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Abstract
Graph Contrastive Learning (GCL) has emerged
as a highly effective self-supervised approach
in graph representation learning. However, pre-
vailing GCL methods confront two primary chal-
lenges: 1) They predominantly operate under ho-
mophily assumptions, focusing on low-frequency
signals in node features while neglecting het-
erophilic edges that connect nodes with dissimi-
lar features. 2) Their reliance on neighborhood
aggregation for inference leads to scalability chal-
lenges and hinders deployment in real-time ap-
plications. In this paper, we introduce S3GCL,
an innovative framework designed to tackle these
challenges. Inspired by spectral GNNs, we ini-
tially demonstrate the correlation between fre-
quency and homophily levels. Then, we propose
a novel cosine-parameterized Chebyshev polyno-
mial as low/high-pass filters to generate biased
graph views. To resolve the inference dilemma,
we incorporate an MLP encoder and enhance its
awareness of graph context by introducing struc-
turally and semantically neighboring nodes as pos-
itive pairs in the spatial domain. Finally, we for-
mulate a cross-pass GCL objective between full-
pass MLP and biased-pass GNN filtered features,
eliminating the need for augmentation. Extensive
experiments on real-world tasks validate S3GCL
proficiency in generalization to diverse homophily
levels and its superior inference efficiency.

1. Introduction
Graph Neural Networks (GNNs) (Hamilton et al., 2017;
Kipf & Welling, 2017) play a crucial role in analyzing graph-
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Figure 1. Performance and efficiency comparison of different
methods: (Testing) Accuracy, (Time of) Inference, (Time of)
Training, and (Time of) Augmentation in contrastive learning. Re-
sults are generated on homophilic and heterophilic datasets. For all
metrics except Accuracy, we employ reverse ranking along each
axis, where a larger polygonal area indicates superior performance.
Our method demonstrates a superior balance between effective-
ness and efficiency. On large-scale datasets like Obgn-Arxiv, ours
accelerates inference by ×174 while maintaining competitive per-
formance. Further details are shown in Tab. 2 and Sec. 4.3.

structured data (Xiong et al., 2024b;a). They excel in identi-
fying complex interactions and distinct node characteristics
through message-passing mechanisms (Wu et al., 2020; Dai
et al., 2022). Traditionally, GNN research has focused on su-
pervised training, which requires a lot of labeled data. How-
ever, data labeling is costly and time-consuming. To over-
come this, Graph Contrastive Learning (GCL) has emerged
as a self-supervised technique in graph representation learn-
ing (Zhu et al., 2021b; Xia et al., 2021), particularly useful
when task-specific labels are scarce. GCL works by max-
imizing agreement between different augmented views of
the same example and minimizing it between differently
augmented views of separate examples. Its efficacy has
been validated in diverse fields, including social network
analysis and recommender systems (Xu et al., 2021; Cai
et al., 2023; Liu et al., 2023c; Tian et al., 2023a).

Despite the recent developments, two key problems of GCL
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remain unsolved. Firstly, most existing methods are based
on homophily assumptions (Zhu et al., 2020), primarily
depending on low-pass filter GNNs (e.g., GCN) to learn
representations. This focus on low-frequency components
implies similarity between connected nodes. While effec-
tive for homophilic graphs, this approach overlooks the
prevalence of heterophilic graphs in real-world scenarios,
where connected nodes have different labels or dissimilar
features (Zheng et al., 2022a; He et al., 2022a). Recent
efforts to address this include adaptive augmentation (Liu
et al., 2023f) and parameterized sampling strategies (He
et al., 2023), without giving special consideration to the
graph signal filters. Therefore the encoder inevitably en-
courages neighbor features to be pooled, irrespective of their
actual similarity. This approach limits the ability to generate
distinct representations and to generalize across graphs with
varying homophily levels. Thus, the following question nat-
urally emerges: I) how can we design filters generalizable
to graphs of different homophily levels without labels?

Secondly, although GNNs exhibit a remarkable ability to
capture graph-structured contexts, deploying them in large-
scale applications presents challenges due to their time-
intensive message-passing mechanisms. However, it is cru-
cial to make efficient inferences for latency-sensitive appli-
cations. To tackle this problem, many studies have investi-
gated the distillation of knowledge from a pre-trained GNN
teacher to a student MLP, then deploying the MLP for in-
ference acceleration (Tian et al., 2023b; Zhang et al., 2022).
However, these methods can only be adopted in the context
of supervised scenarios, which require task-specific labels
to train an effective teacher GNN, limiting their adaptability
in scenarios lacking labels. This raises another intriguing
question: II) how can we combine the inference-efficient
characteristics of MLP and graph context-awareness of
GNN in a self-supervised way?

To address the aforementioned questions, we revisit exist-
ing graph contrastive learning from both spectral and spa-
tial perspectives, introducing our Spectral, Swift, Spatial
Graph Contrastive Learning (S3GCL). To go beyond the
homophily assumption and address I), we first theoretically
and empirically analyze the homophily in the spectral do-
main. We discover that high homophily levels correspond
to low-frequency signals, whereas low homophily correlates
with high-frequency signals. In supervised tasks, spectral
GNNs with polynomial approximations have demonstrated
their superiority in both homophilic and heterophilic graphs.
Chebyshev polynomial (Defferrard et al., 2016; He et al.,
2022b) among them are widely used to approximate various
functions in graph signal filtering. However, these require
labels to learn the filter shape suited to the graph, posing
challenges in label-scarce environments. To overcome this,
we propose a cosine-parameterized Chebyshev polynomial
approach. This method utilizes cosine modulation for calcu-

lating filter values in Chebyshev interpolation, emphasizing
the graph high-frequency and low-frequency components re-
spectively. The cosine parameterization method selectively
emphasizes certain frequency ranges, effectively decompos-
ing graphs into two distinct biased-pass views. Moreover,
this strategy simplifies the filter learning process by adopt-
ing less learnable parameters and enhances adaptability to
graphs with diverse homophily levels.

In the second place, to address the inefficient inference prob-
lem mentioned in II), we propose utilizing an MLP encoder
for representation learning. Since the MLP functions as the
feature transformation without any spectral filter, it is capa-
ble of creating a comprehensive full-pass view of graphs.
Building on this, we formulate our Cross-Pass GCL ob-
jective, contrasting the full-pass MLP with a biased-pass
GNN. To further enhance the graph context awareness of
the MLP encoder, we divide the cross-pass GCL objective
into two parts and introduce positive pairs in the spatial
domain. By incorporating structurally neighboring nodes
in the full-low component and semantically neighboring
nodes in the full-high component, the MLP is enabled to
identify finer granularity features from the graph property,
which might be overlooked by relying solely on global spec-
tral filter methods. Consequently, with the help of such a
cross-pass and cross-architecture design and adopted spa-
tial positive pairs, our method conducts efficient training of
GCL without any manually specified graph augmentation.
In practical applications, deploying the trained MLP encoder
leads to faster inference and superior performance, general-
izable to various graph types. Our principal contributions
are summarized as follows.

• We identify that existing GCL methods often overlook
generalization across varying graphs and encounter chal-
lenges in efficient inference within applications.

• We uncover the correlation between homophily and fre-
quency in the spectral domain and introduce biased cosine-
parameterized Chebyshev polynomials to facilitate gener-
alization across various graph types.

• We utilize the MLP encoder and incorporate positive pairs
in the spatial domain. By integrating this with our innova-
tive cross-pass optimization objective, swift and efficient
inference for obtaining representations is achieved.

• Extensive experiments demonstrate that our method not
only achieves higher inference speed but also enhances
performance, making it adaptable to different graphs.

2. Motivation
2.1. Preliminaries

Notations. Define the graph data as G = (V, E), with V
signifying the node set encompassing |V| = N nodes. The
edge set E ⊆ V × V symbolizes the connections between
nodes. The feature matrix X = {x1,x2, . . . ,xN}⊤ com-
prises feature vectors xi corresponding to node vi. The
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adjacency matrix of G, denoted as A ∈ Rn×n, assigns
Aij = 1 for existing edges ei,j ∈ E and Aij = 0 oth-
erwise. The normalized adjacency matrix is expressed as
Â = D−1/2AD−1/2. The degree matrix D, a diagonal
matrix, is defined with Di,i =

∑
j Ai,j . The graph Lapla-

cian matrix is given by L = D − A, and the symmetric
normalized Laplacian matrix is L̃ = I− Â, where I is the
identity matrix. L̃ can be decomposed as L̃ = UΛU⊤,
where Λ = diag(λ0, . . . , λN−1) is a diagonal eigenvalue
matrix with 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2, and U is a
unitary matrix consisting of eigenvectors.

Graph Filtering. Graph filtering on features X is defined
by Z = Ug(Λ)U⊤X, where g(Λ) represents the graph fil-
ter. Directly learning g(Λ) necessitates eigendecomposition
(EVD), which has a time complexity of O(N3). Recent
studies (Lei et al., 2022; Wang & Zhang, 2022) advocate for
approximating g(Λ) using polynomials:

Ug(Λ)U⊤X ≈ U

(
K−1∑
i=0

wkλ
k

)
U⊤X =

K−1∑
i=0

wkΛ̃
kX. (1)

The polynomial coefficients are denoted by {wk}. Further-
more, a K-order polynomial graph filter can be represented
as the filter function g(λ) =

∑K
k=0 wkλ

k, mapping each
eigenvalue λ in the range [0, 2] to g(λ).

Definition 2.1. (Homophily Level h): Consider a graph
G = (V, E) with its node label vector y. The edge ho-
mophily level is quantified as the proportion of edges con-
necting nodes sharing identical labels. Formally, it is ex-
pressed as:

h(G, {yi : i ∈ V}) = 1

|E|
∑

(k,l)∈E

1(yk = yl). (2)

Here, |E| denotes the total number of edges in the graph,
and 1(·) represents the indicator function.
Problem Description. Our objective is to advance the field
of self-supervised learning for node representation. We
aim to develop an encoder F that generates high-level node
representations Z = {z1, . . . , zN} ∈ Rn×d, where each
zi ∈ Rd corresponds to a node vi. These representations
can be utilized in downstream tasks like node classification.

2.2. Motivation

In this subsection, we examine both theoretically and empir-
ically the relationship between graph filters that emphasize
different frequencies, and their performance in homophilic
or heterophilic graphs. This study contributes to the develop-
ment of generalizable graph filters for GCL. We employ the
widely-used Contextual Stochastic Block Model (CSBM)
to generate graphs with varying levels of homophily (refer
to Appendix B for a comprehensive description of CSBM).

Initially, we theoretically analyze the performance of spec-
tral GNNs with various filters on different graph types. In

addition to homophily levels for categorical node labels,
we assess the similarity of numerical node signals in the
spectral domain, as described by (Huang & Liò, 2023). This
assessment is conducted using the following metric:
Definition 2.2. (Spectral Signal Frequency f ): For a nor-
malized feature signal x ∈ Rn, the spectral signal frequency
f(x) on graph G is f(x) = x⊤Lx

2 .

Spectral signal frequency, as related to the Dirichlet Energy
(Karhadkar et al., 2022), measures the variance of signal x
in the spectral domain across graph G:

Lemma 2.3. A lower f(x) suggests reduced distances
between connected nodes, indicating smoothness over G,
where xu represents the u-th element of x:

f(x) =
x⊤Lx

2
=

∑
(u,v)∈E

(xu − xv)
2

2
. (3)

Lemma 2.4. For a given graph signal x, ∆D(x) denotes
the disparity between intra-class and inter-class distances:

∆D(x) = E
[ ∑

(u,v)∈E
yu=yv

(xu − xv)
2 −

∑
(u,v)∈E
yu ̸=yv

(xu − xv)
2
]

= 2E
[
(pintra − pinter)f(x)

]
.

(4)
A lower ∆D(x) indicates that the encoder generates node
representations that are more similar within the same class
and distinct across different classes, demonstating better
self-supervised learning performance.

Given graph data G ∼ CSBM(µ1, µ2, p, q) generated by
the CSBM model, comprising two classes, c0 and c1, with
intra-class probability p and inter-class probability q for
edge formation, we develop a theorem to ascertain the ad-
vantageous filter for given graph data:

Theorem 2.5. Consider graph signals xl and xh processed
by filters gl and gh, respectively. In heterophilic graphs
(where p < q) and when ∆D(xh) < ∆D(xl), there exists
an integer M(0 < M ≤ N −1) such that

∑N−1
i=M g2h(λi) ≥∑N−1

i=M g2l (λi), with 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2.

The complete proof of this theorem is available in Ap-
pendix D. This theorem indicates that in heterophilic graphs,
a high-pass filter, which amplifies high frequencies, is more
effective for distinct node representations, whereas a low-
pass filter is preferable for homophilic graphs. To empir-
ically validate this, we further conduct following experi-
ments: we used ChebNet (Defferrard et al., 2016), known
for its ability to approximate various spectral filters in super-
vised learning. ChebNet redefines the filter in Equation (1)
as
∑K

k=0 wkTk(L̃)X, where L̂ = 2L/λmax − I. The func-
tion Tk(x) follows the relation Tk(x) = 2xTk−1(x) −
Tk−2(x), with T0(x) = 1 and T1(x) = x. Expanding
on this, (He et al., 2022b) enhanced Chebyshev polynomials
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Figure 2. Case Studies on graphs with varying homophily levels. The dashed lines represent the mean performance across all homophily
levels. We reveal that adopting both low-pass and high-pass will bring promising generalization across different homophily levels.

with Chebyshev interpolation, reparameterizing wk as

wk =
2

K + 1

K∑
j=0

γjTk(xj). (5)

We generated synthetic graphs with homophily levels rang-
ing from 0 to 1 and applied the GRACE (Zhu et al., 2020)
contrastive learning framework, evaluating performance
through a node classification task. Due to challenges in
learning filter parameters without labels, we initialized
{γh

0 , . . . , γ
h
K} in Equation (5) as an increasing arithmetic

sequence, holding them constant during training as wh
k for a

high-pass filter. Conversely, we set wl
k for the low-pass filter

using a decreasing arithmetic sequence. Specifically, we set
γh
0 and γh

K at 0 and 2 for the high-pass filter, and inversely
for the low-pass filter. Our experiments involved four filter-
ing methods: ChebNet (with interpolation), low-pass only,
high-pass only, and a combination of both. The results are
in Figure 2. Our key findings are: 1) Using a biased-pass fil-
ter alone can limit generalization across various homophily
levels, 2) Spectral GNNs struggle to approximate optimal
filters without labels, 3) Employing both low- and high-pass
filters separately enhances generalizability. These insights
guide the development of our proposed method.

3. Methodology
3.1. Spectral: Cosine-Parameterized Chebyshev

Polynomial Encoder

To better handle graphs with different homophily levels and
without labels (as discussed in Sec. 2.2), we initially con-
sider using both low- and high-pass filters on the input graph
data. However, this method encounters two issues: 1) In the
parameterization method, a linear increase in parameters
proportional to the order K occurs. This results in uniform
growth across all intervals, not emphasizing any specific fre-
quency range. It potentially causes the two graph views to
remain coupled and not disentangled. 2) The filter remains
static during training and cannot be optimized alongside the
contrastive objective. To address these issues, we propose
a novel cosine-parameterized Chebyshev polynomial. This
approach derives the high-pass filter parameter wh

k with γh
j

substituting γj in Equation (5). γh
j can be calculated as:

γh
j = σ(βh

a ) +
1

2
σ(βh

b )(1 + cos ((1 + j/K)π)). (6)

σ = ReLu(·) to ensure the non-negative property of γj
and guarantee that γh

j ≤ γh
j+1. Similarly, we obtain the

low-pass filter parameter wl
k with γl

j ≥ γl
j+1 :

γl
j = σ(βl

a)−
1

2
σ(βl

b)(1 + cos ((1 + j/K)π)). (7)

We initialize βh
a and βl

a as 0 and 2, respectively, and set βh
b

and βl
b to 2. It is important to note that β is trainable during

the contrastive learning process. This approach simplifies
learning Chebyshev polynomials without labels by utilizing
only two learnable parameters for each filter. Moreover,
the cosine-parameterized strategy effectively emphasizes
relevant frequencies while diminishing less significant ones,
facilitating a smoother frequency distribution. In contrast,
linear-increasing parameterization might result in an abrupt
distribution, potentially less effective in capturing graph
spectral properties. The effectiveness of this method will
be further validated in Sec. 4.4. By applying distinct filters
with wh

k and wl
k, we can decompose the graph into two

biased views, each yielding its representation:

Zh =

K∑
k=0

wh
kTk(L̃)f

h
θ (X), Zl =

K∑
k=0

wl
kTk(L̃)f

l
θ(X). (8)

The notation fθ(X) represents the application of the MLP
on the node feature matrix X. After processing the fea-
tures through filters and transformations, we can use these
enhanced representations for contrastive learning objectives.

3.2. Swift: MLP Encoder and Cross-Pass Objective

Previous methods highlight the challenges of GNNs in terms
of inference efficiency and scalability, primarily due to data
dependency (Jia et al., 2020). In GCL, generating node rep-
resentations typically requires message passing to aggregate
neighborhood features. However, this aggregation process
can be time-consuming, especially in latency-sensitive appli-
cations. To mitigate this issue, some research has focused on
distillation methods, transferring knowledge from teacher
GNNs to student MLPs for more efficient inference in indus-
trial settings. Yet, these methods rely on supervised signals
to train a high-quality teacher GNN and guide the student
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Figure 3. Architecture illustration of S3GCL: Spectral, Swift, Spatial Graph Contrastive Learning. We show the training process (left) and
inference process (right) of S3GCL. Best viewed in color. Zoom in for details.

MLP, which is impractical in unsupervised scenarios.

To bridge this gap, we introduce an MLP encoder throughout
the entire GCL training process, enabling its direct deploy-
ment for efficient inference. Initially, we input the original
node feature matrix X into an L-layer MLP encoder Fθ,
yielding representations Zf = Fθ(X). Furthermore, the
MLP can be regarded as a full-pass filter, focusing solely
on feature transformation (Luan et al., 2022). Consequently,
this allows us to establish an optimization objective between
the full-pass and biased-pass filtered representations. Draw-
ing inspiration from the Info-NCE loss (Chen et al., 2020),
we formulate our Cross-Pass objective as:

Lcp =
−1

2|V|
∑
vi∈V

(
log

s
(
zfp , z

l
p

)∑
p̸=q s

(
zfp , zlq

)
+ log

s
(
zfp , z

h
p

)∑
p̸=q s

(
zfp , zhq

)). (9)

Here the s(zfp , z
h
p ) = exp(ω(zfp , z

h
p )/τ) , ω is the cosine

similarity defined as: ω(zfp , z
h
p ) = zfp · zhp/(||zfp || × ||zhp ||).

The parameter τ denotes the contrast temperature. This
method offers guidance for node representation learning
by encouraging the model to produce semantically consis-
tent representations from two distinct graph views. More-
over, from a spectral perspective, this cross-pass process
ensures that the MLP encoder captures more invariant infor-
mation from the task-relevant properties of graph spectral
signals. The MLP optimization with different graph fre-
quency ranges also improves the generalizability of graphs.

Upon optimizing the cross-pass GCL objective, we obtain a
refined MLP encoder capable of generating high-level and
expressive node representations. However, MLPs inherently
lack the ability to capture graph structural properties and
context. Therefore in our initial studies, we observed that
representations learned by MLPs tend to deteriorate and

become suboptimal. Thus, enhancing the graph context
awareness of MLPs in these scenarios is imperative.

3.3. Spatial: Neighboring Positive Pairs

To address the issue of the MLP encoder limited aware-
ness of graph context, we introduce our concept of positive
pairs in the spatial domain. Prior research in spatial GNNs
has underscored the significance of the spatial domain in
graph learning (Wang et al., 2021; 2022), highlighting its
role in enhancing model adaptability to graph structure and
effectively managing long-range dependencies and hetero-
geneity. In our study, knowledge of the spatial domain
provides contextual insights that enable the MLP encoder
to more effectively comprehend the underlying structure
and semantics of the graph. Because the low-pass filter em-
phasizes neighborhood similarity in the spatial domain, we
initially identify structurally neighboring nodes as positive
pairs and separate the Cross-Pass objective as delineated in
Equation (9) into the Full-Low part, formulated as follows:

Lfl = − 1

2|V|
∑
vi∈V

1

|N ′
i |
∑

vp∈N ′
i

log
s
(
zfi , z

l
p

)
∑

vq∈V\vi s
(
zfi , z

l
q

) .
(10)

N ′
i denotes the positive sample set of local neighbors for

node vi in node set V . It is important to note that treating
structurally neighboring nodes as positive pairs does not
necessarily lead to identical representations. As suggested
in (Altenburger & Ugander, 2018; Xiao et al., 2023), the
phenomenon known as Monophily has been observed in
both homophilic and heterophilic graphs. It implies that the
attributes of a node’s friends are likely to resemble those
of the node’s other friends, indicating two-hop similarities.
For instance, nodes vi and vk share a common neighbor vj .
The representations zfi and zfk are derived from the MLP, re-
spectively. Equation (10) encourage these representations to
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capture their shared one-hop neighborhood structure pattern,
coming from spectral GNN as zlj . This cross-architecture
aligns these two-hop pairs implicitly and extends beyond
the homophily assumption. We show one-hop and two-hop
representations similarities in Figure 6.

Additionally, the high-pass filter indicates local neighbor-
hood dissimilarity and global long-range similarity within
the spatial domain. Therefore, we introduce semantically
neighboring nodes as positive pairs, determined by feature-
level similarity. Specifically, for each node vi, we identify
its top-k similar nodes based on original features, denoted
as N ′′

i = kNN(vi, k). This leads to the formulation of the
Full-High part of our objective, as defined in Equation (9):

Lfh = − 1

2|V|
∑
vi∈V

1

|N ′′
i |

∑
vp∈N ′′

i

log
s
(
zfi , z

h
p

)
∑

vq∈V\vi s
(
zfi , z

h
q

) .
(11)

By integrating spatial relationships, the MLP encoder gains
enhanced awareness of the graph context. This integration
enables it to learn finer granularity features, which may
be overlooked by solely relying on global spectral filter
methods. Utilizing both components of the loss, we can
establish our optimization objective as follows:

L = αLfl + (1− α)Lfh, (12)

where the coefficient α is employed to balance these two
loss functions. The deployed MLP encoder is advantageous
for inference efficiency, particularly in managing large-scale
graphs or real-time applications. The complexity and scala-
bility analysis can be found in Appendix E.

3.4. Discussion and Comprasion

Existing GCL methods, such as GRACE (Zhu et al., 2020)
and GBT (Bielak et al., 2021), typically employ a shared
primary encoder with the same architecture. These methods
often apply topology or feature transformations to augment
the graph data. In contrast, our S3GCL introduces an inno-
vative cross architecture approach. Coupled with our unique
spatial positive pairs, S3GCL is augmentation-free while
still achieving competitive performance. PolyGCL (Chen
et al., 2024) also integrates the learnable spectral GNN in
GCL, however, they still struggle with the efficient infer-
ence issue. Additionally, current research in knowledge
distillation, such as FF-G2M (Wu et al., 2023a), employs
structurally neighboring samples similar to our approach.
However, these studies still rely on labels to guide the stu-
dent MLP encoder. In contrast, our method attains con-
sistency between the MLP target encoder and the spectral
GNN encoder through our unique cross-pass objective at
the representation level.

Proposition 3.1. Given a node representation zi and
its neighboring node representation zj , optimizing Equa-
tion (12) leads to maximizing their mutual information

I(zj ; zi), while inherently minimizing DKL(zj ||zi):

I(zj ; zi) ∼
1

DKL(zj ||zi)
(13)

The proof is detailed in Appendix D. The proposition im-
plies that information gain represented by DKL is nega-
tively correlated to the mutual information. By optimiz-
ing the cross-pass objective, we maximize mutual infor-
mation between structurally or semantically neighboring
nodes. This strategy not only facilitates the transfer of
knowledge from GNN to MLP without labels, but also en-
riches the MLP. The trained MLP can be leveraged for more
efficient inference (Ding et al., 2021) or saving communica-
tion cost (Huang et al., 2023c;b).

One potential limitation of the proposed method is that, in
the training phase, we still need polynomial filters to get rep-
resentations. Although adopting MLP encoder can reduce
the training time cost to a certain extent, its advantages can
only be fully utilized in the inference phase. We believe this
is also one of the directions in this field for the future.

4. Experiment
In this section, we comprehensively evaluate our proposed
S3GCL by answering the main questions as follows.
• Q1: Superiority. Does S3GCL outperforms the existing

state-of-the-art graph contrastive learning methods?
• Q2: Efficiency. How about the inference time efficiency

of the proposed method?
• Q3: Effectiveness. Are proposed cosine-parameterized

Chebyshev polynomial, MLP encoder, and spatial positive
pairs effective?

• Q4: Sensitivity. What is the performance of the proposed
method with different hyper-parameters?

The answers of Q1-Q3 are illustrated in 4.2-4.4, and sensitiv-
ity analyses (Q4) can be found in the Appendix G. The code
is available at https://github.com/GuanchengWan/S3GCL.

4.1. Experimental Setup

4.1.1. REAL-WORLD DATASETS

To effectively evaluate our approach in practical scenarios,
we employed 14 benchmark graph datasets of various sizes
and features, including both homophilic and heterophilic
graphs. Please see Appendix A for details about datasets.

4.1.2. EVALUATION PROTOCOL

To evaluate the proposed method, we follow (Velickovic
et al., 2019) to adopt a standard linear evaluation protocol.
In this approach, the representations generated by our MLP
encoder are fixed and subsequently employed for training,
validation, and testing using a straightforward linear classi-
fier. We repeat this experiment five times for each dataset to
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Table 1. Comparison with the state-of-the-art methods on homophilic (upper) and heterophilic (lower) real-world datasets. We report
node classification accuracies (%) (± standard deviation) for downstream task performance. The best and second results are highlighted
with bold and underline, respectively.

Methods Cora CiteSeer PubMed Amz-Comp Amz-Photo Coauthor-CS Obgn-Arxiv Rank
DGI 83.69±1.20 72.54±1.64 80.41±0.33 86.11±1.21 90.38±0.90 91.57±0.88 70.19±0.73 7.86
GMI 83.11±1.53 73.69±1.89 83.44±1.64 86.91±0.45 91.27±1.23 90.11±0.20 69.23±0.79 8.14
MVGRL 87.67±0.86 74.31±0.82 86.98±1.22 87.91±0.34 92.77±0.57 90.95±0.28 70.88±0.51 4.29
GRACE 86.13±0.56 71.84±1.79 82.33±0.91 81.33±1.74 92.11±1.41 91.33±0.65 70.96±0.31 7.43
GBT 84.53±0.38 73.88±1.91 79.96±1.32 83.11±0.78 92.87±0.48 92.49±0.42 70.32±0.22 6.0
BGRL 83.17±1.77 70.11±0.54 85.57±0.90 88.35±0.32 93.10±0.44 91.72±0.21 71.24±0.35 5.43
DSSL 86.23±1.06 73.99±0.90 86.31±1.34 83.11±0.73 92.78±0.91 92.03±0.30 70.13±0.25 5.43
GREET 86.78±1.11 74.56±1.82 86.38±0.87 87.79±1.18 93.24±0.78 92.33±0.65 71.09±0.43 3.14

SP-GCL 87.45±1.42 73.19±2.10 85.66±0.44 89.45±1.95 92.32±0.17 90.91±0.93 69.11±0.36 6.0
S3GCL 88.47±1.39 76.31±1.67 87.89±1.23 88.45±1.98 94.31±0.83 92.55±0.89 71.36±0.60 1.14

Methods Cornell Texas Wisconsin Actor Roman-empire Minesweeper Tolokers Rank
DGI 65.02±4.87 79.13±2.77 73.33±2.12 28.47±1.29 43.16±0.78 78.91±0.76 78.50±0.81 6.29
GMI 60.99±5.89 75.44±3.84 70.13±3.84 27.51±0.55 45.22±0.83 76.91±0.43 77.23±0.35 8.43
MVGRL 67.90±3.75 76.22±3.90 74.72±0.99 30.11±1.41 47.93±0.21 79.78±1.27 79.13±0.77 4.71
GRACE 50.82±4.78 75.32±2.11 74.91±2.78 29.23±0.21 51.58±0.98 78.99±1.45 78.06±0.90 7.14
GBT 54.66±3.10 72.30±2.14 65.32±1.34 23.42±0.55 38.77±0.54 77.32±0.64 79.43±1.00 8.14
BGRL 60.93±5.22 71.42±3.19 62.81±4.61 29.26±1.59 52.16±0.09 79.03±0.39 78.08±0.62 7.14
DSSL 76.78±3.68 75.92±2.11 81.33±3.66 33.31±0.86 61.29±0.44 78.76±0.70 78.42±0.85 4.43
GREET 75.23±4.96 78.33±4.78 83.11±3.91 36.42±0.65 63.37±1.91 79.05±1.21 79.21±0.79 2.86

SP-GCL 78.33±3.22 80.21±3.94 79.13±2.91 30.91±0.91 52.16±0.25 78.72±0.42 78.21±0.67 4.43
S3GCL 81.27±3.67 86.12±3.91 84.56±2.71 36.88±0.34 66.27±1.33 79.33±1.48 79.39±0.44 1.29

Table 2. Statistics during the training process with different meth-
ods in the Cora and Actor dataset. Please see details in Sec. 4.3.

Cora Actor

Augment Training Inference Acc Augment Training Inference AccMethod

ms ↓ s ↓ ms ↓ ↑ ms ↓ s ↓ ms ↓ ↑

BGRL 129.1 4.32 8.33 83.17 132.8 9.87 9.69 29.26

GRACE 98.21 6.12 4.38 86.13 98.12 16.85 5.13 29.23

GREET 19272 43.21 1.32 86.78 54272 401.3 2.31 36.42

S3GCL 0 3.59 0.32 88.47 0 10.91 0.23 36.88

ensure the robustness and reliability of the results. Please
see more details about implementation in Appendix C.

4.1.3. COMPARED METHODS

We compare ours against several popular graph contrastive
learning methods: DGI (Velickovic et al., 2019), GMI (Peng
et al., 2020), MVGRL (Hassani & Khasahmadi, 2020),
GRACE (Zhu et al., 2020), GBT (Bielak et al., 2021) and
BGRL(Thakoor et al., 2021). We also include more re-
cent GCL methods considering the heterophilic graphs for
convincing comparison: GREET (Liu et al., 2023f), DSSL
(Xiao et al., 2022) and SP-GCL (Wang et al., 2023).

Figure 4. Inference Time (log scale) with datasets of different
sizes. Please refer to Sec. 4.3 for details.

4.2. Superiority

In this section, we address Q1 by analyzing the superior
performance of S3GCL. We conduct comprehensive ex-
periments on both homophilic and heterophilic graphs, as
detailed in Tab. 1. Our findings include the average test
accuracy and standard deviation from five runs, along with a
comparative ranking across all datasets. Three key observa-
tions emerge: 1) S3GCL exhibits competitive performance
on typical homophilic graphs, such as social networks. For
instance, in the Cora dataset, our method achieves a 0.8%
accuracy gain over the next best approach, indicating that
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(a) BGRL (b) GRACE (c) GREET (d) S3GCL

Figure 5. t-SNE Visualization of representations with different
methods on the Cora dataset. Please see Sec. 4.2 for details.

Table 3. Ablation Study of different variants on four dataset.

Variants Cora PubMed Actor Roman-empire

GCN-MLP 85.32±1.11 86.97±0.45 34.32±0.57 57.32±1.22

w/o Param. 84.33±0.78 83.14±0.65 35.11±0.74 58.32±1.06

Linear Param. 87.81±1.44 86.42±0.78 36.23±0.13 65.77±1.54

InfoNCE Loss 84.97±1.46 85.62±0.98 35.87±0.35 63.89±0.91

w/o Struct. Pairs 86.87±1.35 86.67±0.68 36.21±0.47 64.48±1.03

w/o Seman. Pairs 87.54±0.58 87.11±0.93 35.42±0.66 63.11±0.55

S3GCL 88.47±1.39 87.89±1.23 36.88±0.34 66.27±0.1.33

incorporating spatial information enables the MLP to ef-
fectively capture graph context. 2) S3GCL demonstrates
a consistent ability to generalize across graphs with vary-
ing homophily levels. Among 14 benchmark datasets, our
method ranks the highest and attains state-of-the-art per-
formance on 11 of them. This underscores the efficacy of
different filters in handling diverse graph types. 3) Notably,
the performance gains with S3GCL are more pronounced
in heterophilic graphs than in homophilic ones, compared
to other baseline methods. This suggests that the encoder
plays a pivotal role in GCL, an aspect previously overlooked
in other approaches. Furthermore, to intuitively underscore
the effectiveness of S3GCL, we employ the t-SNE algo-
rithm to visualize the learned node representations. The
results, depicted in Figure 5, reveal that our method yields
more distinct representations in the latent space compared
to competing methods, further highlighting its superiority.

4.3. Efficiency

This section addresses Q2 by examining the inference time
across datasets of varying sizes, as illustrated in Figure 4.
The inference time for the self-supervised methods dis-
cussed in this paper is comparable to that of SAGE (Hamil-
ton et al., 2017). Our analysis reveals that S3GCL consis-
tently outperforms other GCL methods in terms of inference
efficiency on almost all datasets, particularly with larger
graphs. For instance, in the Ogbn-Arxiv dataset, a 2-layer
BGRL requires 389.6ms to obtain representations, whereas
S3GCL necessitates only 2.23ms, translating to an impres-
sive ×174 acceleration. This disparity in inference speed
becomes increasingly pronounced with larger datasets.

Additionally, for smaller datasets, training time tends to out-
weigh inference time (Zheng et al., 2022b). Consequently,
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Figure 6. Cosine Similarity assessed through pairs comprising
one-hop neighbors, two-hop neighbors, and randomly sampled
nodes on the Cora and Cornell dataset.

(a) Coefficient α (b) Semantic Neighbors k

Figure 7. Analysis on hyper-parameter. Performance with hyper-
parameter α and k, where red and green represent the Cora and
PubMed respectively, while yellow and blue represent the Roman-
empire and Actor respectively.

we also perform experiments focusing on the training pro-
cess with smaller graphs, detailed in Tab. 2. The results
demonstrate that S3GCL not only achieves a balance be-
tween accuracy and inference time but also requires similar
or less training time compared to other baseline methods.

4.4. Effectiveness

In this section, we undertake ablation studies to address Q3.
As detailed in Tab. 3, we first assess the effectiveness of
our proposed cosine-parameterized Chebyshev polynomial.
Our initial baseline is a basic cross-architecture GCL model,
namely GCN-MLP contrastive learning (GCN-MLP). The
results indicate that relying solely on a low-pass filter, based
on the homophily assumption, leads to adaptability issues
in graphs with lower homophily levels. Subsequently, we
evaluate the original ChebNet with interpolation but without
parameterization (w/o Param.) and a linear parameteriza-
tion strategy (Linear Param.). ChebNet exhibits poor perfor-
mance across all datasets. This is likely due to the absence
of labels, a spectral GNN struggles to learn the optimal fil-
ter shape. The linear parameterization approach results in
suboptimal performance, as it fails to allocate unbalanced
attention across different frequency intervals, potentially
causing the two graph views to remain not disentangled.

Further, we investigate the efficacy of spatial pairs through
three experiments: removing structurally neighboring pairs
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(w/o Struct. Pairs), removing semantically neighboring
pairs (w/o Seman. Pairs), and removing both (InfoNCE
Loss in Equation (9) ). The findings affirm the significance
of both structurally and semantically neighboring nodes in
the spatial domain, which substantially enhances the MLP
awareness of graph context. This enhancement is pivotal for
the MLP encoder to learn more expressive representations.

5. Conclusion
In this paper, we address a significant gap in existing graph
contrastive learning methods: their limited generalization
across graphs with varying levels of homophily and chal-
lenges in efficient inference for applications. We empir-
ically and theoretically analyze the relationship between
frequency and homophily levels. We then introduce a cosine-
parameterized Chebyshev polynomial, designed to adapt to
different graph types and facilitate training spectral GNNs in
label-scarce scenarios. To tackle the issue of latency in infer-
ence, we leverage an MLP encoder and incorporate spatial
positive pairs to enhance its awareness of the graph context.
Based on these insights, we propose the S3GCL framework,
which is strategically designed to achieve both competitive
generalizable performance and efficient inference.
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A. Datasets Details
We evaluate S3GCL on seven homophilic graphs: Cora, CiteSeer, PubMed, Wiki-CS, Amazon-Computer, Amazon-Photo,
CoAuthor-CS, and Ogbn-Arxiv (Sen et al., 2008; Shchur et al., 2018; Hu et al., 2020) and seven heterophilic graph data:
Cornell, Texas, Wisconsin, Actor, Roman-empire, Minesweeper, and Tolokers (Rozemberczki et al., 2021; Platonov et al.,
2023). Since other widely used datasets (i.e. Squirrel and Chameleon) are faced with drawbacks of the presenting duplicate
nodes (Platonov et al., 2023), so we abandon them in our experiments. We utilize a commonly used split of 60 %/20%/20%
for train/validation/test sets. For Obgn-Arxiv, we process the dataset in PyG using OGB public interfaces with the standard
public split setting. The statistics of datasets are provided in Tab. 4, which also include homophily level h. The details are
introduced as follows:

• Cora, CiteSeer, and PubMed. These datasets are recognized as classic examples of homophilic citation networks. In
these graphs, nodes are indicative of academic papers, while edges signify the citations connecting them. The papers are
represented through bag-of-word features, and the research themes of the papers are reflected in the labels.

• Amazon Computers and Amazon Photo. In these Amazon-based co-purchase networks, each node corresponds to a
product, with edges indicating frequent co-purchases between products. Product reviews are converted into bag-of-word
feature representations, and the product categories serve as labels.

• CoAuthor CS. Extracted from the Microsoft Academic Graph, the network map co-authorship connections. Nodes
represent authors, and co-authorship is marked by edges. The features are bag-of-words embeddings from paper keywords,
and labels denote the authors’ research areas.

• Ogbn-Arxiv. A large-scale directed graph from the arXiv’s Computer Science section. Nodes represent scientific papers,
with edges indicating citations. Features are derived from bag-of-words representations of titles and abstracts, and labels
denote the paper’s arXiv category. Primarily used for node classification tasks in graph machine learning.

• Cornell, Texas, and Wisconsin. Originating from the WebKB project, these heterophilic networks represent web pages
from various university computer science departments. Nodes are these web pages, linked by edges that denote hyperlinks.
The content of each page is encapsulated in bag-of-words features, with labels identifying the web page types.

• Actor. This unique heterophilic network maps the co-occurrence of actors within movies. Nodes symbolize actors, with
edges revealing co-occurrences. Wikipedia pages provide keyword-based features, and the labels are constituted of words
linked to the respective actors.

• Roman-empire. Derived from the English Wikipedia article on the Roman Empire, this dataset represents words as nodes,
connected based on their adjacency or syntactic dependency in the text. Nodes are classified based on their syntactic roles,
with features sourced from FastText word embeddings.

• Minesweeper. A synthetic dataset inspired by the Minesweeper game. Nodes represent cells, connected to adjacent cells,
with the task to identify nodes that are mines. Node features indicate the count of neighboring mines.

• Tolokers. Based on data from the Toloka crowdsourcing platform, this dataset includes nodes representing workers who
participated in various projects. Edges connect workers who work on the same task. The objective is to predict banned
workers, with features derived from their profile information and task performance.

Table 4. Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Classes #Features Homophily Level
Cora 2,708 5,278 7 1,433 0.810

Citeseer 3,327 4,552 6 3,703 0.736
Pubmed 19,717 44,324 3 500 0.802

Amz-Comp 13,752 574,418 10 767 0.777
Amz-Photo 7,650 287,326 8 745 0.827

Coauthor-CS 18,333 327,576 15 6,805 0.808
Obgn-Arxiv 169,343 1,166,243 40 128 0.655

Cornell 183 298 5 1,703 0.305
Texas 183 325 5 1,703 0.108

Wisconsin 251 515 5 1,703 0.196
Actor 7,600 30,019 5 932 0.219

Roman-empire 22,622 65,854 18 300 0.047
Minesweeper 10,000 78,804 2 7 0.683

Tolokers 11,758 1,038,000 2 10 0.595
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B. Synthetic Datasets
In this study, we employ the Contextual Stochastic Block Model (CSBM) (Deshpande et al., 2018; Xu et al., 2023) to create
synthetic graphs. These graphs are characterized by adjustable edge probabilities within and between different classes. The
fundamental concept is that nodes within the same class exhibit a consistent feature distribution. The generated graph is
denoted as G ∼ CSBM(n, f, σ, µ), where n represents the total node count, f is the feature dimension, and σ and µ are
hyperparameters. The hyperparameters σ and µ respectively influence the contributions from the graph’s structure and the
node features. We consider two classes of equal size, c1 and c0, each comprising n/2 nodes. The CSBM generates features
as follows:

xi =

√
µ

n
yiu+

wi√
f
, (14)

where yi ∈ {−1,+1} indicates the label of node vi, µ is the mean value of the Gaussian distribution, u ∼ N (0, I/f), and
the elements of wi follow independent standard normal distributions. We define the average degree of the generated graph
as d, and the adjacency matrix A for the CSBM graph is described by:

P (Aij = 1) =

{
1
n
(d+ σ

√
d) when yi = yj

1
n
(d− σ

√
d) when yi ̸= yj .

(15)

The homophily level h is adjustable by modifying σ =
√
d(2h− 1), with a range of −

√
d ≤ σ ≤

√
d. A completely

heterophilic graph corresponds to σ = −
√
d, while a completely homophilic graph occurs when σ =

√
d. In accordance

with (Xu et al., 2023), we set d = 5, µ = 1, n = 3000, and f = 4000 to generate our synthetic dataset. By varying σ, we
can produce graphs with different levels of homophily for our case studies.

C. Implementation Details
The experiments are conducted using NVIDIA GeForce RTX 3090 GPUs as the hardware platform, coupled with Intel(R)
Xeon(R) Gold 6240 CPU @ 2.60GHz. The deep learning framework employed was Pytorch, version 1.11.0, alongside
CUDA version 11.3. Regarding the network architecture, consistent with prevalent practices in GCL, we used GraphSage
(Hamilton et al., 2017) as a 2-layer encoder for all baseline models. We utilize the MLP projection for aligning the outputs
of two models. The hidden layer size was set to 1024 for each dataset. For optimization, Stochastic Gradient Descent (SGD)
(Robbins & Monro, 1951) was chosen, featuring a momentum of 0.9 and a weight decay of 1e− 5. The learning rate was
configured to 5e− 4 during the training process and 1e− 2 for the linear evaluation phase.

D. Detailed Proofs
D.1. Proof of Theorem 2.5

Theorem 4.4. Consider graph signals xl and xh processed by filters gl and gh, respectively. In heterophilic graphs
(where p < q) and when ∆D(xh) < ∆D(xl), there exists an integer M(0 < M ≤ N − 1) such that

∑N−1
i=M g2h(λi) ≥∑N−1

i=M g2l (λi), with 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2.

Proof. Given a graph G generated by CSBM with intra-class probability p and inter-class probability q, and referring to
Lemma 2.4, we have:

∆D(xh)−∆D(xl) = 2E[(
p

p+ q
− q

p+ q
)f(xh)− (

p

p+ q
− q

p+ q
)f(xl)]. (16)

With ∆D(xh) < ∆D(xl) and p < q, it follows that:

∆D(xh)−∆D(xl) = 2E
[
p− q

p+ q
[f(xh)− f(xl)]

]
< 0 (17)
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Therefore, f(xh) > f(xl). By the definition of spectral signal frequency in Definition 2.2, we compute f(x) as follows:

f(x) =
x⊤Lx

2
=

∑
(u,v)∈E

(xu − xv)
2

2
,

f(xl) =
xl⊤Lxl

2
=

∑
(u,v)∈E

(xl
u − xl

v)
2

2
,

f(xh) =
xh⊤Lxh

2
=

∑
(u,v)∈E

(xh
u − xh

v )
2

2
,

(18)

With L being real and symmetric, a set of orthonormal eigenvectors vi forms a complete basis in RN . Any graph signal
x ∈ RN can be decomposed into to a weighted sum of vi, represented as x =

∑N−1
i=0 αivi, where αi = s⊤vi. αi as the

coefficient of x at frequency component i of graph G. Hence, the filtered graph signals are:

xl = gl(L)x = Ugl(Λ)U⊤x =

(
N−1∑
i=0

gl(λi)viv
⊤
i

)(
N−1∑
i=0

αivi

)
=

N−1∑
i=0

g1(λi)αivi,

xh = gh(L)x = Ugh(Λ)U⊤x =

(
N−1∑
i=0

gh(λi)viv
⊤
i

)(
N−1∑
i=0

αivi

)
=

N−1∑
i=0

g2(λi)αivi.

(19)

The spectral signal frequency is decomposed into:

f(xl) =

(
N−1∑
i=0

gl(λi)αivi

)⊤(N−1∑
i=0

λiviv
⊤
i

)(
N−1∑
i=0

gl(λi)αivi

)
=

N−1∑
i=0

λiα
2
i g

2
l (λi).

f(xh) =

(
N−1∑
i=0

gh(λi)αivi

)⊤(N−1∑
i=0

λiviv
⊤
i

)(
N−1∑
i=0

gh(λi)αivi

)
=

N−1∑
i=0

λiα
2
i g

2
h(λi).

(20)

Given f(xh) > f(xl), we deduce
∑N−1

i=0 λig
2
h(λi) >

∑N−1
i=0 λig

2
l (λi), leading to:

f(xh)− f(xl) =

N−1∑
i=0

α2
i

[
λig

2
h(λi)− λig

2
l (λi)

]
> 0 (21)

Then we move to prove that there exist an interger M(0 < M ≤ N − 1) such that
∑N−1

i=M g2h(λi) ≥
∑N−1

i=M g2l (λi). We
prove this statement by contradiction. Suppose there does not exist an integer M(0 < M ≤ N − 1) that satisfies this
condition. We have

∑N−1
i=M g2h(λi) <

∑N−1
i=M g2l (λi) with M(0 < M ≤ N − 1), then following inequalities exist:

(λ1 − λ0)

[
g2h(λ1) + g2h(λ2) + . . .+ g2h(λN−1)

]
≤ (λ1 − λ0)

[
g2l (λ1) + g2l (λ2) + . . .+ g2l (λN−1)

]
(22)

(λ2 − λ1)

[
g2h(λ2) + . . .+ g2h(λN−1)

]
≤ (λ2 − λ1)

[
g2l (λ2) + . . .+ g2l (λN−1)

]
(23)

...

(λN−1 − λN−2)

[
g2h(λN−1)

]
≤ (λN−1 − λN−2)

[
g2l (λN−1)

]
(24)

We assume that both filters gl and gh possess the same ℓ2-norms. This assumption allows us to concentrate on the role of
different frequency ranges and avoid trivial solutions:

λ0

[
g2h(λ0) + g2h(λ1) + . . .+ g2h(λN−1)

]
= λ0

[
g2l (λ0) + g2l (λ1) + . . .+ g2l (λN−1)

]
. (25)
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Summing both sides of the above inequalities and considering Equation (25), we deduce:

N−1∑
i=0

λig
2
h(λi) ≤

N−1∑
i=0

λig
2
l (λi),

which contradicts the earlier results that
∑N−1

i=0 λig
2
h(λi) >

∑N−1
i=0 λig

2
l (λi).Therefore, the initial assumption is invalid,

and there must exist an integer M(0 < M ≤ n− 1) such that
∑N−1

i=M g2h(λi) ≥
∑N−1

i=M g2l (λi), which completes the proof.

D.2. Proof of Prop. 3.1

Proposition 4.5. Given a node representation zi and its neighboring node representation zj , optimizing Equation (12) leads
to maximizing their mutual information I(zj ; zi), while inherently minimizing DKL(zj ||zi):

I(zj ; zi) ∼
1

DKL(zj ||zi)
(26)

Proof. Mutual Information Neural Estimation (MINE)(Belghazi et al., 2018) converts mutual information maximization
into minimizing the InfoNCE loss Equation (12), where the positive pair is zi and its neighboring node representation zj .
Utilizing the relationship between mutual information and information entropy, we derive:

I(zj ; zi) = H(zj) +H(zi)−H(zj , zi), (27)

where H(·) denotes information entropy, and H(·, ·) represents joint entropy. The Kullback-Leibler divergence, or
information gain, in relation to information entropy is defined as:

DKL(zj ∥ zi) = H(zj , zi)−H(zj). (28)

By integrating Equation (27) and Equation (28), we obtain:

I(zj ; zi) = H(zi)−DKL(zj ∥ zi). (29)

As per Equation (29), there is a negative correlation between I(zj ; zi) and DKL(zj ∥ zi). This implies that maximizing
I(zj ; zi) inherently minimizes DKL(zj ∥ zi), thereby fulfilling the objective of transferring graph property knowledge from
the GNN to the MLP:

I(zj ; zi) ∼
1

DKL(zj ||zi)
. (30)

E. Complexity Analysis
In this subsection, we delve into the time complexity of S3GCL. The process of acquiring the semantically neighboring
node set N ′′

i involves executing the k-nearest neighbors (kNN) algorithm on the entire graph. This step, a preprocessing
phase external to formal training, is performed only once per dataset. Typically, computing a kNN graph requires a time
complexity of O(N2Df ), where N is the number of nodes and Df represents the feature dimension. This computation
becomes particularly intensive when N is large. To mitigate this, following the approach in (Liu et al., 2023b), we initially
apply the locality-sensitive approximation algorithm (Fatemi et al., 2021) in two separate batches. Subsequently, we merge
the resulting local kNN graphs to form a comprehensive global kNN graph, ensuring potential connectivity between all
nodes rather than just those within the same batch. This strategy effectively reduces the computational cost from O(N2Df )
to O(NBDf ), with B denoting the batch size.

During the learning process, the computation for propagating K-order polynomial filters is O(KE), where E represents the
number of edges. The MLP encoder requires O(NDfD) computations, with D being the representation dimension. The
projection step involves O(NDDp) computations, where Dp is the projection dimension. The complexity of our final loss
Equation (12) is O(NDpB

′), with B′ as the batch size in contrastive learning. Overall, our method scales linearly with the
number of nodes N , demonstrating its scalability.
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F. Related Work
Graph Contrastive Learning. Within the domain of GCL (Liu et al., 2022a; Zhu et al., 2021a; Liu et al., 2023e;d; Yang
et al., 2023; Liu et al., 2022b), contemporary studies have primarily focused on two distinct strategies: augmentation-based
and augmentation-free techniques. Augmentation-based techniques, illustrated by GRACE (Zhu et al., 2020; Huang et al.,
2023a; Wan et al., 2024), GCA(You et al., 2020a), and MVGRL(Hassani & Khasahmadi, 2020), concentrate on improving
graph representation learning through diverse data augmentations such as edge dropping and attribute masking (You et al.,
2020b). These techniques aspire to optimize mutual information across various graph perspectives. On the other hand,
augmentation-free strategies, as demonstrated in studies such as SimGRACE (Xia et al., 2022) and BGRL (Thakoor et al.,
2021), deviate from intricate data augmentation tactics. Alternatively, they depend on various graph encoders to create
unique views, promoting the convergence of analogous node or class representations from these diverse perspectives (Yin
et al., 2022b; 2023a; Tian et al., 2024b;a). In this study, we present a new, augmentation-free, yet effective cross-architecture
GCL technique. It attains cross-pass uniformity between the node and its spatial neighbors, originating from full-pass MLP
and biased-pass spectral GNN respectively.

Heterophilic Graphs. Despite significant advancements in GNNs (Zhang et al., 2024; Liu et al., 2024; Jiang et al., 2021;
Yin et al., 2023b), most adhere to the homophily principle. However, real-world graphs often diverge from the homophily
principle and exhibit heterophily, where connected nodes possess dissimilar features and distinct class labels (Zheng et al.,
2023b; Pan & Kang, 2023). To tackle such graphs, numerous methods aimed at excelling in either heterophily or both
homophily and heterophily contexts have emerged recently (Kong et al., 2023; Azabou et al., 2023; Pang et al., 2023).
Among these, spectral GNNs have garnered notable success for their proficiency in learning filters of diverse shapes
with labels, suitable for a variety of graphs. Contemporary works like GREET(Liu et al., 2023f) and NeCo (He et al.,
2023) address non-homophily scenarios through edge discriminating augmentation and parameterized neighbor sampling,
respectively. However, these approaches overlook the special consideration of the filter role, leading to suboptimal outcomes.
In contrast, we propose a cosine-parameterized Chebyshev polynomial, enhancing generalization across both homophilic
and heterophilic graphs without relying on labels.

Inference Acceleration on graphs. Recently, more and more research focuses on applying machine learning methods
to industrial tasks (Cao et al., 2017; Lin & Cao, 2020). GNNs typically utilize message passing for feature aggregation
from neighbors (Liu et al., 2023a; Zheng et al., 2023a; Pan et al., 2024), yet this process during inference can hinder
latency-sensitive applications (Yin et al., 2022a; Yin et al.). Initial efforts in acceleration, such as quantization (Ding et al.,
2021) and pruning (Zhou et al., 2021), failed to eliminate neighborhood dependencies. In response, GLNN (Zhang et al.,
2022) introduces knowledge distillation (KD) (Hinton et al., 2015; Gou et al., 2021) to transfer knowledge from a teacher
GNN to a student MLP, using the latter for inference acceleration. Subsequent studies (Tian et al., 2023b; Wu et al., 2023b)
have enhanced this distillation process. Yet, these approaches primarily concentrate on well-trained teacher GNNs and
label-supervised signals. Our work, in contrast, adopts a self-supervised approach, employing cross-pass GCL to enable
MLP to acquire task-relevant knowledge and utilizing spatial positive nodes to foster graph-context awareness in MLP. The
deployed MLP enjoyed both swift inference and competitive performance.

G. Sensitivity
In this section, we analyze the method sensitivity to various hyper-parameters. Our findings, as depicted in Figure 7,
indicate that our approach demonstrates low sensitivity to the number of semantic neighbors k. Appropriate k will enhance
performance, but too much k will introduce noise and affect the learning effect. Furthermore, we perform ablation studies
on the coefficient α to highlight the respective roles of Lfl and Lfh in the learning process. The results, shown in Figure 6,
indicate that S3GCL encourages greater similarity between one-hop and two-hop neighbors compared to randomly selected
pairs, across both homophilic and heterophilic graphs. This suggests that S3GCL effectively makes nodes cognizant of their
one-hop neighbor context, irrespective of homophily levels.

H. Additional Experimental Results
H.1. Representation Dimension

This section delves into the impact of varying dimensions on different datasets, with the findings presented in Figure 9. The
results suggest that larger dimensions generally lead to improved outcomes for all graphs. However, it is observed that
excessively small dimensions can hinder the learning process, while overly large dimensions might cause overfitting issues.

17



S3GCL: Spectral, Swift, Spatial Graph Contrastive Learning

(a) Cora (b) PubMed (c) Actor (d) Roman-empire

Figure 8. Impact of varying representation dimensions on four datasets, where red and yellow represent the S3GCL and BGRL
respectively, while blue and green represent the GRACE and GREET respectively.

H.2. Contrastive Learning Temperature

The diagnostic analysis regarding the contrastive learning temperature is presented in Figure 8. Overall, the performance
remains stable across various contrastive learning temperatures, with the exception of some extreme cases (e.g., when τ
is set to 0.01). Setting the temperature too high in contrastive learning can result in inadequate differentiation between
similar and dissimilar pairs, leading to the loss of valuable information and reduced model sensitivity to subtle yet crucial
distinctions. On the other hand, an excessively low temperature may cause the model to overemphasize minor differences
between samples, potentially leading to overfitting and diminished generalization capabilities on novel, unseen data.

(a) Cora (b) PubMed (c) Actor (d) Roman-empire

Figure 9. Impact of varying contrastive learning temperature τ on four datasets, where red and yellow represent the S3GCL and BGRL
respectively, while blue and green represent the GRACE and GREET respectively.
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