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Abstract

This paper studies the Bayesian regret of a variant of the Thompson Sampling1

algorithm for bandit problems. It builds upon the information-theoretic framework2

of Russo and Van Roy (2015) and, more specifically, on the rate-distortion analysis3

from Dong and Van Roy (2020), where they proved a bound with regret rate of4

O(d
√
T log(T )) for the d-dimensional linear bandit setting. We focus on bandit5

problems with a metric action space, and, using a chaining argument, we establish6

new bounds that depend on the action space’s metric entropy for a Thompson7

Sampling variant. Under suitable continuity assumption of the rewards, our bound8

offers a tight rate of O(d
√
T ) for d-dimensional linear bandit problems.9

1 Introduction10

Bandit problems are decision problems in which an agent interacts sequentially with an unknown11

environment by choosing actions and earning rewards in return. The agent’s goal is to maximize12

its expected cumulative reward, the expected sum of rewards it will earn throughout its interaction13

with the environment. This necessitates a delicate balance between exploring different actions to14

gather information for potential future rewards and exploiting known actions to receive immediate15

gains. The theoretical study of the performance of an algorithm in a bandit problem is done16

by analyzing the expected regret, which is defined as the difference between the cumulative17

reward of the algorithm and the hypothetical cumulative reward that an oracle would obtain by18

choosing the optimal action at each time step. An effective method for achieving small regret19

is the Thomson Sampling (TS) algorithm (Thompson, 1933), which, despite its simplicity, has20

shown remarkable performance (Russo et al., 2018; Russo and Van Roy, 2017; Chapelle and Li, 2011).21

22

Studying the Thompson Sampling regret, Russo and Van Roy (2015) introduced the concept of23

information ratio. This statistic captures the trade-off between the information gained by the24

algorithm about the environment and the immediate regret. They used this concept to provide a25

general upper bound for finite action spaces A that depends on the entropy of the optimal action26

H(A⋆), the time horizon T (the total number of times that the agent interacts with the environment),27

and a problem-dependent upper bound on the information-ratio Γ, namely
√

Γ · T · H(A⋆). For28

finite environment parameter spaces, under a Lipschitz continuity assumption of the expected reward29

and using Lipschitz maximal inequality argument, Dong and Van Roy (2020) were able to control the30

regret of the TS algorithm via a "compressed statistic" Θε of the environment parameters Θ, with a31

bound of the form ε · T +
√
Γ · T · H(Θε). In particular, they derived a near-optimal regret rate of32

O(d
√
T log T ) for d-dimensional linear bandit problems.33
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In this paper, building on the work of Dong and Van Roy (2020), we explored using the chaining35

technique for bandit problems where the rewards exhibit some subgaussian continuity property with36

respect to the action space. We introduced the Two Steps Thompson Sampling (2-TS), a variant of37

the original algorithm where the history is updated every time step. For this algorithm, we derive a38

bound that captures the continuity property of the reward process and depends on the metric entropy39

of the action space. Notably, our bound does not require a finite environment or action space and40

holds for continuous action spaces. For the class of linear bandit problems, we obtained a bound in41

O(d
√
T ) matching the best possible regret Ω(d

√
T ) from Dani et al. (2008).42

The rest of the paper is organized as follows. Section 2 presents the bandit problem setup, defines43

the Bayesian expected regret, and introduces the Two Steps Thompson Sampling algorithm and the44

specific notations. Section 3 explains the idea of the bounding technique, and defines the required45

tools and assumptions we will be using. Section 4 states and proves our main Theorem. Section 546

applies our Theorem to the important case of linear bandit problems and derives several specific47

bounds before giving s a bound for linear bandit problems with a ball-structured action space. Finally,48

Section 6 discusses our results, possible extensions, and future work.49

2 Problem setup50

We consider a sequential decision problem, where at each time step (or round) t ∈ {1, . . . , T}, an51

agent interacts with an environment by selecting an action At from an action set A and, based on that52

action, receives a real-valued reward Rt ∈ R. The pair of the selected action and the received reward53

is collected in a history Ht+1 = Ht ∪Ht+1, where Ht+1 = {At, Rt}, that will be accessible to the54

agent in the next round. The procedure repeats until the last round t = T .55

56

Following the Bayesian framework, we consider the environment to be characterized by some57

parameters θ ∈ O, unknown to the agent, sampled from a known prior distribution PΘ. This prior,58

together with the reward distribution PR|A,Θ fully describes the bandit problem. As the reward59

distribution depends on the selected action and the environment parameters, it may be written as60

Rt = R(At,Θ) for some possibly random function R : A×O → R.61

62

The agent’s goal is to take actions that maximize the total collected reward. More specifically, the63

agent seeks to learn a policy φ = {φt : Ht → A}Tt=1 that, for each time t ∈ {1, . . . , T}, selects64

an action At based on the history Ht such that it maximizes the expected cumulative reward65

RT (φ) := E
[∑T

t=1R(φt(H
t),Θ)

]
.66

67

2.1 The Bayesian expected regret68

The Bayesian expected regret quantifies the difference between the expected cumulative reward69

achieved by the agent following a policy φ and the optimal expected cumulative reward that could be70

obtained by an omniscient agent having access to the true reward function and selecting the action71

yielding the highest expected reward.72

Definition 1 (Optimal cumulative reward) The optimal cumulative reward of a bandit problem is73

defined as74

R⋆T := sup
ψ

E
[ T∑
t=1

R(ψ(Θ),Θ)

]
,

where the supremum is taken over all decision rules ψ : O → A such that the expectation above is75

defined.76

We denote a policy that achieves the supremum of Definition 1 as ψ⋆ and we refer to the action it77

selects as the optimal action A⋆ := ψ⋆(Θ). We make the following technical assumption on the78

action set to ensure such a policy exists.79

Assumption 1 (Compact action set) The set of actions A is compact.
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The difference between the optimal expected cumulative reward and expected cumulative reward of a80

policy φ is called the Bayesian expected regret of φ, denoted REGT (φ).81

Definition 2 (Bayesian expected regret) The Bayesian expected regret of a policy φ in a bandit82

problem is defined as83

REGT (φ) := R⋆T −RT (φ).

2.2 Thompson Sampling algorithm and the Two Steps variant84

One of the most popular and most studied algorithms for solving bandit problems is the Thompson85

Sampling (TS) algorithm Russo et al. (2018); Russo and Van Roy (2017); Chapelle and Li (2011);86

Dong and Van Roy (2020). TS works by sampling a Bayesian estimate of the environment parameters87

from the posterior distribution and taking the optimal action for the sampled estimate. Specifically, at88

each time step t ∈ {1, . . . , T}, the agent draws a Bayesian estimate Θ̂t based on the past collected89

history Ht, takes the corresponding optimal action Ât = ψ⋆(Θ̂t), receives a reward Rt, and updates90

the history Ht+1 = {Ht, Ât, Rt}.91

In this work, we consider a variation of TS, which we refer to as Two Steps Thompson Sampling92

(2-TS). The critical difference between this algorithm and the TS algorithm is that the history is93

updated every two time steps1. Intuitively, the algorithm will behave the same but wait to collect two94

rewards before updating its history. This modification in the history update is motivated by theoretical95

needs. Specifically, the chaining technique requires controlling the differences between consecutive96

regret approximations. In our analysis, those differences are bounded via the information gained97

upon observing the rewards corresponding to two approximate actions. The pseudocode for Two98

Steps Thompson Sampling is given in Algorithm 1.

Algorithm 1 Two Steps Thompson Sampling algorithm
1: Input: environment parameters prior PΘ.
2: for t = 1 to T do
3: Sample a parameter estimation Θ̂t ∼ PΘ|Ht .
4: Take the corresponding optimal action Ât = ψ⋆(Θ̂t).
5: Collect the reward Rt = R(Ât,Θ).
6: if t is even then
7: Update the history Ht+1 = {Ht, Ât, Rt, Ât−1, Rt−1}.
8: else
9: Keep the history Ht+1 = Ht.

10: end if
11: end for

99

2.3 Notation specific to bandit problems100

Since the σ-algebras of the history Ht are often used in the conditioning of the expectations and101

probabilities coming up in the analysis, similarly to Russo and Van Roy (2015); Dong and Van Roy102

(2020); Neu et al. (2022); Gouverneur et al. (2023), we define the operators Et[·] := E[·|Ht] and103

Pt[·] := P[·|Ht], whose outcomes are σ(Ht)-measurable random variables and H = A× R.104

Analogously, we define It(A⋆;Rt) := Et[DKL(PRt|Ht,A⋆∥PRt|Ht)] as the disintegrated conditional105

mutual information between the optimal action A⋆ and the reward Rt, given the history Ht, see (Ne-106

grea et al., 2020, Definition 1.1), which is itself also a σ(Ht)-measurable random variable.107

When it is clear from the context that the random rewards depend on the environment parameters Θ,108

we will often use the notation R(At) as a shorthand for R(At,Θ) to simplify the expressions.109

1We implicitly assume that, for Two Steps Thompson Sampling, the total number of steps T is an even
number.
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3 Chain-link Information Ratio and Chaining Technique110

In bandit problems where the rewards of nearby actions exhibit some continuity property, we aim to111

exploit this dependence using a chaining argument. More specifically, our idea is to approach the112

Two Step Thompson Sampling algorithm by a chain of increasingly accurate approximations, which113

we refer to as “approximate learning".114

115

Inspired by Dong and Van Roy (2020), our construction relies on the existence of a sequence of finer116

and finer quantizations {A⋆k}∞k=k0 of the optimal action A⋆ and a corresponding carefully crafted117

action sampling function fkt : A → A for each round t ∈ {1, . . . , T}. These quantization and118

sampling functions are designed to satisfy the following three requirements simultaneously:119

(i) The quantizations A⋆k are less informative than A⋆, that is, H(A⋆k) ≤ H(A⋆) for all k ≥ k0.120

(ii) At each round t ∈ {1, . . . , T}, the Two Step Thompson Sampling regret can be written as an121

infinite sum of the difference between the approximate learning regrets:122

Et
[
R(A⋆)−R(Ât)

]
=

∞∑
k=k0+1

Et
[(
R(fkt (A

⋆
k))−R(fkt (Ât,k))

)
−

(
R(fk−1

t (A⋆k−1))−R(fk−1
t (Ât,k−1))

)]
.

(iii) For each time step t ∈ {1, . . . , T}, and for every k > k0, the regret difference between123

the kth-consecutive “approximate learning" can be bounded using the information gained124

about the quantization A⋆k while, at the same time, it reveals no more information about the125

quantization A⋆k than Two Step Thompson Sampling.126

3.1 Nets and quantizations127

When designing the quantization A⋆k ∈ Ak of the optimal action, we face two conflicting goals: on128

the one hand, we want the quantization to be as little informative about A⋆ as possible while, on the129

other hand, we want to ensure that Ak converges quickly to a good approximation of A. This dual130

objective naturally leads to considering ε-nets.131

Definition 3 (ε-net and covering number) A set N is called an ε-net for (A, ρ) if, for every a ∈ A,132

there is a π(a) ∈ N such that ρ(a, π(a)) ≤ ε. The smallest cardinality of an ε-net for (A, ρ) is133

called the covering number, that is134

N (A, ρ, ε) ≜ inf
{
|N | : N is an ε-net of (A, ρ)

}
.

The covering number N (A, ρ, ε) can be understood as a measure of the complexity of the action135

set A at the resolution ε. Equipped with this new concept, a possible kth-quantization A⋆k is the136

quantization of the optimal action A⋆ at the scale 2−k.137

Definition 4 (kth-quantization) Let Ak be a 2−k-net for (A, ρ) with an associated mapping πk :138

A → Ak, such that the mappings πk are restricted to those of the form πk = π′
k ◦ πk+1, where139

π′
k : Ak+1 → Ak. We define A⋆k = πk(A

⋆) as the kth-quantization of the optimal action A⋆ with140

respect to (A, ρ). Similarly, the quantization Ât,k = πk(Ât) is the kth-quantization of the sampled141

action Ât.142

Note that A⋆k is completely determined by A⋆k+1 via the mapping π′
k : Ak+1 → Ak. In the following,143

we set k0 to be the largest integer such that 2−k0 ≥ diam(A).144

3.2 Existence of the “approximate learning"145

The sequence of quantizations {A⋆k}∞k=k0 given in Definition 4 satisfy Requirement (i) since there146

is a deterministic mapping between A⋆ and A⋆k (Yury Polyanskiy, 2022, Theorem 1.4 (f)). We147

claim that for each time step t ∈ {1, . . . , T}, and for each k > k0, there exists a random function148

fkt : Ak → Ak that satisfies Requirements (ii) and (iii).149
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Proposition 1 Let {A⋆k}∞k=k0 be defined as in Definition 4. For each time step t ∈ {1, . . . , T}, there150

exists a sequence of random functions {fkt }∞k=k0 that for each k > k0, satisfies the following:151

(i) Et
[
R(fk0t (A⋆k0))−R(fk0t (Ât,k0))

]
= 0,152

(ii) limk→∞ Et
[
R(fkt (A

⋆
k))−R(fkt (Ât,k))

]
= Et

[
R(A⋆)−R(Ât)

]
, and153

(iii) It
(
A⋆k;R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)) ≤ It(A⋆k;R(Ât), R(Â

′
t)
)
, a.s.154

where in (iii) the sampled actions Ât and Â′
t are identically distributed.155

Proof 1 The proof follows closely the proof of (Dong and Van Roy, 2020, Proposition 2) and is given156

in Appendix B.1.157

3.3 Subgaussian process, smooth rewards, and chain-link information ratio158

The motivation for using a chaining technique is to derive a regret bound that could effectively159

capture the dependence between the rewards of nearby actions. We conceptualize this dependence,160

considering that the rewards are subgaussian with respect to the actions.161

Definition 5 (Subgaussian process) A stochastic process {Ra}a∈A on the metric space (A, ρ) is162

called subgaussian if for all a, b ∈ A and all λ ∈ R163

logE
[
eλ(Ra−Rb)

]
≤ λ2ρ(a, b)2

2
.

Technically, for a process {Ra}a∈ cA to be subgaussian it is also required that E[Ra] = 0 for all164

a ∈ A, see, for example (van Handel, 2016, Definition 5.20). However, we do not require this165

restriction moving forward. One way to interpret the subgaussian process property is to understand it166

as an "in-probability continuity" requirement. Actually, Definition 5, up to constant terms, can be167

equivalently written as168

P[|Ra −Rb| ≥ t] ≤ 2 exp

(
− t2

2ρ(a, b)2

)
for all t ≥ 0 and all all a, b ∈ A.169

170

Lastly, we can impose the following mild technical assumption to ensure that the difference of regret171

between consecutive approximate learning vanishes asymptotically, we can impose the following172

mild technical assumption.173

Definition 6 (Separable process) A stochastic process {Ra}a∈A is called separable if there is a174

countable set A′ ⊆ A such that, for all a ∈ A175

Ra ∈ lim
a′→a
a′∈A′

Ra′ a.s.

We refer to rewards satisfying both definition 5 and 6 as smooth rewards on the metric space (A, ρ).176

Definition 7 (Smooth rewards) We say that the rewards are smooth on the metric space (A, ρ),177

if for all environment parameters θ ∈ O, the random rewards {R(a, θ)}a∈A form a separable178

subgaussian process on (A, ρ).179

Some typical rewards for linear bandits satisfy them. For example, let Ra := ⟨a,Θ⟩+Wa, where180

actions and parameters are in Bd(0, 1), and where Wa can either be some arbitrarily distributed181

noise independent of the action, Wa = W , or can be a subgaussian process w.r.t. (A, || · ||2) e.g.182

(Wainwright, 2019, Chapter 5). Indeed, in this case183

logE [exp (λ (Ra −Rb))] ≤
λ2∥a− b∥2

8
for all λ ∈ R and all a, b ∈ A. (1)
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By Cauchy–Schwarz Ra − Rb = ⟨a − b,Θ⟩ ≤ ∥a − b∥∥Θ∥. Thus, ∥Θ∥ ∈ [0, 1] is a subgaussian184

random variable with parameter 1/2, and therefore (1) follows and Definition 5 holds with ρ(a, b) =185
∥a−b∥/2. Finally, Definition 6 holds since Ra is continuous on a (van Handel, 2016, Remark 5.23).186

To control the difference of regret between successive approximate learning, it is helpful to introduce187

the concept of chain-link information ratio. It is a direct adaptation of our chaining technique to the188

information ratio introduced by Russo and Van Roy (2015) and later used by Dong and Van Roy189

(2020).190

Definition 8 (Chain-link information ratio) For each time step t ∈ {1, . . . , T}, and for each k >191

k0, we define the chain-link information ratio as192

Γt,k :=
Et

[(
R(fkt (A

⋆
k))−R(fkt (Ât,k))

)
−

(
R(fk−1

t (A⋆k−1))−R(fk−1
t (Ât,k−1))

)]2
It(fkt (A⋆k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

where A⋆k, A
⋆
k−1 and Ât,k, Ât,k are the kth and (k − 1)th quantizations of A⋆ and Ât respectively193

and where the random functions fkt and fk−1
t satisfy the conditions of Proposition 1,194

There is no particular interpretation of the chain-link information ratio. The purpose of its introduction195

is to unify elegantly specific results via problem-dependent upper bounds on Γt,k similarly to what is196

done in prior works for the information ratio (Russo and Van Roy, 2015; Dong and Van Roy, 2020)197

and the lifted information ratio (Neu et al., 2022; Gouverneur et al., 2023).198

4 Main result199

In this section, we leverage the previously introduced concepts to derive a general chained bound on200

the Two Steps Thompson Sampling regret for bandit problems with smooth rewards. We obtain a201

bound that depends on the complexity of the action space. Remarkably, through the use of Lemma 1202

(see in Appendix A), our results hold for continuous action spaces. We note that Lemma 1 could be203

applied to Dong and Van Roy (2020) as a generalization of their (Dong and Van Roy, 2020, Lemma204

1), thus extending their results to infinite and continuous environment spaces.205

Theorem 1 (Chained bound) For bandit problems with smooth rewards on the metric space (A, ρ),
the 2-TS expected cumulative regret after T steps is bounded as

REG2-TS
T ≤

∞∑
k=k0+1

√
2 · Γ̄k · T · H(A⋆k),

where A⋆k is the kth-quantization about the optimal action A⋆ with respect to (A, ρ) and where for
each k > k0, and Γ̄k is a upper bound on E[Γt,k].

Proof 2 We start by rewriting the expected regret of 2-TS as a sum of consecutive regret differences206

between two consecutive “approximate learning”:207

REG2-TS
T =

T∑
t=1

E[R(A⋆)−R(Ât)]
(a)
= 2

∑
1≤t≤T,t odd

E
[
Et[R(A⋆)−R(Ât)]

]
(b)
= 2

∑
1≤t≤T,t odd

E
[ ∞∑
k=k0+1

Et
[(
R(fkt (A

⋆
k))−R(fkt (Ât,k))

)
−

(
R(fk−1

t (A⋆k−1))−R(fk−1
t (Ât,k−1))

)]]
where (a) holds since the history of the 2-TS is being updated every two time steps, and (b) follows208

from the definition of approximate learning.209

210

We then bound the regret differences between two consecutive “approximate learning” via the211

information gained upon applying the rewards corresponding to two approximate actions. Relating212
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the latter to the information gained by the 2-TS and applying the chain rule yields the claimed result.213

Indeed we have the following sequence of inequalities214

REG2-TS
T

(c)

≤ 2
∑

1≤t≤T,t odd

∞∑
k=k0+1

E
[√

Γt,k · It(A⋆k, A
⋆
k−1;R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

]
(d)

≤ 2
∑

1≤t≤T,t odd

∞∑
k=k0+1

√
E[Γt,k] · I(A⋆k;R(Ât), R(Ât+1)|Ht)

(e)

≤ 2

∞∑
k=k0+1

√
T

2
· Γ̄k ·

∑
1≤t≤T,t odd

I(A⋆k;R(Ât), R(Ât+1))|Ht)

(f)

≤
∞∑

k=k0+1

√
2 · Γ̄k · T ·

∑
1≤t≤T,t odd

I(A⋆k; Ât, R(Ât), Ât+1, R(Ât+1))|Ht)

(g)
=

∞∑
k=k0+1

√
2 · Γ̄k · T · I(A⋆k;HT )

(h)

≤
∞∑

k=k0+1

√
2 · Γ̄k · T · H(A⋆k)

where (c) follows from the definition of Γt,k and the data-processing inequality; (d) follows from215

consecutively using the fact that A⋆k−1 is completely determined by A⋆k, then using Proposition 1 (iii),216

and finally applying Jensen’s inequality (e) follows from the definition of Γ̄k and the application of the217

Cauchy-Schwartz inequality; (f) results from the "more data, more information" property (Yury Polyan-218

skiy, 2022, Proposition 2.3.5); (g) follows from the chain rule for mutual information; and (h) comes219

from (Yury Polyanskiy, 2022, Proposition 2.4.4) and the fact that Ak is a finite set.220

In the next section, we present the application of Theorem 1 to derive explicit regret bounds for221

particular settings of bandit problems with structure and show that our bound offers a tight regret rate222

for the linear bandit problem.223

5 Applications to linear bandit problems224

In linear bandits problems, each action is parameterized by a feature vector, and the associated225

expected reward can be written as the inner product between the feature vector and the environment226

parameter. Mathematically, a d-dimensional linear bandit problem is a bandit problem with A,O ⊂227

Rd and such that for all a ∈ A and all θ ∈ O we have228

E[R(a, θ)] = ⟨a, θ⟩,

where the expectation is taken over the randomness of the reward function.229

230

Using a similar analysis as Russo and Van Roy (2015), we can bound the chain-link information ratio231

in linear bandits via the dimension of the action space. The proof is given in Appendix B.2.232

Proposition 2 For d-dimensional linear bandit problems with smooth rewards on the metric space233

(A, ρ), for each t ∈ {1, . . . , T}, and each k > k0, we have that234

Γt,k ≤ 2 · (6 · 2−k)2 · d,

where Γt,k is the kth-chain-link information ratio.235

Combining Proposition 2 and Theorem 1 leads to the following bound on the 2-TS regret for linear236

bandit problems with smooth rewards.237

Theorem 2 (Smooth linear bandit) For d-dimensional linear bandit problems with smooth rewards238
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on the metric space (A, ρ), the 2-TS expected cumulative regret after T steps is bounded by

REG2-TS
T ≤ 12

∞∑
k=k0+1

2−k
√
d · T · H(A⋆k),

where A⋆k is the kth quantization of the optimal action A⋆ with respect to the metric space (A, ρ), as
defined in Definition 4.239

From Theorem 2, we can derive a bound that depends on the entropy integral. The proof follows the240

steps from (van Handel, 2016, Corollary 5.25) and is given in Appendix B.3.241

Corollary 1 (Entropy integral) For a linear bandit of dimension d, with smooth rewards on the
metric space (A, ρ), the 2-TS expected cumulative regret after T steps is bounded as

REG2-TS
T ≤ 24

√
d · T

∫ ∞

0

√
log(|N (A, ρ, ε)|)dε,

where N (A, ρ, ε) is the ε-net of smallest cardinality for (A, ρ).

For linear bandit problems where the possible actions lie in the unit ball, with the help of a covering242

argument, we come to the following result. The proof is given in Appendix B.4.243

Proposition 3 For d-dimensional linear bandits with smooth rewards with respect to (A, ||.||2) and244

a ball-structured action space A ⊆ Bd(0, 1), where Bd(0, 1) is the d-dimensional closed Euclidean245

unit ball, the 2-TS expected cumulative regret is bounded as246

REG2-TS ≤ 7 · d
√
T .

The remarkable property of the above bound is that it is the first information-theoretic bound on247

the regret of an algorithm for linear bandits problem that only depends on the dimension d and the248

square root of the total number of steps T . It improves on the bound O(d
√
T log(T )) from Dong and249

Van Roy (2020, Theorem 2) and matches the minimax lower bound Ω(d
√
T ) proven by Dani et al.250

(2008, Theorem 3) thus suggesting that Two Steps Thompson Sampling is optimal in this context.251

6 Conclusion252

In this paper, we studied bandit problems with rewards that exhibit some continuity property with253

respect to the action space. We have introduced a variation of the Thompson Sampling algorithm,254

named the Two-step Thompson Sampling. The only difference between this algorithm and the original255

Thompson Sampling algorithm is that the history is updated every two steps. In Theorem 1, we have256

demonstrated using a chaining argument that the Two Steps Thompson Sampling cumulative expected257

regret is bounded from above by a measure of the complexity of the action space. For d-dimensional258

linear bandit problems where the rewards form a subgaussian process with respect to the action space,259

we obtain a tight regret rate O(d
√
T ) that improves upon the best information-theoretic bounds and260

matches with the minimax lower bound Ω(d
√
T ) (Dani et al., 2008). An interesting future direction261

is whether we can relate the regret of TS to the 2-TS regret and obtain an optimal regret rate of262

O(d
√
T ) for the original algorithm. Given the new insights that our analysis provides, we conjecture263

that it should be possible. Future work also includes extending our results to generalized linear264

bandits and logistic bandit problems.265
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A Additional Lemmata301

Lemma 1 Consider a space A, two functions f : A → R+ and g : A → R+, and a probability302

distribution Q on A. Then, there exists a pair (a1, a2) ∈ A2 and a q ∈ [0, 1] such that303

qf(a1) + (1− q)f(a2) ≤
∫
a∈A

f(a)dQ(a) and qg(a1) + (1− q)g(a2) ≤
∫
a∈A

g(a)dQ(a).

Proof 3 The proof is inspired by the one from Dong and Van Roy (2020, Lemma 2). However, it304

contains vital modifications that allow this version of the lemma to work for general spaces A that305

are not necessarily finite.306

Let F̄ =
∫
a∈A f(a)dQ(a) and Ḡ =

∫
a∈A g(a)dQ(a). Now, consider the spaces Af := {a ∈ A :307

f(a) ≤ F̄} and Ag := {a ∈ A : g(a) ≤ Ḡ}. If Af ∩ Ag ̸= ∅, then taking both a1 and a2 from308

Af ∩ Ag trivially satisfies the conditions for all q ∈ [0, 1]. Therefore, let us assume that the sets are309

disjoint for the rest of the proof.310

Consider some a1 ∈ Af = Ac
g and some a2 ∈ Ag = Ac

f . The required condition from the lemma311

can be rewritten as312

q ≥ f(a2)− F̄

f(a2)− f(a1)
and q ≤ Ḡ− g(a2)

g(a1)− g(a2)
,

where the first inequality took into account that f(a1) < f(a2) by the definition of the sets Af and313

Ag = Ac
f . This inequality can, in turn, be written as314

f(a2)− F̄

f(a2)− f(a1)
≤ Ḡ− g(a2)

g(a1)− g(a2)

which is equivalent to315

f(a2)g(a1)− F̄
(
g(a1)− g(a2)

)
≤ Ḡ

(
f(a2)− f(a1)

)
+ f(a1)g(a2).

At this point, we have all the ingredients to prove the statement by contradiction. Assume that there is316

no pair (a1, a2) ∈ Af ×Ag such that the condition holds, then it must be that317

f(a2)g(a1)− F̄
(
g(a1)− g(a2)

)
> Ḡ

(
f(a2)− f(a1)

)
+ f(a1)g(a2)

for every pair (a1, a2) ∈ Af ×Ag . Therefore, we can integrate over all such pairs, and the inequality318

should still hold, namely319 ∫
Af

∫
Ag

[
f(a2)g(a1)− F̄

(
g(a1)− g(a2)

)]
dQ(a1)dQ(a2)

>

∫
Af

∫
Ag

[
Ḡ
(
f(a2)− f(a1)

)
+ f(a1)g(a2)

]
dQ(a1)dQ(a2). (2)

We need to introduce some notation to show that (2) cannot happen. Let F− :=
∫
Af

f(a)dQ(a)320

and F+ :=
∫
Ag
f(a)dQ(a) and note that F+ + F− = F̄ . Similarly, G− :=

∫
Ag
g(a)dQ(a) and321

F+ :=
∫
Af

g(a)dQ(a) and G+ +G− = Ḡ. Using this notation, we can use Fubini’s theorem in (2)322

and rewrite it as323

F+G+ − (F+ + F−)(G+ −G−) > (G+ +G−)(F+ − F−) + F−G−,

which can be simplified to324

F−G− > F+G+

and which is impossible by the definition of F−, F+, G+ and G−, completing the contradiction and325

therefore the proof.326

Lemma 2 ((van Handel, 2016, Lemma 5.13)) Let Bd(0, 1) denote the d-dimensional closed Eu-327

clidean unit ball. We have |N (Bd(0, 1), || · ||2, ε) = 1 for ε ≥ 1 and328 (
1

ε

)d
≤ |N (Bd(0, 1), || · ||2, ε)| ≤

(
1 +

2

ε

)d
for 0 < ε < 1.
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B Proofs329

B.1 Proof of Proposition 1330

For each time step t ∈ {1, . . . , T}, we will construct the sequence of function {fkt }∞k=k0 by induction331

and instead of constructing a sequence that satisfies directly (iii), we will design it such that for each332

k > k0, it satisfies simultaneously the two following equations:333

It
(
A⋆k;R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1))

)
≤ It

(
A⋆k;R(Ât), R(f

k−1
t (Ât,k−1))

)
and (3)

It
(
A⋆k+1;R(Ât), R(f

k
t (Ât,k))

)
≤ It

(
A⋆k+1;R(Ât), R(Â

′
t)
)
, (4)

thus ensuring that fkt satisfies (iii).334

First, we start by showing that there exists a function fk0t that satisfies requirement (i) and equation335

(4). By definition of k0, we have that the cardinality of Ak0 is 1, that is Ak0 = {a0} for some a0 ∈ A336

and, as A⋆k0 ∈ Ak0 and Ât,k0 ∈ Ak0 , we have A⋆k0 = Ât,k0 = a0, thus satisfying requirement (i).337

Setting the random function fk0t to have the same conditional probability distribution as PA⋆|Ht338

ensures equation (4) is satisfied.339

Now, we assume that for each k ∈ {k0, . . . ,K − 1}, we have constructed a function fkt that satisfied340

(3) and (4). We then want to show that we can construct a random function fKt that also satisfies (3)341

and (4).342

343

First, for each aK,i ∈ AK with i ∈ {1, . . . , |AK |}, we define AK,i = {a ∈ A : πK(a) = aK,i} as344

the set of actions in A that are mapped to aK,i by the mapping πK associated to AK , that is formally.345

In this way, for each aK,i ∈ AK , we can write346

It
(
A⋆K ;R(Ât), R(f

K−1
t (Ât,K))|Ât ∈ AK,i

)
=

∑
a∈AK,i

Pt[Ât = a|Ât ∈ AK,i]It
(
A⋆K ;R(a), R(fK−1

t (Ât,K))|Ât ∈ AK,i

)
=

∑
a∈AK,i

Pt[Ât = a|Ât ∈ AK,i]It
(
A⋆K ;R(a), R(fK−1

t (Ât,K))
)

and347

It
(
A⋆K+1;R(Ât), R(Â

′
t)|Ât ∈ AK,i

)
=

∑
a∈AK,i

Pt[Ât = a|Ât ∈ AK,i]It
(
A⋆K+1;R(a), R(Â

′
t)|Ât ∈ AK,i

)
=

∑
a∈AK,i

Pt[Ât = a|Ât ∈ AK,i]It
(
A⋆K+1;R(a), R(Â

′
t)
)
,

where we used the fact that A⋆K and A⋆K+1 are independent of Ât when conditioned on Ht.348

349

Applying Lemma 1, for each step t ∈ {1, . . . , T} and each aK,i ∈ AK , there exist two actions350

at,1K,i, a
t,2
K,i ∈ AK,i and a value ptK,i ∈ [0, 1], such that:351

It
(
A⋆K ;R(Ât), R(f

K−1
t (Ât,K))|Ât ∈ AK,i

)
≥ ptK,iIt(A

⋆
K ;R(at,1K,i), R(f

K−1
t (Ât,K))

)
+ (1− ptK,i)It(A

⋆
K ;R(at,2K,i), R(f

K−1
t (Ât,K))

)
and352

It
(
A⋆K+1;R(Ât), R(Â

′
t)|Ât ∈ AK,i

)
≥ ptK,iIt(A

⋆
K ;R(at,1K,i), R(Â

′
t)
)
+ (1− ptK,i)It(A

⋆
K ;R(at,2K,i), R(Â

′
t)
)
.

For a ∈ AK,i, we define the random function fKt (a) such that it outputs at,1K,i ∈ AK,i with353

probability ptK,i and at,2K,i ∈ AK,i with probability 1 − ptK,i. We observe that for a ∈ AK,i,354
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πK(a) = πk(f
K
t (a)) = aK,i as both a and fKt (a) belong to AK,i. Then, the distance ρ(a, fkt (a))355

is bounded by 2−K . We repeat this procedure for all aK,i ∈ AK and their corresponding AK,i to356

define fKt (a) for all a ∈ A and it holds by that, for all a ∈ A, ρ(fKt (a), a) ≤ 2−K .357

We can verify that358

It
(
A⋆K ;R(fKt (Ât,K)), R(fK−1

t (Ât,K−1))
)

=
∑

aK,i∈AK

∑
j=1,2

Pt[fKt (Ât,K)) = at,jK,i|Ât ∈ AK,i] · Pt[Ât ∈ AK,i] · It
(
A⋆K ;R(at,jK,i), R(f

K−1
t (Ât,K−1))

)
=

∑
aK,i∈AK

Pt[Ât ∈ AK,i](p
t
K,i · It

(
A⋆K ;R(at,1K,i), R(f

K−1
t (Ât,K−1))

)
+ (1− ptK,i) · It

(
A⋆K ;R(at,2K,i), R(f

K−1
t (Ât,K−1))

)
≤

∑
aK,i∈AK

Pt[Ât ∈ AK,i]It
(
A⋆K ;R(Ât), R(f

K−1
t (Ât,K−1))|Ât ∈ AK,i

)
= It

(
A⋆K ;R(Ât), R(f

K−1
t (Ât,K−1))

)
and similarly that359

It
(
A⋆K+1;R(f

K
t (Ât,K)), R(Â′

t)
)

=
∑

aK,i∈AK

∑
j=1,2

Pt[fKt (Ât,K)) = at,jK,i|Ât ∈ AK,i] · Pt[Ât ∈ AK,i] · It
(
A⋆K+1;R(a

t,j
K,i), R(Â

′
t)
)

=
∑

aK,i∈AK

Pt[Ât ∈ AK,i](p
t
K,i · It

(
A⋆K+1R(a

t,1
K,i), R(Â

′
t)
)
+ (1− ptK,i) · It

(
A⋆K+1;R(a

t,2
K,i), R(Â

′
t)
)

≤
∑

aK,i∈AK

Pt[Ât ∈ AK,i]It
(
A⋆K+1;R(Ât), R(Â

′
t)|Ât ∈ AK,i

)
= It

(
A⋆K+1;R(Ât), R(Â

′
t)
)

where the inequalities follow from the construction of fKt . Thus fKt satisfies requirement (iii). As360

the result holds already for k = k0, by induction, we extend this result for all k ≥ k0.361

362

We note that by construction, for each step t ∈ {1, . . . , T} and for each k ≥ k0, we have that363

ρ(fkt (A
⋆
k), A

⋆) ≤ ρ(fkt (A
⋆
k), A

⋆
k) + ρ(A⋆k, A

⋆) ≤ 2 · 2−k, (5)

ρ(fkt (Ât,k), Ât) ≤ ρ(fkt (Ât,k), Ât,k) + ρ(Ât,k, Ât) ≤ 2 · 2−k, (6)

where we use the triangle inequality together with the definition of fkt and of A⋆k and Ât,k.364

365

Lastly, we have to verify that at each period t ∈ {1, . . . , T}, the regret of the “approximate366

learning" asymptotically converges to the regret of Two Steps Thompson Sampling regret for finer367

approximations.368

369

Using the fact that by construction of fkt , we have for all a ∈ Ak that πk(fkt (a)) = a and that by370

definition A⋆k = πk(A
⋆), we can write:371

Et[R(fkt (A⋆k))−R(A⋆)] = Et[R(fkt (A⋆k))−R(A⋆k)] + Et[R(A⋆k)−R(A⋆)]

= Et[R(fkt (A⋆k))−R(πk(f
k
t (A

⋆
k)))] + Et[R(πk(A⋆))−R(A⋆)]

≤ 2 · Et[sup
a∈A

R(πk(a))−R(a)].

Since the process is separable, there is a countable set A′ ⊆ A such that supa∈AR(a) =372

supa∈A′ R(a) almost surely. Recall from Definition 4 that Ak is the 2−k net with mapping373

πk : A → Ak such that Ak ⊆ Ak+1 for all k. Then, by the monotone convergence theorem374

E
[
sup
a∈A

R(a)

]
= E

[
sup
a∈A′

R(a)

]
= sup
k≥k0

E
[
sup
a∈Ak

R(a)

]
= lim
k→∞

E
[
sup
a∈A

R(πk(a))

]
,
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which implies375

lim
k→∞

Et[R(fkt (A⋆k))] = Et[R(A⋆)].

A similar analysis can be applied to Et[R(fkt (Ât,k))−R(Ât)] and leads to376

lim
k→∞

Et[R(fkt (A⋆k))−R(fkt (Ât,k))] = Et[R(A⋆)−R(Ât)].

B.2 Proof of Proposition 2377

We start the proof by recalling the definition of Γt,k as378

Γt,k =
Et

[(
R(fkt (A

⋆
k))−R(fkt (Ât,k))

)
−

(
R(fk−1

t (A⋆k−1))−R(fk−1
t (Ât,k−1))

)]2
It(fkt (A⋆k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

where A⋆k and Ât,k are the kth-quantizations respectively of the optimal action A⋆ and the sampled379

action Ât. We recall from the proof of Proposition 1 that the definition of fkt (A) implies that for all380

ak,m ∈ Ak there exist a pair of actions at,1k,m, a
t,2
k,m ∈ Ak,m such that381

Pt[fkt (A) = at,1k,m|A ∈ Ak,m] = ptk,m, Pt[fkt (A) = at,2k,m|A ∈ Ak,m] = 1− ptk,m.

For the sake of brevity, we define the notation382

Qt[ak−1,m, ak,l, i, i
′] :=Pt[fk−1

t (A⋆k−1) = at,ik−1,m|A⋆k−1 ∈ Ak,m]

· Pt[fkt (A⋆k) = at,i
′

k,l |A
⋆
k ∈ Ak,l]

· Pt[A⋆k ∈ Ak,l, A
⋆
k−1 ∈ Ak−1,m]

and use the notation {(ak−1,δn , ak,γn , iµn , i
′
νn)}

Nk
n=1 to represent the sequence of all quadruplets383

{ak−1, ak, i, i
′} such that ak−1 ∈ Ak−1, ak ∈ Ak, i ∈ {1, 2}, i′ ∈ {1, 2} and πk−1(ak) = ak−1,384

where Nk is the number of such quadruplets.385

386

We will first focus on

Et
[(
R(fkt (A

⋆
k))−R(fk−1

t (A⋆k−1))
)
−
(
R(fkt (Ât,k))−R(fk−1

t (Ât,k−1))
)]

and note that we can relate it to the trace of a random matrix. Indeed, using the previously introduced387

notations, we can write this expectation as388

Nk∑
n=1

Qt[ak−1,δn , ak,γn , iµn
, i′νn ]

·
(
Et[R(a

t,iµn

k,γn
)−R(a

t,i′νn
k−1,δn

)|fkt (A⋆k) = a
t,iµn

k,γn
, fk−1
t (A⋆k−1) = a

t,i′νn
k−1,δn

]− Et[R(a
t,iµn

k,γn
)−R(a

t,i′νn
k−1,δn

)]
)
.

Therefore, for any round t ∈ {1, . . . , T}, conditioned on the history Ĥt, we can define a random389

matrix Mk,t ∈ RNk×Nk by specifying the entry Mk,t
p,q to be equal to390 √

Qt[ak−1,δp , ak,γp , iµp
, i′νp ]

√
Qt[ak−1,δq , ak,γq , iµq

, i′νq ](
Et[R(a

t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)|fkt (A⋆k) = a
t,iµp

k,γp
, fk−1
t (A⋆k−1) = a

t,i′νp
k−1,δp

]− Et[R(a
t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)]
)

for all p, q = 1, . . . , Nk. In this way, the trace of the matrix Mk,t is equal to the desired expectation,
namely

Tr(Mk,t) = Et
[
(R(fkt (A

⋆
k))−R(fk−1

t (A⋆k−1)))− (R(fkt (Ât,k))−R(fk−1
t (Ât,k−1)))

]
.
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Here, we can note that R(fkt (A
⋆
k)) − R(fk−1

t (A⋆k−1)) is (6 · 2−k)2-sub-Gaussian. Indeed, by391

construction, of fkt (A
⋆
k) and fk−1

t (A⋆k−1), we had showed in (5) that ρ(fkt (A
⋆
k), A

⋆) ≤ 2 · 2−k and392

ρ(fk−1
t (A⋆k−1), A

⋆) ≤ 2 · 2−(k−1). Then, by using the triangle inequality, we have that393

ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)) ≤ ρ(fkt (A

⋆
k), A

⋆) + ρ(A⋆, fk−1
t (A⋆k−1)) ≤ 2 · 2−k + 2 · 2−(k−1) = 6 · 2−k.

Similarly, we can show that R(fkt (Ât,k))−R(fk−1
t (Ât,k−1)) is also (6 · 2−k)2-sub-Gaussian.394

395

In the same fashion as in (Russo and Van Roy, 2015, Proposition 5), we relate the mutual information

It(fkt (A
⋆
k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

to the squared Frobenius norm of Mk,t as:396

It(fkt (A
⋆
k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

≥ It(fkt (A
⋆
k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k))−R(fk−1

t (Ât,k−1)))

=

Nk∑
p=1

Nk∑
q=1

Qt[ak−1,δp , ak,γp , iµp , i
′
νp ]Qt[ak−1,δq , ak,γq , iµq , i

′
νq ]

· DKL(P
R(a

t,iµq
k,γq

)−R(a
t,i′νq
k−1,δq

)|Ĥt,fk
t (A⋆

k)=a
t,iµp
k,γp

,fk−1
t (A⋆

k−1)=a
t,i′νp
k−1,δp

||P
R(a

t,iµq
k,γq

)−R(a
t,i′νq
k−1,δq

)|Ĥt
)

≥
Nk∑
p=1

Nk∑
q=1

Qt[ak−1,δp , ak,γp , iµp
, i′νp ]Qt[ak−1,δq , ak,γq , iµq

, i′νq ] ·
1

2 · (6 · 2−k)2

·
(
Et[R(a

t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)|fkt (A⋆k) = a
t,iµp

k,γp
, fk−1
t (A⋆k−1) = a

t,i′νp
k−1,δp

]− Et[R(a
t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)]
)2

=
1

2(6 · 2−k)2
||Mk,t||2F

where the last inequality is obtained again using the Donsker–Varadhan inequality (Gray, 2013,397

Theorem 5.2.1) as in (Russo and Van Roy, 2015, Lemma 3).398

Combining the last two equations and using the inequality trace(M) ≤
√

rank(M)||M ||F (Russo399

and Van Roy, 2015, Fact 10), it comes that400

Γt,k ≤ 2(6 · 2−k)2 Trace(Mk,t)2

||Mk,t||2F
≤ 2(6 · 2−k)2 · rank(Mk,t) a.s..

We conclude the proof by showing that the rank of the matrix Mk,t is upper bounded by d.401

For the sake of brevity, we define Θt := Et[Θ] and for n = 1, . . . , Nk, we define402

Qn,t = Qt[ak−1,δn , ak,γn , iµn
, i′νn ] and Θn,t = Et[Θ|fkt (A⋆k) = a

t,iµn

k,γn
, fk−1
t (A⋆k−1) = a

t,i′νn
k−1,δn

].403

404

We then have405

Et
[
R(a

t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)

]
= Et

[
⟨at,iµq

k,γq
,Θ⟩ − ⟨a

t,i′νq
k−1,δq

,Θ⟩
]
= ⟨at,iµq

k,γq
− a

t,i′νq
k−1,δq

,Θt⟩

and406

Et
[
R(a

t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)|fkt (A⋆k) = a
t,iµp

k,γp
, fk−1
t (A⋆k−1) = a

t,i′νp
k−1,δp

]
= Et

[
⟨at,iµq

k,γq
,Θ⟩ − ⟨a

t,i′νq
k−1,δq

,Θ⟩|fkt (A⋆k) = a
t,iµp

k,γp
, fk−1
t (A⋆k−1) = a

t,i′νp
k−1,δp

]
= ⟨at,iµq

k,γq
− a

t,i′νq
k−1,δq

,Θp,t⟩

Since the inner product is linear, we can rewrite each entry Mk,t
p,q of the matrix Mk,t as407 √

Qp,tQq,t⟨a
t,iµq

k,γq
− a

t,i′νq
k−1,δq

,Θp,t −Θt⟩.
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Equivalently, the matrix Mk,t can be written as408 
√
Q1,t(Θ1,t −Θt)

...√
QNk,t(ΘNk,t −Θt)

[√
Q1,t

(
a
t,iµ1

k,γ1
− a

t,i′ν1
k−1,δ1

)
· · ·

√
QNk,t

(
a
t,iµNk

k,γNk
− a

t,i′νNk

k−1,δNk

)]
.

This rewriting highlights that Mk,t can be written as the product of a Nk by d matrix and a d by Nk409

matrix and therefore has a rank lower or equal than min(d,Nk).410

411

For completeness, we can write that the chain-link information ratio is upper bounded by Γt,k ≤412

2 · ρ2k · d where ρk is an upper bound on ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)). This remark will be of use in the413

proof of Proposition 3.414

B.3 Proof of Corollary 1415

Bounding the entropy of A⋆k by the cardinality of set Ak, we have that416

∞∑
k=k0+1

2−k
√

H(A⋆k) ≤
∞∑

k=k0+1

2−k
√

log(|N (A, ρ, 2−k)|).

By definition of the ε-net, |N (A, ρ, ε)| is decreasing in ε. It then comes that417

∞∑
k=k0+1

2−k
√

log(|N (A, ρ, 2−k)|) = 2

∞∑
k=k0+1

∫ 2−k−1

2−k

√
log(|N (A, ρ, 2−k)|) dε

≤ 2

∞∑
k=k0+1

∫ 2−k−1

2−k

√
log(|N (A, ρ, ε)|) dε

= 2

∫ diam(A)

0

√
log(|N (A, ρ, ε)|) dε.

= 2

∫ ∞

0

√
log(|N (A, ρ, ε)|) dε,

where the last equality comes from the fact that N (A, ρ, ε) is a singleton for every ε > diam(A).418

Using this fact together with Theorem 1 yields the desired result.419

B.4 Proof of Proposition 3420

At the end of the proof of Proposition 2, we have shown that the chain-link information ratio was in
general bounded by Γt,k ≤ 2 · ρ2k · d where ρk is an upper bound on ρ(fkt (A

⋆
k), f

k−1
t (A⋆k−1)) and

proved that by definition of the quantization, A⋆k and the sampling functions fkt , it holds that

ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)) ≤ 2 · 2−k + 2 · 2−(k−1).

We can reflect that the choice of using 2−k-nets to define our sequence of quantizations {A⋆k}∞k=k0+1

was arbitrary. In general, we could have considered a α−k-net for some α > 1. Adapting the bound
on ρk and to that reflection leads to the following bound:

ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)) ≤ 2 · α−k + 2 · α−(k−1).

421

Combining this result with Theorem 1, we get that422

REG2-TS
T ≤ 2

∞∑
k=k0+1

√
2 · ρ2k · d · T · log(|N (A, ρ, α−k)|),
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where we upper bounded the entropy of A⋆k by the logarithm of the cardinality of the set Ak.423

424

Applying Lemma 2 to the upper bound the cardinality of the smallest α−k-net N (A, ρ, α−k) and425

rearranging the terms, we get the following bound:426

REG2-TS
T ≤ 2 · d ·

√
T

∞∑
k=k0+1

√
2 · ρ2k · log(2 · αk + 1).

Now, we note that for linear bandit problems, we can define the first quantization set Ak0 to427

be the center of the ball, that is Ak0 = {0d} where 0d is the d-dimensional zero and chose428

fk0t (0d) = 0d. It is easy to verify that this choice satisfies Proposition 1 (i) as A⋆k0 = Ât,k0 = 0d and429

fk0t (A⋆k0) = fk0t (Ât,k0) = 0d, as well as fulfills 4 as R(fk0t (Ât,k0)) = R(0d) does not depend on430

the Θ and therefore is independent of A⋆ and A⋆k0+1.431

432

Observing that in the unit ball, by definition the radius is 1, we first note that Ak0 is a (α0)-net for433

A, implying k0 = 0 and secondly that ρ(fk0+1
t (A⋆k0+1), f

k0
t (A⋆k0)) = ρ(fk0+1

t (A⋆k0+1), 0d) ≤ 1434

and therefore we can use ρk0+1 = 1 which is a better upper bound than 2 · α−(k0+1) + 2 · α−k0 =435

2 · (1 + α−1).436

437

Applying those results, we obtain the following bound:438

REG2-TS
T ≤ d

√
T · 2 ·

(√
2 · log(2α+ 1) +

∞∑
k=2

(2 · α−k + 2 · α−(k−1))
√
2 · log(2αk + 1)

)
.

For instance, choosing α = 20, we have that

2 ·
(√

2 · log(2α+ 1) +

∞∑
k=2

(2 · α−k + 2 · α−(k−1))
√
2 · log(2αk + 1)

)
≈ 6.27.

Finally, rounding up this value leads to the claimed result.439
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