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Abstract
Conditional average treatment effect (CATE) is the aver-
age causal effect of a treatment or an intervention (e.g.,
medication) on the outcome of interest, conditional on sub-
jects’ covariates. A key challenge in estimating causal ef-
fects from observational (OBS) data is to address unmea-
sured confounding. Mainstream methods that only rely on
OBS data including sensitivity analysis, front door adjust-
ment methods, and instrumental variables methods, may de-
pend on strong assumptions. Recent studies suggest using
randomized controlled trial (RCT) data to correct CATE es-
timates from biased OBS data, but existing methods may fail
to efficiently utilize both data. In this paper, we present an
end-to-end CATE estimation framework that addresses un-
measured confounding bias from OBS data using insights
from limited unbiased RCT data. By learning representa-
tions from RCT data accounting for unmeasured confound-
ing, our approach achieves unbiased CATE estimation. Our
adaptive model structure mitigates overfitting and ensures
performance across different RCT sample sizes. Extensive
experiments on different datasets validate the effectiveness of
the framework.

Introduction
Conditional mean treatment effect (CATE) refers to the
causal effect of a treatment or intervention on a relevant
outcome given subject characteristics (Pearl 2009), and it
plays an important role in several fields such as e-commerce
(Wu et al. 2022c), healthcare (Robins and Hernán 2016), and
economics (Huynh, Kreinovich, and Sriboonchitta 2016).
In these scenarios, CATE provides a basis for personal-
ized decision-making, making resource allocation more ac-
curate and efficient. The computation of CATE usually relies
on causal inference methods, including randomized trials,
propensity score matching, dual machine learning, etc. In
recent years, with the rapid development of machine learn-
ing and deep learning technology, CATE estimation meth-
ods based on complex models have been widely used. By
dealing with high-dimensional features and nonlinear re-
lationships, these methods can more accurately reveal the
causal effects of individual differentiation and provide more
powerful tool support for practice in various fields (Huynh,
Kreinovich, and Sriboonchitta 2016; Wang et al. 2024a).
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To improve the accuracy of CATE estimation, several
methods utilizing representation learning have been intro-
duced. Representation learning techniques aim to learn use-
ful features or embeddings from the data that can better cap-
ture the underlying structure of the relationships between co-
variates, treatment assignment, and outcomes. These learned
representations are particularly valuable when the data are
high-dimensional or involve complex interactions, which
traditional methods may struggle to model effectively. Cur-
rent strategies for obtaining these representations include ap-
proaches such as integral probability metric (IPM) regular-
ization (Johansson, Shalit, and Sontag 2016), local similar-
ity preservation (Yao et al. 2018), targeted learning (Zhang,
Bellot, and Schaar 2020), and optimal transport (Wang et al.
2024b).

Unmeasured confounding refers to the situation where
there are hidden or unobserved variables that influence both
the treatment assignment and the outcome, leading to biased
estimates of causal effects (Li et al. 2023). In the context
of CATE estimation, if such unmeasured confounders are
present, it becomes difficult to accurately assess the causal
effect of a treatment or intervention because the relation-
ship between the treatment (Charpignon et al. 2022), covari-
ates, and outcome is distorted. Ignoring these unmeasured
confounders can lead to misleading conclusions, as the es-
timated treatment effect may be confounded by factors that
were not considered or included in the analysis. This is par-
ticularly challenging when trying to make reliable inferences
about heterogeneous treatment effects across different sub-
groups, as the unmeasured confounding can vary across in-
dividuals, further complicating the estimation process (Xu
and Li 2020) .

Numerous established methods heavily depend on large-
scale observational (OBS) data to solve unmeasured con-
founding, such as instrumental variable techniques (Joshua
D. Angrist and Rubin 1996), front-door adjustment (Fulcher
et al. 2020), and sensitivity analysis (Imbens 2003). How-
ever, these methods are based on unverified assumptions,
which raises concerns about their validity if these assump-
tions are violated (Hartwig et al. 2023). On the other hand,
randomized controlled trial (RCT) data are widely consid-
ered the gold standard for causal inference (Prosperi et al.
2020). Nevertheless, the high costs and ethical dilemmas as-
sociated with RCTs often hinder their use, leading to small



sample sizes (Zabor, Kaizer, and Hobbs 2020). This makes
it impractical to directly train causal models on RCT data
in many cases (Hoogland et al. 2021). Some approaches at-
tempt to combine RCT and OBS data, using residual correc-
tion techniques to address biases (Colnet et al. 2024).

In this paper, we propose a novel end-to-end framework
to address unmeasured confounding with limited unbiased
RCT data. Specifically, we learn representations through
OBS data to obtain measured confounding effects, accu-
rately predict results from OBS, and learn representations
through RCT data to capture information about unmeasured
confounding bias, thereby calibrating the residuals between
OBS biased estimates and RCT unbiased estimates. This
method also maximizes mutual information between the two
representations to minimize information overlap, ensuring
that the representation can effectively capture information
of unmeasured confounding effect. The proposed framework
adjusts model structures flexibly based on the size of avail-
able RCT data to mitigate overfitting issues.

The main contributions of this paper are summarized as
follows:
• We propose an end-to-end framework for estimating

CATE, which learns representations to account for ef-
fects from unmeasured confounding to calibrate residuals
to correct biased estimates derived from OBS data.

• The proposed framework can flexibly adjust its model
structure according to the sample size of RCT data, thus
solving the over-fitting problem.

• Extensive experiments are conducted on IHDP and ACIC
datasets to demonstrate the effectiveness of our proposal.

Related Work
CATE Estimation. CATE (Conditional Average Treat-
ment Effect), also known as heterogeneous treatment effect
(HTE), measures treatment effect variation across subgroups
based on covariates. Traditional methods include matching
(Dehejia and Wahba 2002), stratification (O’Muircheartaigh
and Hedges 2014), reweighting (Rosenbaum 1987; Bang
and Robins 2005), and tree-based methods (Chipman,
George, and McCulloch 2010; Wager and Athey 2018). Re-
cent advances, fueled by deep learning, have introduced
representation learning and generative models. Representa-
tion learning aims to balance covariate distributions between
treatment and control groups, reducing confounding bias us-
ing techniques such as IPM (Johansson, Shalit, and Son-
tag 2016; Shalit, Johansson, and Sontag 2017), similarity
preservation (Yao et al. 2018, 2019), and optimal transport
(Wang et al. 2024b; Torous, Gunsilius, and Rigollet 2021).
Generative models like VAE (Louizos et al. 2017) and GANs
(Yoon, Jordon, and Van Der Schaar 2018) estimate counter-
factual outcomes by modeling the data generation process.

Unmeasured Confounding. Unmeasured confounding
refers to unmeasured variables that influence both treatment
and outcome, leading to biased CATE estimates (Ananth and
Schisterman 2018). Solutions can be categorized into two
types: those using observational (OBS) data and those com-
bining OBS and RCT data. OBS-based methods include sen-
sitivity analysis, which quantifies the impact of unmeasured

confounding and provides bounds (Rosenbaum and Rubin
1983; Robins, Caspi, and Moffitt 2000), though the assump-
tion of similar confounder behavior across individuals is of-
ten unrealistic (Imbens 2003). Auxiliary methods like instru-
mental variables (IV) and front-door adjustment use external
instruments or causal pathways to address confounding (Im-
bens 2014; Wu et al. 2022a; Rudolph, Williams, and Dı́az
2024; Bellemare, Bloem, and Wexler 2020; Fulcher et al.
2020), but have limitations related to linearity and causal
graph knowledge (Frauen and Feuerriegel 2022; Shah, Shan-
mugam, and Kocaoglu 2024). Data fusion techniques com-
bine RCT and OBS data to correct bias, with some assuming
linear bias models (Kallus, Puli, and Shalit 2018; Ilse et al.
2021), while others, such as (Wu et al. 2022b) and (Cheng
and Cai 2021), use methods like R-learner or weighted av-
erages. These often require large sample sizes, which are
difficult to obtain in RCTs.

Preliminaries
Problem Setup
We analyze two distinct data sources derived from the same
target population: one obtained from a randomized con-
trolled trial (RCT) and the other from an observational study
(OBS). For each participant in either the RCT or the OBS
study, the information is represented by the random tuple
(X,Y, T ), following the distribution P . Each dataset in-
cludes covariates X ∈ X ⊆ Rd, binary treatment assign-
ments T ∈ {0, 1} (where T = 0 indicates control and T = 1
denotes treatment), and outcomes Y . Using the Neyman-
Rubin potential outcome framework (Imbens and Rubin
2015), we denote the potential outcomes as Y (1) and Y (0).
The RCT data is represented as Di = (Xi, Ti, Yi) : i ∈ A,
while the OBS data is denoted as Di = (Xi, Ti, Yi) : i ∈ B.
The conditional average outcome is expressed as µ(X,G) =
E[Y |X,G]. Furthermore, the Conditional Average Treat-
ment Effect (CATE) is defined as the difference in the ex-
pected potential outcomes under the given conditions:

τ(x) = E[Y (1)− Y (0) | X = x].

To estimate the Causal Average Treatment Effect (CATE)
from observed data, three additional assumptions are neces-
sary, alongside the Stable Unit Treatment Value Assump-
tion (SUTVA). These assumptions are: (1) Ignorability:
(Y (1), Y (0)) ⊥ T | X; (2) Consistency: Y = TY (1) +
(1 − T )Y (0); and (3) Positivity: 0 < e(X,G) < 1 for all
X ∈ X .

Methodology
Overview
We propose the an end-to-end framework as in figure 1, with
the motivation of using a small unbiased data to calibrate
the bias in OBS estimates for training the unbiased predic-
tion model. Specifically, we use the treatment and control
subspaces to learn the representations of the covariates for
the treatment and control groups, respectively, and learn two
representations in each subspace to capture the effects of



Figure 1: Framework of the proposed subspace learning approach

measurement confounding and unmeasurement confound-
ing on the CATE estimates respectively, with one representa-
tion learned through OBS learning to accurately predict the
outcome of OBS data, and the other representation learned
through RCT to bridge the gap between unbiased RCT es-
timates and OBS biased estimates. The loss function of the
proposed approach is defined as

L = Lf + αLMI + β
(
LOBS
c + LOBS

t

)
+ γLrec + λ∥F∥2,

where Lf is the RCT outcome prediction loss, LOBS
c , LOBS

t
are the OBS outcome prediction losses in the control and
treated subspace, LMI is mutual information loss in subspace
combination, Lrec is the reconstruction loss, and ∥F∥2 is the
regularization on all parameters and α, β, γ, λ is the hyper-
parameters.

Network Architecture
Representation Unlike previous studies that align co-
variates from different distributions between treatment and
control groups using treatment-independent representations,
which can lead to significant information loss (Nagalapatti
et al. 2024), we employ treatment subspace and control sub-
space to separately learn representations of covariates for the
treatment and control groups.

To address the unmeasured confounding bias, we learn
the representation ZU

c , ZU
t with RCT data to obtain the in-

formation of unmeasured confounding, which helps correct
the biased estimates Ỹ (x) to unbiased estimates Ŷ (x).

Specifically, in each subspace, we design two feed-
forward representation network Φc(X), ΦU

c (X) with dc
and duc hidden layers and employ the exponential linear
unit (ELU) as the activation function. Specifically, measured
confounding are mapped through deep neural networks to
the representations Zc = Φc(X), Zt = Φt(X) learned from
OBS data Zc = Φc(X), Zt = Φt(X). The unmeasured con-
founding are mapped through shallow neural networks to the

representations ZU
c = ΦU

c (X), ZU
t = ΦU

t (X) learned from
RCT data. It is important that adjustments are made to the
shallow neural networks based on the sample size of RCT
data to prevent overfitting.

To better represent control information, we introduced an
external linear prediction layer to generate OBS outcome es-
timates in the control space. Ỹ(0) = (wc)

⊤Zc + bc, where
Zc ∈ Rkc×n, wc ∈ Rkc , ZU

c ∈ Rkuc×m Zc ∈ Rkc×n, kc is
the dimension of the last hidden layer of Φc. The treatment
subspace follows a similar approach: Ỹ(1) = (wt)

⊤Zt+bt,
where Zt ∈ Rkt×n, wt ∈ Rkt , ZU

t ∈ Rkut×m, kt is the di-
mension of the last hidden layer of Φt, kut is the dimension
of the last hidden layer of ΦU

t .
Since there is hidden confounding in the OBS data, the

estimated outcomes are not unbiased. For this reason, we
name the prediction result Ỹ0 as the pseudo-control outcome
and Ỹ1 as the pseudo-treatment outcome. We use the pseudo-
differential LOBS

c and LOBS
t to measure the distance between

the pseudo-outcome and the outcome of the real observed
data.

LOBS
c =

1∑
i∈B I(Ti = 0)

(1− Ti)l(Yi, Ỹi(0)),

LOBS
t =

1∑
i∈B I(Ti = 1)

Til(Yi, Ỹi(1)),

where I(·) is the indicator function.

Combination Our approach concatenates the measured
confounding representations learned from OBS data and un-
measured confounding representations learned from RCT
data to jointly estimate the unbiased outcome.

We define two representation matrices Hc and Ht. The
matrix Hc represents the covariate representations for the

control group, defined as Hc =

[
Zc

ZU
c

]
. Similarly, the matrix



Ht denotes the covariate representations for the treatment

group, defined as: Ht =

[
Zt

ZU
t

]
, where Hc ∈ R(kc+kuc)×N

and Ht ∈ R(kt+kut)×N represent the representation matri-
ces for the control and treatment groups, respectively. kc and
kt are the dimensions of the measured confounding, kuc and
kut are the dimensions of the representations of the unmea-
sured confounding, and N is the sample size.

To reduce overlap in the information already contained in
Z relative to ZU , we adopt the approach of minimizing the
mutual information between Z and ZU :

LMI =−
(
Ep(Zc,ZU

c )

[
K

(
Zc, Z

U
c

)]
− log

(
Ep(Zc)p(ZU

c )

[
eK(Zc,Z

U
c )

])
+
(
Ep(Zc,ZU

c )

[
K

(
Zc, Z

U
c

)]
− log

(
Ep(Zc)p(ZU

c )

[
eK(Zc,Z

U
c )

])
,

where K(·) is functions parameterized by neural networks.
This approach ensures that ZU captures distinct aspects of
confounding not already captured by Z, which helps ZU

capture the effect of unmeasured confounding.

Reconstruction and Prediction To ensure that Zc and
Zt retain as much information about the original covari-
ates as possible, we introduce the decoder networks Ψc, Ψt

to reconstruct the original control and treated data: X̂c =

Ψc(Zc), X̂t = Ψt(Zt). The reconstruction loss is

Lrec =
∑
i∈B

((1− Ti)

d∑
j=1

l(Xi,j , X̂c,i,j)

+ Ti

d∑
j=1

l(Xi,j , X̂t,i,j)),

where X̂c,i,j and X̂t,i,j are reconstructed value of covari-
ate j for sample i in the control group and treatment group
respectively. To ensure that there is no overfitting with lim-
ited RCT data and that CATE can be accurately estimated,
we avoid directly predicting outcomes with ZU

c and ZU
t . In-

stead, we use the concatenated representations Hc, Ht to
predict the unbiased estimates of outcomes in RCT with
shallow neural network. We define fc(Hc) and ft(Ht) as the
predictors for control and treatment outcomes Ŷ0 = fc(Hc),
Ŷ1 = ft(Ht). The outcome prediction loss as follows.

Lf =
1∑

i∈A I(Ti = 1)
Til(Yi, Ŷi(1))

+
1∑

i∈A I(Ti = 0)
(1− Ti)l(Yi, Ŷi(0)).

Advantages: We utilize an auto-encoder approach to pre-
dict accurate OBS estimates and employ limited unbiased
RCT data to learn representations effectively capturing un-
measured confounding biases. This enables us to calibrate
residuals between OBS and RCT estimates to achieve unbi-
ased learning with unmeasured confounding. In additional,

we design a flexible network architecture that adjusts based
on the sample size of RCT data to prevent overfitting. Addi-
tionally, considering the limited informational of RCT data
for outcome prediction, we focus instead on concatenated
representations to predict unbiased CATE estimates.

Experiment

Dataset and Prepossessing
Following previous studies (Shalit, Johansson, and Son-
tag 2017; Louizos et al. 2017; Yoon, Jordon, and Van
Der Schaar 2018), we conduct experiments on two semi-
synthetic dataset, IHDP (Hill 2011), and ACIC (Dorie et al.
2019). The IHDP introduced a semi-synthetic dataset for
causal effect estimation. The dataset was based on the In-
fant Health and Development Program (IHDP), in which the
covariates were generated by a randomized experiment in-
vestigating the effect of home visits by specialists on future
cognitive scores. it consists of 747 units (19% treated, 81%
control) and 25 covariates measuring the children and their
mothers. The ACIC is a common benchmark dataset de-
veloped for the 2016 Atlantic Causal Inference Conference
competition data. It comprises 4,802 units (28% treated,
72% control) and 82 covariates measuring aspects of the
linked birth and infant death data (LBIDD).

Data Preprocessing
Since the dataset does not contain a separate RCT dataset,
it is necessary to separate the RCT data. First, we slice the
training, validation, and test sets in the ratio of 80/10/10.
Second, for all samples in the validation set, we randomly
assign treatments according to the following formula and re-
place the original treatment T and factual outcome Yf :
Tnew = Bern(0.5), Ynew = I{Tnew = T}(Yf−Ycf )+Ycf ,

where the Bern(·) is the Bernoulli distribution, Yf is the fac-
tual outcome, and Ycf is the counterfactual outcome. For
the training set, we split 10% of the samples as RCT data,
and replace the treatment T and factual outcome Y using
the above formula. In addition, to simulate the unmeasured
confounding effect, we randomly mask 50% features in our
experiment.

Baselines and Evaluation Metrics
We compare our method with the following baselines:
T-learner (Künzel et al. 2019), X-learner (Künzel et al.
2019), Causal Forest (Wager and Athey 2018) BNN (Jo-
hansson, Shalit, and Sontag 2016), TARNet (Shalit, Jo-
hansson, and Sontag 2017),CEVAE (Louizos et al. 2017),
GANITE (Yoon, Jordon, and Van Der Schaar 2018), Drag-
onNet (Shi, Blei, and Veitch 2019), DESCN (Zhong et al.
2022), and ESCFR (Wang et al. 2023). Following the previ-
ous studies (Shalit, Johansson, and Sontag 2017; Yao et al.
2018), we evaluation the performance of CATE estimation
using the Precision in Estimation of Heterogeneous Effects
(PEHE), which is defined as

ϵPEHE =
1

N

N∑
i=1

((Ŷi(1)− Ŷi(0))− (Yi(1)− Yi(0)))
2,



Table 1: The experiment results on the IHDP dataset and ACIC dataset. The best result is bolded.

IHDP ACIC
In-sample Out-sample In-sample Out-sample

Methods
√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

T-learner 2.06 ± 0.04 1.27 ± 0.05 2.23 ± 0.04 1.48 ± 0.07 2.76 ± 0.13 1.05 ± 0.40 2.95 ± 0.11 0.93 ± 0.39
X-learner 2.07 ± 0.04 1.15 ± 0.04 2.15 ± 0.05 1.34 ± 0.05 2.80 ± 0.11 0.42 ± 0.26 3.18 ± 0.13 0.53 ± 0.26
BNN 2.40 ± 0.22 1.29 ± 0.43 2.93 ± 0.24 1.48 ± 0.47 2.68 ± 0.30 0.97 ± 0.34 2.41 ± 0.18 0.88 ± 0.32
Causal Forest 1.87 ± 0.00 1.01 ± 0.00 1.87 ± 0.00 1.08 ± 0.00 2.23 ± 0.00 0.49 ± 0.00 2.31 ± 0.00 0.42 ± 0.00
TARNet 2.30 ± 0.31 1.28 ± 0.48 2.73 ± 0.40 1.58 ± 0.52 2.94 ± 0.27 1.16 ± 0.37 2.75 ± 0.23 1.03 ± 0.36
CEVAE 4.30 ± 0.38 3.99 ± 0.41 4.37 ± 0.38 4.07 ± 0.41 4.92 ± 0.21 2.59 ± 0.40 5.04 ± 0.18 2.28 ± 0.40
GANITE 6.57 ± 6.32 4.48 ± 1.32 6.60 ± 6.31 5.21 ± 3.23 4.60 ± 1.81 2.69 ± 0.80 4.59 ± 1.81 2.75 ± 0.73
DragonNet 2.54 ± 0.33 1.70 ± 0.51 3.01 ± 0.37 1.99 ± 0.53 2.91 ± 0.24 1.00 ± 0.48 2.69 ± 0.22 0.89 ± 0.46
DESCN 2.68 ± 0.88 1.78 ± 0.97 3.03 ± 1.05 2.06 ± 1.08 3.51 ± 1.84 0.80 ± 0.40 2.93 ± 1.43 0.81 ± 0.57
ESCFR 2.35 ± 0.25 1.11 ± 0.51 2.82 ± 0.32 1.33 ± 0.44 2.67 ± 0.17 0.87 ± 0.33 2.42 ± 0.20 0.71 ± 0.34
Ours 1.73 ± 0.15 0.90 ± 0.09 1.80 ± 0.12 0.95 ± 0.23 2.11 ± 0.51 0.40 ± 0.11 2.15 ± 0.12 0.68 ± 0.27

Table 2: Results (mean±std) of PEHE and ATE on IHDP and ACIC Datasets.

IHDP ACIC
PEHE-In PEHE-Out ATE-In ATE-Out PEHE-In PEHE-Out ATE-In ATE-Out

Ours w/o LMI 1.89 ± 0.17 1.01 ± 0.21 1.93 ± 0.18 1.09 ± 0.25 2.18 ± 0.31 0.26 ± 0.31 2.48 ± 0.20 0.44 ± 0.30
Ours w/o Le and Lt 2.26± 0.18 1.35± 0.07 2.15± 0.16 1.33± 0.20 2.35± 0.36 0.70± 0.20 2.40± 0.25 0.77± 0.25

Ours w/o Lrec 1.82± 0.13 1.04± 0.09 1.85± 0.16 1.01± 0.16 2.21± 0.32 0.43± 0.14 2.11± 0.14 0.69± 0.31
Ours w/o Lf 2.15± 0.25 1.24± 0.26 2.10± 0.16 1.10± 0.27 2.54± 0.27 0.61± 0.28 2.37± 0.14 0.80± 0.20

Ours 1.73 ± 0.15 0.90 ± 0.09 1.80 ± 0.12 0.95 ± 0.23 2.11 ± 0.51 0.40 ± 0.11 2.15 ± 0.12 0.68 ± 0.27

where Ŷ1(Z) and Ŷ0(Z) are the predicted values for the cor-
responding true potential outcomes. In addition, we also use
the absolute error in Average Treatment Effect (ATE) to eval-
uate performance, which is defined as

ϵATE =
1

N
|

N∑
i=1

((Ŷi(1)− Ŷi(0))− (Yi(1)− Yi(0)))|.

Both in-sample and out-of-sample performances are re-
ported in our experiments.

Performance Analysis
The experiment results on the IHDP dataset and ACIC
datasets are shown in Table 1. We have the following find-
ings: first, among the baseline models, statistical models
such as T-learner, S-learner, and Casual Forest demonstrate
competitive performance and methods based on deep rep-
resentation learning demonstrate sub-optimal performance.
In addition, methods based on generative models perform
poorly, possibly because the assumptions of the data gener-
ation process are violated. Second, our method outperforms
the baseline method in all scenarios, showing the effective-
ness of the proposed structure.

Ablation Study
In the proposed framework, all the loss components play an
important role. Therefore, it is necessary to design an abla-
tion study to explore the effects of each loss. The results are
shown in Table 2. First, the method that includes all losses
achieves the best performance, moreover, we find that it is

the Lf , LOBS
e , and LOBS

c losses that most affect the estima-
tion performance. This is because when without LOBS

e and
LOBS
c , the Lf loss alone will have an overfitting problem,

meanwhile, there is no way to correct for the confounding
bias from the observational data by relying on only LOBS

e
and LOBS

c . Meanwhile, the model without LOBS
e and LOBS

c
performs worse than the model without Lf , which further il-
lustrates the overfitting problem associated with fitting the
model directly on limited RCT data. In addition, we find
that the model without LMI performs worse than the model
without Lrec. This is due to the fact that LMI can constrain
the overlap in the information between the learned two rep-
resentations Zc and ZU

c , whereas Lrec is not very helpful in
learning the representation.

Conclusion
This paper introduces a novel subspace learning framework
that utilizes limited unbiased RCT data to mitigate unmea-
sured confounding bias. Our framework leverages OBS data
to learn representations that account for measured confound-
ing effects, accurately predicting outcomes. Additionally, it
incorporates RCT data to capture information on the un-
measured confounding bias, calibrating residuals between
OBS biased estimates and RCT unbiased estimates. Fur-
thermore, our framework maximizes mutual information be-
tween these representations to effectively capture the ef-
fects of unmeasured confounders. The proposed framework
adopts flexible model structures based on the sample size of
RCT data to address overfitting issues. We conduct experi-
ments on two datasets to show superiority of our approach.
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