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Abstract

The recent integration of spiking neurons into graph neural networks has been1

gaining much attraction due to its superior energy efficiency. Especially because2

the irregular connection among graph nodes fits the nature of the spiking neural3

networks, spiking graph neural networks are considered strong alternatives to4

vanilla graph neural networks. However, there is still a large performance gap for5

graph tasks between the spiking neural networks and artificial neural networks. The6

gaps are especially large when they are adapted to graph classification tasks, where7

none of the nodes in the testset graphs are connected to the training set graphs. We8

diagnose the problem as the existence of neurons under starvation, caused by the9

irregular connections among the nodes and the neurons. To alleviate the problem,10

we propose TAS-GNN. Based on a set of observations on spiking neurons on11

graph classification tasks, we devise several techniques to utilize more neurons to12

deliver meaningful information to the connected neurons. Experiments on diverse13

datasets show up to 27.20% improvement, demonstrating the effectiveness of the14

TAS-GNN.15

1 Introduction16

Graph neural networks (GNNs) are types of popular neural networks to learn the representations from17

graphs, which comprise multiple nodes and edges between them. Because of their flexibility to model18

any kind of connection existing in nature, it has various applications ranging from drug discovery [6,19

47, 9], social influence prediction [39, 2], traffic forecasting [3, 7], and recommendation systems [38,20

15, 61]. One known challenge of GNNs is their sparse memory and computational pattern. Because21

many messages are passed between randomly connected nodes, there is a significant inefficiency in22

processing them with conventional systems [53, 58, 57, 19].23

To address the inefficiency, spiking neural networks (SNNs) are considered strong alternatives.24

Inspired by the way biological behavior of brains, SNNs process information by communicating25

binary spikes between the neurons. Because SNNs utilize intermittently occurring spikes, they have26

superior energy efficiency, especially for the domain of GNNs [1].27

Although the spiking graph neural network (SGNN) has been recently studied by many researchers [32,28

64, 48], we find that its performance experiences a huge drop when adapted to graph classification,29

compared to that of the conventional GNNs implemented with artificial neural networks (ANNs).30

Upon closer analysis of the performance degradation, we identify spike frequency deviation of the31

neurons within the model. In our investigation, many neurons experience starvation, which do not32

emit any spike during the inference. This leads to severe information loss, due to being unable to33

deliver signals to the subsequent neurons.34
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Such a problem was less exposed in previous spiking GNNs. This is because the testset nodes are35

available during the training time (transductive learning [27]) or they are part of the training graph36

(inductive learning [21]). In such settings, the model could be trained to mitigate the performance37

drop. However, in graph classification tasks, the graphs are independent of each other, and the testset38

comprises multiple unseen graphs, aggravating the problem.39

Fortunately, our further analysis reveals that such phenomena are related to the topology of the input40

graphs. We discover that a strong pattern exists among the neurons in the GNN, where 1) neurons in a41

node have similar behaviors, 2) each feature causes different behaviors, and 3) neurons in high-degree42

nodes tend to emit more spikes.43

Motivated by the observations, we propose to group the neurons according to the degree of the node44

(topology-aware group-adaptive neurons). The neurons in each group adapt the threshold together to45

steer the firing rate toward ideal rates. To further mitigate the initial value sensitivity problem, we46

further propose to learn the initial values.47

We evaluate TAS-GNN over multiple GNN models and datasets. Experiments reveal that the proposed48

TAS-GNN achieves superior performance over the baselines, setting a new state-of-the-art method49

for graph classification. Our contributions are summarized as the following:50

• We identify starvation problem of spiking neurons in GNNs for graph classification tasks.51

• We observe the spike frequency patterns have a strong correlation with the graph topology.52

• Based on the observations, we propose topology-aware group-adaptive neurons, which53

dynamically adjusts the threshold together with the other neurons in the group to address54

the spike frequency deviations.55

• We propose techniques to reduce the initial value sensitivity caused by the topology-aware56

group-adaptive neurons.57

• We evaluate TAS-GNN on several public datasets and achieve superior performance over58

existing techniques.59

2 Background60

2.1 Spiking Neural Networks and Spike Training61

Spiking neural networks (SNNs) are third-generation neural network designs that mimic the human62

biological neural systems [35]. They use spike-based communication and adopt event-driven charac-63

teristics that promote better energy efficiency than current ANNs. Similar to human neural systems,64

SNNs consist of spiking neurons that can model spatio-temporal dynamics of the actual biological65

neurons. The early forms of such neuron models are Hodgkin-Huxley neurons [23], which accurately66

model the biophysical characteristics of the membrane through differential equations. However, its67

mathematical complexity prohibits its practical use and scalability. Instead, Leaky Integrated-and-Fire68

(LIF) model finds a middle ground between mathematical simplificity and biological plausibility, and69

is popularly adopted as the baseline architecture [23]. In the LIF neuron, the weighted sum of input70

spikes is accumulated over time within the neuron as membrane potential, and the output spike is71

generated only when the membrane potential exceeds a present threshold value. This is represented72

as a differential function:73

τ
dV (t)

dt
= −V (t) + I(t), (1)

where V (t) denotes the membrane potential value at time t, τ a time constant of membrane, and I(t)74

is the input from connected synapses at time t. To make this time-varying function computationally75

feasible, we discretize and rewrite it iteratively for sequential simulation as follows:76

V (t) = V (t− 1) + β(WX(t)− (V (t− 1)− Vreset)), (2)
V (t) = V (t)(1− S(t)) + VresetS(t), (3)

S(t) =

{
1, if V (t) ≥ Vth
0, otherwise,

(4)

where β is simplified decay rate constant, Vreset is the reset value and Vth the threshold for the77

membrane potential. Note that I(t) is simplified as weighted input WX(t) which can be obtained78
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through any operations with learnable weights including convolutional operation, self-attention, or a79

simple MLP. We will denote this process of forwarding through LIF neuron as SNN(·) in this paper.80

Direct SNN Training. The initial adoption of SNNs was through ANN-SNN conversion, primarily81

due to their remarkable potential for reducing energy consumption. Various studies have aimed to82

address the accuracy degradation that occurs during the conversion from ANNS to SNNs [22, 41, 24,83

42].84

The spike generation by the step function in Equation (4) interfered with direct training without85

modifying the functions. To bypass the step function, which is non-differentiable and thus unsuitable86

for backpropagation, several approaches have been proposed [43, 5, 13, 14, 8, 51, 10]. Recent87

research has demonstrated that directly training SNNs can yield competitive results by addressing88

the challenges posed by non-differentiability. Our work focuses on directly training graph neural89

networks (GNNs) with SNNs and exploring a different domain, such as ANN-SNN conversion90

methods, which do not focus on using backpropagation concepts directly.91

2.2 Graph Neural Networks92

Graph neural networks (GNNs) take graph-represented data as input, which consist of nodes and93

their connected edges G = (V,E), with node features X ∈ R|V |×F and optionally edge features94

E ∈ R|E|×D. The common GNN architectures follow a message passing paradigm [20], which95

learns node or edge representations through aggregating information from its neighboring nodes96

and updating the node features iteratively. Thus a single forward of message passing layer consists97

of message passing, aggregation, and update: h(l+1)
i = ϕ(h

(l)
i ,

⊕
j∈N (i) ψ(h

(l)
i , h

(l)
j , eij)), where98

l and i are indices for layer and node, respectively, and ψ(·) denote message passing function.99

After aggregation of neighboring features, ϕ(·) is used for feature update. For graph convolutional100

network [27], the overall process can be simplified as:101

X(l+1) = AX(l)W (l), (5)

where the feature matrix is a concatenation of node features X(l) = [h
(l)
0 ||h(l)1 ||...||h(l)(|V |−1)]

T which102

is updated through iterations of aggregation (AX) and combination (XW ). After iterative updates of103

X through the layers, the learned node or edge embeddings are passed through additional classification104

layer for node-level or edge-level predictions.105

Graph Classification In this paper we put emphasis on graph-level classification tasks where each106

graph is considered an individual input. Graph classification follows the same node-wise message107

passing framework to obtain node embeddings, but appends a readout layer to turn them into a single108

graph embedding:109

hG = R(h
(L)
i |Vi ∈ G), (6)

where R denotes readout function. Readout function reduces the node dimension to a single channel110

regardless of the input size. This is due to the inductive nature of graph classification task where111

the number of nodes is not known in advance. While all the other GNN layers focus on aggregating112

only the local features, the readout layer considers the entire graph to generate global features,113

and is unique to the graph classification tasks. The obtained graph embedding is passed through a114

classification layer for graph predictions. Graph classification tasks usually hold more difficulty than115

node-level classification due to its inductive nature, where inference is done on unseen graphs and116

thus cannot utilize any graph-specific statistics from the train set.117

2.3 Spiking Graph Neural Networks118

In this paper, we adopt conventional SNN designs where LIF neurons are connected through learn-119

abled weights, and apply is to GNN framework [64]. As mentioned in Section 2.2, each GNN layer120

outputs updated feature matrix X(l+1) ∈ R|V |×F . This is converted to spike representation through121

SNN layer:122

X(l+1) = SNN(AX(l)W (l)). (7)

After passing the GNN layer, all of the updated h(l)i directly pass through the SNN layer, consist the123

feature matrix X(l) always contains spike information consistently.124
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(a) Histogram plotting distribution of total spikes counted over time for each node. X-axis denotes spike counts
from each node, while y-axis denotes density of each bin.
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(b) Spike frequency visualization using each layer output. X-axis denotes feature dimension, while y-axis
denotes nodes grouped and sorted by degree in descending order, top to bottom. Brighter spots denote higher
frequency.

Figure 1: Analysis on spike frequency variation of GCN using IMDB-BINARY [54] dataset.

3 Analysis on Spike Frequency Variation of GNNs125

To analyze the cause of the accuracy drop, we plot the behavior of the neurons during inference in126

Figure 1a, on a IMDB-BINARY dataset over five timesteps (T = 5). We create a histogram of spike127

counts created from each node, which is associated with 128 neurons. As depicted in the plot, it is128

clear that most of the neurons are under starvation. This is caused by the inputs of those neurons129

being insufficient to reach the threshold, and this leads to severe information loss between the layers.130

While unveiling the exact dynamics would require more research, we hypothesize that this is caused131

by the topology of the real-world graphs.132

To validate the hypothesis and further investigate the phenomena, we display the spike frequency133

heatmap of the neurons sorted by the degree of the nodes in Figure 1b. From the heatmap, we make134

three observations:135

1 (Brighter on the top and darker at the bottom) High-degree nodes tend to exhibit higher spike136

frequencies.137

2 (The horizontal strips) The spike frequencies are associated with the corresponding nodes.138

3 (The vertical strips) The feature neurons within a node behave differently according to their139

positions.140

We believe such patterns come from the connectivity of the nodes, and the distinct role of the neurons141

assigned to each node. The connectivity will affect the number of receiving spikes of neurons142

associated with each node. It is known that most of the real-world graphs exhibit an extremely skewed143

distribution of degrees (i.e., power-law distribution [30]). Due to such a characteristic, there are a few144

nodes with very high degrees, while a majority of nodes have low degrees. Because a GNN layer145

communicates signals between the neighbors, a high-degree node will likely receive a lot of spikes,146

while a low-degree node will receive only a few.147
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Figure 2: Overall graph classification architecture with proposed methods.

In addition, the neurons assigned to each node are known to have different semantic functionality148

according to their positions, analogous to channels in convolutional neural networks or heads in149

large language models. For example, the input first layer of a molecular graph will have information150

such as its energy, x/y/z location, and atom numbers. In the intermediate layers, they represent a151

specific pattern sensed by the network (such as high energy + hydrogen atom), even though the exact152

behaviors are yet to be human-interpretable. In such a manner, the neurons in the same position are153

expected to behave similarly, even though they correspond to different nodes.154

These three observations shed light on how to close the performance gap between spiking GNNs are155

ANN-based GNNs. In the next section, we describe how the observations are used to build better156

spiking GNNs for graph classification.157

4 Proposed Method158

4.1 Overall Graph Classification Architecture159

Many recent studies have tried to adapt SNN architectures into GNN tasks, however, they simply160

try to contact with only node classification tasks. In this work, we propose a spiking neural network161

specifically designed for graph classification tasks and show that it can be trained using spikes. We162

demonstrate the overall architecture of our graph classification model TAS-GNN in Figure 2. For each163

timestep, the input graphs are first translated into spike representations through the poisson encoder,164

then the message passing is done in spike format. After the combination phase in the GNN layer, the165

node features are once again binarized into spike format through passing the SNN layer. In the last166

layer, we perform an extra operation of aggregation and combination on the spike features before167

passing the readout layer. The readout layer is essential to graph classification and is responsible for168

aggregating all the node embeddings in the graph into a single graph representation. A batch of graph169

embeddings is passed through a classification head that outputs logits for that timestep. To make the170

final prediction, we simply take the sum of logits from all timesteps and use softmax to obtain the171

class probabilities.172

4.2 Topology-Aware Group-Adaptive Neurons173

As discussed in Section 3, GNNs suffer from a huge gap in spike frequencies between neurons. As174

observed, there exist some patterns (Figure 5) that we can utilize to address the issue. One naive175

way of addressing the issue is to use learnable [49], or adaptive [4] threshold for each neuron. By176

adjusting the threshold, one can expect the neurons to naturally change, such that neurons under177

starvation will have lower thresholds to fire more often, and a few neurons with high firing rates will178

have higher thresholds to shift toward an ideal distribution.179
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Unfortunately, such an idea cannot be directly applied unless all the testset nodes are available at180

training time (i.e., transductive task). However, such a setting would be considered a data leak for181

graph classification, and would also lose the advantage SNNs have on lightweight inference.182

Moreover, the number of nodes in a real-world dataset often ranges from at least thousands to several183

billions. Considering that GNNs often involve only a sub-million number of learnable parameters,184

storing such a large number of thresholds is considered too much overhead.185

To address the aforementioned issues, we propose topology-aware group adaptive neurons (TAG),186

which partitions the neurons by their degrees. Note that Vg denotes the node group to which the187

node is mapped, considering degree information. Sgi(t) and V gi(t) represent the output spike and188

membrane potential of the i-th node in group g at time t, respectively, as reformulated by Equation (4).189

We use g to represent the unique degree distribution of the training sets. When an unseen node is190

encountered, we apply the initial threshold, as it has not been trained at all.191

Sgi(t) =

{
1, if V gi(t) ≥ V g

th(t− 1)

0, otherwise
(8)

Sg(t) =
1

|Vg|
∑
i∈Vg

Sgi(t) (9)

V g
th(t) = γV g

th(t− 1) + (1− γ)Sg(t) (10)

The major advantage of this scheme is that it is straightforward to put an unseen node or an unseen192

graph into a group at inference. To further consider intra-node deviation, we split the group into193

F (number of features) neurons, which is a fixed parameter determined by the model architecture.194

For any unseen node, finding out its degree is trivial because visiting its neighbors is one of the195

fundamental requirements of graph data structures [26, 50, 36, 28]. Based on the observation 1196

from Section 3 that the neuron behavior is related to the degree, this will let neurons in the group197

collaboratively find an adequate threshold.198

4.3 Reducing the Initial Threshold Sensitivity199

Figure 3: Sensitivity of neurons to its
initial threshold.

The proposed Group-adaptive threshold scheme effec-200

tively reduces the spike frequency variation issue. How-201

ever, we find that the adaptive neurons in the proposed202

TAG are sensitive to their initial thresholds. As depicted203

in Figure 3, the performance of the adaptive neurons can204

severely drop when the initial threshold value is not care-205

fully tuned, which aligns with the findings from [4]. More-206

over, manually tuning the initial thresholds individually is207

difficult because there are thousands of neuron groups.208

To address the problem, we choose to learn the two pa-209

rameters: the initial threshold per group (V g
th(0)) and the210

decay rate (β). During training, we adopted the backprop-211

agation algorithm [51, 10, 8] to update the value of V g
th(0)212

with the gradients at time step t=1. This is done because V g
th(t) keeps updating with TAG Section 4.2213

as time passes. During training, we also learn the decay rate (β) [16], which prevents the membrane214

voltage of neurons in low-degree nodes from leaking faster than it accumulates. For evaluation, we215

use the V g
th(0) values obtained during the training phase, adjusted for each group. The overall training216

procedure is in the Appendix.217

5 Evaluation218

5.1 Experiment Settings219

We use a total of 5 graph datasets commonly used for benchmarking GNNs: MUTAG [9], PRO-220

TEINS [6], ENZYMES [6], NCI1 [47], and IMDB-Binary [54]. For the GNN layer in our architecture,221

we use 3 different designs, including GCN [27], GAT [45], and GIN [52]. The baselines include222

3 works from SNN that are applicable to graph datasets: SpikingGNN [64], SpikeNet [32], and223
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Table 1: Performance comparison against baseline methods.

Model Method MUTAG PROTEINS ENZYMES NCI1 IMDB-BINARY

GCN

ANN [27] 88.86 ± 5.48 77.81 ± 3.46 72.00 ± 4.37 76.42 ± 2.98 56.80 ± 4.80
SpikingGNN [64] 90.96 ± 3.99 74.39 ± 2.68 50.67 ± 4.91 73.41 ± 1.60 68.40 ± 2.96
SpikeNet [32] 87.81 ± 5.60 74.75 ± 3.20 50.00 ± 3.33 73.92 ± 1.54 70.30 ± 2.17
PGNN [16] 87.28 ± 5.87 77.36 ± 2.68 56.33 ± 3.17 76.52 ± 1.46 71.60 ± 2.17
TAS-GNN 96.32 ± 3.10 (+5.35) 77.45 ± 1.94 (+0.09) 56.50 ± 3.87 (+0.17) 77.81 ± 1.28 (+1.29) 80.10 ± 2.49 (+8.50)

GAT

ANN [45] 83.04 ± 4.23 77.54 ± 3.22 59.67 ± 3.48 67.88 ± 3.00 54.50 ± 2.14
SpikingGNN [64] 78.71 ± 5.34 59.66 ± 0.21 29.17 ± 3.14 66.25 ± 1.77 50.00 ± 0.00
SpikeNet [32] 78.22 ± 3.67 64.60 ± 3.22 51.67 ± 4.96 66.84 ± 1.60 50.00 ± 0.00
PGNN [16] 82.49 ± 4.98 64.06 ± 2.37 39.50 ± 2.87 68.32 ± 1.49 50.00 ± 0.00
TAS-GNN 96.32 ± 3.10 (+13.83) 71.34 ± 3.03 (+6.74) 52.33 ± 3.47 (+0.67) 75.33 ± 2.41 (+7.01) 77.90 ± 2.18 (+27.90)

GIN

ANN [52] 95.23 ± 5.61 78.79 ± 3.74 33.67 ± 4.66 79.17 ± 3.07 70.40 ± 4.14
SpikingGNN [64] 92.60 ± 4.41 77.81 ± 2.71 45.17 ± 5.01 70.29 ± 2.01 74.30 ± 1.47
SpikeNet [32] 93.66 ± 4.62 78.43 ± 2.63 44.33 ± 3.98 74.77 ± 1.63 74.80 ± 2.74
PGNN [16] 94.18 ± 4.84 79.16 ± 2.61 43.33 ± 5.45 75.38 ± 1.41 72.80 ± 4.63
TAS-GNN 95.76 ± 3.47 (+1.58) 80.32 ± 2.42 (+1.17) 48.00 ± 4.01 (+2.83) 77.52 ± 1.49 (+2.14) 73.70 ± 3.11 (-1.10)

†Did not converge

Table 2: Ablation study on the proposed method

Model Method MUTAG PROTEINS ENZYMES NCI1 IMDB-BINARY

GCN
Baseline 90.96 74.39 50.67 73.41 68.40
+ TAG 93.66 (+2.69) 75.65 (+1.26) 49.00 (-1.67) 73.65 (+0.24) 71.90 (+3.50)
TAS-GNN (Proposed) 96.32 (+5.35) 77.45 (+3.06) 56.50 (+5.83) 77.81 (+4.40) 80.10 (+11.70)

GAT
Baseline 78.71 59.66 29.17 66.25 50.00
+ TAG 80.35 (+1.64) 66.48 (+6.82) 51.83 (+22.67) 67.98 (+1.73) 50.00 (+0.00)
TAS-GNN (Proposed) 96.32 (+17.60) 71.34 (+11.68) 52.33 (+23.16) 75.33 (+9.08) 77.90 (+27.90)

GIN
Baseline 92.60 77.81 45.17 70.29 74.30
+ TAG 93.66 (+1.05) 78.35 (+0.53) 46.16 (+0.99) 73.67 (+3.38) 75.20 (+0.90)
TAS-GNN (Proposed) 95.76 (+3.16) 80.32 (+2.51) 48.00 (+2.83) 77.52 (+7.23) 73.70 (-0.60)

PGNN [16]. Since this is the first SNN design to target graph classification, we apply minor modi-224

fications to each architecture, such as appending a readout layer. Note that SpikingGNN [64] was225

originally proposed for GCN, but we extend it to both GAT and GIN. More details on the experiment226

setting are included in the Appendix.227

5.2 Results on Graph Classification228

We compare TAS-GNN against prior works that adopt a spiking neural network to graph the dataset,229

shown in Table 1. We also report the performance of conventional ANN for comparison. In all but 2230

cases, TAS-GNN outperforms the baselines by a noticeable margin. In the cases where TAS-GNN231

underperforms, the gaps are less than 1.1%p, smaller than the error bounds. In the opposite cases, the232

improvement is up to 27.90%p, showing a great amount of improvement.233

An intriguing result is that TAS-GNN performs better than ANN-based GNNs in several cases.234

Improvements beyond the error bounds are found in MUTAG (GCN and GAT), NCI1 (GAT), and235

IMDB-BINARY (GCN and GAT). Note that the model architecture and the number of learnable236

parameters are the same in all methods. We believe this could come from the spiking neurons237

efficiently capturing the irregular connections over several timesteps, thereby showing an advantage238

over ANNs.239

5.3 Ablation Study240

In this section, we break down individual components of TAS-GNN and perform an ablation study,241

which is reported in Table 2. Starting from baseline implementation, which does not differentiate242

neurons used by each node, we apply TAG to show the effect of topology-aware group-adaptive243

neurons. Then, we add our learnable initial threshold scheme to complete TAS-GNN. The results244

show that TAG alone can improve the performance across all datasets and models. This means that245

uneven spike distribution caused by indegree variance is a general problem shared across different246

graph datasets, and simply grouping the nodes with similar indegree to share the same threshold helps247

alleviate this problem. Lastly, adding a learnable initial threshold scheme further boosts the accuracy248

in almost all cases, demonstrating its efficacy and stability.249
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Model Method Vinit

0.50 1.50 2.50 5.00 7.00 10.00

GCN TAG 87.84 86.75 88.33 89.91 88.30 68.16
Ours 95.79 97.37 96.32 95.79 95.23 90.99

GAT TAG 85.70 81.96 80.35 80.85 77.72 77.19
Ours 94.18 93.65 96.32 93.68 91.58 92.60

GIN TAG 92.08 93.13 92.57 94.21 92.08 93.68
Ours 94.18 94.74 95.76 93.68 94.71 89.94

Figure 4: Sensitivity study of neurons to its initial threshold.

5.4 Sensitivity Study250

Table 3: Sensitivity study on threshold learning
rate using MUTAG.

η

Model 0.001 0.005 0.01 0.05 0.1 0.5

GCN 93.68 96.84 96.32 96.84 96.84 84.15
GAT 86.78 94.18 96.32 94.18 94.71 92.05
GIN 89.97 95.26 95.76 93.16 93.13 91.02

To validate our method’s efficacy in alleviat-251

ing the sensitivity of the initial threshold value,252

we perform a sensitivity study varying the val-253

ues from 0.0 to 10.0. We compare our scheme254

against the TAG method, which also adaptively255

modulates the threshold during inference but256

does not learn it from training. Our method257

consistently performs indifferently to the initial258

threshold value, which means arduous search or259

tuning is unnecessary to achieve stable accuracy.260

On the other hand, TAG is highly sensitive to the initial threshold and shows a performance gap up to261

19.68%p except for GIN architecture, which is capturing structure well.262

Since our scheme uses a learnable initial threshold, we also study its sensitivity for the learning rate,263

shown in Table 3. TAS-GNN performs best around η = [0.005, 0.1], and starts to degrade for further264

increment or decrement. As denoted in the experimental setting, we use η = 0.01 as the default.265

5.5 Additional Analysis266

In this section, we give additional analysis on TAS-GNN by studying its spike frequency distribution.267

In Figure 5, we provide the same spike frequency visualization as done in Section 3, but using268

TAS-GNN. Unlike Figure 1, which showed severe starvation with most nodes not generating spikes,269

Figure 5a reveals that most nodes fire spikes, significantly alleviating the starvation problem. This270

is further illustrated Figure 5b, where most neurons have non-zero spike values and, what’s more,271

meaningfully reflect the topology of the graph. For nodes with higher degrees, the spikes are more272

frequent (close to 5) due to having more incoming spikes from their neighbors. For GNNs, such273

information is essential to capture the global topology of the graph. This shows that our design of274

TAS-GNN faithfully reflects such information and can successfully propagate such information using275

spikes.276

6 Related Works277

Graph Classification Graph classification requires identifying the global characteristics of each278

graph and is commonly applied to domains such as bioinformatics [6], chemoinformatics [63], or279

social network analysis [21, 37]. Popular examples include the molecular classification of chemical280

compounds, proteins, or RNAs, where identifying the graph structural information is crucial. Due281

to the success of GNNs, [27, 45, 52, 57] Most GNNs use a message passing paradigm [20] that282

only aggregates local features. Thus, to obtain global features representing the entire graph, graph283

pooling [56] is often used. Global pooling summarizes the entire graph into a fixed-size graph284

embedding, which can be done by simply averaging or taking minimum or maximum values of the285

node-wise embeddings. Other variations replace such simple operations with neural networks [46,286

33] or integrate sorting to selectively choose which node embeddings to include [60]. More advanced287

techniques such as hiearchical pooling utilze hiearchical information of graphs [40, 29, 18, 11] and288

usually show better representation learning. [60]289
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(a) Histogram plotting the distribution of total spikes counted over time for each node. X-axis denotes spike
counts from each node, while y-axis denotes density of each bin.

max

min

max

min

max

min

(b) Spike frequency visualization on TAS-GNN using each layer output. X-axis denotes feature dimension,
while y-axis denotes nodes grouped and sorted by degree in descending order, top to bottom. Brighter spots
denote higher frequency.

Figure 5: Analysis on spike frequency variation of GCN using IMDB-BINARY [54] dataset.

Spiking Neural Networks SNNs are a type of neural network where information is transmitted290

using spikes, similar to how biological neurons work. They use different neuron models for capturing291

spike signals effectively [23, 24] or adjusting parameters dynamically to compromise the accuracy292

[16, 49, 4, 34]. One major area of SNN research is converting traditional ANNs into SNNs by293

mapping ANN activation functions into spike signals [22, 41, 24, 42, 17]. Another focus is training294

SNNs directly using backpropagation, similar to ANNs, which involves using various techniques295

such as surrogate functions for backpropagation [43, 8] and adapting normalization techniques to296

SNNs [42, 12, 25, 62].297

SNN for Graphs Previous attempts to apply SNNs to graph datasets have primarily focused on298

node-level classification tasks [59, 44, 64] and have not yet been extended to graph-level tasks. While299

[48] explored the application of spike training to Graph Attention Networks (GAT), it implemented the300

message passing phase after the spiking phase, which deviates from previous structures. Additionally,301

recent efforts have begun to integrate SNNs with other techniques for contrastive learning [31],302

particularly in dynamic graphs [55], to adopt collaboration between GNNs and SNNs.303

7 Conclusion304

In this paper, we explore the application of SNNs to graph neural networks for graph classification305

for the first time. After thoroughly analyzing the graph’s uneven spike distribution, we identify that306

the degree of each node correlates to this phenomenon. To better accommodate such characteristics307

of graphs, we propose topology-aware group-adaptive neurons, which uses separate neurons for each308

degree group in the graph. In addition, we propose to learn the initial threshold and adaptively adjust309

the threshold simultaneously to reduce its sensitivity and facilitate training using spikes. Combined310

with the modified architecture for graph classification, we name our method TAS-GNN, and show311

that it outperforms existing works by a noticeable margin.312
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A Appendix / supplemental material483

A.1 Limitation484

Currently, our work is experimenting with the small-scale dataset for the graph classification that is485

generally used. However, we will extend our work into the large-scale dataset that could apply to486

the real. In addition, we will continue our future work for theoretical proof for updating the initial487

threshold that is fused with adaptative changes in the timestep.488

A.2 Code489

The code which includes our implementation of this work is included in a zip archive of the sup-490

plementary material. The code is under Nvidia Source Code License-NC and GNU General Public491

License v3.0.492

A.3 Detailed Experiment Settings493

Dataset Details Given the diverse properties of graph datasets, we selected five datasets from the494

well-known TUDatasets, commonly used for graph classification. We compiled statistics for these495

datasets to briefly represent their key properties.496

Table 4: Summary of datasets used in the study.

Dataset # Graphs Avg.
Nodes

# Nodes
(1stgraph)

Avg.
Edges

# Edges
(1stgraph)

# Classes

MUTAG [9] 188 17.93 17 19.79 38 2
PROTEINS [6] 1113 39.06 42 72.82 162 2
ENZYMES [6] 600 32.6 37 62.1 168 6
NCI1 [47] 4110 29.87 21 32.30 42 2
IMDB-BINARY [54] 1000 19.77 20 96.53 146 2

Network Architecture In this work, we consider the following three GNN architectures where the497

distinctions lie in their update rules:498

• Graph Convolution Network [27] (GCN): h(l+1)
i = σ(

∑
j∈N (i)

⋃
{i}

Wh
(l)
j√

|N(i)||N(j)|
), where499

ϕ(·) is replaced by affine transformation W followed by nonlinearity σ.500

• Graph Attention Network [45] (GAT): h(l+1)
i = αi,iWh

(l)
i +

∑
j∈N (i) αijWh

(l)
j , where501

αij is the normalized attention score between node i and j.502

• Graph Isomorphism Network [52] (GIN): h(l+1)
i = MLP ((1 + ϵ)h

(l)
i +

∑
j∈N (i) h

(l)
j ),503

where ϵ is a learnable constant.504

For the GCN layers, 128 dimensions were used for hidden dimensions, and GAT layers were used for505

4 multi-head attentions. GIN was used for 2-MLP layers for the above equation.506

Experiment Settings We trained and evaluated our models using 10-fold cross-validation for all507

datasets. Note that the IMDB-BINARY dataset lacks inherent features, so we constructed features508

using the node degrees for the GNN layer. Additionally, we did not apply any multiplier to adjust509

the width of the sigmoid function. The details of our evaluation procedure are outlined below. Our510

experiment was evaluated on a single RTX-4090 GPU for the full batch GNN training.511

• Epochs: 1000512

• Surrogate function: σ(x) = 1
1+e−x513

• Learning rate(η): 0.01 (for main table)514

• Optimizer: Adamw515

• Loss function: Cross entropy516

• Adaptive step size(γ): 0.2517
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A.4 Analysis on Spike Frequency518

We provide additional figures that we referenced on Section 3. Appendix A.4 shows MUTAG,519

PROTEINS, ENZYMES, NCI1 dataset total spike histogram bins.520

521

A.5 Overall training procedure522

As referred on Section 4 our TAG method and overall updating initial values of group threshold is523

reffed on Algorithm 1. Note that our initial group values updated after timestep T.524

Algorithm 1 Updataing V g
th(0) procedure

1: Inputs: Initial start points of threshold Vinit, graph’s vertex feature X ∈ RV XF , learning rate for training
η, total time step T , l-th layer’s threshold V

(l)
th , l-th layer’s GNN layer GNN (l), true label Y ,

2: Initialize: V g
th(0) = [Vinit, ... Vinit ] ▷ Initialize all of the g threshold groups with initial values

3: for ep = 1 to epochs do
4: for t = 1 to T do
5: X = PoissonEncoder(X) ▷ Binarize first input layer with Poisson encoder
6: for l = 1 to L do
7: for g in group G do
8: Xg,(l) = GNN (l)(Xg,(l)) ▷ Operate by GCN, GAT, GIN architectures
9: for i = 1 to |Vg| do

10: Xgi,(l) = Sgi,(l)(t) = SNN (l)(Xgi,(l)) ▷ Xgi,(l) represents i-th row of Xg,(l)

11: Sg,(l)(t) = 1
|Vg|

∑
i∈Vg

Sgi(t)

12: end for
13: V

g,(l)
th (t) = γV

g,(l)
th (t− 1) + (1− γ)Sg,(l)(t) ▷ Update threshold through TAG Equation (10)

14: end for
15: end for
16: Ot ← FC(POOL(GNN(X(L)))) +Ot−1

17: end for
18: Vth(0) = Vth(0)− η∇Vth(0)L(Ot=1, Y )
19: end for

A.6 Sensitivity Study on Degree Group525

Our experiments were conducted on a number of degree groups. Please refer Table 5 for the sensitivity526

depending on the number of degree groups. Please note that the optimal values of the degree groups527

are different depending on the graph datasets. We reported to the max degree group setting that528

unseen nodes will use the initial values Vinit that represents the Vth(0) that does not trained at all.529

A.7 Sensitivity Study on Learning Rate530

Our experiments were conducted under various learning rate conditions η ∈ [0.001, 0.5] to assess their531

impact. As reported in Table 3 for the MUTAG dataset, we also present results for the PROTEINS,532

ENZYMES, NCI1, and IMDB-BINARY datasets across GCN, GAT, and GIN architectures. Our533

model’s ability to learn Vinit demonstrates a sensitivity to learning rate similar to other ANN models.534

We found that the optimal performance was achieved at a learning rate of η = 0.01.535
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(a) MUTAG-SpikingGNN spikes per node

(b) MUTAG-TASGNN spikes per node

(c) PROTEINS-SpikingGNN spikes per node

(d) PROTEINS-TASGNN spikes per node

(e) ENZYMES-SpikingGNN spikes per node

(f) ENZYMES-TASGNN spikes per node
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(g) NCI1-SpikingGNN spikes per node

(h) NCI1-TASGNN spikes per node

Figure 6: Histogram plotting distribution of total spikes counted over time for each node. X-axis
denotes spike counts from each node, while y-axis denotes density of each bin.

NeurIPS Paper Checklist536

The checklist is designed to encourage best practices for responsible machine learning research,537

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove538

the checklist: The papers not including the checklist will be desk rejected. The checklist should539

follow the references and precede the (optional) supplemental material. The checklist does NOT540

count towards the page limit.541

Please read the checklist guidelines carefully for information on how to answer these questions. For542

each question in the checklist:543

• You should answer [Yes] , [No] , or [NA] .544

• [NA] means either that the question is Not Applicable for that particular paper or the545

relevant information is Not Available.546

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).547

The checklist answers are an integral part of your paper submission. They are visible to the548

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it549

(after eventual revisions) with the final version of your paper, and its final version will be published550

with the paper.551

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.552

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a553

proper justification is given (e.g., "error bars are not reported because it would be too computationally554

expensive" or "we were unable to find the license for the dataset we used"). In general, answering555

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we556

acknowledge that the true answer is often more nuanced, so please just use your best judgment and557

write a justification to elaborate. All supporting evidence can appear either in the main paper or the558

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification559

please point to the section(s) where related material for the question can be found.560

IMPORTANT, please:561

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",562

• Keep the checklist subsection headings, questions/answers and guidelines below.563

• Do not modify the questions and only use the provided macros for your answers.564
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Table 5: Comparison on using different number of degree group

Dataset #Degree
Group GCN GAT GIN

MUTAG
1 87.81 80.88 94.71
2 96.84 87.78 96.32
3 93.10 95.79 95.79
4(max) 96.32 96.32 95.76

PROTEINS

1 78.89 64.33 78.89
2 78.98 63.88 78.98
5 75.83 67.39 75.83
10 77.45 69.55 77.45
15 77.99 70.54 77.99
17(max) 77.45 71.34 80.32

ENZYMES
1 58.33 41.33 45.17
2 56.50 40.50 44.33
5 52.00 45.00 41.50
10(max) 56.50 52.33 48.00

NCI1

1 75.74 67.86 73.82
2 75.77 68.08 75.06
3 77.86 72.48 76.86
4 77.81 74.26 76.74
5(max) 77.81 75.33 77.52

IMDB-BINARY

1 71.70 50.00 74.60
2 70.40 50.30 72.90
5 69.30 56.80 71.00
10 66.70 56.40 66.70
20 64.00 61.30 66.20
50 65.99 64.51 65.55
65(max) 80.10 77.90 73.70

1. Claims565

Question: Do the main claims made in the abstract and introduction accurately reflect the566

paper’s contributions and scope?567

Answer: [Yes]568

Justification: Our paper contributes on the scope of Spiking Neural Networks and Graph569

Neural Networks scopes in graph classification task specifically570

Guidelines:571

• The answer NA means that the abstract and introduction do not include the claims572

made in the paper.573

• The abstract and/or introduction should clearly state the claims made, including the574

contributions made in the paper and important assumptions and limitations. A No or575

NA answer to this question will not be perceived well by the reviewers.576

• The claims made should match theoretical and experimental results, and reflect how577

much the results can be expected to generalize to other settings.578

• It is fine to include aspirational goals as motivation as long as it is clear that these goals579

are not attained by the paper.580

2. Limitations581

Question: Does the paper discuss the limitations of the work performed by the authors?582

Answer: [Yes]583

Justification: We discuss the limitation on the Appendix.584

Guidelines:585

• The answer NA means that the paper has no limitation while the answer No means that586

the paper has limitations, but those are not discussed in the paper.587
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Table 6: Extended sensitivity study on threshold learning rate.

η
Dataset Model 0.001 0.005 0.01 0.05 0.1 0.5

MUTAG
GCN 93.68 96.84 96.32 96.84 96.84 84.15
GAT 86.78 94.18 96.32 94.18 94.71 92.05
GIN 89.97 95.26 95.76 93.16 93.13 91.02

PROTEINS
GCN 75.11 76.82 77.45 77.36 76.82 65.67
GAT 64.14 70.35 71.34 73.23 74.93 70.53
GIN 77.72 79.07 80.32 78.17 76.55 75.65

ENZYMES
GCN 45.00 51.17 56.50 56.83 54.67 29.17
GAT 32.00 45.00 52.33 55.83 42.67 34.33
GIN 37.33 44.33 48.00 35.17 31.33 29.33

NCI1
GCN 73.87 77.37 77.81 80.07 78.81 66.95
GAT 66.93 73.31 75.33 76.06 73.48 66.69
GIN 72.80 76.57 77.52 70.54 69.05 64.94

IMDB-Binary
GCN 78.90 79.90 80.10 80.50 80.60 73.60
GAT 74.80 75.80 77.90 75.60 75.90 75.30
GIN 74.10 73.00 73.70 75.40 74.70 73.60

• The authors are encouraged to create a separate "Limitations" section in their paper.588

• The paper should point out any strong assumptions and how robust the results are to589

violations of these assumptions (e.g., independence assumptions, noiseless settings,590

model well-specification, asymptotic approximations only holding locally). The authors591

should reflect on how these assumptions might be violated in practice and what the592

implications would be.593

• The authors should reflect on the scope of the claims made, e.g., if the approach was594

only tested on a few datasets or with a few runs. In general, empirical results often595

depend on implicit assumptions, which should be articulated.596

• The authors should reflect on the factors that influence the performance of the approach.597

For example, a facial recognition algorithm may perform poorly when image resolution598

is low or images are taken in low lighting. Or a speech-to-text system might not be599

used reliably to provide closed captions for online lectures because it fails to handle600

technical jargon.601

• The authors should discuss the computational efficiency of the proposed algorithms602

and how they scale with dataset size.603

• If applicable, the authors should discuss possible limitations of their approach to604

address problems of privacy and fairness.605

• While the authors might fear that complete honesty about limitations might be used by606

reviewers as grounds for rejection, a worse outcome might be that reviewers discover607

limitations that aren’t acknowledged in the paper. The authors should use their best608

judgment and recognize that individual actions in favor of transparency play an impor-609

tant role in developing norms that preserve the integrity of the community. Reviewers610

will be specifically instructed to not penalize honesty concerning limitations.611

3. Theory Assumptions and Proofs612

Question: For each theoretical result, does the paper provide the full set of assumptions and613

a complete (and correct) proof?614

Answer: [NA]615

Justification: Our work does not include theoretical results.616

Guidelines:617

• The answer NA means that the paper does not include theoretical results.618

• All the theorems, formulas, and proofs in the paper should be numbered and cross-619

referenced.620

• All assumptions should be clearly stated or referenced in the statement of any theorems.621
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• The proofs can either appear in the main paper or the supplemental material, but if622

they appear in the supplemental material, the authors are encouraged to provide a short623

proof sketch to provide intuition.624

• Inversely, any informal proof provided in the core of the paper should be complemented625

by formal proofs provided in appendix or supplemental material.626

• Theorems and Lemmas that the proof relies upon should be properly referenced.627

4. Experimental Result Reproducibility628

Question: Does the paper fully disclose all the information needed to reproduce the main ex-629

perimental results of the paper to the extent that it affects the main claims and/or conclusions630

of the paper (regardless of whether the code and data are provided or not)?631

Answer: [Yes]632

Justification: We provided our codes that able to reproduce our model’s result.633

Guidelines:634

• The answer NA means that the paper does not include experiments.635

• If the paper includes experiments, a No answer to this question will not be perceived636

well by the reviewers: Making the paper reproducible is important, regardless of637

whether the code and data are provided or not.638

• If the contribution is a dataset and/or model, the authors should describe the steps taken639

to make their results reproducible or verifiable.640

• Depending on the contribution, reproducibility can be accomplished in various ways.641

For example, if the contribution is a novel architecture, describing the architecture fully642

might suffice, or if the contribution is a specific model and empirical evaluation, it may643

be necessary to either make it possible for others to replicate the model with the same644

dataset, or provide access to the model. In general. releasing code and data is often645

one good way to accomplish this, but reproducibility can also be provided via detailed646

instructions for how to replicate the results, access to a hosted model (e.g., in the case647

of a large language model), releasing of a model checkpoint, or other means that are648

appropriate to the research performed.649

• While NeurIPS does not require releasing code, the conference does require all submis-650

sions to provide some reasonable avenue for reproducibility, which may depend on the651

nature of the contribution. For example652

(a) If the contribution is primarily a new algorithm, the paper should make it clear how653

to reproduce that algorithm.654

(b) If the contribution is primarily a new model architecture, the paper should describe655

the architecture clearly and fully.656

(c) If the contribution is a new model (e.g., a large language model), then there should657

either be a way to access this model for reproducing the results or a way to reproduce658

the model (e.g., with an open-source dataset or instructions for how to construct659

the dataset).660

(d) We recognize that reproducibility may be tricky in some cases, in which case661

authors are welcome to describe the particular way they provide for reproducibility.662

In the case of closed-source models, it may be that access to the model is limited in663

some way (e.g., to registered users), but it should be possible for other researchers664

to have some path to reproducing or verifying the results.665

5. Open access to data and code666

Question: Does the paper provide open access to the data and code, with sufficient instruc-667

tions to faithfully reproduce the main experimental results, as described in supplemental668

material?669

Answer: [Yes]670

Justification: We provide our codes that are able to reproduce our full experiments.671

Guidelines:672

• The answer NA means that paper does not include experiments requiring code.673

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/674

public/guides/CodeSubmissionPolicy) for more details.675
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• While we encourage the release of code and data, we understand that this might not be676

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not677

including code, unless this is central to the contribution (e.g., for a new open-source678

benchmark).679

• The instructions should contain the exact command and environment needed to run to680

reproduce the results. See the NeurIPS code and data submission guidelines (https:681

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.682

• The authors should provide instructions on data access and preparation, including how683

to access the raw data, preprocessed data, intermediate data, and generated data, etc.684

• The authors should provide scripts to reproduce all experimental results for the new685

proposed method and baselines. If only a subset of experiments are reproducible, they686

should state which ones are omitted from the script and why.687

• At submission time, to preserve anonymity, the authors should release anonymized688

versions (if applicable).689

• Providing as much information as possible in supplemental material (appended to the690

paper) is recommended, but including URLs to data and code is permitted.691

6. Experimental Setting/Details692

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-693

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the694

results?695

Answer: [Yes]696

Justification: We wrote experiment setting in the experiment settings including GNN layers,697

hyperparameter for the hidden dimension, and learning rate of the whole dataset. Also, we698

wrote epochs and dataset we split was used by 10 fold CV for our evaluations.699

Guidelines:700

• The answer NA means that the paper does not include experiments.701

• The experimental setting should be presented in the core of the paper to a level of detail702

that is necessary to appreciate the results and make sense of them.703

• The full details can be provided either with the code, in appendix, or as supplemental704

material.705

7. Experiment Statistical Significance706

Question: Does the paper report error bars suitably and correctly defined or other appropriate707

information about the statistical significance of the experiments?708

Answer: [Yes]709

Justification: We reported error of confidence level in the main table.710

Guidelines:711

• The answer NA means that the paper does not include experiments.712

• The authors should answer "Yes" if the results are accompanied by error bars, confi-713

dence intervals, or statistical significance tests, at least for the experiments that support714

the main claims of the paper.715

• The factors of variability that the error bars are capturing should be clearly stated (for716

example, train/test split, initialization, random drawing of some parameter, or overall717

run with given experimental conditions).718

• The method for calculating the error bars should be explained (closed form formula,719

call to a library function, bootstrap, etc.)720

• The assumptions made should be given (e.g., Normally distributed errors).721

• It should be clear whether the error bar is the standard deviation or the standard error722

of the mean.723

• It is OK to report 1-sigma error bars, but one should state it. The authors should724

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis725

of Normality of errors is not verified.726
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• For asymmetric distributions, the authors should be careful not to show in tables or727

figures symmetric error bars that would yield results that are out of range (e.g. negative728

error rates).729

• If error bars are reported in tables or plots, The authors should explain in the text how730

they were calculated and reference the corresponding figures or tables in the text.731

8. Experiments Compute Resources732

Question: For each experiment, does the paper provide sufficient information on the com-733

puter resources (type of compute workers, memory, time of execution) needed to reproduce734

the experiments?735

Answer: [Yes]736

Justification: It refers to the appendix for experimental settings.737

Guidelines:738

• The answer NA means that the paper does not include experiments.739

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,740

or cloud provider, including relevant memory and storage.741

• The paper should provide the amount of compute required for each of the individual742

experimental runs as well as estimate the total compute.743

• The paper should disclose whether the full research project required more compute744

than the experiments reported in the paper (e.g., preliminary or failed experiments that745

didn’t make it into the paper).746

9. Code Of Ethics747

Question: Does the research conducted in the paper conform, in every respect, with the748

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?749

Answer: [Yes]750

Justification: Research conducted in the paper conforms, in every respect, with the NeurIPS751

Code of Ethics752

Guidelines:753

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.754

• If the authors answer No, they should explain the special circumstances that require a755

deviation from the Code of Ethics.756

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-757

eration due to laws or regulations in their jurisdiction).758

10. Broader Impacts759

Question: Does the paper discuss both potential positive societal impacts and negative760

societal impacts of the work performed?761

Answer: [Yes]762

Justification: SNN would be one of the breakthrough idea in respect of energy consumption.763

Guidelines:764

• The answer NA means that there is no societal impact of the work performed.765

• If the authors answer NA or No, they should explain why their work has no societal766

impact or why the paper does not address societal impact.767

• Examples of negative societal impacts include potential malicious or unintended uses768

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations769

(e.g., deployment of technologies that could make decisions that unfairly impact specific770

groups), privacy considerations, and security considerations.771

• The conference expects that many papers will be foundational research and not tied772

to particular applications, let alone deployments. However, if there is a direct path to773

any negative applications, the authors should point it out. For example, it is legitimate774

to point out that an improvement in the quality of generative models could be used to775

generate deepfakes for disinformation. On the other hand, it is not needed to point out776

that a generic algorithm for optimizing neural networks could enable people to train777

models that generate Deepfakes faster.778
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• The authors should consider possible harms that could arise when the technology is779

being used as intended and functioning correctly, harms that could arise when the780

technology is being used as intended but gives incorrect results, and harms following781

from (intentional or unintentional) misuse of the technology.782

• If there are negative societal impacts, the authors could also discuss possible mitigation783

strategies (e.g., gated release of models, providing defenses in addition to attacks,784

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from785

feedback over time, improving the efficiency and accessibility of ML).786

11. Safeguards787

Question: Does the paper describe safeguards that have been put in place for responsible788

release of data or models that have a high risk for misuse (e.g., pretrained language models,789

image generators, or scraped datasets)?790

Answer: [NA]791

Justification: Our paper poses no such risks for high risk for misuse.792

Guidelines:793

• The answer NA means that the paper poses no such risks.794

• Released models that have a high risk for misuse or dual-use should be released with795

necessary safeguards to allow for controlled use of the model, for example by requiring796

that users adhere to usage guidelines or restrictions to access the model or implementing797

safety filters.798

• Datasets that have been scraped from the Internet could pose safety risks. The authors799

should describe how they avoided releasing unsafe images.800

• We recognize that providing effective safeguards is challenging, and many papers do801

not require this, but we encourage authors to take this into account and make a best802

faith effort.803

12. Licenses for existing assets804

Question: Are the creators or original owners of assets (e.g., code, data, models), used in805

the paper, properly credited and are the license and terms of use explicitly mentioned and806

properly respected?807

Answer: [Yes]808

Justification: We reported owners of assets used in the paper in the Appendix809

Guidelines:810

• The answer NA means that the paper does not use existing assets.811

• The authors should cite the original paper that produced the code package or dataset.812

• The authors should state which version of the asset is used and, if possible, include a813

URL.814

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.815

• For scraped data from a particular source (e.g., website), the copyright and terms of816

service of that source should be provided.817

• If assets are released, the license, copyright information, and terms of use in the818

package should be provided. For popular datasets, paperswithcode.com/datasets819

has curated licenses for some datasets. Their licensing guide can help determine the820

license of a dataset.821

• For existing datasets that are re-packaged, both the original license and the license of822

the derived asset (if it has changed) should be provided.823

• If this information is not available online, the authors are encouraged to reach out to824

the asset’s creators.825

13. New Assets826

Question: Are new assets introduced in the paper well documented and is the documentation827

provided alongside the assets?828

Answer: [Yes]829
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Justification: Considering our implemtation code is our asset, our work provides necessary830

license and documents for further usage.831

Guidelines:832

• The answer NA means that the paper does not release new assets.833

• Researchers should communicate the details of the dataset/code/model as part of their834

submissions via structured templates. This includes details about training, license,835

limitations, etc.836

• The paper should discuss whether and how consent was obtained from people whose837

asset is used.838

• At submission time, remember to anonymize your assets (if applicable). You can either839

create an anonymized URL or include an anonymized zip file.840

14. Crowdsourcing and Research with Human Subjects841

Question: For crowdsourcing experiments and research with human subjects, does the paper842

include the full text of instructions given to participants and screenshots, if applicable, as843

well as details about compensation (if any)?844

Answer: [NA]845

Justification: Our work does not involve crowdsourcing nor research with human subjects.846

Guidelines:847

• The answer NA means that the paper does not involve crowdsourcing nor research with848

human subjects.849

• Including this information in the supplemental material is fine, but if the main contribu-850

tion of the paper involves human subjects, then as much detail as possible should be851

included in the main paper.852

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,853

or other labor should be paid at least the minimum wage in the country of the data854

collector.855

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human856

Subjects857

Question: Does the paper describe potential risks incurred by study participants, whether858

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)859

approvals (or an equivalent approval/review based on the requirements of your country or860

institution) were obtained?861

Answer: [NA]862

Justification: Our work does not require IRB approvals and does not involve human subjects.863

Guidelines:864

• The answer NA means that the paper does not involve crowdsourcing nor research with865

human subjects.866

• Depending on the country in which research is conducted, IRB approval (or equivalent)867

may be required for any human subjects research. If you obtained IRB approval, you868

should clearly state this in the paper.869

• We recognize that the procedures for this may vary significantly between institutions870

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the871

guidelines for their institution.872

• For initial submissions, do not include any information that would break anonymity (if873

applicable), such as the institution conducting the review.874
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