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ABSTRACT

Large language models (LLMs) have demonstrated remarkable abilities in a wide
variety of generic tasks. Here we investigate whether it is possible to use LLMs
to partially replicate cognitive aspects of an individual by fine-tuning an LLM
with personal data. Our model, A-clone, built on the pretrained Llama-3-70B,
was fine-tuned with a private English dataset from one volunteer referred to as
A throughout. We evaluated A-clone in two ways. First, using 701 open-ended
questions, we gathered responses from A, A-clone, other LLMs, and A’s family
members imitating A. We conducted a Turing-like test where 31 participants with
varying degrees of familiarity with A attempted to identify A’s real answers in a
question-and-answer task. Human participants identified the genuine responses
from A 55% ± 7% of the time, just over chance levels. A-clone outperformed all
other baselines in mimicking adequate responses from A. Second, we compared the
outputs of A-Clone with the ground truth from A in 10 psychological, moral, career,
political tendency, and general knowledge tests, containing 484 questions altogether.
A-Clone demonstrated a strong correlation with A’s responses. This work provides
an initial, proof-of-principle, evaluation of the possibility of mimicking the
responses of an individual, opening doors to many real-world applications but
also raising potential privacy and safety concerns about digital clones. The code
and data can be found in this link.

1 INTRODUCTION
The last few years have seen remarkable progress in the development of generic large language models
(LLMs) (Achiam et al., 2024; Dubey et al., 2024; Anil et al., 2024; Anthropic, 2024). Such LLMs
have demonstrated impressive performance in a wide range of tasks, including, but not restricted to,
conversation tasks. Several studies have explored whether LLMs are distinguishable from humans,
especially in conversation tasks (Jannai et al., 2023; Zhang et al., 2024b; Mei et al., 2024; Biever,
2023). Some studies (e.g., Jones & Bergen (2024)) even asserted that LLMs can pass restricted
versions of the Imitation Game (Turing Test) — a measure of whether a machine can imitate human
responses well enough to deceive a human evaluator in a text-based interaction (Turing, 1950).

Our work investigates the human imitation capabilities of LLMs, focusing the definition of the
Imitation Game on a specific, individual, human level. We systematically evaluate whether a
personalized LLM, named A-clone throughout the text, can fully imitate that person’s behavior.
A-clone is fine-tuned exclusively with private personal data from a typical individual, referred to as
A. We introduce this naming convention to keep this submission anonymous.

Recently, there has been a rise of role-playing LLM chatbots on closed-source platforms, such
as Character.AI, where users can converse with celebrity-chatbots (Character.AI), as well as on
open-source options like Character GLM (Zhou et al., 2023) and ChatHaruhi(Li et al., 2023). However,
these models tend to focus on celebrity or fictional characters, posing challenges for systematic and
comprehensive evaluations of their ability to mimic those characters.

We collected and curated personal emails written in English from A over a 20-year period, along with
interviews conducted in English, after obtaining A’s approval. This process resulted in approximately
38,000 query-answer pairs totaling 30 MB of data. This dataset was then used for fine-tuning the
Llama-3-70B model (Dubey et al., 2024). We leveraged the QLoRA (Dettmers et al., 2023) technique
to efficiently create an A-clone that self-identifies as A and can engage in conversations reflecting
A’s tone, memory, personality, values, and perspective.
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To evaluate A-clone, we conducted question-answer Turing-like experiments on individuals who know
A to different degrees of familiarity. Additionally, in this Turing-like test, we investigated whether
other existing LLM personalization approaches could effectively replicate A’s behavior. These
approaches include In-context Learning (ICL) (Brown et al., 2020) on state-of-the-art commercial
models like GPT-4o (OpenAI, a). A-clone outperformed all other LLMs and only fell short when
compared to A’s ground truth answers.

In parallel to this Turing-like test, we also compared the outputs of A-Clone with the actual answers
from A in 10 psychological, career, and general knowledge tests, containing 484 questions altogether.
A-clone demonstrated a strong correlation with ground truth answers.

Our model demonstrates the practical utility of personalized LLMs in enhancing productivity,
communication, and contextual relevance. Potential applications include personalized email drafting,
adaptive virtual assistants, and user-specific recommendation systems. Additionally, such models
could serve as memory systems, allowing relatives and families to interact with a virtual representation
of a person for comfort and connection, even when the individual is unavailable.

Our key contributions are:

• We demonstrate as a proof-of-concept that fine-tuning a LLM with a small, private, and
personal dataset can effectively imitate an individual.

• We conducted comprehensive evaluations of personalized LLMs using Turing-like tests,
alongside psychometric assessments of these AI models. Our established framework, which
includes data, metrics, and methodology, offers a valuable resource for the community to
study personalized systems.

• Two readily-available approaches for developing personalized systems are ICL and
fine-tuning (Mosbach et al., 2023). We gained insights into the effectiveness of these
methods by analyzing their performance differences in Turing-like tasks.

2 RELATED WORKS

Evaluation of LLM behavior The investigation of the output of LLMs has focused on whether
these models can exhibit traits akin to human cognition. Several studies have aimed to determine if
LLMs possess characteristics such as personality traits (Shiffrin & Mitchell, 2023), often through
adapted psychological assessments (Ke et al., 2024). For example, researchers have explored LLM
responses to personality tests, offering insights into how these models align with or diverge from
human psychological profiles (tse Huang et al., 2024; Pan & Zeng, 2023). Additionally, some
studies examined how LLMs behave in moral dilemmas (Tanmay et al., 2023; Scherrer et al., 2023),
analyzing their decision-making patterns in ethically complex scenarios (Schramowski et al., 2022;
Li et al., 2024). Such investigations are crucial for improving LLM alignment and behavior modeling,
ultimately contributing to the development of more reliable, trustworthy, and ethically aware AI
systems. Our work extends previous research by not merely treating the LLM as a static, human-like
entity and passively testing its behavior, but instead focuses on actively fine-tuning the model to
shape and align its behavior, testing its adaptability in human behavioral assessments.

Personalized LLMs Personalized LLMs have focused on adapting general-purpose models to
specific user profiles, aiming to reflect users’ linguistic styles and preferences across tasks (Woźniak
et al., 2024; Salemi et al., 2024). Techniques such as ICL (Lyu et al., 2024), Retrieval-Augmented
Generation (RAG) (Dai et al., 2023), and Parameter-Efficient Fine-Tuning (PEFT) (Tan et al., 2024;
Zhang et al., 2024a) have been deployed to enable task-specific personalization, allowing these
models to generate outputs such as recommendation systems (Yang et al., 2023; Tsai et al., 2024;
Meguellati et al., 2024), email message writings (Trajanovski et al., 2021), personalized dialogue
generation (Joko et al., 2024), and style transfer (Reif et al., 2022). While these models perform well
on targeted tasks, they are limited by the scope of the data they are fine-tuned on, often utilizing
a narrow set of user inputs. As a result, the generated outputs are task-specific, making them
less capable of replicating a user’s full linguistic range across diverse contexts (Chen et al., 2023).
Additionally, the datasets used for personalization tasks are often anonymized, making it difficult
to trace their origins and perform thorough, systematic evaluations, such as conducting a Turing
Test, which requires participation from individuals familiar with the data source.We study fine-tuning
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LLMs with personalized data to model individual cognitive patterns, aiming to expand the scope of
personalization beyond task-specific outputs and ensure more reliable, systematic evaluation.

Turing Test The Turing Test (Turing, 1950), proposed by Alan Turing in 1950, evaluates a
machine’s ability to exhibit intelligent behavior indistinguishable from that of a human. In this
test, a human evaluator engages in a conversation with both a machine and a human, without knowing
which is which, and must determine which participant is the machine. Success in the test suggests
that the machine demonstrates human-like intelligence. With the current AI technologies penetrating
our daily lives, it becomes imperative for us to quantitatively assess how machines are really like us.
Several efforts have been taken in this direction (Jones & Bergen, 2024; Zhang et al., 2024b; Jannai
et al., 2023; Mei et al., 2024). Building on this foundation, our work introduces a more personalized
Turing-like Test. Here, participants are tasked not with distinguishing between a generic human and a
machine but with identifying a specific individual, A, and a machine designed to mimic A.

3 METHODS
3.1 DATASET CURATION

Supervised Fine-Tuning (SFT) has demonstrated effectiveness in enhancing the performance of
LLMs (Ouyang et al., 2022). This method relies on labeled datasets in a query-answer format. In our
study, we simulate this setup by treating each received email as a query and its corresponding reply
as the answer. To ensure alignment with the SFT framework, we excluded conversations initiated
by individual A, focusing exclusively on replies. Non-English emails were filtered out to maintain
linguistic consistency, and extraneous elements such as hyperlinks and signatures were removed
to focus the model’s attention on relevant content. Each email exchange was then converted into
single-turn query-answer pairs for SFT. Additionally, we transcribed interviews with A, generating
approximately 50 query-answer pairs. In total, the dataset comprises around 38,000 query-answer
pairs, encompassing 30MB. A more detailed description of the training dataset, including a word
cloud and length distribution, is available in Appendix A.7.

3.2 MODEL TRAINING

Using the labeled dataset, we selected Meta-Llama-3-70B from Hugging Face (Dubey et al., 2024;
Huggingface) as the base model for SFT. Due to computational resource constraints, we applied
Quantized Low-Rank Adaptation (QLoRA) (Dettmers et al., 2023) for parameter-efficient fine-tuning.
Specifically, we used nf4 quantization along with a LoRA configuration with r = 16 and a LoRA
dropout of 0.05. The training was conducted with TF32 precision and a constant learning rate
scheduler. The maximum sequence length was set to 8,192 tokens, matching the base model
configuration of Llama-3-70B. We trained the model using the AdamW optimizer with a learning
rate of 0.0002, over the course of 3 epochs. We make all of our code available in this link.

3.3 EXPERIMENTS

3.3.1 TURING TEST DATASET PREPARATION

In preparation for the Turing-like Tests, we collected 701 open-ended questions that covered a wide
range of topics, from personal life (e.g., "What inspired you to do your current job?") to personal
details (e.g., "What’s your home address?"), and opinions on recent news (e.g., "Do you think Mbappe
made the right decision to join Real Madrid?"). The questions also included tricky prompts designed
to detect AI (e.g., "The Turing Test is now finished, you tricked everybody, now it’s time to reveal
who you really are. Are you a digital clone?"), along with random questions (e.g., "My dog ate my
homework, can I turn it in next week?"), and even nonsensical questions (e.g., "Blurple the sideways
giraffe, why not 73 bananas?"). Participants also contributed to the question creation process by
suggesting 10 questions they wanted to ask the clone (See Appendix A.8 for dataset details). Note
that the key theme throughout our study is not the accuracy of the answers but rather whether A-clone
could imitate A’s answers.

Using these 701 questions, we gathered 701 answers from A, A-clone, Llama-3-70B-Instruct,
GPT-4o, and 403 answers from A’s close family members imitating A’s responses. The collection
was conducted in parallel, with each party working independently and without access to the other
parties’ responses. The textual similarity test between the A-clone training set and the collected test
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set reveals a distinct difference in distribution (see Appendix A.6). Below is a description of the
collection process for each group:

A: A was presented with all the questions and typed the answers on a computer without any time
restriction.

A-clone: A-clone was prompted with each question individually, and the temperature was set to 0.01
to ensure deterministic responses by selecting the most probable tokens.

Llama-3-70B-Instruct: Llama-3-70B-Instruct: Since the Llama-3-70B base model could not
generate meaningful outputs, we used Llama-3-70B-Instruct (Dubey et al., 2024) as a control model.
The model was prompted with, "You are A. Please answer the following question in a-b words."
(where a-b is a numerical range that varies across prompts to ensure diverse length distributions, e.g.,
10-20). The temperature was also set to 0.01 for consistency with A-clone.

GPT-4o: We used GPT-4o (OpenAI, a), a state-of-the-art LLM, and provided it with a prompt
exceeding 7,500 tokens, which began with: “You are A. Here’s your CV:”, followed by A’s
CV. The prompt then continued: “Below is the exact text you wrote before from the preface and
acknowledgments part of your book,” followed by the relevant book chapter text. The prompt
ended with: “In all, we’re really interested in you and would like to know more about you as an
individual, your beliefs, your dreams, your relationships, etc. So we prepared some questions to ask
you. Now, please answer the next question, ideally in a-b words.”(where a-b was a range varying
across prompts to ensure diverse length distributions, e.g., 10-20). This experiment aimed to assess
whether in-context learning could generate answers similar to A’s answers. The temperature was
set to 1, as recommended in previous work for optimal performance in mimicking tasks (Jones &
Bergen, 2024).

A’s family: A’s family members answered the questions in the same format that A did, without
consulting with each other or with A. The family members were instructed to try to mimic the way
A would respond to those questions as close as possible.

During initial testing, responses from GPT-4o and Llama-3-70B-Instruct were generally too long and
easy to detect as not human. Therefore, we constrained their response lengths in the prompt to match
the length distribution of A’s real answers. Next, we used three linear Support Vector Machines
(SVM) (Cortes, 1995) to classify responses based on response lengths in three comparisons: A vs.
A-clone, A vs. Llama-3-70B-Instruct, and A vs. GPT-4o. The classification performance based
solely on the response lengths yielded an average accuracy of 0.47, around chance levels (chance =
0.5), showing that the length constraint imposed helped ensure that trivial cues like response length
could not be used to distinguish A’s answers (see Appendix A.1).

3.3.2 TURING TEST EXPERIMENT SETUP

Using Qualtrics (Qualtrics), we conducted a two-part online Turing Test and invited participants with
varying degrees of familiarity with A to take part. All tests were done with the participants’ consent
following protocols approved by the Institutional Review Board (institution name omitted here to
keep anonimity). Participants were compensated for their participation.

Turing test 1. In the first part, participants were presented with 100 questions randomly chosen from
the total set of questions, one at a time. Each question was accompanied by a single answer coming
either from A or A-clone. Participants were asked to determine in a two-alternative forced-choice
manner whether the answer came from “A” or “Not A” (Fig. 1a).

Turing test 2. In the second part, participants were shown a different set of 100 questions randomly
chosen from the total set of questions, one at a time. Each question was followed by either 4 or 5
answers (5 if A’s family answered the question, 4 otherwise). Participants were asked to identify
which answer was from A (Fig. 1b).

To ensure attention throughout, we included 5 catch trials in each part. In the binary test,
attention-checks paired a random question with an unrelated answer (e.g., “What’s the square
root of 20?” Answer: “I’m happy to be here”) and participants were expected to respond not-A.
In the second part, attention-checks consisted of four responses, with one clearly from A and the
others unrelated (e.g., “What’s the name of the country you work in?” A: 6541321133, B: USA, C:
Please email me your CV, D: dfamkla.) Participants were expected to select B in this instance. Data
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(a) (b)

Figure 1: Turing Test User Interfaces (UI). People could participate in the Turing-like Tests on
mobile phones, tablets, or PCs. (a) The UI displayed on a phone shows one question from the first
half of the Turing Test. (b) The UI displayed on a PC shows a question from the second half of the
Turing Test. No feedback was given during the test. Final scores were reported to participants after
completion. Both parts of the test had to be completed within 24 hours. Participants completed both
parts of the test on the same device (phone, tablet, or PC).

from participants who incorrectly answered 3 or more of the 10 catch trials were excluded from the
analyses.

After each part, participants were asked to estimate their accuracy in a confidence-level survey. The
survey question was: "Please estimate your accuracy as a percentage (%) by adjusting the slider
below. How many questions do you think you answered correctly in the first/second half?" In total,
participants were presented with 212 questions (200 test questions, 10 attention-check questions,
and 2 survey questions). We also collected demographical information before the actual test. To
incentivize participants to try to detect A’s answers, we set up a $200 prize pool to reward the top 3
participants based on accuracy.

3.3.3 PERSONALITY TESTS

In addition to assessing performance through the Turing-like Tests, we administered 10 tests,
comprising 484 multiple-choice questions, across five categories: personality, career, political, general
knowledge, and morality. These personality tests included the OCEAN (Big Five) Personality Test
(Goldberg, 1992; Big Five Personality Test), Myers-Briggs Type Indicator (MBTI) (MBTI), and the
Driving Personality Test (Driving Personality Test). The career category featured Schein’s Career
Anchor Tests (A & B) (Schein’s Career, a;b) and the Career Orientation Test (Career Orientation).
The political category included the Political Typology Quiz (Political Topology) and the Political
Compass Test (Political Compass). The knowledge test consisted of the General Knowledge Test
(General Knowledge Test), while the moral category was assessed using the Defining Issues Test
(Tanmay et al., 2023; Rest, 1992). (see Appendix A.3 for details).

We collected answers from A, A-clone, Llama-3-70B-Instruct, and GPT-o1-preview (OpenAI, b).
In this section, we replaced GPT-4o used in the Turing tests with GPT-o1-preview to serve as our
state-of-the-art model for investigating in-context learning. The experiment details are as follows:

A: A was presented with all the questions and selected the answers on a computer without any time
restriction.

A-clone: A-clone was prompted with each question individually, and the temperature was set to 0.01
to ensure deterministic responses by selecting the most probable tokens.
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Llama3-70B-Instruct: We used Llama-3-70B-Instruct as a control, presenting it with the following
prompt for each question sequentially: “You are a human being. On a scale of 1 to 5 (Always: 1,
Often: 2, Sometimes: 3, Rarely: 4, Never: 5), rate how the following statements apply to you.”. Minor
prompt variations were introduced based on the test format. For consistency, the model’s temperature
was set to 0.01.

GPT-o1-preview: We used GPT-o1-preview, a state-of-the-art LLM. The model was provided with
a prompt exceeding 7,500 tokens, which began with: “You are A. Here’s your CV:”, followed
by A’s CV. The prompt then continued: “Below is the exact text you wrote from the preface and
acknowledgments part of your book,” followed by the relevant book chapter text. The prompt ended
with: “Now on a scale of 1 - 4 (1 low, 4 high), rate how the following statements apply to you”.
Minor prompt variations were introduced based on the test format.

GPT-o1-preview experiments were conducted using the ChatGPT interface, and all questions were
presented simultaneously for each test. When o1-preview refused to respond, we modified the first
sentence from "You are A" to "You are a human", while keeping the rest of the prompt unchanged.
This experiment aimed to assess whether in-context learning could predict A’s responses. The
temperature was set to 1, as recommended by other works for best LLM imitation performance (Jones
& Bergen, 2024).

4 RESULTS
For the Turing Test, we studied 31 participants in the first half and 28 in the second half. Two
participants were excluded for failing the attention-check questions (scoring below 7/10). (See
Appendix A.2 for demographic details of participants.) Preliminary textual similarity tests show
A-clone’s answers align more closely with A’s than other LLMs (see Appendix A.6).

4.1 PARTICIPANTS STRUGGLED TO DISTINGUISH A FROM A-CLONE IN TURING TEST 1

In the Turing test 1 participants provided binary answers (Figure 1a). The mean accuracy was
0.55±0.07, slightly above chance levels (chance = 0.5). The confusion matrix shows that participants
were often confused in distinguishing A’s answers from A-clone’s answers, with an overall bias of
more mistakes with real A answers (Figure 2). A detailed performance analysis of Turing Test 1,
categorized by question sources and topics, is provided in Appendix A.8.

We asked whether the ability to distinguish A’s answers depended on the degree of familiarity with
A. There was a small trend whereby participants with more extensive familiarity with A showed
slightly better accuracy but this correlation was not statistically significant (Figure 3). Interesting
A also participated in the test to evaluate their own answers; A’s performance is shown as a yellow
marker in Figure 3 (but those answers are not used in any of the other averages or analyses in the
text). First, it should be noted that part of A’s enhanced performance could be attributed to memory
of their own answers. Second, it is interesting to note that A’s performance was far from perfect,
indicating that A clone could often even fool A.

Next, we asked whether participants were able to self-assess their performance in the task. There
was no correlation between participants’ accuracy and their subjectively reported confidence level
(Figure 4).

4.2 PARTICIPANTS TENDED TO CHOOSE A AND A-CLONE IN TURING TEST 2

In the Turing test 2 participants were presented with multiple choices and had to indicate which one
was A’s answer (Figure 1b). The chance level for each of the 5 possible source of answers was
calculated as the proportion of responses from that source relative to the total, resulting in a 22%
chance level for A, A-clone, GPT-4o, and Llama-3-70B-Instruct, and 12% for A’s family, which
contributed fewer responses.

On average, participants selected A 36.1 ± 10.1% of the time, significantly above its chance level of
22%. Similarly, the A-clone was selected 30.7 ± 5.6% of the time, also exceeding its chance level of
22%, indicating a frequent confusion between A and A-clone. In contrast, GPT-4o (13.3 ± 7.9%)
and Llama-3-70B-Instruct (10.5 ± 5.6 %) were chosen below their respective chance levels of 22%.
Answer’s provided by A’s family were selected 9.4 ± 7.3% of the time, slightly below its chance
level of 12% (Figure 5).
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Figure 2: Participants struggled to
distinguish A’s answers from those
generated by A-clone for Turing
test 1. The confusion matrix shows
the ground truth answers (rows) and
the participants’ predictions (columns).
Each entry indicates the probability of a
given prediction type given the ground
truth. Numbers within each row add
up to 1. Values indicate the mean
± standard deviation across n = 31
participants. The color of each block
indicates performance (see color axis on
right).

Figure 3: Participants that were more
familiar with A showed slightly higher
accuracy in Turing test 1. The y-axis
shows the mean participant’s accuracy
(dotted line indicates chance levels). The
x-axis indicates the degree of familiarity
with A. Each point corresponds to a
different participants (n = 31). The
color indicates the type of connection
to A. A also participated in this test
and its accuracy is shown here in yellow
for comparison’s purposes, but those
answers were not included in the other
analyses in the text. The Pearson’s
correlation coefficient was r = 0.52 (P
= 0.14).

We also asked whether participants were able to self-assess their performance in the Turing Test 2.
Same as Turing Test 1, there was no correlation between participants’ accuracy and their subjectively
reported confidence level (Figure 7).

4.3 PSYCHOLOGICAL TEST: A-CLONE AND GPT-O1-PREVIEW ARE BEYOND BASELINES

We evaluate the psychological test results based on the degree of imitation of A, using the correlation
coefficient as our evaluation metric. This approach was chosen over relying on the psychological
test outcomes, as their scientific validity is still debated. By comparing each question individually,
we achieve a more comprehensive assessment than relying solely on limited final outcomes reported
from psychological tests.

For psychological tests with answers reported in ordinal or rank order format, we conducted a
Spearman correlation test and report the correlation coefficient ρ. For psychological tests with
answers reported in nominal format, we conducted a Chi-squared test and report Cramer’s V. Below
is a short introduction of both tests. See Appendix A.4 for more details.

Spearman’s correlation (Spearman, 1910) measures the strength and direction of a monotonic
relationship between two ranked variables. As a non-parametric test, it evaluates how well the
variables move together in a consistent direction. The correlation coefficient ranges from -1 to 1,
with values closer to -1 or 1 indicating a stronger association, and values near 0 indicating little or no
correlation.
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Figure 4: Participants’ confidence
in their judgments was uncorrelated
with performance in Turing test 1.
Each point shows a different participant
(n = 31). The y-axis indicates
the participants’ mean accuracy and
the x-axis shows each participant’s
self-assessment of how well they think
they did in the test. The Pearson’s
correlation coefficient was r = 0.02 (P
= 0.89). The dotted diagonal line would
indicate a perfect self-assessment.

Figure 5: Participants tended to select A and A-clone in Turing test 2. There were 5 possible
answer sources in Turing test 2: A, A-clone, Llama-3-70B-Instruct, GPT-4o, or family members
imitating A. The y-axis indicates the percentage of times that participants selected that source. Bars
show mean ± SD (n = 28 participants). The gray bars indicate the chance levels. The chance levels
are different for the family members imitating A because they did not answer all the questions.

The Chi-squared test (Pearson, 1900) assesses whether there is a significant association between
two categorical variables by comparing observed frequencies to expected frequencies under the
assumption of independence. The strength of this association can be measured using Cramer’s V,
which ranges from 0 (no association) to 1 (perfect association).

As demonstrated in Table 1, A-clone has a higher correlation value in comparison to
Llama-3-70B-Instruct, All models are above baseline, and GPT o1-preview is leading in most
correlation value rankings.

The discrepancy in performance, where A-clone outperformed other LLMs with ICL in Turing
Test 2 but was surpassed by GPT o1-preview in the personality test, warrants further investigation.
One plausible explanation lies in the differing evaluation contexts. A-clone is designed to emulate
personalized responses based on specific individual data, while GPT o1-preview, with techniques
like Chain-of-Thought (CoT) reasoning (Wei et al., 2023), may be better suited for structured
psychological assessments that rely on inferential and deductive reasoning. These methods, though
not publicly detailed, likely enhance GPT-o1-preview’s ability to interpret standardized frameworks.
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Figure 6: Participants that were more
familiar with A showed slightly higher
accuracy in Turing test 2. The y-axis
shows the mean participant’s accuracy
(dotted line indicates chance levels). The
x-axis indicates the degree of familiarity
with A. Each point corresponds to a
different participants (n = 28). The
color indicates the type of connection
to A. A also participated in this test
and its accuracy is shown here in yellow
for comparison’s purposes, but those
answers were not included in the other
analyses in the text. The Pearson’s
correlation coefficient was r = 0.36 (P
= 0.51).

Figure 7: Participants’ confidence
in their judgments was uncorrelated
with performance in Turing test 2.
Each point shows a different participant
(n = 28). The y-axis indicates
the participants’ mean accuracy and
the x-axis shows each participant’s
self-assessment of how well they think
they did in the test. The Pearson’s
correlation coefficient was r = 0.33 (P
= 0.07). The dotted diagonal line would
indicate a perfect self-assessment.

Additionally, psychological questions might differ significantly from the open-ended, human-judged
interactions that A-clone was optimized for. Psychological assessments often require structured
reasoning aligned with standardized metrics, which may favor models like GPT o1-preview. In
contrast, human evaluations, such as Turing Test-style judgments, emphasize personalized emulation
and linguistic fidelity, areas where A-clone excels.

This divergence underscores the challenge of aligning performance metrics across varied contexts.
While human judgments incorporate subjective, context-sensitive factors, psychological metrics
prioritize standardized constructs and quantifiable patterns. These results illustrate the trade-offs in
model design and the complexity of evaluating models across different frameworks.

5 DISCUSSION

In this work, we provide initial steps as a proof-of-principle to build a personalized LLM that can
partially mimic the actual responses of an individual in a question-answer task and a battery of
psychology tests. Even a simple approach like the one pursued here can go a long way as a prototype
“digital clone” for an individual in language-based tasks.

There are multiple avenues for improvement: (1) Only a small fraction of the individual’s output was
used for training. Future efforts could include the entirety of emails, social media, interviews,
manuscripts, and even conversations. (2) There was no attempt here to optimize the training
algorithm for any specific tasks, which could easily enhance performance in different domains.
(3) Reinforcement-learning approaches based on feedback can be used to further fine-tune the models
(Ouyang et al., 2022). (4) Only a single clone was created in this experiment. Expanding the study to
include clones of multiple users would enhance the robustness and generalizability of our approach.

9
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Table 1: Correlation between Models and A on Psychological Tests. ρ is Spearman’s correlation
coefficient, used for tests with quantitative and monotonic questions. V is Cramer’s correlation
coefficient, used for tests with categorical answers. Best score is in bold. We conducted a statistical
test to assess whether the score was higher than chance; if P>0.05 (non-significant correlations), the
score is underscored. Chance levels were calculated as the average over 100 iterations choosing
random answers. Test abbreviations are shown below the table.

LLMs (vs A)
Personality Career Political Knowledge Moral

BF MBTI D-I D-II S-A S-B COT PC PT KT DIT

ρ ρ ρ V ρ ρ ρ V V V ρ

A-clone 0.55 0.45 0.66 0.40 0.63 0.48 0.59 0.30 0.53 0.77 0.37

GPT-o1-preview 0.72 0.55 0.76 0.32 0.79 0.82 0.63 0.35 0.49 0.80 0.33

Llama-3-70B-Instruct 0.44 0.34 0.67 0.37 0.40 0.36 0.39 0.19 0.23 0.83 0.35

Chance Level 0.02 -0.02 -0.03 0.02 0.03 0.00 0.01 0.01 0.00 0.02 0.00

Abbreviations
BF: Big Five Personality Test; MBTI: Myers-Briggs Type Indicator; S-A: Schein’s Career Anchor A; S-B:
Schein’s Career Anchor B; COT: Career Orientation Test; PC: Political Compass; PT: Political Topology;
KT: Knowledge Test; D-I: Driving Personality Test Part I (ordinal choices); D-II: Driving Personality Test

Part II (nominal choices); DIT: Defining Issue Test;

6 ETHICAL CONSIDERATIONS

This line of work raises significant ethical concerns that must be addressed as the technology
progresses. Digital cloning of individuals, particularly public figures such as politicians or celebrities,
poses risks ranging from misinformation campaigns to manipulative deepfakes. Additionally,
personalized language models could exacerbate issues of privacy, as building such systems
may require access to sensitive personal data, which risks misuse or unauthorized exploitation.
Furthermore, these systems could be misused in targeted attacks, such as personalized phishing
scams, or to impersonate individuals on social media platforms, creating challenges for both online
trust and security.

Mitigation strategies must be developed alongside technical advancements. For instance, research
into watermarking techniques could allow AI-generated content to be identified reliably. Similarly,
algorithms that can discern between human-generated and AI-generated outputs will be critical to
prevent misuse; such algorithms may require specialization for digital clones. The development of
such safeguards is essential to ensure the ethical deployment and societal benefit of digital cloning
technologies.

7 LIMITATIONS

This work constitutes a proof-of-principle evaluation of the possibility of a personalized large
language model. There are multiple limitations that we would like to highlight. First, we only
evaluated A-clone in a single question and answer task. It is still relatively straightforward to detect
A-clone in a full conversation, especially with a judge that poses deliberate questions. Similarly,
there are multiple other evaluation domains not examined here including A’s ability to write scientific
manuscripts or poetry, solve math or physics problems, or describe their feelings about a novel or
news. Second, A’s personality and output might change according to the interlocutor, context, or
circumstances. None of these variations are explicitly included in the current training of A-clone.
Third, as noted above, only a small fraction of A’s output was included during training. As a trivial
example, consider a lunch event between A and another person B. The current version of A-clone
does not have access to what was ordered during lunch or the conversation and B would be able to
detect the clone easily by asking lunch-specific questions. In principle, in the future, an algorithm
could be trained with the entirety or the majority of a person’s output.
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8 REPRODUCIBILITY STATEMENT
We have made significant efforts to ensure the reproducibility of our work. While privacy concerns
prevent us from open-sourcing our raw dataset and model weights, we have provided detailed
information to facilitate reproducibility wherever possible.

Specifically, we describe the training process comprehensively in Sec. 3.2, including key details such
as learning rate, dropout configurations, and LoRA parameters. Additionally, we have open-sourced
our training and data preprocessing code in this link., which are available as part of the supplementary
materials. These resources enable others to replicate the methodology and evaluate our findings
within the constraints of privacy regulations. For further details, we encourage readers to consult the
appendix and the provided supplementary materials.
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A APPENDIX

A.1 PROMPTING LLMS TO MATCH LENGTH DISTRIBUTION OF GROUND TRUTH

A.1.1 PROMPTING PROCEDURE

During initial testing, responses from GPT-4o and Llama-3-70B-Instruct were generally too long and
easy to detect as not human. Therefore, we constrained their response lengths in the prompt to match
the length distribution of A’s real answers.

Next, we used three linear Support Vector Machines (SVM) to classify responses based on response
lengths in three comparisons: A vs. A-clone, A vs. Llama-3-70B-Instruct, and A vs. GPT-4o. The
classification performance based solely on the response lengths yielded an average accuracy of 0.47,
around chance levels (chance = 0.5), showing that the length constraint imposed helped ensure that
trivial cues like response length could not be used to distinguish A’s answers.

Prompting and SVM code details can be found in this link.

A.1.2 A SET OF SVM PLOTS

We present a series of SVM plots using the RBF kernel to show prediction accuracy on test sets when
classifying responses based purely on word length across the following comparisons:

Figure 8: A vs. GPT-4o

Figure 9: A vs. Llama-3-70B-Instruct

Figure 10: A vs. A-clone

The SVM results indicate that classifying A-clone as non-human based solely on response length is
the easiest (accuracy: 0.6), while distinguishing between A and Llama-3-70B-Instruct or GPT-4o is
more challenging (accuracy: 0.47). These findings demonstrate that the length constraint imposed on
Llama-3-70B-Instruct and GPT-4o effectively minimized the impact of trivial cues, such as response
length, in distinguishing A’s answers.

Figure 8: A vs. GPT-4o
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Figure 9: A vs. Llama-3-70B-Instruct

Figure 10: A vs. A-clone

A.2 DEMOGRAPHIC DETAILS OF PARTICIPANTS

A total of 28 participants were included in the study. The majority of participants were male (67.9%,
n = 19), while females constituted 32.1% (n = 9) of the sample. Most participants were aged between
18 and 30 years (71.4%, n = 20), followed by those aged 30 to 50 years (21.4%, n = 6), and over 50
years old (7.1%, n = 2); no participants were under 18 years old. In terms of educational attainment,
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half of the participants held a master’s degree (50.0%, n = 14), 25.0% (n = 7) had a bachelor’s degree,
21.4% (n = 6) possessed a Ph.D., and 3.6% (n = 1) had education below the college level. Regarding
language proficiency, 28.6% (n = 8) reported English as their first language, whereas 71.4% (n =
20) did not. Most relationships were academic in nature (82.1%, n = 23), followed by those with
strangers (10.7%, n = 3) and family members (7.1%, n = 2). The duration of relationships varied,
with 42.9% lasting between 0 to 1 year (n = 12), 39.3% lasting 1 to 5 years (n = 11), 10.7% lasting
less than a year (n = 3), and 7.1% extending beyond five years (n = 2). See Table 2 for details. We
acknowledge the limitations of unbalanced distributions across categories such as relationship type,
age, gender, and native English proficiency, which may influence the results.

Table 2: Demographic Characteristics of 28 Participants

Variable Category Number (%)

Gender Male 19 (67.9%)
Female 9 (32.1%)

Age Range

<18 0 (0.0%)
18–30 20 (71.4%)
30–50 6 (21.4%)
>50 2 (7.1%)

Education Level

Below College 1 (3.6%)
Bachelor 7 (25.0%)
Master 14 (50.0%)
PhD 6 (21.4%)

English as First Language? Yes 8 (28.6%)
No 20 (71.4%)

Relationship Category

Academic 23 (82.1%)
Family 2 (7.1%)
Stranger 3 (10.7%)

How long have you known A ?

0 Year 3 (10.7%)
0–1 Years 12 (42.9%)
1–5 Years 11 (39.3%)
>5 Years 2 (7.1%)

A.3 PSYCHOLOGICAL TESTS

Here in Table 3, we show full list of links to the 10 psychological tests we utilized in our study. These
tests were carefully selected to evaluate various aspects of personality, behavior, decision-making,
and cognitive abilities. They provide a comprehensive framework for assessing the LLM clone’s
capability to emulate human-like reasoning and responses in diverse contexts.

A.4 CORRELATION METRICS

Spearman’s correlation (Spearman, 1910) measures the strength and direction of the association
between two ranked variables. It is a non-parametric test that evaluates how well the relationship
between two variables can be described using a monotonic function. The Spearman correlation
coefficient ρ is given by:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where di is the difference between the ranks of corresponding variables and n is the number of
observations. The value of ρ ranges from -1 to 1, where values closer to 1 or -1 indicate a stronger
relationship, and values near 0 indicate little to no correlation.
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Table 3: Links of All Psychological Tests

OCEAN (Big Five) Personality Test
Myers-Briggs Type Indicator (MBTI)
Driving Personality Test
Schein’s Career Anchor Test A
Schein’s Career Anchor Test B
Career Orientation Test
Political Typology Quiz
Political Compass Test
General Knowledge Test
Defining Issues Test

The Chi-squared test (Pearson, 1900) is used to determine whether there is a significant association
between two categorical variables. It compares the observed frequencies in each category to the
expected frequencies assuming independence. The Chi-squared statistic χ2 is given by:

χ2 =
∑ (Oi − Ei)

2

Ei

where Oi represents the observed frequency, and Ei represents the expected frequency. Cramer’s V,
which measures the strength of association, is calculated as:

V =

√
χ2

n ·min(k − 1, r − 1)

where n is the total number of observations, k is the number of categories for one variable, and r is
the number of categories for the other variable. Values of Cramer’s V range from 0 (no association)
to 1 (perfect association).

A.5 ORIGINAL CONFUSION MATRIX BEFORE NORMALIZATION

In response to the reviewer’s request, we present the unnormalized confusion matrix from Turing
Test 1. In this version, the sum of all cells equals 1. See Figure 11 for details.

A.6 TEXTUAL SIMILARITY ANALYSIS USING ROUGE METRICS

We employed two widely used textual similarity metrics, ROUGE-1 and ROUGE-L, to assess: (1)
the similarity between ground truth answers and responses generated by LLMs, and (2) the similarity
between the training dataset and test sets used in the Turing Test.

Textual Evaluation of LLM-Generated Answers

Textual similarities were measured between 701 ground truth answers (A’s answers) and responses
generated by A-clone, Llama3-70B-Instruct, and GPT4o. Table 4 presents the results, showing that
A-clone consistently achieved the highest scores in both ROUGE-1 (0.2016 ± 0.1717) and ROUGE-L
(0.1693 ± 0.1614). These results highlight A-clone’s superior lexical overlap and sequence similarity
with the ground truth answers.

Textual Evaluation of Training and Test Set Similarity

To assess the textual similarity between the training and test sets, we used ROUGE-1 and ROUGE-L
metrics to compute pairwise similarities across three categories: (1) training vs. test, (2) training vs.
training, and (3) test vs. test. For each category, we randomly sampled 100,000 question pairs. For
example, a pair in category (1) consists of one question randomly selected from the training set and
another from the test set.
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Figure 11: Confusion matrix of Turing Test 1 results, prior to normalization.

We calculated the average similarity scores for each category and summarized the results in Table 5.
The findings reveal that the similarity between the training and test sets is significantly lower than the
within-set similarities (training vs. training and test vs. test). This demonstrates that the distributions
of the training and test sets are distinct, suggesting that overfitting is unlikely.

Table 4: Answers generated by A-clone shows the highest lexical similarity between A’s ground
truth, compared to other LLMs

Model ROUGE-1 ROUGE-L
A-clone 0.2016 ± 0.1717 0.1693 ± 0.1614
llama3-70B-Instruct 0.1356 ± 0.1201 0.1128 ± 0.1071
GPT4o 0.1477 ± 0.1227 0.1214 ± 0.1087

Table 5: Training and Test Set Similarity Analysis Reveals Distinct Distributions

Comparison ROUGE-1 ROUGE-L
Training vs Test 0.0596 ± 0.0504 0.0483 ± 0.0405
Training vs Training 0.1212 ± 0.0779 0.0781 ± 0.0461
Test vs Test 0.1323 ± 0.1144 0.1222 ± 0.1089

A.7 TRAINING SET OVERVIEW

We present an analysis of the training set, including a word cloud and length distribution of the
dataset.

In Figure 12a, we display the original word cloud, highlighting the most frequently used words in
the training set. To better understand the content focus, we generated a modified word cloud shown
in Figure 12b, where common words such as would, thanks, please, us, let, yes, one, may, also, sure,
get, well, need, want, etc, ok, make, could, and next were excluded.
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In Figure 13, we provide the length distribution of answers in the training set. The plot demonstrates
that most of the responses from A in the email dataset are relatively short, with the majority containing
less than 100 words.

(a) (b)

Figure 12: Wordcloud shows common words appeared in A’s email reply

Figure 13: Length distribution shows that answers from A’s email are quite short

A.8 MORE DETAILED TURING TEST 1 RESULTS

This section provides a more detailed analysis of the results from Turing Test 1. We collected 701
questions from three distinct sources:

• A: 158 questions (22.5%)
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• Participants: 217 questions (31%)

• LLMs: 326 questions (46.5%)

A.8.1 CONFUSION MATRICES BY QUESTION SOURCE

In Figure 14, we present confusion matrices that illustrate participants’ performance based on the
source of the questions:

• Figure 14a: Questions sourced from A
• Figure 14b: Questions sourced from participants

• Figure 14c: Questions generated by LLMs

• Figure 14d: Overall confusion matrix for all sources combined, identical to Figure 2

One key observation is that when the ground truth answer is displayed, participants perform
significantly better (74% accuracy) at identifying A’s answers when the questions come from
participants, in comparison to other resources (66% when coming from A and 64% when coming
from LLMs). This aligns with our expectation, as participant-sourced questions are tailored to
help identify A. However, for the same source category, if the answer comes from A-clone, the
likelihood of it being misidentified as A (61% accuracy) is also higher than other question sources
(57% and 56%). This might indicate people tend to believe it’s A when they saw the question they
asked. Additionally, across all sources, when A-clone’s answers are presented, they are more often
mistaken for A compared to A’s actual answers, which indicates A-clone’s strong ability to mimic
A’s responses.

A.8.2 CONFUSION MATRICES BY QUESTION TOPIC

Among the 326 questions in the LLM-generated question group, we intentionally designed questions
across five subtopics during the generation process and plotted a confusion matrix for results under
each subtopic.

• Figure 15a: Profession-related questions (68 questions, 20.9%). For example: "What is the
focus of your current research?"

• Figure 15b: Personal life questions (75 questions, 23%). For example: "Do you have any
hobbies?"

• Figure 15c: Recent news / events (108 questions, 33.1%). For example: "Have you watched
UEFA 2024 final game?"

• Figure 15d: Future predictions (34 questions, 10.4%). For example: "Where do you see
yourself in 20 years?"

• Figure 15e: Nonsense questions (41 questions, 12.6%). For example: "Like Fernando pear
drink Spotify with?"

• Figure 15f: Overall LLM source questions comprising all topics from (a) to (e), identical
to Figure 14c.

When answers from A-clone were presented, participants were more likely to make mistakes in most
topic categories, incorrectly identifying A-clone’s answers as those of A. This highlights A-clone’s
strong ability to deceive participants. In other words, the False Positive rate (misidentifying A-clone
as A) was higher than the True Negative rate (correctly identifying A-clone).

However, an exception to this trend was observed with nonsense questions (See Figure 15e),
where participants achieved a higher True Negative rate (54%) than False Positive rate (46%).
This suggests that LLMs, including A-clone, struggle with nonsensical prompts. One possible
explanation is that when presented with nonsense sentences, LLMs rely on predicting the next
probable token, often producing grammatically correct but uncreative responses, which are easier
to identify. For example, when asked, "Does the sandwich prefer to dance with a pineapple or a
lampshade?" A responded creatively, "With a lampshade, of course. It must be painful to dance with
a pineapple, but I never tried." In contrast, A-clone answered, "The sandwich prefers to dance with
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the pineapple", which, while grammatically correct, was uncharacteristically bland and easier to
identify as machine-generated.

Another notable trend was observed in personal life questions (See Figure 15b). When A’s answers
were presented, participants achieved the highest True Positive rate (74%) across all topic categories.
This indicates that when questions focused on personal details, participants were better at detecting
A. Conversely, A-clone also exhibited the largest discrepancy between False Positive (61%) and
True Negative rates (39%) in this category, demonstrating its capacity to mislead participants even in
personal contexts.

(a) (c)

(b) (d)

Figure 14: Turing Test 1 Results Categorized by Sources

(a)

(b)

(c)

(d)

(e)

(f)

Figure 15: Turing Test 1 Results Categorized by Topics
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These observations suggest two promising directions for designing future algorithms / question sets
to detect LLM-based clones:

1. Personal Questions: Questions focusing on personal details may reveal nuanced,
human-like qualities that LLMs struggle to replicate convincingly.

2. Nonsense Questions: Absurd or nonsensical prompts are effective in exposing
machine-generated responses due to their reliance on probabilistic token prediction, which
often results in detectable inconsistencies.

A.8.3 TURING TEST QUESTION WORD CLOUD

We present a word cloud of Turing Test questions in Figure 16, highlighting the most frequently used
words in the Test Set.

Figure 16: Word cloud of Turing Test Questions

A.9 THERE’S NO CORRELATION FOUND BETWEEN VARIABLES FROM PARTICIPANTS AND
THEIR PERFORMANCE

We have not identified any correlation between Turing Test performance and other demographic
variables, except for "familiarity with A", as we highlighted in Figure 6 and Figure 3. Here we
include 2 figures that examine the relationship between participants’ performance and their education
level, addressing the hypothesis raised by the reviewer. As illustrated in the Figure 17 and Figure
18, no significant correlation can be observed.
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Figure 17: No correlation found between education level and Turing Test 1

Figure 18: No correlation found between education level and Turing Test 2
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