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Abstract

How precisely does circuit wiring specify function? This fundamental question is
particularly relevant for modern neuroscience, as large-scale electron microscopy
now enables the reconstruction of neural circuits at single-synapse resolution
across many organisms. To interpret circuit function from such datasets, we must
understand the extent to which the measured structure constrains dynamics. We
investigate this question in the Drosophila head direction (HD) circuit, which
maintains an internal heading estimate through attractor dynamics that integrate
self-motion velocity cues. This circuit serves as a sensitive assay for functional
specification: continuous attractor networks are theoretically known to require
finely tuned wiring symmetries, whereas connectomes omit key cellular parameters
such as synaptic gains, neuronal thresholds, and time constants, and reveal that
biological wiring can be heterogeneous. We introduce a method that combines self-
supervised and unsupervised learning objectives to estimate unknown parameters
at the level of cell types, rather than individual neurons and synapses. Starting
from the raw connectivity matrix, our approach recovers a network that exhibits
continuous attractor dynamics and accurately integrates a range of velocity inputs,
despite minimal parameter tuning on a connectome that notably departs from
the symmetric regularity of an idealized ring attractor. We characterize how
deviations from the original connectome shape the space of viable solutions. We
also perform in-silico ablation experiments to probe the distinct functional roles of
specific cell types in the circuit, demonstrating how connectome-derived structure,
when augmented with minimal, biologically grounded tuning, can replicate known
physiology and elucidate circuit function.

1 Introduction

Recent advances in large-scale electron microscopy have enabled the reconstruction of neural circuits
at synapse-level resolution, producing dense connectomic datasets across organisms including C.
elegans (Cook et al., 2019), Drosophila (Scheffer et al., 2020b; Dorkenwald et al., 2024), and mice
(MICrONS Consortium, 2025). These datasets raise several fundamental questions: How precisely
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can circuit function be determined from its wiring? Can we do so in the absence of key membrane and
synaptic parameters such as cellular thresholds, gains, and time constants? Additionally, connectomes
provide detailed synaptic connectivity maps but may contain potential errors from the data pipeline,
including misalignment of electron microscopy sections and false positives or negatives in synapse
detection Scheffer et al. (2020a). Thus, individual connectomes represent partial and sometimes noisy
snapshots of the underlying biological networks that may fail to capture the necessary factors that
play a role in shaping circuit behavior.

We explore these questions in the Drosophila head direction (HD) circuit, a canonical example of
a continuous ring attractor network in biology (Kim et al., 2017; Green et al., 2017; Turner-Evans
et al., 2017) that maintains an internal estimate of animal heading by integrating angular self-motion
velocity inputs. Whereas theoretical studies of ring attractors (Skaggs et al., 1994; Zhang, 1996;
Redish et al., 1996; Xie et al., 2002) show that they require finely tuned connectivity to support bump
stability and smooth translation for velocity integration, we found that connectomic reconstructions
of this circuit exhibit asymmetries and heterogeneities. Moreover, the Drosophila HD circuit involves
∼ 10 distinct cell types — many more than are theorized to be necessary in theoretical ring attractor
models — raising open questions about the necessity and roles of specific circuit components.

Previous models of the HD circuit (Chang et al., 2023; Stentiford et al., 2024) have relied on hand-
designed circuit architectures that impose connectivity motifs, in particular circular symmetry, known
from earlier work to support ring attractor dynamics (Skaggs et al., 1994; Zhang, 1996; Redish et al.,
1996; Xie et al., 2002). While such models produce the expected network dynamics by design, they
start with prior knowledge about circuit structure and the identities of the cell types involved in the
core circuit, thus limiting opportunities for data-driven discovery. Here, we introduce a framework
that bridges this gap: starting from the original measured connectivity matrix, we optimize only a
small set of biologically grounded parameters at the cell-type level, such as cell-type-to-cell-type
synaptic gains and cell type-shared neuronal biases and time constants. The model is trained using
a self-supervised linear consistency loss that simply enforces the internal bump movement to be
proportional to the input velocity, in addition to several regularization terms that ensure the model
learns a non-trivial solution that remains close to the original connectome. Notably, this learning
objective requires no neural activity recordings or behavioral labels, enabling inference of functional
dynamics from only structural measurements.

Our trained model recovers high-fidelity continuous attractor dynamics and robustly performs angular
velocity integration across a wide range of inputs. It also reproduces experimental findings including
realistic bump width and bidirectional bump motion dependent on asymmetric input from the left
and right P-EN subpopulations (Seelig and Jayaraman, 2015; Turner-Evans et al., 2017). We find
that tuning parameters at the cell-type level achieves performance comparable to models with more
parameters, while global parameter tying fails to recover attractor behavior—indicating that cell-
type–specific tuning offers a practical tradeoff between model flexibility and parsimony, performing
comparably to fully parameterized models while preserving biological interpretability. We also
explore the space of viable solutions under different levels of simulated noise and characterize the
diversity of model solutions as a function of their initial starting points on the loss landscape. Finally,
we conduct in silico ablation experiments to probe the roles of different cell types.

Key Contributions

• We introduce a self-supervised connectome-constrained framework that recovers functional
dynamics of integrator circuits directly from noisy connectome measurements

• We show that parameterization at the level of cell types is sufficient and necessary to recover
integrating network dynamics

• We characterize how initial conditions shape the diversity of learned solutions.

• We perform in silico ablations on the trained networks, yielding novel biological insights on
the functional roles of specific neuron classes in the Drosophila HD circuit.
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2 Background

2.1 Continuous Attractor Models

Continuous attractor networks encode analog variables, such as orientation or position, via localized
bumps of persistent activity that shift smoothly across the neural population. These dynamics require
precise tuning of recurrent connectivity, typically balancing local excitation and broad inhibition
(Khona and Fiete, 2022). Even minor deviations in synaptic strength or timing can cause bump
instability, drift, or collapse. This sensitivity makes such networks a strong testbed for evaluating the
extent to which connectomes alone can specify circuit dynamics.

2.2 Drosophila HD Circuit

The Drosophila HD circuit resides in the central complex and comprises several cell types (populations
of cells that exhibit shared morphological, genetic, and connectivity profiles) thought to implement
a ring attractor (Kim et al., 2017; Turner-Evans et al., 2020). E-PG neurons in the ellipsoid body
(EB) are connected in an anatomical ring-like structure and comprise the core set of cells that track
animal heading via a localized bump in population activity (Seelig and Jayaraman, 2015). P-EN
neurons convey angular velocity signals: left and right P-EN neurons asymmetrically project to E-PG
neurons to shift the bump based on the directional velocity, and are further subdivided into P-ENa and
P-ENb subpopulations whose differential roles in the circuit have yet to be ascertained (Turner-Evans
et al., 2017). Inhibitory inputs from Delta7 and ring neurons are believed to normalize and gate
activity (Green et al., 2017; Hulse et al., 2023), while P-EG neurons are thought to contribute to
bump stabilization (Pisokas et al., 2020), although this has not yet been confirmed experimentally.
These cell types outnumber those in idealized ring attractor models (Skaggs et al., 1994; Zhang, 1996;
Redish et al., 1996; Xie et al., 2002), which typically define a core set of two to three cell types to
implement local excitation, global inhibition, and bump movement, raising open questions about the
role and necessity of each cell type.

For our experiments, we use connectomic data from the Drosophila FlyEM hemibrain dataset
(Scheffer et al., 2020b) after a simple preprocessing step that takes advantage of the natural symmetry
between the left and right brain hemispheres to correct synapse counts through a symmetrization
process (Section A.1). We focused our analysis on a subpopulation of neurons previously implicated
in head direction (HD) processing, comprised of a population of 439 neurons spanning six cell types:
E-PG, Delta7, P-EG, P-EN, GLNO, and ring neurons. Notably, the ring neuron population, which
is responsible for conveying sensory inputs to the circuit, are divided by lineage into ER and ExR
subtypes, which can further be divided into a diverse set of 29 different subtypes of ring neurons.

The connectome provides signed synapse counts (where signs are inferred based on measured
neurotransmitters (Davis et al., 2020)) but lack key parameters such as synaptic gains or time
constants, and include asymmetries that likely result from biological and measurement noise. This
motivates the need for methods that can infer minimal functional parameters from structure while
remaining faithful to the measured connectivity.

3 Related Work

Connectome-based models have been used to study neural circuit function across a range of scales and
assumptions. Chang et al. (2023) tested whether the required global inhibition in the fly head-direction
(HD) circuit is provided by Delta7 or ring neurons, using spiking models hand-constructed from
connectome-derived motifs and evaluating bump-based metrics across manual parameter sweeps.
Stentiford et al. (2024) built a detailed spiking model of the central complex using prespecified
physiological parameters, connectivity, and receptive fields, and showed that the models could learn
visual cue-to-heading associations via Hebbian plasticity. Pospisil et al. (2024) inferred a whole-brain
"effectome" from optogenetic perturbation data, using the connectome as a structural prior along with
full-brain activity recordings to infer the effective weights of a linear model. Other works (Mi et al.,
2023; Lu et al., 2025) have leveraged neural recordings to infer connectivity structure. Our work is
most similar to Lappalainen et al. (2024), who train a deep network constrained by the fly visual
motion connectome. However, they assume an idealized, perfectly tiled columnar architecture, and
optimize cell-type parameters via supervised learning on an optic flow task. In contrast, we employ
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unsupervised training directly on the raw, measured connectome. Finally, though not a connectome-
constrained model, Schaeffer et al. (2023) also used self-supervised objectives to train a circuit to
learn an internal representation of a spatial variable, and introduce a conformal isometry loss similar
in concept to our linear consistency loss to enforce proportional updates of neural representations
with input magnitude. However, whereas they train a randomly initialized network with activity-level
constraints, we instead initialize a network with measured connectomic structure, and train it to learn
biologically consistent representations through cell-type-level parameterization and self-supervised
loss terms without explicit neural activity constraints.

Our approach differs in several key ways. We operate directly on the raw connectome without archi-
tectural simplification, activity recordings, or external supervision. We introduce a self-supervised
learning objective based on internal representational consistency, which enforces that changes in
internal velocity reflect changes in input velocity without requiring activity measurements or task
labels, and optimize only a small set of biologically interpretable, cell-type–level parameters. Our
method recovers continuous attractor dynamics despite known physiological asymmetries and irregu-
larities of the connectome. Because the objective encodes generic dynamical constraints rather than
task-specific labels, our framework can be extended to other circuits hypothesized to implement a
coarse computational function, such as integration, memory, or normalization, offering a scalable
approach to functional inference from connectomic structure without activity recordings.

Figure 1: The HD circuit and model setup. a. The connectivity pattern of the PEN and EPG
neurons. The left/right PEN neurons asymmetrically project to the EPG neurons, causing the ring
to rotate clockwise or counterclockwise depending on net input drive. b. Ring neurons provide
uniform inhibition to EPG neurons, while Delta7 neurons target EPG neurons far away on the ring.
c. Schematic of tuning procedure. Fixed synapse counts and signs inferred from neurotransmitters
are combined with trained cell-type-specific gain parameters to produce the final network weights.
Nodes are colored by cell type.

4 Methods

4.1 Model description

Rate-based neuron dynamics model We modeled the dynamics of this neural circuit using a
rate-based dynamics model. The firing rate xj of each neuron j in the circuit evolves according to
the following differential equation:

τ
dxj(t)

dt
= −ℓ xj(t) + σ

(∑
k

Wjkxk(t) + bj + uj(t)

)
(1)

where xj(t) is the time-varying firing rate of neuron j, τj represents a global intrinsic time constant
of each neuron and ℓ is a global constant determining the scale of activity and, together with τ , the
rate of activity decay in the absence of input. σ(·) denotes the sigmoid function, Wjk represents the
synaptic weight from neuron k to neuron j. bj is the threshold parameter for neuron j, and uj(t)
represents any (potentially time-varying) external inputs injected into neuron j.

Connectomics-based model parameterization To model conectomically defined circuits, we
define the weights in Eq. 1 as Wij = w0(1+Zij)sgnijCij where the connectivity matrix (C) and the
signs (sgn ∈ {±1}) of the interaction are fully determined by the empirical synapse counts measured
in the connectome and from recorded neurotransmitters, respectively (Scheffer et al., 2020b). The
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value w0 is a common gain factor that relates synapse count to connection strength; Zij corresponds to
an additional, unknown differential synapse-specific gain; changes in this parameter permit deviations
from connectomically-defined structure. The connectome does not specify neural time constants,
neural thresholds, and the neural non-linearity (transfer function). Thus, the parameters {Z, b, τ} are
the subjects of optimization.

To examine the extent to which the connectome alone provides sufficient information for detailed
dynamics, we constrained the optimization problem with biological inductive biases by assuming
that the gain and bias parameters Z, b are shared across all neurons of a given cell type. This
parameterization at the level of cell types is biologically motivated, as neurons of the same type
exhibit similar gene expression, intrinsic electrophysiological properties, and connectivity patterns
(Davie et al., 2018; Turner-Evans et al., 2020). Thus, instead of optimizing parameters Zjk, bj for
each for each synapse and neuron, we optimized a much smaller set of cell-type-specific parameters
ZAB , bA, where A,B, . . . ∈ C index cell type. In other words, ZAB is the shared gain factor for the
all synapses from neurons of Type B to those of Type A and bA is the threshold of all neurons of type
A. The dynamics are therefore given by:

τ
dxA

j (t)

dt
= −ℓ xA

j (t) + σ

(∑
B∈C

∑
k

w0(1 + ZAB)sgnBCjkx
B
k (t) + bA + uj(t)

)
(2)

This reduces the number of optimized parameters from 4392+439+1 = 193, 161 to just 72+7+1 =
57 parameters, relative to a full per-synapse parameterization.

4.2 Task-based optimization

Velocity integration task We optimize the free network parameters over a set of simulation
trials using a set of biologically-motivated self-supervised and unsupervised objectives under the
assumption that the circuit performs integration of its input signals.

State initialization For each simulation trial, we initialized the firing rates of a single E-PG neuron
to 1, representing a bump on the ring, and initialized the activities of all other neurons to 0.

Dynamics were simulated according to Eq. 2 for a fixed duration of Tsim = 2s using the Dormand-
Prince method (Dopri5) (Dormand and Prince, 1980) provided in the Diffrax (Kidger, 2021) library
in Jax. During each trial, a constant velocity input u ∈ [−U,U ] representing clockwise (negative),
counter-clockwise (positive), or zero velocity) was applied to the network. Following experimental
evidence that GLNO neurons provide angular velocity signals to the HD system (Hulse et al., 2023),
the velocity input was selectively injected into either the left or right GLNO neurons.

Training Objectives We define a set of biologically motivated objectives based on the assumption
that the network is an integrator, i.e. that it should update its internal state as a linear function of the
velocity input, and maintain its existing state in the absence of inputs. Notably, we do not specify
particular activity profiles in the network, nor do we ask the state to change by a prespecified amount
in response to specific velocity inputs.

In each trial, we evaluate the network state at discrete time points t = (1, . . . , T )∆t separated by
interval ∆t. We use population coding (Bialek et al., 1989) to decode the network state (location
along the ring, θ(t)) at each t from the EPG neuron population by calculating the heading as the vector
sum of neurons’ preferred directions weighted by their firing rates. The change in the represented
angle over the interval ∆t was computed as δθ(t) = θ(t)−θ(t−1)

∆t .

• Entropy: Encourages diverse activation across the population by penalizing overly concen-
trated or uniform activity patterns.

Lentropy = − 1

T

T∑
t

N∑
j

ϕj(t) log ϕj(t)

Where ϕj(t) =
exj(t)∑N
k exk(t) is the softmax of the neural activities at a given time point.

• Stability: Encourages stability, i.e., no changes in state given zero input (u = 0).

Lstability =
1

T

T∑
t

δθ(t)2 · 1(u = 0)
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• Minimum Speed: Prevents the model from learning a trivial zero solution.

Lspeed = − 1

T

1

2U

T∑
t

U∑
u=−U

δθ(t)2Θ(|u|)

where Θ is the heavy-side step function.
• Linear Consistency: Encourages the model to update its internal state as a linear function

of the velocity input

Llinearity =
1

T

1

2U

T∑
t

U∑
u=−U

(
δθ(t)

|u|
− µ

)2

Θ(|u|)

where µ = 1
T

1
2U

∑T
t

∑U
u=−U

δθ(t)
|u|

• L1 and L2 Regularization: Imposes costs for changes in weights changes, with the penalty
size corresponding to the number of synapses that are impacted by each weight.

LL1 =
∑

i,j : i∈A, j∈B

|ZAB |Cij

LL2 =
∑

i,j : i∈A, j∈B

(
ZABCij

)2
• Total loss:

Ltotal = β1Llinearity + β2Lspeed + β3Lentropy + β4LL1 + β5LL2 (3)

Where β1, β2, β3, β4, β5 are hyperparameters.

Optimization The initial values of ZAB are all set to 0. Initial values of bA are set to a constant b
for all cell types. The quantities w0, b, ℓ were chosen by hyperparameter optimization. All trainable
parameters were optimized to minimize the total loss function Ltotal using Adam (Kingma, 2014).

5 Results

5.1 Robust integrator dynamics from minimal training of a connectome-constrained model

We optimize model parameters according to the procedure outlined above (Figure 2a). Allowing only
a single gain factor (w0) does not yield activity bumps; allowing two global gain factors (one for all
excitatory synapses and another for all inhibitory ones) yields an activity bump but no integration. By
tuning the small set of cell-type parameters defined above, we recover a dynamical system that is able
to integrate bidirectional velocity inputs as well as maintain a stable heading representation in the
presence of noise, displaying near-zero drift under constantly injected multiplicative noise at or below
1% of neuron activity (Figure 2b, c, d). Despite not specifying for output shape in our training, we
find that the model produces an activity bump with a width (Figure 2e) close to previous experimental
reports of π/2 (Kim et al., 2017). The model also accurately integrates velocity input, maintaining
internal state updates that scale proportionally with input magnitude, and minimal pinning region
(no bump movement to non-zero velocity inputs), enabling accurate integration over small velocity
inputs and velocity direction changes (Figure 2f, g).

5.2 Tuned network exhibits characteristics of a ring attractor network

To evaluate whether the trained model exhibits dynamics characteristic of a continuous ring attractor,
we analyzed the geometry of its internal state space. Principal component analysis of EPG activity
during continuous, time-varying velocity inputs in both directions reveals that the network’s popu-
lation dynamics are constrained to a one-dimensional manifold (Figure 3a, b). This observation is
confirmed by local intrinsic dimensionality analysis using local PCA (Kambhatla and Leen, 1997),
which estimates the dimensionality of the dynamics to be approximately 1 (Figure 3c). The correla-
tion dimension Grassberger and Procaccia (1983), which quantifies the global scaling properties of
the attractor, is also close to 1 (Figure 3d), consistent with a smooth, low-dimensional integrator.
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Figure 2: Tuned network weights produce robust integrator dynamics. a. Initial and trained
network weights. b. The activity bump of the EPG neurons across no input and directional input
conditions. c. The bump exhibits minimal drift for noise levels below 10% of neuron activity d.
Slices of population activity for EPG and left/right PEN neurons, colored by time. Asymmetric
activation of PEN populations drives bump movement in the corresponding direction. e. The width
of the activity bump, when calculated over left, right, and all neurons, closely matches experimental
measurements of π/2. f. The internal heading velocity increases proportionally to the magnitude
of input velocity, indicating accurate integration. g. The input-output velocity relationship remains
linear across a biologically plausible input range.

To further assess the topological structure of the dynamics, we apply persistent homology to the
E-PG state trajectories using the Ripser package (Bauer, 2021; Tralie et al., 2018). This analysis
yields a persistence diagram consistent with a 1D topological ring (Figure 3e), matching theoretical
expectations for a circular continuous attractor. Together, these analyses demonstrate that the network
does not merely perform velocity integration in the output space, but that its internal dynamics form
a structured, low-dimensional ring manifold, in line with theoretical models of the Drosophila HD
circuit.

Figure 3: State space geometry of the HD circuit a. 2D projections of EPG activity via PCA show
that the dynamics lie on a one-dimensional ring manifold. b. Ring manifold structure is preserved in
a 3D projection in PCA space. c. Local PCA estimates the intrinsic dimensionality of the dynamics
to be 1. d. The local correlation dimension of the network is also approximately 1. e. Persistent
homology analysis yields a persistence diagram consistent with a 1D topological ring.
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5.3 The connectome as a structural prior for functional dynamics

Given that finetuning the HD network by training cell-type parameters is sufficient to obtain a network
that produces ring attractor dynamics despite noise in the connectome, we hypothesized that the
connectome provides a structural prior that supports robust integrator dynamics. To test this, we
trained models initialized with increasingly perturbed versions of the connectome. We found that
small amounts of Gaussian noise, when preserving connection signs, still yielded integrating solutions.
However, introducing sign flips degraded performance, and introducing more drastic perturbations, in-
cluding shuffling weights within cell-type blocks as well as across the entire connectome, consistently
failed to produce functional networks even after extensive training (Figure 4a).

Figure 4: Visualizing the space of solutions a. From top to bottom: initialization weights and
activity bumps of networks initialized with connectomes perturbed with gaussian noise (σ2 = 10),
gaussian noise with random sign flips (p = 0.05), permutation of weights within cell-type blocks,
and permutation of all weights. b. Training runs with multiple initial weight matrix conditions. Left:
Initial and learned cell-type weights (ZAB) centered at 1.0. Right: Heatmap depicting the neural
activity over time when left and right inputs are given. c. Visualization of the surface fit by kernel
PCA. The training trajectory points are used to fit the surface and are depicted by the blue dots. d.
Visualization of training trajectories along the loss landscape. Trajectories are labeled similarly to b
for comparison.

Cell-type parameterization as the correct level of abstraction Although the connectome provides
essential structural information, learning cell-type-specific parameters is critical for producing a
functional network. We trained networks using simplified parameterizations by either tying parameters
globally across all cell types, or by learning only broad excitatory and inhibitory cell type parameters
(see Section A.2, Figure A4). Neither approach yielded a network capable of velocity integration.
Overall, our results showed that a network capable of angular velocity integration does not emerge
generically from any connectome, nor from arbitrary choices of biophysical parameters.

Diversity of solutions from initial positions on the loss landscape We next explored the de-
generacy of the loss landscape by adding different amounts of noise to the network parameters at
initialization, and tracking their trajectories across training (Figure 4b). We visualize these trajectories
on the fitted loss landscape (Section A.3) of solutions using kernel PCA (Schölkopf et al., 1998). We
find that the final solutions of the network depend on the proximity of the initial parameters; networks
close by tend to converge to solutions within the same basin, while networks initialized far apart tend
to arrive at different solutions. Despite this divergence, networks that arrived at different solutions
still produced functional integrator dynamics and reside in the same overall loss basin, indicating
some degeneracy in the solution space but a common structural motif (Figure 4c, d).

5.4 Cell-type ablations

Given a functional model of the Drosophila head direction circuit, we next asked: what are the unique
roles of each of the cell types within the circuit? To address this question, we performed ablation
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experiments by zeroing the output weights of specific cell-type populations in our model. Because
the model weights were optimized on the full set of cell types, we retrained the ablated networks to
give each model a fair chance at recovering performance by altering the weights of the remaining
cell types. Thus, we test which sets of neurons are strictly necessary in the sense that their function
cannot be substituted by simply tuning the weights of other cell types within the network. As with
the optimization of the original model, we sweep over a range of hyperparameters and select a set of
the best performing models based on linear integration consistency and maximum bump velocity for
evaluation (Section A.4). Across all experiments, ablated models exhibit less stability of the bump in
the presence of large amounts of noise compared to the original network even after training (Figure
5).

Figure 5: Cell-type ablation experiments. a. Rate of diffusion of the bump with zero inputs in the
presence of multiplicative noise at 10% of neuron activity. Non-integrating solutions (Delta7 and
P-EN ablations) not shown. b. Rate of diffusion in a noiseless condition. c. Mean bump velocity as a
function of input velocity, colored by ablation. d. Slope of mean velocity response, calculated over
inputs in the range of [0, 2]. e. Mean bump width of different ablation conditions. Red line indicates
experimentally observed width. f. Sample EPG activity profiles by ablation, given the same input
profile as in Figure 2.

Both Delta7 and ring neurons have been hypothesized to provide the crucial global inhibition to
implement a ring attractor in the Drosophila (Chang et al., 2023). Although we found that ablating
the ring neuron population reduced the range of represented velocities along the ring and displayed
more drift in the presence of noise, ablating the Delta7 neurons had a far stronger effect: the network
was no longer able to form a bump, let alone integrate velocity (Figure 5f). Notably, we found that
the Delta7-ablated network was able to recover bump formation and integration when we relaxed the
block matrix assumption and individually tune the weights of all the ring neuron subtypes (Section
A.5), indicating that the Drosophila HD circuit relies on multiple types of inhibition, in contrast to
theoretical ring attractor models.

The P-EG neurons have previously been hypothesized to play a role in stabilizing the bump in the
Drosophila HD circuit (Pisokas et al., 2020), although experimental evidence in support of this is
lacking. We find support for this hypothesis, as the P-EG-ablated model produces a network that
exhibits more drift under even low amounts of noise even after training (Figure 5a, b).

Finally, although the role of the P-EN neurons in providing asymmetric drive to move the bump
in the E-PG neuron population has been well characterized, the roles of the P-ENa and P-ENb
subpopulations remain poorly understood. We confirm the role of the P-EN neurons by showing that
a PEN-ablated network is unable to maintain or move a bump even after training (Figure 5f). We
then separately ablated the P-ENa and P-ENb neuron subpopulations and found that while ablating
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either subpopulation increased drift under noise, the P-ENb ablation had a stronger effect, leading to
greater drift and a reduced range of bump velocities.

6 Conclusion and Discussion

We present a method that leverages biological priors and parameterization at the level of cell types
to recover circuit dynamics from noisy connectome measurements using self-supervised learning.
Without access to biophysical parameters, external task labels, or activity data, our model is able
to recover robust continuous attractor dynamics capable of stable velocity integration in spite of
observed asymmetries and small network size in the Drosophila head direction circuit. Interestingly,
this result implies that connectomes, without biophysical gain parameters but with knowledge of
connectivity signs, may be close to being lottery tickets (Frankle and Carbin, 2018). We characterize
the solution space and show that multiple viable solutions emerge across different initializations,
allowing estimation of parameter uncertainty through noise injection. We performed in silico
experiments via targeted cell-type-specific ablations to elucidate the mechanistic roles of different
cell types within the circuit.

Despite being able to recover circuit dynamics, the fidelity of the inferred parameters in this study
to the underlying biological parameters may be limited in part by the fidelity of the connectome,
because we performed additional (albeit minor) pre-processing of the connectivity matrix and we
found a multiplicity of possible solutions. In addition, we made assumptions about neurotransmitter
identity and synaptic signs based on cell types.

We believe our self-supervised learning approach will be powerful for future work on inferring
function and activity from connectomes, relative to supervised approaches which require prior
knowledge about circuit activity states. However, our stability and linear consistency losses terms
assumed equivariance to inputs and involved population decoding, limiting their direct application to
circuits that integrate continuous variables, such as oculomotor integrators (Seung, 1996), grid cells
(Burak and Fiete, 2009), time cells (Kraus et al., 2013), or circuits involved in evidence accumulation
(Shadlen and Newsome, 2001). However, we believe our framework could be easily extended
by modifying the combination of losses used during training. An important future direction is to
generalize our approach by exploring alternative unsupervised objectives that relax these assumptions.
Additional future directions include extending the model to study multi-modal sensory integration
with the internal state, and validating model predictions through closed-loop perturbation experiments.
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Justification: The abstract makes summarizes the methods and results that were achieved in
the main paper.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in the discussion portion of the paper.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: This paper provides empirical results about ring attractor networks and does
not present new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The authors provide an anonymized version of the code and data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The authors provide the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The authors provide the experimental details in the methods section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance is reported via error bars in the main paper when
appropriate.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The authors provide the compute resources used in the Hardware and Software
section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper concerns basic research on ring attractor networks and does not
pose any direct societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper uses publicly available data and the models are specialized for the
drosophila head direction system and have no applications outside of this.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors provide the licenses for the existing assets in the Hardware and
Software License section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not use LLMs as an important, original, or non-standard
component of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Weight Symmetrization

To enforce bilateral symmetry in the neural network architecture while preserving functional con-
nectivity patterns, we implemented a weight matrix symmetrization procedure. Let W ∈ RN×N

be the initial weight matrix, where N is the number of neurons. For each neuron i, we define its
lateralization li ∈ {L,R} and its lateralized label l̃i (removing lateralization information).

The symmetrization process operates on connection groups defined by the tuple (s, t, ls, lt), where s
and t are the lateralized labels of the source and target neurons, and ls and lt are their lateralizations.
For each unique connection group, we compute the symmetrized weight:

wsym(s, t, ls, lt) =
1

2nst

∑
i,j

wijI[(s, t, ls, lt) = (l̃i, l̃j , li, lj)]

where nst is the number of connections in the group and I is the indicator function. The final
symmetrized weight matrix Wsym is constructed as:

Wsym,ij =


wsym(l̃i, l̃j , li, lj) if ∃wsym(l̃i, l̃j , li, lj)

Wij otherwise
0 if i = j

This procedure ensures that left-right symmetric connections have identical weights (Wsym,ij =
Wsym,ji for lateralized pairs), while preserving the network’s functional connectivity patterns and
maintaining the overall network structure and strength. The result of this symmetrization is shown in
Figure A1.

Figure A1: Weight matrix symmetrization.

All experiments we’re run with weight symmetrization but eliminating weight symmetrization is
possible if left and right populations of each cell type are treated as separate cell populations which
can be tuned independently. This doubles the number of cell types but comparable results are
achievable using this parameterization, even when weight symmetrization is not applied A2.

A.2 Single parameter and E/I controls

In addition to the cell-type parameterization of the model, we also performed baseline experiments
using a single global parameter to parameterize the synapse gains across all cell-types (thus not tuning
differential gains between cell types), as well as using two parameters to describe the excitatory
and inhibitory neuron gains separately. These reduced parameterizations failed to produce solutions
capable of forming or integrating a bump even after model training, demonstrating the importance of
cell-type parameterization (Figure A4).

A.3 Kernel PCA and loss landscape visualization

In order to visualize the optimization landscape, we ran training runs with differently seeded initial
parameters. We tracked the parameter values throughout training. We then used kernel PCA

21



Figure A2: Neural dynamics after weight symmetrization is removed but left and right hemispheres
are allowed to have different biophysical parameterizations.

Figure A3: Visualization of the dynamics of an untrained network.

(Schölkopf et al., 1998) with a radial basis function kernel to fit the training trajectories and used a
Kernel Ridge regression to learn the mapping from the basis to the original parameter space which
we use to sample parameter values on in order to construct a two dimensional loss landscape.
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Figure A4: Baseline experiments. Learned weights and ring activity after optimizing only a single
global gain parameter w0 (top), or optimizing two parameters describing excitatory and inhibitory
synaptic gains (bottom).

A.4 Hyperparameter sweeps and model selection

For each ablation experiment (including the no-ablation condition), we trained models across a
set of 90 hyperparameters by using a grid search over the initial bias values, leak, and global
synapse strength. We additionally randomly initialized the block weights using a normal distribution
centered at 1 with variance of 2 percent of the parameter value and swept over five seeds for each
hyperparameter setting. In Figure 5 we chose the best 5 models from each condition to evaluate. We
define best as the models with the smallest minimum speed loss (i.e., the models with the greatest
range of velocity integration), after filtering for a R2 of > 0.7 and a temporal consistency loss of <
0.013.

A.5 Delta7 ablations with full ring parameterization
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Figure A5: Activity bumps in Delta7 ablation, full ring parameterization.
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Figure A6: Internal vs. input velocity in Delta7 ablation, full ring parameterization.
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A.6 Sample weights from ablation experiments

(a) P-EG ablation (b) Ring ablation

(c) Delta7, full ring parameterization (d) P-EN ablation

Figure A7: Ablation effects on trained synaptic weights: P-EG, Ring, Delta7, and P-EN.
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(a) P-ENa ablation (b) P-ENb ablation

Figure A8: Ablation effects on trained synaptic weights: P-ENa and P-ENb.

A.7 Additional Supplementary Methods

Velocity input Velocity input is driven by differential activity between the left and right GLNO
neurons. In our experiments, we drove the velocity using either the left or right GLNO neurons at a
given time. It is sufficient to drive differential activity between the left and right GLNO neurons to
drive the velocity input which can be shown in A10.
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Figure A9: Neural Dynamics after ablating various loss terms. We show an example neural trajectory
on the left hand side rotating in both directions as well as the angular velocity over time under
different input conditions
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Figure A10: Activity trace when reversing sign of velocity input

A.8 Supplementary Figures
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Figure A11: Synapse statistics. Distribution of incoming and outgoing synapse weights before and
after training of a full connectome-initialized network.
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