0.30 7.48+0.17 26.97+19.1 28.20+26.53
INnPUT AUGMIX 4.81+007 6.03+0.09 1.18+0.06 6.27 +0.39 4.414+030  11.38+0.24 4.87+0.31 15.78+031
INPUT-TARGET MIXUP 2.81+0.08 3.49x0.07 5.41+3.04 7.31x066 14.20x0.13 8.57+042  16.33x1.40 10.26+0.32
LABEL SMOOTHING 8.66+010 10.61+0.0s 5.11+0.12 9.46+002  21.55x015  17.10x015  29.454017 16.62+0.03
ACTIVATION GAUSSIAN 13.094014  15.56+0.09 5.50+013  18.80+025 5.12+0.32 7.58+025  14.77+076 9.83+0.20
ACTIVATION DROPOUT 5.33+0.19 6.61+0.17 4.48+0.15 18.85+0.62 5.48+0.91 8.64+0s5 10.31 4066 20.13+0.6
GRADIENT GAUSSIAN 14.84 4000  18.39+0.04 6.03+027  18.79+0.14 5.54 4042 9.70+027  23.56+024 34.33+0.22
MoODEL 10.93+010  12.82x0.13 4.424001  18.43x054 9.06+032  11.00x030  10.80x0.24 9.01+0.03
WEIGHT GAUSSIAN 13.38+012  15.72+0.0s 6.48+021  21.54+0.66 5.99+0.26 7.79+036  14.95+103 9.98+0.33
WEIGHT DROPCONNECT 12.51+010  14.87+0.05 4.944020  16.99+0.66 5.79+0.36 8.21+047  15.50+0s3 10.12+035
Topr-2 DIRECT COMBINATION 1.79+0.15 2.76+0.17 1.25+015 6.91+0.26 6.19+019  14.2140.44 4.04 4027 15.69+031
Topr-3 DIRECT COMBINATION 1.31+0a7 1.86+0.00 2.08+0.12 8.57+033 6.661001  14.67x021 13.05+1.09 22.67+1.96
Topr-2 OPTIMISED COMBINATION 2.55+0.07 3.48+0.10 0.96+0.13 5.80+0.16 6.68+022  14.54 1046 3.21 4039 15.33+0.05
Topr-3 OPTIMISED COMBINATION 2.89+0.11 3.98+0.08 1.15+034 4.97+1.05 5.60+031  12.56+061 9.90+0.42 20.11+0.26

Table 7: CV classification: ECE (J, %) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.
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. SVHN CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID 00D ID OO0D ID 00D ID 00D

No Noise 1.43x0.00 1.64x0.01 0.42x001 1.21x0.02 1.85x0.03 2.69x003 2.800.02 3.90x0.01
INPUT WEAK AUG. 0.62+0.01 0.75x001 0.20+0.00 1.10+0.03 1.07x0.01 2.44+0.00 1.84+0.02 3.46+0.02
INPUT GAUSSIAN 1.43+00 1.65+0.01 0.42+001 1.21+0.03 1.84+0.08 2.67x008 2.75+0.06 3.86+0.02
InpuT ODS 1.40+0.02 1.60+0.02 0.4240.01 1.14+0.02 1.84+0.03 2.69+0.03 4.79+279 6.23 4327
INPUT AUGMIX 0.49+0.01 0.61+0.00 0.25+000 0.63+0.01 1.17+0.00 2.04+001 1.87+0.m 3.14+001
INPUT-TARGET MIXUP 0.52+0.00 0.64+0.00 0.40x003 0.91+0.02 2.03+0.00 2.7Tx001 2.79+0.07 3.88+0.04
LABEL SMOOTHING 0.75x0.01 0.90x0.01 0.46x001 1.09x0.01 2.18x0.02 2.87x003 3.25x002 4.15x0.01
ACTIVATION GAUSSIAN 1.41+0.00 1.63+0.00 0.43x0.00 1.27+001 1.84+0.01 2. 71001 2.7410.02 3.87x0.01
ACTIVATION DROPOUT 0.51+0.01 0.63+0.01 0.33+0.01 1.26+0.04 1.71+0.03 2.58+0.04 1.97+0.02 3.69+0.05
GRADIENT GAUSSIAN 1.76+0.m 2.12+0.01 0.56+0.01 1.39+0m 1.86+0.02 2.76+0.01 3.20+0.02 5.36+0.03
MOoODEL 1.02+0.0 1.17+00 0.37+0.00 1.27+0.03 1.60+0.02 2.63+002 2.38+0.01 3.64+0.01
WEIGHT GAUSSIAN 1.4410.02 1.65+0.02 0.44 001 1.41+0.04 1.79+0.03 2.66x002 2.76+0.03 3.89+0.02
WEIGHT DROPCONNECT 1.32x001 1.52x0.01 0.43x001 1.21+0.03 1.73x0.04 2.58x002 2.780.06 3.90x0.04
Tor-2 DIRECT COMBINATION 0.44+0.00 0.54+001 0.16+0.00 0.57+0.01 0.97+0.00 1.96+0.02 1.60=0.00 2.98+0.01
Tor-3 DIRECT COMBINATION 0.45+0.00 0.55+0.00 0.17+0.00 0.63+0.01 0.97+0.00 1.97 +o0m 1.73+0.02 3.25+0.10
Topr-2 OPTIMISED COMBINATION 0.43+0.00 0.54 +0.00 0.17+0.01 0.53+0.01 0.98+0.01 2.00+0.02 1.58+0.m 2.96+0.02
Topr-3 OPTIMISED COMBINATION 0.44+0.00 0.55+0.00 0.21+0.00 0.57+0.00 0.99+0.01 1.93+0.03 1.63+0.0 3.25+001

Table 8: CV classification: NLL (J) comparison on in-distribution (ID) and out-of-distribution (OOD) test
sets and with tuned hyperparameters.

. Scores Ranks
Noise Type
ID 00D Sketch ID OOD Sketch

No NOISE 54.15+0.36 75.65+019 89.61+035 13.0 13.0 16.0
INPUT WEAK AUG. 39.73+027 67.73+013  85.90+0.56 5.0 6.0 6.0
INPUT GAUSSIAN 53.28+0.24 75.12+006 89.29+007 10.0 10.0 13.0
INPuT ODS 66.47+1518  82.46+s72  89.54+0.61 17.0 17.0 15.0
INPUT AUGMIX 42.49+024  61.58+016 83.12+0.23 6.0 5.0 4.0
INPUT-TARGET MI1xUPp 54.02+053  75.33+04a  89.27x000 12.0 11.0 12.0
LABEL SMOOTHING 52.47+021  73.96+015 88.15x0.s 9.0 9.0 9.0
ACTIVATION GAUSSIAN 53.96+016  75.45+014  89.01x0s5 11.0 12.0 10.0
AcTIVATION DROPOUT 43.264035  69.32+032  87.60+0.61 7.0 7.0 8.0
GRADIENT GAUSSIAN 59.99+038  80.15+021 92.16+016 16.0 16.0 17.0
MODEL 49.66+031  72.444015 86.98+0.15 8.0 8.0 7.0
WEIGHT GAUSSIAN 54.20+0.11 75.71+013  89.46+032 14.0 15.0 14.0
WEIGHT DROPCONNECT 54.33+070  75.70+043 89.24+027 15.0 14.0 11.0
ToP-2 DIRECT COMBINATION 37.18+004  58.16+012 82.52+005 3.0 2.0 2.0
Topr-3 DIRECT COMBINATION 37.43+012  B58.73x019  83.46+0.17 4.0 3.0 5.0
Tor-2 OPTIMISED COMBINATION  36.88+008  57.90+024  82.30+0.15 2.0 1.0 1.0
ToP-3 OPTIMISED COMBINATION  36.59+00s  60.36+017  83.02+0.46 1.0 4.0 3.0

Table 9: TinyImageNet classification: Error (|, %) comparison on in-distribution (ID) and out-of-distribution
(OOD) and Sketch test sets and with tuned hyperparameters.
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. Scores Ranks
Noise Type
ID (0]0)D} Sketch ID OOD Sketch

No NOISE 16.43+0.27 10.11+011 8.67+046 14.0 4.0 5.0
INPUT WEAK AUG. 6.49+0.2s 11.464025  18.10+052 4.0 8.0 10.0
INPUT GAUSSIAN 15.96+1.37 10.15+0.45 7.53+113  12.0 6.0 3.0
INPUT ODS 26.97+1911  28.20+2653 11.31+1a  16.0 16.0 9.0
INPUT AUuGMIX 4.87+o031 15.78+031  20.08+0s2 3.0 11.0 11.0
INPUT-TARGET MIxUp 16.33+1.40 10.26+032 7.28+106 13.0 7.0 2.0
LABEL SMOOTHING 29.45+017 16.62+0.03 5.28+021 17.0 12.0 1.0
ACTIVATION (GAUSSIAN 14.77+076 9.83+0.29 9.04+0.99 9.0 2.0 7.0
AcCTIVATION DROPOUT 10.31+0.66 20.13+086  34.71x23s 6.0 14.0 15.0
GRADIENT GAUSSIAN 23.56+024  34.331022 47.82+12¢ 15.0 17.0 17.0
MODEL 10.80+0.24 9.01+0.03 9.90+0.12 7.0 1.0 8.0
WEIGHT (GAUSSIAN 14.95+1.03 9.98+0.33 8.99+190 10.0 3.0 6.0
WEIGHT DROPCONNECT 15.50+0.83 10.12+035 7.76+072 11.0 5.0 4.0
TopP-2 DIRECT COMBINATION 4.04+0.27 15.694031  25.12+001 2.0 10.0 13.0
TopP-3 DIRECT COMBINATION 13.05+1.00 22.67+196  39.54+043 8.0 15.0 16.0

Topr-2 OPTIMISED COMBINATION 3.21+0.39 15.33+005  24.93+123 1.0 9.0 12.0
Topr-3 OPTIMISED COMBINATION 9.90+0.42 20.11+026  34.64+0.59 5.0 13.0 14.0

Table 10: TinylmageNet classification: ECE ({,%) comparison on in-distribution (ID) and out-of-
distribution (OOD) and Sketch test sets and with tuned hyperparameters.

. Scores Ranks
Noise Type
ID OO0Db Sketch ID OOD Sketch

No NOISE 2.80+0.02 3.90+0.01 4.68+001 14.0 14.0 8.0
INPUT WEAK AUG. 1.84+0.02 3.464+0.02 4.694+0.02 5.0 6.0 9.0
INPUT GAUSSIAN 2.75%0.06 3.86+0.02 4.65+002 10.0 9.0 5.0
INPUT ODS 4.79+2.79 6.23+3.27 4.72+006 17.0 17.0 12.0
INPUT AUGMIX 1.87+0.01 3.14+0.01 4.52+0.01 6.0 3.0 1.0
INPUT-TARGET MIxUp 2.79x0.07 3.88+0.01 4.66+001  13.0 11.0 6.0
LABEL SMOOTHING 3.25+0.02 4.15+0.01 4.70+000 16.0 15.0 10.0
ACTIVATION GAUSSIAN 2.74+0.02 3.87+o.01 4.64+0.03 9.0 10.0 3.0
ACTIVATION DROPOUT 1.97 1002 3.69+0.05 5.48+0.19 7.0 8.0 15.0
GRADIENT GAUSSIAN 3.20+0.02 5.36+0.03 7.53+011  15.0 16.0 17.0
MODEL 2.38+0.01 3.64+0.01 4.54+0.01 8.0 7.0 2.0
WEIGHT GAUSSIAN 2.76+0.03 3.89+0.02 4.67+005 11.0 12.0 7.0
WEIGHT DROPCONNECT 2.78+0.06 3.90+0.04 4.64+002 12.0 13.0 4.0
Topr-2 DIRECT COMBINATION 1.60+0.00 2.98+0.01 4.72+0.09 2.0 2.0 13.0
Topr-3 DIRECT COMBINATION 1.73x0.02 3.25x0.10 5.75%0.03 4.0 5.0 16.0
Topr-2 OPTIMISED COMBINATION 1.584+0.01 2.96+0.02 4.71+0.05 1.0 1.0 11.0
Topr-3 OPTIMISED COMBINATION 1.63+0.01 3.25+0.01 5.22x0.07 3.0 4.0 14.0

Table 11: TinylmageNet classification: NLL (]) comparison on in-distribution (ID), out-of-distribution
(OOD) and Sketch test sets and with tuned hyperparameters.

Metric ID vs OOD ID vs SKETCH OOD vs SKETCH

ERROR 0.912+0.000 0.794 +0.000 0.824+0.000
ECE 0.118+0542 -0.397 £o0.027 0.397+0.027
NLL 0.878=+0.000 0.029+0.903 0.081 +0.650

Table 12: TinyImageNet classification: Kendall Tau correlation between ID, OOD and Sketch rankings of
different noise types.
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. CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID (0]0)D} ID (0]0)D} ID OO0D
No NoIsSE 16.09+01s  30.81+076  40.97+0.40 61.56+0.11 54.70+081  75.96+052
INPUT WEAK AUG. 7.99+007  27.60x042  24.03+0.09 52.82+013  39.60+026 67.41+002
INPUT GAUSSIAN 16.72+013  30.28+0s5  41.07x025 61.04+014  54.01+to60 75.31+0.33
INnPUuT ODS 15.79+013  29.54+0m 41.13+043 60.43+030  52.77+os1  74.61+0n
INPUT AUGMIX 10.26+00¢  20.95+006  30.18+0.46 45.94+020  40.04+020 60.67+0.15
INPUT-TARGET MIxUPp 16.90+017  32.62+036  39.04+0.30 58.48+00s  51.49+027  72.87+012
LABEL SMOOTHING 17.18+013  31.10+06s  42.00+009  61.49+030 52.33+014  73.95+008

AcCTIVATION GAUSSIAN 16.34+015  30.52+079  38.98+0.19 59.70+022  52.49+023 74.62+02
AcCTIVATION DROPOUT 12.45+012  27.90+010  31.58=0.54 56.38+036  51.85+010 74.08+0.01

GRADIENT GAUSSIAN 18.70+015  34.04+049  47.64+03 67.79+022  55.91+025  76.96+0.06
MODEL 13. 114025  32.40+027 79.31+27s5  87.90+1570 48.86+013  72.07+o12
WEIGHT GAUSSIAN 16.54+011  30.86+020  37.14x0.19 58.32+04s  52.88+045 74.82+01s

WEIGHT DROPCONNECT  16.79+02¢  28.80+0s0 41.18+0s56 61.39+002  53.67+x0190  75.28+0.14

Table 13: CV classification: Error ({,%) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with hyperparameters transferred across datasets.

. CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID (0]0)D) ID 00D
No Noise 9.76+007  20.73x067 12.77+0ss 10.73+03s 20.11+225 11.66+063
INPUT WEAK AUG. 5.40+000  20.98+0.62 3.65+03s  11.12+059 5.97+040 11.75x0.1s
INPUT GAUSSIAN 10.39+015  20.21x076 12.81+025 10.66+016 16.74+067  10.72x0.16
InpuT ODS 9.89+012  20.40x075 11.18+21s  10.28+107  15.981037 10.52+022
INPUT AUGMIX 5.53+00s  11.65+0.07 8.94+0.07 8.86+0.05 3.97+020 15.43+053
INPUT-TARGET MIixUp 6.27+0.5 81214020 14.76+04s  10.991006 19.33+027  10.08x032
LABEL SMOOTHING 1.65+0.20 6.05+046 21.53+030 15.64+020 27.18x02r 15.49+0mn1
ACTIVATION GAUSSIAN 10.03+006  20.36+0.69 5.07+0.19 9.29+035  14.04+072 9.88+0.11
ACTIVATION DROPOUT 9.414017  21.79+0m1 7.94+03 19.81+047  16.67+007  11.00x012
GRADIENT GAUSSIAN 12.77+020 24.59+050 8.38+033  18.02+019 13.41x07 10.07x0.14
MODEL 7.53+026 21.33+036 0.80+1.10 4.07+573  14.45+023  10.68x0.07
WEIGHT (GAUSSIAN 10.05+011  20.70+023 11.79+120 22.28+177  15.55+055  10.38+0.30

WEIGHT DROPCONNECT  10.93+026 19.75+06r 11.24+070 9.93+01s  18.10+020 11.11x0.10

Table 14: CV classification: ECE ({, %) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with hyperparameters transferred across datasets.
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. CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID (0]0)D) ID O0OD
No NoOIsSE 0.71x001 1.55+0.05 1.88+0.02 2.87+00m 2.96+0.12 3.99+0.06
INPUT WEAK AUG. 0.40=0.00 1.84 +0.00 1.02+0.01 2.4510.02 1.80+0.01 3.43+x0.02
INPUT GAUSSIAN 0.72+0.01 1.50+0.06 1.89+0.01 2.84 100 2.81+0.06 3.91+0.03
INnrPUuT ODS 0.71+0.00 1.55+0.07 1.87+0.07 2.80+0.05 2.72+0.02 3.85+0.00
INPUT AUGMIX 0.39x0.00 0.84+0.00 1.30+0.01 2.02+0.01 1.73+0.01 3.10x0.02
INPUT-TARGET MIxUp 0.56+0.01 1.04+0.02 1.71+0.01 2.59+0.00 2.62+0.02 3.65+0.01
LABEL SMOOTHING 0.56+0.00 1.01+0.02 2.16+0.01 3.04 +0.01 3.16+0.00 4.10+0.01
ACTIVATION (GAUSSIAN 0.70+0.01 1.51+0.06 1.66+0.01 2.73+0.02 2.64+0.03 3.81+0.02
ACTIVATION DROPOUT 0.74+0.02 1.96+0.02 1.24+0.02 2.69+0.03 2.70+0.01 3.83+0.00
GRADIENT GAUSSIAN 0.93+0.01 1.99+0.04 1.93+0.01 3.20+0.02 2.83+0.02 3.98+0.01
MODEL 0.52x0.00 1.43+0.02 3.59+1.44 4.07+075 2.46+00m 3.69+0.01
WEIGHT GAUSSIAN 0.72+001 1.54+0.03 1.54+0.03 2.81+0.07 2.72+0.04 3.86+0.02
WEIGHT DROPCONNECT 0.79+0.01 1.48+0.06 1.86+0.01 2.85+0.00 2.83+t0.01 3.92+0.00

Table 15: CV classification: NLL () comparison on in-distribution (ID) and out-of-distribution (OOD) test
sets and with hyperparameters transferred across datasets.

. SVHN CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID OO0Db ID OO0Db
No Noise 5.12+0.13 9.20+010 43.87+04s 61.251+046 53.63x017  75.20+032
INPUT WEAK AUG. 4.13+0.10 8.51+023 27.33x035 51.09+01s 38.21+024 64.75+02
INPUT GAUSSIAN 5.01+0.0s 9.09+006 43.05+035 58 7lxos2 54.15+150 T74.61+1.00
INPUT AUGMIX 3.51%0.05 8.27+004  30.23x006 45.51x017  42.05+020 59.93x0.10
INPUT-TARGET MIxUp 5.58+012  12.75+011  43.93+06s  59.98+023 52.95+126 73.82+054
LABEL SMOOTHING 5.04+0.03 8.88+001  42.99+036 57.27+043  5H3.77Txo32 74.25+0n
ACTIVATION GAUSSIAN 5.14+0.0s 9.17+006 43.74x031  59.291065 56.32+205 76.49+123
AcCTIVATION DROPOUT 4.37 +0.02 8.16+004 42.89+090 58.26+031 42.47+035 67.78=025
GRADIENT GAUSSIAN 6.25+010 11.43+014  44.39x073  59.56x0s7  57.92x075  T7.81t034
MODEL 3.98+0.02 8. 114004 37.14+033 56.97x+016 47.11x053 69.76+0.09
WEIGHT GAUSSIAN 5.04+0.04 9.08+006 44.28+031  59.84+00s 5H4.1lx2a1  T4.52+142
WEIGHT DROPCONNECT 5.11+0m 9.03+011  45.75+080 59.71+115 56.44+341 76.12+255

Table 16: CV classification: Error (|, %) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with hyperparameters transferred across architectures.
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. SVHN CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID OO0Db ID O0OD
No Noise 2.73+0.10 5.13+0.06 5.76+0.34 7.50+011  14.68+047 9.93+0.0s
INPUT WEAK AUG. 2.66+0.05 5.75x0.09 6.33+032  15.26+0s0 8.20+1.23 9.88+0.38
INPUT GAUSSIAN 2.68+0.05 5.09+0.03 5.07+0.61 9.59+163  13.79+0.49 8.75+0.46
INPUT AUGMIX 1.46+0.04 3.04 +o0.07 6.56+071 14.17+059 6.23+063 16.60+0.23
INPUT-TARGET MIxUpP 5.61+119 5.27+0.90 2.68+0.2 6.77+043 12.24+4082 8.32+0.10
LABEL SMOOTHING 0.95+0.07 1.16+003  10.18+2s4 8.54+172  17.47 1022 9.76+0.12
ACTIVATION GAUSSIAN 2.75+0.05 5.11+007 5.45+123  10.46+17s  10.66+363 8.42+0.89
ACTIVATION DROPOUT 3.03x0.02 5.72x0.02 5.49+032  10.00+041 14.68+017 25.16+075
GRADIENT (GAUSSIAN 3.61+011 7.07+015 5.59+120 11.16+173  21.10+045 31.33+035
MODEL 2.38+0.05 4.78+0.04 7.59+052 13.21+040 5.63+031  10.34+0.1
WEIGHT (GAUSSIAN 2.67+0.03 5.06+0.02 5.30+0.20 9.87+053 12.42+087 8.24 1034

WEIGHT DROPCONNECT 2.91+0.0s 5.38+0.07 6.98+13 11.51+160 11.421214 7.99+052

Table 17: CV classification: ECE ({,, %) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with hyperparameters transferred across architectures.

. SVHN CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID OO0Db ID OO0Db
No Noise 0.23+0.01 0.41+0.00 1.83+003 2.69+0.02 2.72+0.03 3.86+0.02
INPUT WEAK AUG. 0.23+0.00 0.48+0.00 1.09+0.01 2.36+0.02 1.84+0.05 3.28+0.04
INPUT GAUSSIAN 0.23+0.00 0.41+0.00 1.75+003 2.56+0.02 2.67+0.08 3.76+0.06
INPUT AUGMIX 0.160.00 0.31%0.00 1.19+00m 2.05%0.00 1.90+0.01 3.05x0.01
INPUT-TARGET MIxUp 0.24+00m 0.46+0.01 1.76+0.03 2.58+0.01 2.56+0.03 3.68+0.03
LABEL SMOOTHING 0.19+0.00 0.31+0.00 1.99+0.06 2.65+0.06 2.82+0.02 3.86+0.01
ACTIVATION GAUSSIAN 0.23+0.00 0.41%0.00 1.78+0.02 2.59+0.04 2.72x0.19 3.84+0.09
AcCTIVATION DROPOUT 0.26+0.00 0.48=0.00 1.76+0.04 2.55+0.01 2.03+0.00 3.70+0.04
GRADIENT (GAUSSIAN 0.30+0.01 0.57x0.02 1.79+0.03 2.60+0.04 2.94 1005 4.79+0.04
MODEL 0.18=0.00 0.35%0.00 1.59+0.01 2.67+0.01 2.10+0.02 3.46+0.00
WEIGHT GAUSSIAN 0.23+0.00 0.40=0.00 1.81+0.02 2.61+t00m 2.63+013 3.74+0.09

WEIGHT DROPCONNECT 0.24+00m 0.43+0.0m 1.87+0.04 2.61+0.04 2.73+0.16 3.82+0.15

Table 18: CV classification: NLL (]) comparison on in-distribution (ID) and out-of-distribution (OOD) test
set and with hyperparameters transferred across architectures.

. Wine Toxicity Abalone Students Adult
Noise Type
ID 00D ID OO0D ID OO0D ID OO0D ID OO0D

No Noise 35.73+220  36.37x201  47.06+s32 44.98+710  43.30+020  43.341020 65.40+4ss  65.89+372  15.541025  15.73+010
INPUT GAUSSIAN 35.944043  36.284215 47.06+s32  44.78+726  43.30+04s  43.53+026 65.40+4ss  65.814se2 15582042 15.7410s7
InpuT ODS 35.83+161  36.17+155  48.044555 45.65+541  43.38+073  43.61+060  64.56+373  65.74+s330  15.47+030  15.67+0s
INPUT-TARGET MIXUP 38.02+0s2  38.12+0s0  50.98+500  46.47+420  43.46+045  43.55+040  65.40+260 66.13+257  15.28+033  15.44+033
LABEL SMOOTHING 35.52+237  36.05+23  50.00+116  46.59+120  43.221020 43.41+0210  64.98+1430 65.69+s52  15.55+035  15.74+0m
ACTIVATION GAUSSIAN 35.83+111 36.12+100  47.06+s32 44.82+745  43.22+051  43.41+020  64.56+45  66.46+43s  15.77+0a0  15.91+02
ACTIVATION DROPOUT 36.04+225  36.40+181  56.86+15.62  56.27+1536  43.54+108  43.69+106  T1.73233 7244435 14.82103 14.92+0m
GRADIENT GAUSSIAN 32.60+053  33.97+110  50.00+416  49.10+122  43.74x0m1  43.86+011  68.78x500 68.56+460 15.38z0m  15.52+0.20
MODEL 37.92+12s  38.15+131  45.10+601  43.49+4616 43.42+020 43.66+026  65.82+451  65.86+357  14.72+046  14.81+03s
WEIGHT GAUSSIAN 35.52+105  36.16+175  50.00+6.35 49.06+5.41  43.10+030  43.36+020 64.98+4ss  66.80+425 15.13x0s  15.23+024
WEIGHT DROPCONNECT 38.85+053  38.99+077  47.06+s.32 44904657 43.42+07s  43.36+050  64.56+151  66.58+140  14.93+032  15.04+020
Topr-2 DIRECT COMBINATION 37.50+155  37.88+128  46.08+500  44.00+s517  43.18z06s  43.41+067  64.56+45  65.82+360 14.61+030  14.77+02r
Topr-3 DIRECT COMBINATION 38.23+1035  38.461001  31.37x7m 31.37+772 43.06+0ss  43.39+0s2  69.20+260 69.35+221  14.8320s  14.91+020
Topr-2 OPTIMISED COMBINATION ~ 37.60+212  37.79+236  50.00+6s5  47.02+507  43.22+056  43.40+032  65.82+451  66.23+s77  14.64+0s5  14.74x0ss
Topr-3 OPTIMISED COMBINATION ~ 39.90x20s  39.96x1s0  49.02x60s  44.47x756  43.26x006  43.56+041  82.70xs500  82.75xs55s  14.64x0s2  14.74x0ss

Table 19: Tabular data classification: error (J, %) comparison on in-distribution (ID) and out-of-distribution
(OOD) test sets and with tuned hyperparameters.
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. ‘Wine Toxicity Abalone Students Adult
Noise Type
ID 00D ID OO0D ID 00D ID 00D ID OO0D

No Noise 8.75+1.31 9.07+096  45.78+s12 44.18+6.50 3.94+050 4.19+061  12.46+202  13.81+217 3.47+020 3.85+0.31
INPUT GAUSSIAN 8.56+0.60 8.82+115  45.84+4sa0  43.93+707 3.60+0.11 4.05+067  13.36+040  14.37+168 3.50+0.44 3.84+0.42
InpuT ODS 5.75+0m 6.02+052  42.82+417  39.93+s67 3.04+075 3.55+10  14.04+235  14.07+177 3.64+0.46 3.89+0.41
INPUT-TARGET MIXUP 4.43+077 4.76+0r7  43.18+518  41.224380 3.41+100 3.86+002  11.072371  11.744310 2.79+036 3.06+0.43
LABEL SMOOTHING 4.82x06 5.47+160  42.08+415  38.75+45 2.7T+07 3.42+08s  12.69+250  13.81+10s 3.32z032 3.62+0.36
ACTIVATION GAUSSIAN 9.27+1.24 9.52+112 46.46+5.05 44114704 3.17+0.96 3.79+0s7  11.911096  13.62+0.40 3.74+057 4.05+0.56
ACTIVATION DROPOUT 6.93+1.21 7.26+151  23.26+1688 23.81+16.28 3.48+1.96 3. 754155 9.75+205 9.25+3.16 0.95+0.06 1.10+0.10
GRADIENT GAUSSIAN 16.96+10s  18.15+156  48.32+315  48.00+0.0 5.30+157 5.87+1n 17.58+100  18.03+4.63 2.81+053 3.13+052
MODEL 4.73+173 5.30+136  39.66+295 37.93 4567 2.80+1.00 3.40+000  12.352263  13.65+1.00 1.49+05 1.62+043
WEIGHT GAUSSIAN 9.56+1.17 9.36+135  48.7T+am  46.12+470 3.48z055 3.90+051 12272118 13.49+07 2.36+025 2.61+0.22
WEIGHT DROPCONNECT 5.65+3.31 5.26+255  46.47+700  44.01+6s2 3.72+147 3.96+112  12.73+163  13.75+073 1.70+0.40 1.92+041
Topr-2 DIRECT COMBINATION 4.58+0.47 4194042 32.7Tx17s 32934241 2.80+0.51 3.07+0s6  11.78+143  11.99+0.40 1.39+033 1.50+032
Topr-3 DIRECT COMBINATION 3.7T+0.90 3.95+062  15.99+0s7 16.13+0.60 2.65+151 2.88+120 12444168 12.014135 0.95+0.21 1.10+0.10
Topr-2 OPTIMISED COMBINATION 5.01+116 5.51+10r  45.30+7.01 43.41 4621 2.98+0.3 3.69+0s7  10.68+062  11.72+0.08 1.25+038 1.43+035
Topr-3 OPTIMISED COMBINATION 7.39+1.06 7.26+145  38.88+6.65 36.78+6.77 3.08+131 3.62+0.02 2.56+1.52 2.70+152 1.17+010 1.38+0.23

Table 20: Tabular data classification: ECE (|, %) comparison on in-distribution (ID) and out-of-distribution
(OOD) test sets and with tuned hyperparameters.

. Wine Toxicity Abalone Students Adult
Noise Type
ID OO0D ID OO0D ID OO0D ID OO0D ID OO0D

No NoIsE 0.94+0.05 0.95+0.04 4.85+023 4.87+027 0.84+0.02 0.86+0.02 1.87+0.0s8 1.98+0.07 0.35+0.01 0.36+0.01
INPUT GAUSSIAN 0.94+005 0.95+005  4.85x027  4.87x02s  0.84x002 0.86:002 1.87x0.0s 1.97+00r  0.34400 0.36001
InpUT ODS 0.91+005 0.92+0.05 2.20+0.33 2.35:+0.30 0.84+0.02 0.85+0.02 1.87+0.08 1.98+0.07 0.35+0.01 0.36+0.01
INPUT-TARGET MIXUP 0.91+0.01 0.91+0.01 2.39+007 2.44+010 0.84+0.02 0.86+0.02 1.88+0.01 1.96+0.04 0.34+001 0.35+0.01
LABEL SMOOTHING 0.93+0.014 0.94+0.01 1.76+022 1.78+031 0.84+0.02 0.85+0.02 1.87+0.0s8 1.97+007 0.34+001 0.35+0.01
ACTIVATION GAUSSIAN 0.94+0.05 0.96+0.05 4.78+0.26 4.82+0.30 0.84-+0.02 0.86+0.02 1.90+0.00 2.00+0.08 0.35+001 0.36+0.01
ACTIVATION DrROPOUT 0.92+0.05 0.93+0.05 1.03+0.24 1.03+023 0.84+0.02 0.85+0.02 2.23+0.01 2.25+0.05 0.32+001 0.32+0.01
GRADIENT GAUSSIAN 1.26+0.00 1.30+0.0s 5.41+016 5.65+0.05 0.86-+0.03 0.88+0.01 1.95+0.06 2.05+0.05 0.34+0.01 0.35+0.01
MODEL 0.92+0.04 0.93+0.04 2.06+0.37 2. 144043 0.84+0.02 0.85+0.02 1.87+0.0s 1.98+0.07 0.31+0.01 0.32+0.01
WEIGHT GAUSSIAN 0.95+0.05 0.96+0.05 3.02+0.20 3.15+025 0.84+0.02 0.86+0.02 1.91+00s 2.01+0.08 0.33+0.01 0.34+0.01
WEIGHT DROPCONNECT 0.94+0.04 0.94+0.04 4.82+0a17 4.83+023 0.84+0.02 0.85:+0.02 1.91x0.00 2.01+0.08 0.32:+00 0.33+0.01
Topr-2 DIRECT COMBINATION 0.94+0.03 0.95+0.03 1.57+021 1.62+027 0.84+0.02 0.85+0.02 1.87+0.06 1.97+005 0.31+00 0.32+0.01
Topr-3 DIRECT COMBINATION 0.94+0.03 0.95+0.03 0.93+0.22 0.93+0.22 0.84+0.02 0.84+0.02 2.20+0.05 2.23+0.05 0.32+001 0.32+001
Topr-2 OPTIMISED COMBINATION 0.92+0.05 0.93+0.014 2.47+0m 2.50+0.45 0.84+0.02 0.85+0.02 1.86+0.05 1.96+0.05 0.31+001 0.32+001
Topr-3 OPTIMISED COMBINATION 0.96+0.01 0.96+0.01 2.05+0.27 2.25+0.31 0.84+0.02 0.85+0.02 2.54+015 2.54+0.14 0.31+001 0.32+001

Table 21: Tabular data classification: NLL (J) comparison on in-distribution (ID) and out-of-distribution
(OOD) test sets and with tuned hyperparameters.

. NewsGroup SST
Noise Type
GP-CNN Transformer GP-CNN Transformer

No NOISE 35.67+1.13 36.56+0.83 19.15+0.75 21.604+0.24
INPUT GAUSSIAN 35.44 o057 36.59+0.54 21.14+0.33 21.52+0.24
InpuT ODS 33.56+0.33 34.44+0.74 18.46+1.03 21.5241.22
INPUT-TARGET MI1xUp 35.44+0.78 36.70+0.92 18.85+0.11 21.33+041
LABEL SMOOTHING 35.59+0.69 36.56+1.10 21.75+0.53 21.29+0.3s
ACTIVATION GAUSSIAN 35.56+1.16 36.44 +0.87 19.61+1.06 21.6440.24
AcTIVATION DROPOUT 39.19+0.92 36.48+0.20 19.61+0.25 21.02+011
GRADIENT (GAUSSIAN 40.56+0.18 36.52+0.59 21.90+0.82 21.41x0.01
MODEL 40.22+0.64 36.52+0.76 19.57+0.50 21.67+0.25
WEIGHT GAUSSIAN 35.48+0.53 36.89+0.79 20.18+0.19 21.564+0.32
WEIGHT DROPCONNECT 35.19+0.69 37.04+0.6s 20.15x0s1 21.18+0.39
Topr-2 DIRECT COMBINATION 39.52+0.69 36.41+052 18.77+1.00 20.64+0.50
Topr-3 DIRECT COMBINATION 36.96+0.73 34.67+0.74 17.58+0.44 20.22+0.61
Tor-2 OPTIMISED COMBINATION 38.04+1.12 36.52+1.30 20.41+x0.50 21.06+0.33
Tor-3 OPTIMISED COMBINATION 36.00x0.48 35.19+037 18.85x0.78 19.07+o0.61

Table 22: NewsGroup NLP classification: Error ({, %) comparison on in-distribution (ID) test set and with
tuned hyperparameters.
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. NewsGroup SST
Noise Type
GP-CNN Transformer GP-CNN Transformer

No NOISE 5.12+053 3.47+0.98 13.99+047 11.61+307
INPUT GAUSSIAN 4.78+1.30 3.59+0.83 15.14+0.7 11.321372
InpUT ODS 2.57+0s1 7.99+0.59 11.80+0.93 14.70+2.64
INPUT-TARGET MI1xUp 5.07 +0.50 2.54 4107 7.76+0.32 11.75+355
LABEL SMOOTHING 3.78=0.50 4.13+0.94 9.10+0s7 10.26+3.30
ACTIVATION GAUSSIAN 5.75+0.50 3.42+1.05 13.99+1.22 11.39+37m1
AcCTIVATION DROPOUT 7.19+1.20 2.26+0.20 11.50+0.11 7424104
GRADIENT (GAUSSIAN 24.26+1.01 3.24+1.07 17.40+0.93 12.20+3.46
MODEL 2.91+0.90 3.55+0.84 14.00=+0.50 11.16+3.62
WEIGHT GAUSSIAN 4.57 +0.48 4.01+0.79 14.77+0.04 12.09+3.6s
WEIGHT DROPCONNECT 5.41+x076 4.43 1072 16.08+1.02 11.27 1301
Tor-2 DIRECT COMBINATION 8.25+0.67 2.91+0.33 4.55+1.11 6.40+0.03
Topr-3 DIRECT COMBINATION 13.76+0.67 11.19+0ss 2.12+07s 8.70+2s5
Tor-2 OPTIMISED COMBINATION 3.44 105 3.07+0.52 8.86+0.38 8.02+212
Tor-3 OPTIMISED COMBINATION 2.75%x0.05 2.89x0.42 9.33+x0.90 9.18x0.61

Table 23: NewsGroup NLP classification: ECE (|, %) comparison on in-distribution (ID) test set and with
tuned hyperparameters.

Noise Type NewsGroup SST
GP-CNN Transformer GP-CNN Transformer

No NOISE 1.14+001 1.13+0.02 0.81+0.04 0.61+0.10
INPUT GAUSSIAN 1.12+0.01 1.13+0.02 0.85+0.05 0.59+0.00
INPUT ODS 1.03+0.00 1.10+0.01 0.62+0.02 0.73+0.12
INPUT-TARGET MIixUp 1.13x0.01 1.13+0.02 0.48x0.00 0.59+0.08
LABEL SMOOTHING 1.12+0.01 1.13+0.02 0.52+0.01 0.54+0.05
ACTIVATION GAUSSIAN 1.14 4001 1.13+0.02 0.83+0.03 0.59+0.09
ACTIVATION DROPOUT 1.18+0.01 1.11+002 0.55+0.01 0.48+0.01
GRADIENT (GAUSSIAN 1.87+0.07 1.13+0.02 1.11+0.06 0.60=+0.08
MODEL 1.21+0.01 1.13+0.02 0.85+0.02 0.59+0.00
WEIGHT GAUSSIAN 1.14+0.01 1.13+0.02 0.84 +0.02 0.62+0.11
WEIGHT DROPCONNECT 1.13+0.01 1.13+0.02 1.05+0.07 0.58=+0.07
Topr-2 DIRECT COMBINATION 1.19+0.01 1.12+001 0.43+0.02 0.46+0.01
Topr-3 DIRECT COMBINATION 1.18+0.01 1.15+0.01 0.40+0.01 0.51+0.04
Tor-2 OPTIMISED COMBINATION 1.14+0.02 1.12x0.01 0.51x0.01 0.49x0.02
Topr-3 OPTIMISED COMBINATION 1.09+0.01 1.10+0.01 0.48+0.02 0.50+0.01

Table 24: NewsGroup NLP classification: NLL (]) comparison on in-distribution (ID) test set and with
tuned hyperparameters.
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. Rotated CIFAR-100 WikiFace
Noise Type
ID OO0D ID O0OD

No Noise 0.03+0.00 0.13+0.01 0.03+0.00 0.04 +0.00
INPUT WEAK AUG. 0.03+0.00 0.13+0.01 0.03+0.00 0.04 +0.00
INPUT GAUSSIAN 0.03+0.00 0.14+0.01 0.04+0.00 0.05+0.00
INPUT AUGMIX 0.03+0.00 0.07=x0.00 0.03+0.00 0.04 +0.00
INpPUT-TARGET CMIXUP 0.03+0.00 0.09+0.00 0.04+0.00 0.04 +0.00
AcCTIVATION GAUSSIAN 0.03+0.00 0.14+0.01 0.04+0.00 0.04 +0.00
AcCTIVATION DROPOUT 0.03+0.00 0.14+0.00 0.04+0.00 0.05+0.00
GRADIENT GAUSSIAN 0.04 +0.00 0.11+0.00 0.04+0.00 0.04 +0.00
MODEL 0.04 +0.00 0.16+0.01 0.04+0.00 0.04 +0.00
WEIGHT GAUSSIAN 0.03+0.00 0.15+0.00 0.04+0.00 0.04 +0.00
WEIGHT DROPCONNECT 0.03+0.00 0.12+0.01 0.10+0.04 0.1140.04
Topr-2 DIRECT COMBINATION 0.03+0.00 0.08+0.00 0.04+0.00 0.04 +0.00
TopP-3 DIRECT COMBINATION 0.03+0.00 0.08+0.01 0.04+0.00 0.04 +0.00
Topr-2 OPTIMISED COMBINATION 0.03+0.00 0.06+0.00 0.03+0.00 0.04 +0.00
Topr-3 OPTIMISED COMBINATION 0.24+015 0.29+0.10 0.04+0.00 0.04 +0.00

Table 25: Rotated CV regression: MSE (J.) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.

. Rotated CIFAR-100 WikiFace
Noise Type
ID O0OD ID O0OD

No NoIsE -4.81+0.00 6.90+1.52 27.03+204¢  31.43+330
INPUT WEAK AUG. -4.60+0.06 3.41+053 -0.82+0.: 0.31+0.66
INPUT GAUSSIAN -4.67+011 7.57+2.14 27.96+266 31.50+215
INPUT AUGMIX -4.82+0.01 -1.70+0.04 0.78+027 -0.12+011
INPUT-TARGET CMIxUp -4.62+0.04 1.86+0.35 21.83+235 25.62+0.93
ACTIVATION (GAUSSIAN -4.27 +0.07 2.94 1018 14.93+100  17.61%1.01
ACTIVATION DROPOUT -3.81+055 1.04+0.59 -1.354+002  -0.53+0.36
GRADIENT (GAUSSIAN -3.70+0.00 -0.44+0.00 25.87+210  29.6943.75
MODEL -4.36+0.05 3.44+076 -1.08+0.03 -1.08+0.03
WEIGHT GAUSSIAN -4.23+012 2.53+0.36 4.42+0.10 5.65+0.60
WEIGHT DROPCONNECT -2.28+1.903 39.88+24.73 4.83+3.37 6.00+4.13
Topr-2 DIRECT COMBINATION -4.14 4023 -1.93+013 -1.344001  -1.15+0.02
Topr-3 DIRECT COMBINATION -4.21+0.07 -1.76+0.0 -1.3210010  -1.16+0.02
TopP-2 OPTIMISED COMBINATION  -4.27+0.03 -1.71+x0.05 -1.39+001  -1.121002
Topr-3 OPTIMISED COMBINATION 1.84 4273 0.57+0.s5 -1.344003  -1.07+0.10

Table 26: Rotated CV regression: NLL () comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.
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. Energy Boston Wine Yacht Concrete
Noise Type
ID 00D ID 00D ID 00D ID 00D ID (0]0)b]

NO NOISE 0.04il)(!“ 0405i(7l)(l 0.13i“(72 0.15i(! 02 0.25il)(!4 29442i27 71 0407i(7l)7 O.lGiUU’» 0.10i(! 01 0.10il)(!1
INPUT GAUSSIAN 0.04+0.00 0.05+0.00 0.11+0.02 0.13+0.02 0.25+001  29.39425.66 0.02+0.02 0.09+0.07 0.10+0.01 0.10+0.01
INPUT-TARGET CMIXUP 0.04+0.00 0.05+0.00 0.13+0.01 0.15+0.01 0.25+001  28.95425.23 0.15+0.7 0.19+0.16 0.10+0.00 0.11+0.00
ACTIVATION GAUSSIAN 0.04+0.00 0.05+0.00 0.13+0.03 0.15+002 0.25+0.04 29.57 +25.52 0.03+0.02 0.09+0.07 0.10+0.01 0.10+0.01
ACTIVATION DROPOUT 0.04+0.00 0.05+0.00 0.16+0.05 0.18+0.04 0.38+0.06 17.02+13.80 0.03+0.01 0.09+0.07 0.10+0.01 0.11+0.01
GRADIENT GGAUSSIAN 0.04+0.00 0.04 +0.00 0.24+0.13 0.29+011 0.25+0.01 28.34 42170 0.01+0.01 0.09+0.08 0.10+0.01 0.10+0.01
MODEL 0.04+0.00 0.05+0.00 0.13+0.02 0.15+0.02 0.25+004  29.41 42560 0.54+0.70 0.55+0.60 0.10+0.01 0.11+0.01
WEIGHT GAUSSIAN 0.04+0.00 0.05+0.00 0.12+0.04 0.15+003 0.254001  29.51 42577 0.02+0.01 0.06+0.05 0.10+0.01 0.10+0.01
WEIGHT DROPCONNECT 0.04+0.00 0.05+0.00 0.13+0.01 0.16+0.04 0.25+0.04 29.53+25.51 0.05+0.05 0.07+0.01 0.10+0.01 0.10+0.01
ToP-2 DIRECT 0.04+0.00 0.05+0.00 0.15+0.02 0.18+0.02 0.25+0.00 29.43+25.60 0.03+0.03 0.10+0.07 0.10+0.01 0.10+0.01
Top-3 DIRECT 0.04+0.00 0.05+0.00 0.13+0.02 0.15+0.02 0.25+001  29.5142560 0.04+0.03 0.09+0.06 0.10+0.01 0.11+0.01
Topr-2 OPTIMISED 0.04+0.00 0.05+0.00 0.13+0.02 0.16+0.03 0.25+004  29.3542555 0.01+0.01 0.07+0.06 0.10+0.01 0.10+0.01
Topr-3 OPTIMISED 0.04+0.00 0.05+0.00 0.14+0.0 0.17+0.01 0.25+0.04 29.31 42546 0.04+0.03 0.10+0.07 0.10+0.01 0.11+0.01

Table 27: Tabular regression: MSE ({) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.

. Energy Boston Wine Yacht Concrete
Noise Type
ID OO0D ID OOD ID OOD ID OOD ID OOD

No Noise -1.54+0.05 6.64+33s  -0.19+012 0.04+012  -0.22+00s 0.03+012  -1.18+022  10.45+1646 -0.56+010 -0.01+024
INPUT GAUSSIAN -1.55+0.03 6.55+153  -0.54+011  -0.40+01s  -0.2240.08 0.03+012  -1.46+019  -1.04+030 -0.53+011 0.21+041
INPUT-TARGET CMIXUP  -1.53+0.03 6.03+217  -0.42+012  -0.29+014  -0.19+000  81.984s822  -1.05+020 -0.87x031  -0.63+001  -0.26+0.26
ACTIVATION GAUSSIAN -1.56+0.03 6.64+032  -0.20+017 0.04+011  -0.22+0.08 0.04+010  -1.31x015  -1.21+01a  -0.56:+0.00 0.08+0.44
AcCTIVATION DROPOUT -1.53+0.05 4444200 -0.62+006  -0.59+0.00 0.01+0.05 0.03+00¢  -1.18+03s  -1.07+030  -0.58+0.0s 0.07+030
GRADIENT GAUSSIAN -1.56+0.07 8.61+3.30 0.55+0.79 0.80+0.9s8 -0.22+0.08 0.04+0.00 -2.04+0.30 -1.49+0.32 -0.55+0.09 0.13+0.43
MODEL -1.55+0.01 7.20+4332 -0.16+0.18 0.06+0.19 -0.22+0.08 0.03+0.11 -0.77T+113 0.15+0.50 -0.59+0.06 -0.05+0.45
WEIGHT GAUSSIAN -1.56+0.00 6.82+272 -0.36+0.18 -0.11+021 -0.2240.08 0.04+0.11 -2.08+0.51 -1.71+0.23 -0.54+0.08 0.14+030
WEIGHT DROPCONNECT  -1.55+0.03 5.53+12r -0.62+4005  -0.49+006  -0.2240.08 0.024012  -1.36+043  -1.254033  -0.57+o00s 0.07+035
Topr-2 DIRECT -1.55+0.04 6.09+2.35 0.32+0.10 0.63+030  -0.22+00s 0.024+011  -1.37+034 0.35+206  -0.57+0.10 0.11+032
Topr-3 DIRECT -1.53+0.03 4.53+251  -0.18+022 0.06+02¢  -0.22+0.0s 0.03+012  -1.82+067  -1.392022  -0.59+0.00 0.04+0.40
TopP-2 OPTIMISED -1.56+0.03 8.60+3.51 0.16+0.8 0.46+0.29 -0.22+0.08 0.03+0.11 -2.03+0.14 -1.5540.21 -0.57+0.00 0.22+055
Top-3 OPTIMISED -1.55+0.02 6.68+197  -0.27+046  -0.04x053  -0.22+0.08 0.03+012  -1.77+03s  -0.40+162  -0.60+0.07 0.17+061

Table 28: Tabular regression: NLL (]) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.

Noise Type Energy Wine Concrete
ID OO0D ID (0]0)D} ID OO0D

No NoIsE 0.03=0.01 0.03+0.01 0.21+0.01 37.20+33.29 0.09x0.01 0.10x0.01
INPUT GAUSSIAN 0.03+0.01 0.03x0.01 0.21+0.02 45.36+43.45 0.08x0.01 0.09+0.01
INPUT-TARGET CMIXUP 0.03+0.00 0.04+0.00 0.18+0.01 49.23+37.16 0.10+0.01 0.11+0.00
ACTIVATION (GAUSSIAN 0.03=0.01 0.03+0.01 0.22+0.01 43.40+45.61 0.09x0.02 0.10%0.01
AcTIVATION DROPOUT 0.03+0.01 0.03+0.00 0.24 +0.02 42.16+33.28 0.09+0.02 0.10x0.01
GRADIENT (GAUSSIAN 0.03+0.01 0.04+001  311.38+40517  1858.44 1258550 0.09+0.02 0.10+0.02
MODEL 0.03=0.00 0.04+0.00 0.21+0.01 37.68+326 0.11x0.01 0.12x001
WEIGHT GAUSSIAN 0.03+0.01 0.03x0.01 0.20+0.02 41.60=+410.06 0.09x0.02 0.10x0.01
WEIGHT DROPCONNECT 0.03+0.01 0.03+0.01 0.204+0.02 46.44 +50.10 0.09+0.02 0.10+0.01

Table 29: Tabular regression: MSE ({) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with hyperparameters transferred across datasets.
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Noise Type Energy Wine Concrete
ID OO0Db ID (0]0)D} ID O0OD

No Noise -1.70+011 1.24 1061 4.78+131 6.66+1.82 -0.54+0.15 0.32+0.69
INPUT GAUSSIAN -1.74+007 1.06+0.ss8 5.24 158 19.29+19.08 -0.40+0.15 0.23+0.47
INPUT-TARGET CMIXUP -1.66+0.10 0.42+130 -0.06+0.15 95014.61 413137019 -0.65+0.05 0.53+1.27
ACTIVATION GAUSSIAN -1.71+o0.09 0.51+1.20 1.84+125 177076.49+250421.18 -0.50+0.14 0.46+0.7a
AcCTIVATION DROPOUT -1.66+0.12 0.02+135  -0.27x0.05 -0.19+0.05 -0.56+0.11 1.19+207
GRADIENT (GAUSSIAN -1.70+011 5.71+6.29 1.97+1.94 2.06+2.03 -0.11x010 0.63+0.34
MODEL -1.64+002 -0.16+o064 4.68+1.33 6.22+131 -0.64+003 -0.49+0.17
WEIGHT GAUSSIAN -1.71+006 -0.26+0.33 4.51+162  206785.40+20033885 -0.55+007  -0.03x0.47

WEIGHT DROPCONNECT  -1.73+0.12 0.00=x0.39 0.37+0.43 37100.06 +52166.28 -0.67+013  -0.56+011

Table 30: Tabular regression: NLL () comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with hyperparameters transferred across datasets.

. Boston Yacht Concrete
Noise Type
ID O0OD ID 00D ID 00D

No NOISE 0.13+0.04 0.16+0.04 0.56+0.72 0.59+0.72 0.11+0.01 0.11+0.00
INPUT GAUSSIAN 0.13+0.03 0.15+0.03 0.55+0.75 0.59+0.72 0.10+0.01 0.11+0.01
INPUT-TARGET CMIXUpP 0.50+0.47 0.52+0.46 0.05+0.02 0.11+0.06 0.11+0.01 0.12+0.01
ACTIVATION GAUSSIAN 0.11+003 0.13+0.03 0.56+0.75 0.62+0.71 0.11+0.01 0.11+0.01
AcCTIVATION DROPOUT 0.17+o0.07 0.18+0.06 0.05+0.02 0.08+0.01 0.11+0.01 0.11+0.01
GRADIENT (GAUSSIAN 0.16+0.04 0.18=+0.04 0.02+0.01 0.06+0.01 0.11x0.01 0.11%0.00
MODEL 0.15+0.06 0.17+0.06 0.11+0.04 0.13+0.04 0.12+0.01 0.12+0.01
WEIGHT GAUSSIAN 0.12+0.04 0.14+0.03 0.03+0.00 0.07+0.02 0.11+0.01 0.11+0.00

WEIGHT DROPCONNECT 0.13+0.03 0.15+0.03 0.04 +0.02 0.10=x0.07 0.11+0.01 0.11+0.01

Table 31: Tabular regression: MSE (]) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with hyperparameters transferred across architectures.

. Boston Yacht Concrete
Noise Type
ID 00D ID 00D ID 00D

No NoisE -0.25+021  -0.01+017r  -0.42+0ss -0.02+0s0 -0.57+006 -0.02x054
INPUT GAUSSIAN -0.35+010  -0.17+009 -0.94+125 -0.72+100 -0.58=+0.0s 0.06+0.63
INPUT-TARGET CMIXUP  -0.09+020 -0.021025 -1.20+007 -1.06x011  -0.60+004 -0.251032
ACTIVATION GAUSSIAN -0.18=+0.66 0.02+072  -0.444093 -0.09+065 -0.56+007 -0.09+0.36
ACTIVATION DROPOUT -0.56+001  -0.54%004 -1.11x031 -0.81x011 -0.58=x0.07 0.08+0.66
GRADIENT GAUSSIAN 0.97+1.13 1.224116  -1.524043  -1.251017  -0.57+006  -0.02+0.54
MODEL -0.31+025  -0.10+019 -0.57+010 -0.56+011 -0.58+003 -0.33x015
WEIGHT GAUSSIAN -0.42+018  -0.28+01s  -1.62+031  -0.77+100 -0.56=+0.07 0.11+0.69

WEIGHT DROPCONNECT  -0.464000 -0.34+010 -1.72+031 -1.20+026 -0.55-+0.06 0.07+x0.60

Table 32: Tabular regression: NLL ({) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with hyperparameters transferred across architectures.
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(a) Error and ECE.

(b) Error and NLL.

K End weights

K Start weights

(c) Error and ECE on ID. (d) Error and ECE on OOD.

Figure 9: Input Random Crop, Horizontal Flip on CIFAR-10. Observations: Did not change the smoothness
of the 1D curves or the 2D metric landscape trajectory compared to no noise.
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Figure 10: Input Additive Gaussian on CIFAR-10. Observations: Changed the smoothness of the 1D curves
where NLL became less smooth and removed the bumps in ECE for « approaching the initial model. The
2D metric landscape trajectory did not change in comparison to no noise.
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Figure 11: Input ODS on CIFAR-10. Observations: Marginally changed the smoothness of the 1D curves.
The 2D metric landscape trajectory did not change in comparison to no noise.
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Figure 12: Input-Target MixUp on CIFAR-10. Observations: Both the NLL and ECE 1D curves changed in
comparison to no noise, and the 2D plots seem to explore wider valleys compared to no noise.
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Figure 13: Target Smoothing on CIFAR-10. Observations: The NLL became more aligned with the error,
not the ECE. The 2D plots show slightly more variation in the trajectory than no noise.
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Figure 14: Activation Additive Gaussian on CIFAR-10. Observations: Did not change the smoothness of
the 1D curves or the 2D metric landscape trajectory compared to no noise.
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Figure 15: Activation Dropout on CIFAR-10. Observations: Dropout narrowed the gap between 1D and

OOD results; nevertheless, the shape of the 1D curves is similar to no noise. The trajectories in 2D plots
did not seem to converge into a narrow local minimum.
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Figure 16: Gradient Gaussian on CIFAR-10. Observations: The 1D and 2D figures changed curvature and
shape drastically, and NLL and ECE follow a non-linear pattern. The 2D plots show a circular curvature,
perhaps suggesting difficulty in convergence.
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Figure 17: Model Shrink and Perturb on CIFAR-10. Observations: The 1D and 2D figures changed curvature
and shape drastically, and all metrics show a non-linear optimisation path as hypothesised. The point cluster
around centres created by shrinking and perturbing the weights.
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Figure 18: Weight Additive Gaussian on CIFAR-10. Observations: The 1D
shape. However, the difference between ID and OOD metrics became more
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Figure 19: Weight DropConnect on CIFAR-10.
curves or the 2D metric landscape trajectory compared to no noise.
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(a) Error and ECE.

(b) Error and NLL.

Figure 21: Input Additive Gaussian on Adult.
curves or the 2D metric landscape trajectory compared to no noise.
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Figure 22: Input ODS on Adult. Observations: Did not change the smoothness of the 1D curves or the 2D
metric landscape trajectory compared to no noise.

@ ID  -A 00D
70

60

Error [%]
38

=
&

30

s

(a) Error and ECE.

(b) Error and NLL.

«

(c) Error and ECE on ID.

P Surveighs P Endweights

n 288
2 22
nE 256
o1 F
184 20 _
£ g
@ 152 245
03 3 &
s 208
9% {2
“os &
6 176
3 160

0100 0075 0050 0025 0000 0025
«

(d) Error and ECE on OOD.

Figure 23: Input-Target MixUp on Adult. Observations: Did not change the smoothness of the 1D curves
or the 2D metric landscape trajectory compared to no noise.
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Figure 24: Target Smoothing on Adult. Observations: Did not change the smoothness of the 1D curves or
the 2D metric landscape trajectory compared to no noise.
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Figure 25: Activation Additive Gaussian on Adult. Observations: Did not change the smoothness of the 1D
curves or the 2D metric landscape trajectory compared to no noise.
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Figure 26: Activation Dropout on Adult. Observations: Changed the ECE curvature and made the NLL
plots smoother in the 1D case. In the 2D plots, the ECE and error appear aligned during optimisation. The
curvature of the 2D plots has changed and there is a higher alignment between the ECE and error.

~@- D -A 00D X D 8- 00D
07 K Sartweighs g End weight K Sertweighs  dp Endweighs
- 27 - 27
- a
0.0 N_ 66 00 2‘_. 66
. 2% B 25 Mo
E E E
A wE Ms 59 g5
“ o fe ol flo8
£ 36 2 36
o4 2 E e 2 ¢ e
06 6 2 05 6 B
o o U L U
o T o o oo o S o o om0
(a) Error and ECE. (b) Error and NLL. (c) Error and ECE on ID. (d) Error and ECE on OOD.

Figure 27: Gradient Gaussian on Adult. Observations: Did not change the smoothness of the 1D curves,
but the 2D trajectory appears more exploratory compared to no noise.
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Figure 28: Model Shrink and Perturb on Adult. Observations: Did not change the smoothness of the 1D
curves, but the 2D trajectory appears more exploratory compared to no noise.
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Figure 29: Weight Additive Gaussian on Adult. Observations: Did not change the smoothness of the 1D
curves or the 2D metric landscape trajectory compared to no noise.
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Figure 30: Weight DropConnect on Adult. Observations: Changed the ECE curvature and made the
NLL and ECE plots smoother in the 1D case. In the 2D plots, the ECE and error appear aligned during

optimisation.
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Figure 31: Input Additive Gaussian on WikiFace. Observations: Did not change the smoothness of the 1D

curves, or the 2D trajectory.
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Figure 32: Input Random Crop, Horizontal Flip on WikiFace. Observations: Surprisingly, the NLL starts
decreasing compared to MSE as the model is interpolated between the final and the initial model in the 1D
plots. The 2D plots demonstrate that the model was able to explore a deeper optimal from the start where
NLL was slower to converge than MSE.
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Figure 33: Input AugMix on WikiFace. Observations: Surprisingly, the NLL starts decreasing compared to
MSE as the model is interpolated between the final and the initial model in the 1D plots. The 2D plots
demonstrate that the model was able to explore a deeper optimal from the start where NLL was slower to
converge than MSE, and it did not converge in the optima from the perspective of NLL.
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Figure 34: Input-Target CMixUp on WikiFace. Observations: Did not change the smoothness of the 1D
curves, or the 2D trajectory appears more exploratory compared to no noise.
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Figure 35: Activation Additive Gaussian on WikiFace. Observations: Did not change the smoothness of the
1D curves, but the 2D trajectory appears more exploratory compared to no noise.
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Figure 36: Gradient Gaussian on WikiFace. Observations: Did not change the smoothness of the 1D curves,
but the 2D trajectory appears to align MSE and NLL. However, it seems that the optimisation missed a
local minimum during training.
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Figure 37: Model Shrink and Perturb on WikiFace. Observations: Due to shrinking and perturbation,
the experiment appears to converge in a narrow basin and as seed in the 1D plots, the optimisation was
completely non-linear and unrecoverable.
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Figure 38: Weight Additive Gaussian on WikiFace. Observations: The 1D curves look similar to no noise,
although with respect to a different scale for NLL. The 2D plots explore a similar trajectory to no noise;
however, the 2D landscape appears more distorted.
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Figure 39: Weight DropConnect on WikiFace. Observations: The 1D curves look similar to no noise,
although with respect to a different scale for NLL. The 2D plots explore a similar trajectory to no noise.
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Figure 40: No noise on Yacht.
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Figure 41: Input Additive Gaussian on Yacht. Observations: While the shape of the 1D curves looks similar
to no noise, the MSE and NLL magnitudes are different. The OOD NLL is substantially higher than the
OOD NLL for no noise. The 2D plots demonstrate a wider landscape of feasible solutions than no noise.
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Figure 42: Input-Target CMixUp on Yacht. Observations: While the shape of the 1D curves looks similar
to no noise, the MSE and NLL magnitudes are different. The 2D plots demonstrate a wider landscape of
feasible solutions than no noise.
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Figure 43: Activation Additive Gaussian on Yacht. Observations: While the shape of the 1D curves looks
similar to no noise, the MSE and NLL magnitudes are different. The 2D plots are close to the no-noise ones,
showing marginal differences.
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Figure 44: Activation Dropout on Yacht. Observations: The 1D curves look similar to no noise but Dropout
converged in a narrow valley, as demonstrated in the 2D plots.
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Figure 45: Gradient Gaussian on Yacht. Observations: The 1D curves remained unchanged except for the
magnitude of NLL or MSE. Nevertheless, the 2D plots show us that the optimisation trajectory significantly
differed from no noise where the landscape of potential optimal solutions was wider.
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Figure 46: Model Shrink and Perturb on Yacht. Observations: The model jumped between narrow valleys
as seed in the 2D plots and the 1D plots show smoother behaviour from the OOD perspective for MSE but
not NLL.
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Figure 47: Weight Additive Gaussian on Yacht. Observations: Did not change the smoothness of the 1D
curves or the 2D trajectory.
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Figure 48: Weight DropConnect on Yacht. Observations: While the shape of the 1D curves looks similar
to no noise, the MSE and NLL magnitudes are different. The 2D plots demonstrate a wider landscape of
feasible solutions than no noise.
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