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ABSTRACT

Motion-based controllable video generation offers the potential for creating cap-
tivating visual content. Existing methods typically necessitate model training to
encode particular motion cues or incorporate fine-tuning to inject certain motion
patterns, resulting in limited flexibility and generalization. In this work, we pro-
pose MotionClone, a training-free framework that enables motion cloning from
reference videos to versatile motion-controlled video generation, including text-
to-video and image-to-video. Based on the observation that the dominant com-
ponents in temporal-attention maps drive motion synthesis, while the rest mainly
capture noisy or very subtle motions, MotionClone utilizes sparse temporal atten-
tion weights as motion representations for motion guidance, facilitating diverse
motion transfer across varying scenarios. Meanwhile, MotionClone allows for the
direct extraction of motion representation through a single denoising step, bypass-
ing the cumbersome inversion processes and thus promoting both efficiency and
flexibility. Extensive experiments demonstrate that MotionClone exhibits profi-
ciency in both global camera motion and local object motion, with notable supe-
riority in terms of motion fidelity, textual alignment, and temporal consistency.

1 INTRODUCTION

Video generations that align with human intentions and produce high-quality outputs has recently
attracted significant attention, particularly with the rise of mainstream text-to-video (Guo et al.,
2023b; Blattmann et al., 2023b; Chen et al., 2024) and image-to-video (Guo et al., 2023a; Blattmann
et al., 2023a; Dai et al., 2023) diffusion models. Despite the substantial progress witnessed in condi-
tional image generation, the domain of video generation presents unique challenges, primarily due to
the complexities introduced by motion synthesis. Incorporating additional motion control not only
mitigates the ambiguity inherent in video synthesis for superior motion modeling but also enhances
the manipulability of the synthesized content for customized creations.

In the realm of video generation that is steered by motion cues, pioneering methodologies can be
generally classified into two principal strategies: one that leverages the dense depth or sketch of
reference videos (Wang et al., 2024; Jeong & Ye, 2023; Guo et al., 2023a), and another that relies on
motion trajectories (Wang et al., 2023b; Yin et al., 2023; Niu et al., 2024). The former methodology
typically involves the integration of a pre-trained model to extract motion cues at the pixel level.
Despite achieving highly aligned motion, these dense motion cues can be intricately entangled with
the structural elements of the reference videos, impeding their transferability in novel scenarios.
The latter trajectory-based methodology, by contrast, provides a more user-friendly approach for
capturing broader object movements but struggles to delineate finer, localized motions such as head
turns or hand raises. Additionally, both methodologies typically entail model training to encode
particular motion cues, implying suboptimal generation when applied outside the trained domain.
Such limitation is also observed in approaches relying on fine-tuning (Jeong et al., 2023; Zhao et al.,
2023), which aim to fit the motion patterns of certain videos.

In this work, we introduce MotionClone, a novel training-free framework designed to clone motions
from reference videos for controllable video generation. Diverging from traditional approaches
involving tailored training or fine-tuning, MotionClone employs the commonly used temporal-
attention mechanism within video generation models to capture the motion in reference videos.
This strategy effectively renders detailed motion while concurrently preserving minimal interdepen-
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Duck, swims in the river Robot, runs in the street

Lion, tuns its head on grass

Dog, sitting on the grass

Building, around with flowersPig, drinks water  on beach 

Object motion cloning Camera motion cloning

Figure 1: Motion cloning in varying scenarios. Given a reference video, MotionClone can clone
the contained motion into novel scenarios with excellent prompt-following ability, without motion-
specific fine-tuning. The red arrows indicate the motion direction.

dencies with the structural components of the reference video, offering flexible motion cloning in
varying scenarios, as shown in Fig. 1. To be specific, it is observed that the dominant components in
temporal-attention weights significantly drive motion synthesis, while the rest mainly refer to noisy
or very subtle motions. When the whole temporal-attention is applied uniformly across the model,
the majority of temporal-attention weights can overshadow the motion guidance, consequently re-
sulting in the suppression of the primary motion. Therefore, we propose to leverage the principal
components of the temporal-attention weights as motion representation, which serves as motion
guidance that overlooks noisy or less significant motions and concentrates on the primary motion,
thus substantially enhancing the fidelity of motion cloning. Moreover, it has been demonstrated that
the motion representation extracted from a certain denoising step holds effective guidance across
all time steps, offering high efficiency without the burden of cumbersome video inversion. Further-
more, MotionClone is compatible with a range of video generation tasks, including text-to-video
(T2V) and image-to-video (I2V), highlighting its versatility and broad applicability.

In summary, (1) we propose MotionClone, a novel motion-guided video generation framework that
enables training-free motion cloning from given reference videos; (2) we design a primary motion
control strategy to perform substantial motion guidance over sparse temporal attention map, allowing
for efficient motion transfer across scenarios; (3) we validate the effectiveness and versatility of
MotionClone in various video generation tasks, in which extensive experiments demonstrate its
proficiency in both global camera motion and local object action, with notable superiority in terms
of motion fidelity, text alignment, and temporal consistency.

2 RELATED WORK

2.1 TEXT-TO-VIDEO DIFFUSION MODELS

Equipped with sophisticated text encoders (Radford et al., 2021; Zhang et al., 2024), a great break-
through has been achieved in the realm of text-to-image (T2I) generation (Gu et al., 2022; Nichol
et al., 2021; Rombach et al., 2022; Podell et al., 2023), which sparks the enthusiasm for advanced
text-to-video (T2V) models (Blattmann et al., 2023b; Wang et al., 2023a; Chen et al., 2023a; 2024;
Guo et al., 2023b). Notably, VideoLDM (Blattmann et al., 2023b) introduces a motion module that
utilizes 3D convolutions and temporal attention to capture frame-to-frame correlations. In a novel
approach, AnimateDiff (Guo et al., 2023b) enhances a pre-trained T2I diffusion model with motion
modeling capabilities. This is achieved by fine-tuning a series of specialized temporal attention lay-
ers on extensive video datasets, allowing for a harmonious fusion with the original T2I generation
process. To address the challenge of data scarcity, VideoCraft2 (Chen et al., 2024) suggests an inno-
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vative strategy of learning motion from low-quality videos (Bain et al., 2021) while simultaneously
learning appearance from high-quality images (Sun et al., 2024). Despite these advancements, there
remains a significant disparity in the quality of generated content between the available T2V mod-
els and their sophisticated T2I counterparts, primarily due to the intricate nature of diverse motions
and the limited availability of high-quality video data. In this work, a motion guidance strategy is
developed, which ingeniously incorporates motion cues from given videos to ease the challenges of
motion modeling, yielding more realistic and coherent video sequences, without model fine-tuning.

2.2 CONTROLLABLE VIDEO GENERATION

Building on the success of controllable image generation through the integration of additional con-
ditions (Zhang et al., 2023; Kim et al., 2023; Li et al., 2023; Qin et al., 2023; Huang et al., 2023), a
multitude of studies (Chen et al., 2023a; Yin et al., 2023; Dai et al., 2023; Ma et al., 2024; Blattmann
et al., 2023a) have endeavored to introduce diverse control signals for versatile video generation.
These include control over the first video frame (Chen et al., 2023a), motion trajectory (Yin et al.,
2023), motion region (Dai et al., 2023), and motion object (Ma et al., 2024). Furthermore, in
pursuit of high-quality video customization, several studies delve into reference-based video gener-
ation, leveraging the motion from an existing real video to direct the creation of new video content.
A straightforward solution developed in Wang et al. (2024); Esser et al. (2023); Xing et al. (2024),
involves the direct integration of frame-wise depth maps or canny maps to regularize motion. How-
ever, this approach inadvertently introduces motion-independent features, such as structures in static
areas, which can disrupt the alignment of the resulting video appearance with new text. To address
this issue, motion-specific fine-tuning frameworks, as explored in (Zhao et al., 2023; Jeong et al.,
2023), have been developed to extract a distinct motion pattern from a single video or a collection of
videos with identical motion. While holding promise, these methods are subject to complex train-
ing processes and potential model degradation. To address this, we present a novel motion cloning
scheme, which extracts temporal correlations from existing videos as explicit motion clues to guide
the generation of new video content, providing a plug-and-play motion customization solution.

2.3 ATTENTION FEATURE CONTROL

Attention mechanisms have been confirmed as vital for high-quality content generation.
Prompt2Prompt (Hertz et al., 2022) illustrates that cross-attention maps are instrumental in dic-
tating the spatial layout of synthesized images. This observation subsequently motivates serious
work in semantic preservation (Chefer et al., 2023), multi-object generation (Ma et al., 2023; Xiao
et al., 2023), and video editing (Liu et al., 2023). AnyV2V (Ku et al., 2024) reveals dense injec-
tion of both CNN and attention features facilitates improved alignment with source videos in video
editing. FreeControl (Mo et al., 2023) highlights that the feature space within self-attention layers
encodes structural image information, facilitating reference-based image generation. While previous
methods mainly concentrate on spatial attention layers, our work uncovers the untapped potential of
temporal attention layers for effective motion guidance, enabling flexible motion cloning.

3 MOTIONCLONE

In this section, we first introduce video diffusion models and temporal attention mechanisms. Then
we explore the potential of primary control over sparse temporal attention maps for substantial
motion guidance. Subsequently, we elaborate on the proposed MotionClone framework, which
performs motion cloning by deliberately manipulating temporal attention weights.

3.1 PRELIMINARIES

Diffusion sampling. Following pioneering work (Rombach et al., 2022), video diffusion models
encode a input video x into latent representation z0 = E(x) by using a pre-trained encoder E(·). To
enable video distribution learning, diffusion model ϵθ is encouraged to estimate noise component ϵ
from noised latent zt that follows time-dependent scheduler (Ho et al., 2020), i.e.,

L(θ) = EE(x),ϵ∈N (0,1),t∼U(1,T )

[
∥ϵ− ϵθ(zt, c, t)∥22

]
, (1)
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Reference 

video

Prompt: A cat plays in the forest

Generated videos from same initial noise

Reference 

video

Prompt: A tank runs in the desert

Generated videos from same initial noise

w/o control Plain control Primary control w/o control Plain control Primary control

Figure 2: Comparision of plain control and primary control over temporal attention map.
Leveraging temporal attention maps derived from reference videos to guide video generation. Plain
control refers to a rudimentary approach whereby all weights are uniformly applied. Primary control
only applies constraint to the sparse temporal attention map.

where t is the time step, and c is the condition signal such as text or image. In the inference phase,
the sampling process commences with a standard Gaussian noise. The sampling trajectory, however,
can be adjusted by incorporating guidance for extra controllability. This is typically achieved by
customized energy function g(zt, y, t) with label y indicating guidance direction, i.e.,

ϵ̂θ = ϵθ(zt, c, t) + s(ϵθ(zt, c, t)− ϵθ(zt, ϕ, t))− λ
√
1− ᾱt∇ztg(zt, y, t), (2)

where ϵθ(zt, ϕ, t) is the classifier-free guidance (Ho & Salimans, 2022), ϕ denotes the unconditional
class identifier (such as null text for textual condition), s and λ are guidance weights, and the term√
1− ᾱt is used to convert the gradient of energy function g(·) into noise prediction, in which

√
ᾱt is

the hyperparameter of noise schedule, i.e., zt =
√
ᾱtz0 +

√
1− ᾱtϵ. During sampling, the gradient

generated by energy function g(·) indicates the direction toward generation target.

Temporal attention. In video motion synthesis, temporal attention mechanism is broadly applied
to establish correlation across frames. Given a f -frame video feature fin ∈ Rb×f×c×h×w where b
denotes batch size, c denotes channel number, h and w are spatial resolution, temporal attention first
reshapes it into 3D tensor f

′

in ∈ R(b×h×w)×f×c by merging the spatial dimensions into the batch
size. Subsequently, it executes self-attention along the frame axis, which can be expressed as:

fout = Attention(Q(f
′

in),K(f
′

in), V (f
′

in)), (3)

where Q(·), K(·), and V (·) are projection layers. Correspondingly, the attention map is labeled as
A ∈ R(b×h×w)×f×f , which captures the temporal relation for each pixel feature.

3.2 OBSERVATION

Since temporal attention mechanism governs the motion in the generated video, videos with similar
temporal attention maps are expected to share similar motion characteristics. To investigate this
hypothesis, we manipulate the sampling trajectory by aligning the temporal attention maps of the
generated video with those from a reference video. As depicted in Fig. 2, simply enforcing alignment
on the entire temporal attention map (plain control) can only partly restore coarse motion patterns
of reference videos, such as the gait of a cat and the directional movement of a tank, demonstrating
limited motion alignment. We postulate that this is because not all temporal attention weights are
essential for motion synthesis, with some reflecting scene-specific noise or extremely small motions.
Indiscriminate alignment with the entire temporal attention maps dilutes critical motion guidance,
resulting in suboptimal motion cloning in novel scenarios. As evidence, primary control over the
sparse temporal attention map significantly boosts motion alignment, which can be attributed to the
emphasis on motion-related cues and the disregard of motion-irrelevant factors.
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frame-1 frame-6 frame-11 frame-16 �� = 800 �� = 600 �� = 400 �� = 200
Figure 3: Visualization of motion representation. The mean intensity of Ltα in frame axis from
“up blocks.1” (resized to the represented resolution) indicates the area and magnitude of motion.
This performance encounters decline in complex “head turning” scenario when tα = 800.

3.3 MOTION REPRESENTATION

Given a reference video, the corresponding temporal attention map in t denoising step is denoted as
At

ref ∈ R(1×h×w)×f×f , which satisfies
∑f

j=1[At
ref ]p,i,j = 1. The value of [At

ref ]p,i,j reflects the
relation between i frame and j frame in position p, and a larger value of [At

ref ]p,i,j implies a stronger
correlation. The motion guidance over temporal attention maps, depicted by energy function g(·), is
modeled as:

g =
∥∥Mt · (At

ref −At
gen)

∥∥2
2
, (4)

where Mt is the temporal mask for sparse constraint, and At
gen is the temporal attention weights of

generated videos in time step t. Essentially, Eq. 4 promotes motion cloning by forcing At
gen close

to At
ref , while Mt determines the sparsity of constraint, time-dependence

{
At

ref ,Mt
}

constitute

the motion guidance. Particularly, Mt ≡ 1 refers to the “plain control” that exhibits limited motion
transfer capability as illustrated in Fig. 2. Since the value of At

ref is indicative of the strength of
inter-frame correlation, we propose to obtain the sparse temporal mask according to the rank of
At

ref value in the temporal axis, i.e.,

Mt
p,i,j :=

{
1, if [At

ref ]p,i,j ∈ Ωt
p,i

0, otherwise,
(5)

where Ωt
p,i = {τ1, τ2, ..., τk} is the subset of index that comprising the top k values in attention map

At
ref along the temporal axis j, and k is a hyper-parameter. Particularly, in the case where k = 1,

motion guidance focuses solely on the highest activation for each spatial location. Supervised by
Eq. 5, motion guidance in Eq. 4 encourages the sparse alignment with the primary component in
At

ref while ensures spatially even constraint, facilitating a stable and reliable motion transfer.

Despite enabling effective motion cloning, the above scheme has obvious flaws: i) for real reference
videos, laborious and time-consuming inversion operation is required for preparing At

ref ; and ii)

the considerable size of the time-dependent
{
At

ref ,Mt
}

poses significant challenges for large-
scale preparation and efficient deployment. Fortunately, it is noted that the representation from
certain denoising step can provide substantial and consistent motion guidance in generation process.
Mathematically, motion guidance in Eq. 4 can be converted into

g =
∥∥∥Mtα · (Atα

ref −At
gen)

∥∥∥2
2
=

∥∥Ltα −Mtα · At
gen

∥∥2
2
, (6)

where tα denotes certain time step, and Ltα = Mtα · Atα
ref . For given reference videos, the corre-

sponding motion representation is denoted as Htα = {Ltα ,Mtα}, comprising two elements that are
both highly temporally sparse. For real reference videos, their Htα can be easily derived by directly
adding noise to shift them into the noised latent of tα time step, followed by a single denoising step.
This straightforward strategy, impressively, proves to be remarkably effective. As shown in Fig. 3,
over a larger range of time steps (tα from 200 to 600), the mean intensity of Htα effectively high-
lights the region and magnitude of motion. However, it is also observed that Htα in early denoising
stage (tα = 800) shows some discrepancies with the “head-turning” motion. This can be attributed

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025
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Motion guidance

Random 
noise

Iterative denoising

Motion guidance stage
Time step decrease

Sparse
Control

Prompt: null-text

Prompt: Tiger, raises its head

Reference video Motion
representation

Figure 4: The pipeline of MotionClone, in which the motion representation Htα extracted from
reference videos serves as motion guidance in novel video synthesis.

to the fact that motion synthesis has not yet been fully determined at this early stage. Therefore,
we suggest to employ the motion-aligned Htα from latter denoising stage to guide motion synthesis
in the entire sampling process, facilitating substantial and consistent motion guidance for superior
motion alignment.

3.4 MOTION GUIDANCE

The pipeline of MotionClone is depicted in Fig. 4. Given a real reference video, the correspond-
ing motion representation Htα is obtained by performing a single noise-adding and denoising step.
During the video generation process, an initial latent is initialized from a standard Gaussian distribu-
tion and subsequently undergoes an iterative denoising procedure via a pre-trained video diffusion
model, advised by both classifier-free guidance and the proposed motion guidance. Given that im-
age structure is determined in the early steps of the denoising process (Hertz et al., 2022), whereas
motion fidelity primarily depends on the structure of each frame, motion guidance only involves the
early denoising steps, allowing for sufficient flexibility for semantic adjustment and thus empower-
ing premium video generation with compelling motion fidelity and precise textual alignment.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In this work, we employ AnimateDiff(Guo et al., 2023b) as the base text-to-video generation model
and leverage SparseCtrl (Guo et al., 2023a) for image-to-video and sketch-to-video generator. For
given real videos, we apply single denoising in tα = 400 for motion representation extraction.
k = 1 is adopted for mask in Eq. 5 to facilitate sparse constraint. “null-text” is uniformly used as
textual prompt for preparing motion representations, promoting a more convenient video customiza-
tion. The motion guidance is conducted on temporal attention layers in “up block.1”. The detailed
ablations of above setting are represented in 4.6. Guidance weight s and λ in Eq. 2 are empirically
set as 7.5, and 2000, respectively. For camera motion cloning, the denoising step is configured to
100, in which the motion guidance steps set as 50. For object motion cloning, the denoising step is
raised to 300, while applying motion guidance in the early 180 steps.
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Reference Control-A-Video VMC VideoComposer Gen-1 Tune-A-Video MotionClone 

Prompt: Teddy bear, on the grass.

Prompt: Island, on the ocean.

Figure 5: Visual comparison in camera motion cloning, in which MotionClone achieves superior
textual alignment by better suppressing the original structure.

4.2 EXPERIMENTAL SETUP

Dataset. For experimental evaluation, 40 real videos sourced from DAVIS (Pont-Tuset et al., 2017)
and website are utilized for a thorough analysis, comprising 15 videos with camera motion and 25
videos for object motion. These videos encompass a rich tapestry of motion types and scenarios,
ranging from the dynamic motions of animals and humans to the global camera motion.

Evaluation metrics For objective evaluation, two commonly used metrics are adopted: i) Textual
alignment, which quantifies the congruence with the provided textual prompt. Following previous
work (Wang et al., 2024), it is measured by the average CLIP (Radford et al., 2021) cosine simi-
larity between all video frames and text (Jeong et al., 2023); ii) Temporal consistency, the indicator
of video smoothness, is quantified by calculating the average CLIP similarity among consecutive
video frames. Beyond the scope of objective metrics, a user study is employed for a more nuanced
assessment of human preferences in video quality, incorporating two additional criteria: i) motion
preservation which evaluates the motion’s adherence to the reference video, and ii) appearance di-
versity which assesses the visual range and diversity in contrast to the reference video. The user
study scores are derived from the average ratings provided by 20 volunteers, ranging from 1 to 5.

Baselines. For a thorough comparative analysis, various alternative methods have been examined
in the comparison, including VideoComposer (Wang et al., 2024), Tune-A-video (Wu et al., 2023),
Control-A-Video (Chen et al., 2023b), VMC (Jeong et al., 2023), and Gen-1 (Esser et al., 2023). A
detailed description of each method is depicted in the Appendix.

4.3 QUALITATIVE COMPARISON

Camera motion cloning. As shown in Fig. 5, the ”clockwise rotation” and ”view switching” motion
present a significant challenge. VMC and Tune-A-Video generate scenes with acceptable textual

7
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Cat, moves its head, in the bedroom.

Iron man, walks, in the New York City.

Reference Control-A-Video VMC VideoComposer Gen-1 Tune-A-Video MotionClone 

Figure 6: Visual comparison in object motion cloning, in which MotionClone performs prefer-
able motion fidelity with improved prompt-following ability.

Table 1: Quantitative comparison by using automotive metrics and user study.

Method VMC VideoComposer Gen-1 Tune-A-Video Control-A-Video MotionClone

Textual Alignment 0.3134 0.2854 0.2462 0.3002 0.2859 0.3187
Temporal Consistency 0.9614 0.9577 0.9563 0.9351 0.9513 0.9621

Motion Preservation 2.59 3.28 3.50 2.44 3.33 3.69
Appearance Diversity 3.51 3.23 3.25 3.09 3.27 4.31

Textual Alignment 3.79 2.71 2.80 3.04 2.82 4.15
Temporal Consistency 2.85 2.79 3.34 2.28 2.81 4.28

alignment but exhibit deficiencies in motion transfer. The outputs from VideoComposer, Gen-1,
and Control-A-Video are notably unrealistic, which can be attributed to the dense integration of the
structural elements from the original videos. Conversely, MotionClone demonstrates superior text
alignment and motion consistency, thereby suggesting its superior video motion transfer capabilities
within global camera motion scenarios.

Object motion cloning. Beyond the scope of camera motion, the proficiency in handling local
object motions has been rigorously validated. As evidenced by Fig. 6, VMC falls short in match-
ing motion with the source videos. Videocomposer appears to generate grayish colors with lim-
ited prompt-following ability. Gen-1 is inhibited by the original videos’ structure. Tune-A-Video
struggles with capturing detailed body motions, while Control-A-Video cannot maintain a faithful
appearance. In contrast, MotionClone stands out in scenarios with localized object motions, enhanc-
ing motion accuracy and improved text alignment.

8
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Prompt: 
Lion, walks 
in the forest.

Prompt: 
Airplane at 
airport, 
sunny day.

Prompt: 
Girl, similing 
in house.

Prompt: 
Blue car, runs 
in the road.

Figure 7: MotionClone also supports I2V and sketch-to-video, facilitating versatile applications.
The red arrows indicate the motion direction.
4.4 QUANTITATIVE COMPARISON

The quantitative comparison on 40 real videos with various motion pattern are outlined in Tab. 1.
It is observed that MotionClone gains competitive scores in both textual alignment and temporal
consistency. Moreover, MotionClone has outperformed its rivals in motion preservation, appearance
diversity, temporal consistency, and textual alignment in human preference tests, underscoring its
ability to produce visually compelling outcomes.

4.5 VERSATILE APPLICATION

Beyond T2V, MotionClone is also compatible with I2V and sketch-to-video. As shown in Fig. 7,
by incorporating the first frame or a sketch image as an additional condition, MotionClone achieves
impressive motion transfer while aligning with the specified condition, underscoring its significant
potential for a wide range of applications.

4.6 ABLATION AND ANALYSIS

Choice of k. k determines the mask in Eq. 5 and thus impacts the sparsity of motion constraint.
As illustrated in Fig. 8, a lower k value helps better primary motion alignment, attributed by the
enhanced elimination of scene-specific noise and subtle motion.

Choice of tα. The value of tα determines diffusion feature distribution used for preparing motion
representations. As shown in Fig. 8, an excessively large tα = 800 causes substantial loss of motion
information due to excessive noise injection, while tα ∈ {200, 400, 600} can all achieve a certain
degree of motion alignment, implying the robustness of tα. In this work, we chose tα = 400 as
default value as it typically yields appealing motion cloning in our experiments.

Choice of temporal attention block. Fig. 9 illustrates the results with motion guidance applied in
different blocks. It is observed that “up block.1” stands out for its superior motion manipulation
capabilities while safeguarding visual quality, underscoring its dominant role in motion synthesis.

Does precise prompt help ? During motion representation preparation procedure, few differences
arise when using tailored prompts regrading video content, as represented Fig. 9. We speculate
that motion-related information is effective preserved in diffusion features at tα = 400, thereby
diminishing the significance of the precise prompt.

Does video inversion help ? Video inversion can provide time-dependence
{
At

ref ,Mt
}

for Eq. 4

and certain time step {Ltα ,Mtα} for Eq. 6, but entails considerable time costs. As shown in Fig. 9
(Inversion 1 vs. Inversion 2), {Ltα ,Mtα} outperforms

{
At

ref ,Mt
}

due to the consistent motion
guidance from the same representation. Meanwhile, there is not obvious quality difference regarding
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Reference Reference

Promt: Woman,walks in the mall. Promt: Shark, swims on the ocean.

Figure 8: Influence of different k value and different time step tα.

Prompt: Dog, walks in the street. Prompt: Spider Man, turns his head.

Reference MotionClone Up_block.2 Up_block.3 Inversion_1 Inversion_2PromptReference MotionClone Up_block.2 Up_block.3 Inversion_1 Inversion_2Prompt

Figure 9: Influence of different attention block, precise prompt, and DDIM inversion. “Prompt”
denotes motion representation involves precise prompt (“Leopard, walks in the forest” for the left
case and “Man, turns his head.” for the right case); “Inversion 1” represents the time-dependence{
At

ref ,Mt
}

from DDIM inversion; “Inversion 2” indicates {Ltα ,Mtα} from DDIM inversion.

whether DDIM inversion is applied (MotionClone vs. Inversion 2). We leave how to perform better
diffusion inversion for enhanced motion cloning to further work.

4.7 LIMITATION

Prompt: Pigs, play in the mud. Prompt: A dog is winking.
Figure 10: MotionClone struggles to handle local subtle
motion and overlapping motion.

Given that MotioClone is conducted in
latent space, the spatial resolution of dif-
fusion features in temporary attention
is significantly lower than that of in-
put videos, thus MotionClone struggles
in local subtle motion, such as wink-
ing, as shown in Fig. 10. Additionally,
when multiple moving objects overlap,
MotionClone risks quality dropping, at-
tributing that coupled motion raises the
difficulty of motion cloning.

5 CONCLUSION

In this work, we observe that the temporal attention layers embedded within video generation mod-
els harbor substantial representational capacities pertinent to video motion transfer. Motivated by
these findings, we introduce a training-free method dubbed MotionClone for motion cloning. Lever-
aging sparse temporal attention weights as motion representations, MotionClone facilitates motion
guidance by promoting primary motion alignment, enabling diverse motion transfer across different
scenarios. Employing a real reference video, MotionClone demonstrates its capability to preserve
motion fidelity robustly while concurrently assimilating novel textual semantics. Furthermore, Mo-
tionClone demonstrates efficiency by avoiding cumbersome inversion processes and offers versatil-
ity across various video generation tasks, establishing itself as a highly adaptable and efficient tool
for motion customization.
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A APPENDIX

A.1 BASELINE DESCRIPTION

Among the compared methods, VideoComposer (Wang et al., 2024) creates videos by extracting
specific features such as frame-wise depth or canny maps from existing videos, achieving a com-
positional approach to controllable video generation. Gen-1 (Esser et al., 2023) leverages the orig-
inal structure of reference videos to generate new video content, akin to video-to-video translation.
Tune-A-Video expands the spatial self-attention of pre-trained text-to-image models into spatio-
temporal attention, and then fine-tuning it for motion-specific generation. Control-A-Video (Chen
et al., 2023b) incorporates the first video frame as an additional motion cue for customized video
generation. VMC (Jeong et al., 2023) aims to distill motion patterns by fine-tuning the temporal
attention layers in a pre-trained text-to-video diffusion model.

A.2 MORE GENERATED RESULTS

A broader array of generated content is displayed to validate the versatile generation capability.
As shown in Figs. 11- 14, MotionClone is able to adeptly extract motion cues from a diverse
range of existing videos and thus enables the creation of content that is both prompt-aligned and
motion-preserved, showcasing its robust motion cloning capabilities. For a better demonstration of
MotionClone, we highly recommend viewing the video file in the supplementary material.

A.3 BROADER IMPACT

The development of MotionClone, a novel training-free framework for motion-based controllable
video generation, carry distinct societal implications, both beneficial and challenging.

On the positive side, MotionClone’s capability to efficiently clone motions from reference videos
while ensuring high fidelity and textual alignment opens new avenues in numerous fields. In the
realm of digital content creation, film and media professionals can utilize this technology to stream-
line the production process, enhance narrative expressions, and create more engaging visual experi-
ences without extensive resource commitments. Furthermore, in the educational sector, instructors
and content creators can leverage this innovation to produce customized instructional videos that
incorporate precise motions aligned with textual descriptions, potentially increasing engagement
and comprehension among students. This could be particularly transformative for subjects where
demonstration of physical actions or processes plays a crucial role, such as in sports training or
scientific experiments.

On the negative side, the power of MotionClone to generate realistic videos based on text and ex-
isting motion cues raises concerns about its potential misuse, including the creation of deepfakes
or misleading media content. Such applications can undermine trust in media, affect public opin-
ion through the dissemination of false information, and infringe on personal rights and privacy.
Moreover, the ease of generating convincing videos might enable the proliferation of propaganda or
harmful content that can have widespread negative implications on society.

In conclusion, while MotionClone presents significant advancements in the field of AI-driven video
generation, it is imperative that these technologies are developed and utilized with a conscious com-
mitment to ethical standards and regulatory oversight. Promoting transparency in AI-generated con-
tent, establishing clear usage guidelines, and fostering an open dialogue about the capabilities and
ethics of such technologies are crucial steps in ensuring that the benefits of MotionClone are realized
while its risks are effectively mitigated. This involves collaborative efforts among technologists, pol-
icymakers, industry stakeholders, and the broader public to steer the responsible development and
application of AI-driven media tools.
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Reference video (camera zoom in)

Prompt: A road, in the mountain.

Prompt: Relices, on the seabed.

Prompt: Caves, a path for exploration.

Prompt: Rail way for train.

Reference video (camera pan up)

Prompt: Camel, in the desert.

Prompt: Forest, in winter.

Prompt: Lake surface, in the crater.

Prompt: Ship on the ocean.

Figure 11: More results of MotionClone in camera motion cloning.
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Reference video (camera pan down)

Prompt: Car, in the street.

Prompt: Cliffs by the sea.

Prompt: Eagle, standing on a tree.

Prompt: Forest, with various flowers.

Reference video (camera zoom out)

Prompt: Man, standing in his garden.

Prompt: Penguin, on the beach.

Prompt: Red car, on the track.

Prompt: Tree, in the mountain.

Figure 12: More results of MotionClone in camera motion cloning.
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Prompt: Red car, runs on the beach.

Prompt: Petals falling in the wind.

Prompt: Cat, runs in house.

Prompt: Batman, turns his head.

Figure 13: More results of MotionClone in object motion cloning.
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Prompt: Blue car, runs on the beach.

Prompt: Greek sculpture, walks in the forest.

Prompt: Cat, turns its head in house.

Prompt: Pig, walks in the forest.

Figure 14: More results of MotionClone in object motion cloning.
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B RESPONSE

Reference MotionClone Reference MotionClone Reference MotionClone Reference MotionClone

Camera Motion Cloning Object Motion Cloning

Figure 15: Results of MotionClone on Diffusion DiT architecture (CogVideoX).

Reference Space-Time UniEdit MOFT MotionMaster Ours

Teddy bear, on the grass, ...

Island, on the ocean, ...

Figure 16: Comparison with more methods on camera motion cloning.
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Reference Space-Time UniEdit MOFT Ours

Cat, moves its head, in the bedroom ...

Iron man, walks, in the New York City, ...

Figure 17: Comparison with more methods on object motion cloning.

Reference VMC + Show-1 VMC + AnimateDiff Reference VMC + Show-1 VMC + AnimateDiffOurs

Cat, moves its head, in the bedroom, ...(a)

Ours

Dog, raises its head, ...(b)

Figure 18: Comparison with VMC on different T2V models.
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Reference Down_block.1 Down_block.2 Down_block.3 Ours

A blue car, running, in the forest, ...

A group of sharks, swimming, in the ocean, ...

Figure 19: Ablation study on applying motion guidance in different “down block”.

Reference FateZero UniEdit Ours Reference FateZero UniEdit Ours

Pig, drinks water, on beach, ... Island, on the ocean, ...(a) (b)

Figure 20: Comparison with video editing methods on scenes with geometric differences.
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