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Abstract. A precise and real-time abdominal multi-organ segmentation
method is of crucial importance for its practical application. In this study,
we use a two-phase strategy to address this issue. In the phase one, we
quickly localize the abdominal region, while the second phase focuses on
fine segmentation of this region. This work builds upon last year’s efforts.
To improve inference efficiency, we designed a Lightweight Attention-
based Convolutional Block for the phase two and incorporated it into
the decoder. Additionally, the preprocessing process has been further
optimized. The results on leaderboard validated promising performance,
achieving an average score of 90.02% and 95.51% for the DSC and NSD.
Additionally, the method’s average running time on public validation
is 16.34s in our laptop. In summary, this strategy effectively ensures
the possibility of achieving high precision with low latency. Our code is
available at: https://github.com/JCXiong1227/FLARE2024.

Keywords: Two-phase · Inference efficiency · Lightweight · Preprocess-
ing.

1 Introduction

In the field of medical analysis, 3D CT-based multi-organ segmentation of the ab-
domen is of great clinical significance for disease treatment. In the past challenges
organized by MICCAI FLARE[21], many methods [30] [16] have achieved satis-
factory performance in both inference speed and accuracy using single Graphics
Processing Unit (GPU). However, on laptops or hospital imaging edge devices
where GPU resources may not be available, their temporal efficiency may be
limited. Currently, there is rarely consideration of applying the their methods
on CPU-based devices in the domain of abdominal multi-organ segmentation.
Thus, achieving low-latency inference speeds on laptops is both a pioneering and
highly significant research challenge.

In the early stages of deep learning, convolutional neural network frameworks,
exemplified by U-Net, held milestone significance in the research of medical image
† Corresponding authors.
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segmentation. U-Net[26] effectively compensates for the loss of fine-grained in-
formation during downsampling process of encoder by utilizing skip connections
in the decoding stage. Subsequently, some methods [12] [24] have built upon this
concept by enhancing feature representation through multi-scale within blocks
or multi-path information aggregation, thereby making the model more robust
and capable of handling increasingly intricate patterns and variations in medical
images. Furthermore, some researchers believe that the long-range dependency
limitations of CNNs may lead to suboptimal solutions. Therefore, they propose
integrating Transformers with U-Net to capture both global and local informa-
tion [9] [28] [36]. Their approaches allow the model to comprehend the global
anatomical structure and local details of the medical image. These methods fo-
cus excessively on improving accuracy while neglecting inference time, making
it difficult to apply them to common hardware devices. Xie et al. [32] and Gao
et al. [6] leverage the advantages of CNNs and Transformers to achieve the bal-
ance between segmentation accuracy and efficiency. With the development of
lightweight models, depthwise separable convolutions and model pruning have
been applied to 3D model design. Excessive use of lightweight techniques may
lead to unintended accuracy loss. Chen et al. [2] introduced dilated convolutions
in module design. Zhao et al. [35] employed a teacher-student architecture, using
3D nnU-Net to distill a lightweight model. Liao et al. [15] utilized Mamba to
achieve long-range spatial dependencies with linear complexity, in contrast to
the transformer architecture. These methods have accelerated inference speed,
but for abdominal multi-organ segmentation, there is still potential to further
enhance real-time performance without compromising accuracy. Wu et al. [30]
and Lyu et al. [16] adopted a two-stage training framework, where phase one
locates the foreground, and phase two focuses solely on predicting this region.
This approach filters out a significant amount of background area, offering a
novel strategy to accelerate abdominal multi-organ segmentation.

In this work, we aim to develop a fast, low-resource, and accurate organ seg-
mentation framework on laptop. To achieve this goal, we employed a two-stage
network. In the phase one, we designed our block including in encoder using
partial convolution and lightweight SegFormer head collaboratively achieve fore-
ground localization quickly. In the phase two, a novel CNN-Transformer model
were proposed. It adopts a scale-aware modulator and self-attention within the
encoder blocks. To accelerate inference progress, we utilized asymmetric con-
volutions and group convolutions in the decoder. The results on the validation
submission indicate that we superior performance while maintaining a fast in-
ference speed on laptop, effectively balancing both aspects.

2 Method

The framework is implemented as a cascade of two networks (see Fig. 1), as
demonstrated by previous works [30] [16], which have proven its efficacy in ac-
celerating model inference. The data flow during inference is as follows: Phase
one quickly segments the foreground region and uses it as input of phase two.
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Fig. 1. An overview of the two-phase cascade network.

This approach filters out the regions unrelated to the abdomen, thereby reducing
the time required for segmentation compared to using the network that involves
only phase two.

2.1 Preprocessing

Considering that this challenge is executed on a laptop, we meticulously ordered
the data preprocessing steps to minimize time delays. In the first phase, we resize
the image dimensions to (128, 128, 128) before performing Z-normalization. If
the order were reversed, the Z-normalization process on the entire input image
would take significantly longer compared to doing so on the resized image. Fol-
lowing this guideline, in the phase two, we first extract the foreground region
of the image based on the label, then uniformly resample the spatial spacing to
(1.5mm, 1.5mm, 2mm), and perform Z-normalization. To enhance the model’s
robustness, we apply random flipping, random rotation, random affine trans-
formations, random intensity shifting (offset: 0.1), and random scaling (scaling
factor: 0.1) during the training stage. Subsequently, for each transformed image,
we randomly crop six cubes with a 5:1 ratio of positive to negative samples, each
of size (96, 96, 96), and input them into the model.

2.2 Proposed Method

Network This work is a further continuation of the research conducted by last
year[16], aiming to accelerate the model’s inference speed using lightweight tech-
niques. Detailed information can be found in Fig. 2. Phase1model and Phase2model

share common encoder including four stages. Firstly, the base channel numbers
in the stem block are set to 32/60 for Phase1model and Phase2model, respec-
tively. Next, the number of channels progressively doubles, and the feature map
size is halved compared to the preceding stage.

For phase one, we tested the last year’s work[16] and found that it can quickly
locate the foreground region within one second on laptop. The primary reason is
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Fig. 2. The cascade method of proposed models. (a) The shared encoder backbone.
(b) Phase1model decoder from [31]. (c) Lighted decoder for Phase2model. (d) Encoder
block in Phase1model. (e) Lighted block in the decoder of Phase2model. (f) Encoder
block in Phase2model.

that Phase1model employs partial convolutions and inverted bottlenecks during
the encoding phase, which have been explicitly proven to accelerate inference
speed in the works [3] [25]. Additionally, the decoder design for phase one is also
quite streamlined, employing only the MLP decoder[31]. In summary, this design
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has perfectly met the requirements for phase 1 with low latency, and therefore,
no further modifications are needed.

For phase two, considering the influence of multi-scale local information and
global context dependencies on accuracy in encoder, the Scale-Aware Modula-
tor (SAM) and Multi-head Self-Attention (MSA) were designed[16]. The former
leverages multi-scale approaches to extract local detail information in shallower
layers, while the latter focuses more on global semantic information in deeper
layers. To avoid affecting the model’s real-time performance, this work employs
depth-wise convolutions for the various kernels in the SAM module. The only
distinction lies in the decoder design, where asymmetric convolutions and group
convolutions are utilized to create a Lightweight Attention-based Convolutional
Block (LACB), as shown in Fig. 2 (e). In LACB, the 1×1×3 and 3×3×1 con-
volution kernels were used individually to process inter-slice and intra-slice in-
formation, respectively. To reduce Flops computations, we employed group con-
volutions for processing inter-slice information. This operation may adversely
affect accuracy, so we further incorporated a spatial attention mechanism within
the LACB.

Loss function The choice appropriately of loss function is a crucial component
in deep learning. In our experiments, we utilized two classical loss functions: the
Dice loss function (Equation 1) and the cross-entropy loss function (Equation 2),
which were combined with a 1:1 weight ratio (Equation 3) to train the model.

Lce = − 1

C

C∑
c=1

Y log (P ) (1)

Ldice =
1

C

C∑
c=1

2× (Y ∩ P )

Y ∪ P
(2)

Ltotal = Lce + Ldice (3)

Where, C denotes totoal number of classes, and Y is the one-hot encoding
of ground-truth with C classes.

2.3 Post-processing

Due to the differences in preprocessing applied in the networks (phase1model and
phase2model), the post-processing procedures also vary. In phase one, the seg-
mentation results (128×128×128) must be rescaled to the original input dimen-
sions. Subsequently, erroneous voxel regions (those smaller than 20×20×20) are
filtered out to ensure the correct acquisition of foreground areas. For phase two,
considering real-time performance, we first preserve solely the largest compo-
nents of organs for the prediction results inferring by the cropped image regions,
then restore the voxel spacing, and finally obtain the segmentation results at the
original image size.
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3 Experiments

3.1 Dataset and evaluation measures

The dataset is curated from more than 40 medical centers under the license
permission, including TCIA [4], LiTS [1], MSD [27], KiTS [10, 11], autoPET [8,
7], AMOS [14], AbdomenCT-1K [23], TotalSegmentator [29], and past FLARE
challenges [19, 20, 22]. The training set includes 2050 abdomen CT scans where 50
CT scans with complete labels and 2000 CT scans without labels. The validation
and testing sets include 250 and 300 CT scans, respectively. The annotation
process used ITK-SNAP [34], nnU-Net [13], MedSAM [17], and Slicer Plugins [5,
18].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measures—runtime. These metrics collectively contribute to the ranking com-
putation. During inference, GPU is not available where the algorithm can only
rely on CPU.

3.2 Implementation details

Environment settings Throughout the entire experimental process, The hard-
ware facilities and code execution-related tools or libraries we utilized are pre-
sented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04.5 LTS
CPU Intel (R) Xeon (R) Platinum 8358 CPU @ 2.60GHz
RAM 1.0 Ti; 3200 MT/S

GPU (number and type) NVIDIA A800 80G
CUDA version 11.8

Programming language Python 3.8.15
Deep learning framework torch 2.0.1, torchvision 0.15.2

Specific dependencies monai 1.3.2
Code https://github.com/*****

Training protocols Before initiating model training, we configured the neces-
sary hyperparameters and the optimizer for the training protocols. The Adam
optimizer, with a weight decay of 1e−5, was utilized across both training phases.
The initial learning rate was set to 1e−3, and a cosine annealing strategy was
employed for adjusting the learning rate. Each phase was trained for 150 epochs
with a batch size of 6, and was supervised using the Dice coefficient and cross-
entropy loss functions. There are also differences in the training settings between
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the two phases. Specifically, Phase1model involves performing coarse segmenta-
tion on resized images, whereas Phase2model utilizes a fixed-size patch with a
sliding window approach for segmentation. Detailed settings are provided in Ta-
ble 2.

Table 2. Training protocols.

Network initialization Random
Batch size 6

Resized size (Phase_1) 128× 128× 128

Patch size (Phase2model) 96× 96× 96

Total epochs 150
Optimizer AdamW

Initial learning (lr) 3e−4

Lr decay schedule Cosine annealing
Training time for each model 36 hours

Loss function Dice loss and Cross entropy loss
model parameters (Phase1model / Phase2model) 1.36 M / 9.37 M
Number of flops (Phase1model / Phase2model) 1.03 G / 71.13 G

When using the abdominal multi-organ pseudo-labels provided by the orga-
nizers, which were inferred by the FLARE22 winning algorithm, we observed
that the model did not achieve the desired accuracy on the validation leader-
board. Through careful observation of these pseudo-labels, we discovered that
the segmentation of certain organ categories exhibited discontinuities, indicat-
ing that the accuracy was limited by the quality of the annotations, as shown in
Fig. 3.

Fig. 3. The dashed lines indicate the instances of segmentation discontinuities.

To mitigate the adverse impact resulted by pseudo-label on segmentation
performance, we applied label combine mechanism, as illustrated in Algorithm 1.
Initially, we utilized the pseudo-labels Dinitial provided by the organizers to train
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Algorithm 1: Pseudo-labeling iterative process
Iters : iterations ItersNumbers = 4
Input : Initial labels Dinitial, Initial trained model Phase2model

Output: Fine-tuned model Phase2model

1 For iter in [1, ItersNumbers] do
2 Getting the inference data Dinference:
3 Dinference = Phase2model(Dinitial) ;
4 Dnewcombine = np.zeros_like(Dinitial);
5 For class in [1, 13] do
6 Dnewcombine[(Dinitial == class)|(Dinference == class)] = class;

7 Dnewcombine[(Dinitial == 10)|(Dinference == 10)] = 10;
8 Dnewcombine[(Dinitial == 9)|(Dinference == 9)] = 9;
9 Dnewcombine[(Dinitial == 8)|(Dinference == 8)] = 8;

10 Updating the Dinitial:
11 Dinitial = Dnewcombine;
12 Fine-tuning the Phase2model:
13 Phase2model = Phase2model(Dinitial);

14 return Phase2_model;

the network of Phase2 and subsequently performed inference to obtain Dinference

from the trained model. We then combined Dinitial and Dinference to aggregate
the labels, resulting in new labels Dnewcombine. Upon examining Dnewcombine,
we observed that the label of stomach (category 11) may replace Gallbladder
and Left Adrenal Gland, both of which had inherently low accuracy on the
validation submission. So, further refinement of Dnewcombine is necessary. Based
on the spatial correlation between organs and the segmentation performance on
the validation submission, we modified some labels in Dnewcombine. Finally, we
pre-trained the Phase2_model using the adjusted Dnewcombine. Overall, this
process was executed four times and yielded favorable results.

4 Results and discussion

In this section, we comprehensively analyze the proposed method from both
qualitative and quantitative perspectives. For accuracy, we use the DSC and
NSD metrics mentioned in Section 3.1 for evaluation. For inference efficiency,
we tested the inference time for several cases. The detailed explanation of the
relevant content is provided below.

4.1 Quantitative results

Ablation experiment First, to assess the impact of the two-stage algorithm on
inference speed, we compared it with a model that employs only a single stage.
The results are presented in Table 3. When performing abdominal multi-organ
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Table 3. Ablation analysis of different network architectures. Evaluation CPU: 12th
Gen Inter(R) Core(TM) i9-12900K CPU @ 5.2GHz × 48.

Structure DSC (%) NSD (%) Time (s)
One stage 87.93 ±7.02 92.90 ±5.50 92.63
two stage 87.91 ±7.00 92.88 ±5.52 16.34

Table 4. Ablation evaluation of segmentation methods. Evaluation CPU: 12th Gen
Inter(R) Core(TM) i9-12900K CPU @ 5.2GHz × 48.

Methods Spatial spacing DSC (%) NSD (%) Time (s)
[16] (1.5 mm, 1.5 mm, 2.0 mm) 88.13 ±7.97 93.44 ±8.29 25.64

Ours† (2.0 mm, 2.0 mm, 2.0 mm) 87.57 ±9.46 93.32 ±9.90 12.01
Ours‡ (1.5 mm, 1.5 mm, 2.0 mm) 87.91 ±7.00 92.88 ±5.52 16.34

†and ‡represent different spatial spacing used in our method, respec-
tively.

segmentation using the two-stage algorithm, the inference time on the CPU was
significantly reduced, demonstrating the rationality of our design.

Next, to comprehensively evaluate our methods, which have spatial spacing
of (1.5 mm, 1.5 mm, 2 mm) and (2 mm, 2 mm, 2 mm) respectively, in terms
of both accuracy and inference speed, we compared them with the work of last
year[16] on public validation sets. The results are shown in Table 4.

Although last year’s work[16] achieved the highest DSC and NSD, its infer-
ence speed on the CPU is relatively slow compared to our methods. Additionally,
by observing the running time, we found that some cases with a high number of
slices even exceed 60 seconds. For accuracy, the methods achieved comparable
performance. Therefore, we can naturally conclude that our lightweight model,
along with the preprocessing steps designed by ours, effectively reduces the infer-
ence time. To further optimize inference time, we adjusted the spatial spacing to
(2.0 mm, 2.0 mm, 2.0 mm) and found that this adjustment resulted in a further
reduction of 4.33 seconds in running time. However, this adjustment led to the
DSC decreased by 0.34%. Taking the results into comprehensive consideration,
our method employs the spatial spacing of (1.5 mm, 1.5 mm, 1.5 mm) as the
final selection for the preprocessing.

Accuracy analysis Next, to analyze the accuracy of the proposed model, we
conducted experiments on public validation sets, and online validation sets. The
detailed results are presented in Table 5. With regards to abdominal multi-organs
segmentation, DSC and NSD achieved accuracies of (87.91, 90.02) and (92.88,
95.51), respectively. The right adrenal gland, left adrenal gland, and gallbladder
exhibit high standard variance, which is attributed to their small size and the
ambiguous boundaries with adjacent organs. Moreover, the small variations in
accuracy across different sets further validate the model’s generalization capa-
bility.
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Table 5. Quantitative accuracy evaluation results for abdominal multi-organs.

Target Public Validation Online Validation
DSC (%) NSD (%) DSC (%) NSD (%)

Liver 97.40 ±1.70 98.23 ±4.11 97.66 98.95
Right Kidney 93.72 ±14.29 93.94 ±15.34 94.29 95.00
Spleen 96.82 ±2.27 98.17 ±5.27 96.51 98.24
Pancreas 89.61 ±3.47 97.88 ±2.85 86.75 96.72
Aorta 93.92 ±4.53 97.86 ±5.07 94.85 98.61
Inferior vena cava 88.62 ±10.45 90.40 ±12.50 90.19 93.11
Right adrenal gland 79.11 ±20.95 91.29 ±23.62 85.28 97.24
Left adrenal gland 79.23 ±23.18 90.34 ±26.96 85.50 97.07
Gallbladder 75.89 ±36.11 77.85 ±37.48 85.44 87.98
Esophagus 84.41 ±18.36 92.59 ±20.26 82.22 92.47
Stomach 92.19 ±14.70 95.05 ±16.06 94.59 97.56
Duodenum 83.69 ±9.64 94.13 ±7.27 82.93 93.63
Left kidney 88.19 ±22.42 89.65 ±20.97 94.06 95.11
Average 87.91 ±7.00 92.88 ±5.52 90.02 95.51

Segmentation efficiency results on validation set Since the proposed
method needs to be executed on a laptop, it is necessary to consider the infer-
ence latency. Table 6 provides the inference efficiency results for some examples,
all of which achieved segmentation on laptop in approximately 20 seconds. The
detailed results are shown below.

Table 6. Quantitative evaluation of segmentation efficiency on the running time. Eval-
uation CPU: 12th Gen Inter (R) Core (TM) i9-12900K CPU @ 5.2GHz × 48.

Case ID Image Size Running Time (s)
0059 (512, 512, 55) 16.06
0005 (512, 512, 124) 19.88
0159 (512, 512, 152) 20.48
0176 (512, 512, 218) 18.11
0112 (512, 512, 299) 22.47
0135 (512, 512, 316) 23.22
0150 (512, 512, 457) 19.19
0134 (512, 512, 597) 27.03

Segmentation efficiency results on test set To ensure a fair comparison
of the advantages of the algorithm in terms of robustness and inference effi-
ciency, we further evaluated it against those proposed by other teams on the
test dataset with regional variations. The results are presented in Table 7. Our
algorithm achieved optimal accuracy performance across different regional pop-
ulations without significantly affecting inference speed. Moreover, the algorithm
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demonstrated satisfactory efficiency when performing three-dimensional medical
data segmentation using only the CPU, in comparison to inference executed on
the GPU.

Table 7. Performance comparison of different algorithms across various regional pop-
ulations.

Team Name
Asian

DSC NSD Time
Mean (%) Median (%) Mean (%) Median (%) Mean (s) Median (s)

gmail 86.2 ±6.8 88.6 92.4±6.2 94.9 32.6±6.2 33.7
hanglokai 87.2 ±6.6 90.4 93.1±6.1 95.6 33.3±8.9 34.3
lyy1 85.2 ±6.2 87.8 92.1±5.9 94.3 15.5±3.7 13.7
miami 86.2 ±6.9 89.1 92±6.2 94.6 31.4±5.3 30.6
nichtlangfackeln 73.9 ±12.5 76.6 79.3±14.1 83 26±6.8 25.5
fzu312chy 61.1 ±8.8 62.9 61.6±10 63.6 35.1±12.7 33.4
care 73 ±11.1 75.2 78.6±12.6 81.1 268.6±64.7 257
lyybooster 86.6 ±6.4 89.3 92.9±5.7 95.1 24.7±2.5 24.4

Team Name
European

DSC NSD Time
Mean (%) Median (%) Mean (%) Median (%) Mean (s) Median (s)

gmail 87.4 ±8 90 92.8±7.9 95.9 33.6±10.3 34.3
hanglokai 89.1 ±6 91.5 94.2±6 96.7 38.1±12.4 34.9
lyy1 87.4 ±6.2 89.7 93.4±6.1 95.7 16.4±4.6 17.5
miami 87 ±8.4 89.6 91.8±8.6 95.3 30.6±8.1 29.5
nichtlangfackeln 78.2 ±13.5 82.1 82.7±14.9 87 24.2±8.4 24.9
fzu312chy 63.4 ±9.9 66.3 63±11.4 65.9 42,7±12.9 40.6
care 76.7 ±11.8 80.2 81.8±12.5 85 291.5±110.5 264.4
lyybooster 88.5 ±6.2 90.7 93.9±6.1 96.2 24.8±3.1 25.2

Team Name
North American

DSC NSD Time
Mean (%) Median (%) Mean (%) Median (%) Mean (s) Median (s)

gmail 87.6 ±4.9 89.4 93±5.2 94.7 27.2±6.8 26.9
hanglokai 89.2 ±4.4 90.7 93.8±4.6 95.4 35.3±10.8 34.8
lyy1 87.6 ±4.5 89.71 93.1±6.1 94.7 12.6±2.7 13
miami 87.4 ±4.4 88.9 92.5±8.6 94.1 30.1±7.8 29.3
nichtlangfackeln 70.7 ±15.5 75.8 873.1±17.5 79.2 20.8±9.7 18.1
fzu312chy 59.4 ±7.5 60.3 57.5±8.5 58.9 34.9±9.9 32.4
care 76.4 ±11.8 79.5 79.7±13.2 83.7 204.5±50.1 172
lyybooster 88.7 ±4.4 90.4 94.0±4.7 95.6 22.6±1.8 21.6

To ensure a fair comparison of the advantages of the algorithm in terms of ro-
bustness and inference efficiency, we further evaluated it against those proposed
by other teams on the test dataset with regional variations. The results are pre-
sented in Table 7. Our algorithm achieved optimal accuracy performance across
different regional populations without significantly affecting inference speed.
Moreover, the algorithm demonstrated satisfactory efficiency when performing
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three-dimensional medical data segmentation using only the CPU, in comparison
to inference executed on the GPU.

Based on the analysis of the accuracy and runtime of the proposed method,
we conclude that it achieves satisfactory accuracy with a relatively fast inference
speed on a laptop. This indirectly indicates that the method is suitable for
devices with limited computational resources.

4.2 Qualitative results on validation set

For a clearer observation of the segmentation performance of the proposed
method, Fig. 4 provides the results of several cases on the public validation set.
We observed that our methods produced segmentation results that were closely
consistent with the ground truth labels in both case0036 and case0003. How-
ever, for the remaining two cases, our method encountered issues: in case0047,
the liver segmentation was incomplete, and in the other, the liver was mistakenly
classified as the gallbladder. The former error is attributed to the presence of
large tumors within the liver, which resulted in significant voxel value deviations
from the liver region. The latter error is due to the similarity between the voxel
values of liver tumors and those of the gallbladder.

Fig. 4. Segmentation results on several cases from the public validation set.
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4.3 Limitation and future work

Although our method achieves satisfactory accuracy in abdominal multi-organ
segmentation tasks, it still has some certain limitations. Firstly, it struggles to
achieve good segmentation for organs containing tumors. Secondly, the segmen-
tation accuracy is limited for small target organs and those organs that are in
close proximity to each other. Finally, regarding inference speed, we believe that
our method could be further improved by leveraging lightweight techniques and
appropriate pixel spacing settings.

5 Conclusion

In this paper, we propose a cascaded two-phase method to address real-time
multi-organ segmentation tasks on laptop. In Phase One, we quickly localize
the abdominal region. In Phase Two, we further improve last year’s method
by incorporating lightweight techniques. Additionally, to avoid excessive prepro-
cessing time, we meticulously adjusted the preprocessing steps to reduce com-
putational. The feasibility of the proposed method was validated through exper-
iments. Through extensive observations, we identified ways to further enhance
pseudo-labeling, which is crucial for segmentation accuracy. As for inference effi-
ciency, we believe there is still room for improvement in the model, particularly
through lightweight techniques and appropriate spatial pixel settings.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2024 challenge has
not used any pre-trained models nor additional datasets other than those pro-
vided by the organizers. The proposed solution is fully automatic without any
manual intervention. We thank all data owners for making the CT scans publicly
available and CodaBench [33] for hosting the challenge platform.

The study was supported by National Natural Science Foundation of China
(81827805, 82130060, 61821002, 92148205), National Key Research and Devel-
opment Program (2018YFA0704100, 2018YFA0704104). The project was funded
by China Postdoctoral Science Foundation (2021M700772), Zhuhai Industry-
University-Research Collaboration Program (ZH22017002210011PWC), Jiangsu
Provincial Medical Innovation Center (CXZX202219), Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, and
Nanjing Life Health Science and Technology Project (202205045). The funding
sources had no role in the writing of the report, or decision to submit the paper
for publication.

Disclosure of Interests

The authors declare no competing interests.



14 Junchen Xiong et al.

References
1. Bilic, P., Christ, P., Li, H.B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A.,

Jacobs, C., Mamani, G.E.H., Chartrand, G., Lohöfer, F., Holch, J.W., Sommer, W.,
Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M.M., Vivanti,
R., Sosna, J., Ezhov, I., Sekuboyina, A., Navarro, F., Kofler, F., Paetzold, J.C.,
Shit, S., Hu, X., Lipková, J., Rempfler, M., Piraud, M., Kirschke, J., Wiestler, B.,
Zhang, Z., Hülsemeyer, C., Beetz, M., Ettlinger, F., Antonelli, M., Bae, W., Bellver,
M., Bi, L., Chen, H., Chlebus, G., Dam, E.B., Dou, Q., Fu, C.W., Georgescu, B.,
i Nieto, X.G., Gruen, F., Han, X., Heng, P.A., Hesser, J., Moltz, J.H., Igel, C.,
Isensee, F., Jäger, P., Jia, F., Kaluva, K.C., Khened, M., Kim, I., Kim, J.H., Kim,
S., Kohl, S., Konopczynski, T., Kori, A., Krishnamurthi, G., Li, F., Li, H., Li, J.,
Li, X., Lowengrub, J., Ma, J., Maier-Hein, K., Maninis, K.K., Meine, H., Merhof,
D., Pai, A., Perslev, M., Petersen, J., Pont-Tuset, J., Qi, J., Qi, X., Rippel, O.,
Roth, K., Sarasua, I., Schenk, A., Shen, Z., Torres, J., Wachinger, C., Wang, C.,
Weninger, L., Wu, J., Xu, D., Yang, X., Yu, S.C.H., Yuan, Y., Yue, M., Zhang,
L., Cardoso, J., Bakas, S., Braren, R., Heinemann, V., Pal, C., Tang, A., Kadoury,
S., Soler, L., van Ginneken, B., Greenspan, H., Joskowicz, L., Menze, B.: The liver
tumor segmentation benchmark (lits). Medical Image Analysis 84, 102680 (2023)

2. Chen, C., Liu, X., Ding, M., Zheng, J., Li, J.: 3d dilated multi-fiber network for
real-time brain tumor segmentation in mri. In: Medical Image Computing and
Computer Assisted Intervention–MICCAI 2019: 22nd International Conference,
Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22. pp. 184–192.
Springer (2019)

3. Chen, J., Kao, S.h., He, H., Zhuo, W., Wen, S., Lee, C.H., Chan, S.H.G.: Run,
don’t walk: chasing higher flops for faster neural networks. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 12021–
12031 (2023)

4. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,
Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging
archive (tcia): maintaining and operating a public information repository. Journal
of Digital Imaging 26(6), 1045–1057 (2013)

5. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol,
S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al.: 3d slicer as an image
computing platform for the quantitative imaging network. Magnetic Resonance
Imaging 30(9), 1323–1341 (2012)

6. Gao, Y., Zhou, M., Metaxas, D.N.: Utnet: a hybrid transformer architecture for
medical image segmentation. In: Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part III 24. pp. 61–71. Springer (2021)

7. Gatidis, S., Früh, M., Fabritius, M., Gu, S., Nikolaou, K., La Fougère, C., Ye, J.,
He, J., Peng, Y., Bi, L., et al.: The autopet challenge: Towards fully automated
lesion segmentation in oncologic pet/ct imaging. Nature Machine Intelligence (in
presss) (2024)

8. Gatidis, S., Hepp, T., Früh, M., La Fougère, C., Nikolaou, K., Pfannenberg, C.,
Schölkopf, B., Küstner, T., Cyran, C., Rubin, D.: A whole-body fdg-pet/ct dataset
with manually annotated tumor lesions. Scientific Data 9(1), 601 (2022)

9. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B.,
Roth, H.R., Xu, D.: Unetr: Transformers for 3d medical image segmentation. In:
Proceedings of the IEEE/CVF winter conference on applications of computer vi-
sion. pp. 574–584 (2022)



A highly efficient segmentation method for abdominal multi-organs 15

10. Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., Yao, G., Gao, Y., Zhang, Y., Wang, Y., Hou, F., Yang, J.,
Xiong, G., Tian, J., Zhong, C., Ma, J., Rickman, J., Dean, J., Stai, B., Tejpaul,
R., Oestreich, M., Blake, P., Kaluzniak, H., Raza, S., Rosenberg, J., Moore, K.,
Walczak, E., Rengel, Z., Edgerton, Z., Vasdev, R., Peterson, M., McSweeney, S.,
Peterson, S., Kalapara, A., Sathianathen, N., Papanikolopoulos, N., Weight, C.:
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced
ct imaging: Results of the kits19 challenge. Medical Image Analysis 67, 101821
(2021)

11. Heller, N., McSweeney, S., Peterson, M.T., Peterson, S., Rickman, J., Stai, B.,
Tejpaul, R., Oestreich, M., Blake, P., Rosenberg, J., et al.: An international chal-
lenge to use artificial intelligence to define the state-of-the-art in kidney and kidney
tumor segmentation in ct imaging. American Society of Clinical Oncology 38(6),
626–626 (2020)

12. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen, Y.W.,
Wu, J.: Unet 3+: A full-scale connected unet for medical image segmentation. In:
ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal
processing (ICASSP). pp. 1055–1059. IEEE (2020)

13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2021)

14. Ji, Y., Bai, H., GE, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhanng, L., Ma,
W., Wan, X., Luo, P.: Amos: A large-scale abdominal multi-organ benchmark for
versatile medical image segmentation. Advances in Neural Information Processing
Systems 35, 36722–36732 (2022)

15. Liao, W., Zhu, Y., Wang, X., Pan, C., Wang, Y., Ma, L.: Lightm-unet: Mamba as-
sists in lightweight unet for medical image segmentation. arxiv 2024. arXiv preprint
arXiv:2403.05246 (2024)

16. Lyu, P., Xiong, J., Fang, W., Zhang, W., Wang, C., Zhu, J.: Advancing multi-
organ and pan-cancer segmentation in abdominal ct scans through scale-aware
and self-attentive modulation. In: MICCAI Challenge on Fast and Low-Resource
Semi-supervised Abdominal Organ Segmentation, pp. 84–101. Springer (2023)

17. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15, 654 (2024)

18. Ma, J., Kim, S., Li, F., Baharoon, M., Asakereh, R., Lyu, H., Wang, B.: Segment
anything in medical images and videos: Benchmark and deployment. arXiv preprint
arXiv:2408.03322 (2024)

19. Ma, J., Zhang, Y., Gu, S., An, X., Wang, Z., Ge, C., Wang, C., Zhang, F., Wang,
Y., Xu, Y., Gou, S., Thaler, F., Payer, C., Štern, D., Henderson, E.G., McSweeney,
D.M., Green, A., Jackson, P., McIntosh, L., Nguyen, Q.C., Qayyum, A., Conze,
P.H., Huang, Z., Zhou, Z., Fan, D.P., Xiong, H., Dong, G., Zhu, Q., He, J., Yang,
X.: Fast and low-gpu-memory abdomen ct organ segmentation: The flare challenge.
Medical Image Analysis 82, 102616 (2022)

20. Ma, J., Zhang, Y., Gu, S., Ge, C., Ma, S., Young, A., Zhu, C., Meng, K., Yang, X.,
Huang, Z., Zhang, F., Liu, W., Pan, Y., Huang, S., Wang, J., Sun, M., Xu, W., Jia,
D., Choi, J.W., Alves, N., de Wilde, B., Koehler, G., Wu, Y., Wiesenfarth, M., Zhu,
Q., Dong, G., He, J., the FLARE Challenge Consortium, Wang, B.: Unleashing
the strengths of unlabeled data in pan-cancer abdominal organ quantification: the
flare22 challenge. Lancet Digital Health (2024)



16 Junchen Xiong et al.

21. Ma, J., Zhang, Y., Gu, S., Ge, C., Ma, S., Young, A., Zhu, C., Meng, K., Yang, X.,
Huang, Z., et al.: Unleashing the strengths of unlabeled data in pan-cancer abdom-
inal organ quantification: the flare22 challenge. arXiv preprint arXiv:2308.05862
(2023)

22. Ma, J., Zhang, Y., Gu, S., Ge, C., Wang, E., Zhou, Q., Huang, Z., Lyu, P., He, J.,
Wang, B.: Automatic organ and pan-cancer segmentation in abdomen ct: the flare
2023 challenge. arXiv preprint arXiv:2408.12534 (2024)

23. Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q.,
Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-
1k: Is abdominal organ segmentation a solved problem? IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(10), 6695–6714 (2022)

24. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 fourth international confer-
ence on 3D vision (3DV). pp. 565–571. Ieee (2016)

25. Qin, D., Leichner, C., Delakis, M., Fornoni, M., Luo, S., Yang, F., Wang, W.,
Banbury, C., Ye, C., Akin, B., et al.: Mobilenetv4-universal models for the mobile
ecosystem. arXiv preprint arXiv:2404.10518 (2024)

26. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, Oc-
tober 5-9, 2015, proceedings, part III 18. pp. 234–241. Springer (2015)

27. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., Ronneberger, O.,
Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka,
J., Heckers, S.H., Jarnagin, W.R., McHugo, M.K., Napel, S., Vorontsov, E., Maier-
Hein, L., Cardoso, M.J.: A large annotated medical image dataset for the develop-
ment and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063
(2019)

28. Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V.,
Hatamizadeh, A.: Self-supervised pre-training of swin transformers for 3d med-
ical image analysis. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 20730–20740 (2022)

29. Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W.,
Heye, T., Boll, D.T., Cyriac, J., Yang, S., Bach, M., Segeroth, M.: Totalsegmen-
tator: Robust segmentation of 104 anatomic structures in ct images. Radiology:
Artificial Intelligence 5(5), e230024 (2023)

30. Wu, Y., Wang, E., Shao, Z.: Fast abdomen organ and tumor segmentation with
nn-unet. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised Ab-
dominal Organ Segmentation, pp. 1–14. Springer (2023)

31. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer:
Simple and efficient design for semantic segmentation with transformers. Advances
in neural information processing systems 34, 12077–12090 (2021)

32. Xie, Y., Zhang, J., Shen, C., Xia, Y.: Cotr: Efficiently bridging cnn and transformer
for 3d medical image segmentation. In: Medical Image Computing and Computer
Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg,
France, September 27–October 1, 2021, Proceedings, Part III 24. pp. 171–180.
Springer (2021)

33. Xu, Z., Escalera, S., Pavão, A., Richard, M., Tu, W.W., Yao, Q., Zhao, H., Guyon,
I.: Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform.
Patterns 3(7), 100543 (2022)



A highly efficient segmentation method for abdominal multi-organs 17

34. Yushkevich, P.A., Gao, Y., Gerig, G.: Itk-snap: An interactive tool for semi-
automatic segmentation of multi-modality biomedical images. In: Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society. pp.
3342–3345 (2016)

35. Zhao, Q., Zhong, L., Xiao, J., Zhang, J., Chen, Y., Liao, W., Zhang, S., Wang, G.:
Efficient multi-organ segmentation from 3d abdominal ct images with lightweight
network and knowledge distillation. IEEE Transactions on Medical Imaging 42(9),
2513–2523 (2023)

36. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnformer: Interleaved
transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)



18 Junchen Xiong et al.
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