
UTMath: Math Evaluation with Unit Test
via Reasoning-to-Coding Thoughts

Anonymous ACL submission

Abstract
The evaluation of mathematical reasoning capa-001
bilities is essential for advancing Artificial Gen-002
eral Intelligence (AGI). While Large Language003
Models (LLMs) have shown impressive perfor-004
mance in solving mathematical problems, ex-005
isting benchmarks such as GSM8K and MATH006
present limitations, including narrow problem007
definitions with specific numbers and reliance008
on predetermined rules that hinder accurate as-009
sessments of reasoning and generality. This010
paper introduces the UTMath Benchmark, a011
robust evaluation framework designed to as-012
sess LLMs through extensive unit tests, with013
a focus on both the accuracy and generality014
of model responses. The benchmark com-015
prises 1,053 cutting-edge problems spanning016
nine mathematical domains, with an average017
of 68 test cases per problem. Furthermore, we018
present the Reasoning-to-Coding of Thoughts019
(RCoT) approach, which encourages LLMs020
to engage in explicit reasoning prior to code021
generation, thereby facilitating the production022
of more sophisticated solutions and enhancing023
overall performance and efficiency. Further-024
more, we also release the UTMath-Train train-025
ing dataset (more than 70k samples), to support026
the community in further exploring mathemati-027
cal reasoning. Our benchmark can be accessed028
via the following link: UTMath029

1 Introduction030

The pursuit of AGI necessitates strong mathemat-031

ical reasoning capabilities, making the evaluation032

of such abilities a crucial area of research (Zhou033

et al., 2024a). Recent advancements in LLMs034

have demonstrated remarkable proficiency in solv-035

ing complex mathematical problems, achieving036

amazing performance on various datasets of Math037

Word Problems (MWPs), such as GSM8K (Cobbe038

et al., 2021), MATH (Hendrycks et al., 2021), The-039

oremQA (Chen et al., 2023).040

However, classic benchmarks exhibit several lim-041

itations that impede the accurate and comprehen-042

How many non-congruent isosceles
triangles exist which have a
perimeter of {n=10} and integer side
lengths?

Question

Ground Truth: 2

Let x be the measure of …
There are $\\boxed{2}$ integers
strictly between 2.5 and 5.

2

2

Test 1: a(1) = 1

Test 2: a(2) = 3

Test 3: a(3) = 10

…

Test n: a(20) = 2177832612120

Evaluation in most existing math benchmarks

The definition of a(n) is the number
of ways to dissect a convex (n+2)-
gon into triangles and quadrilaterals
using nonintersecting diagonals

Question

To analyze the sequence problem,
we need to … (< Reasoning Step >)

Turn 1: < Reasoning Instruction >

def solution(x: int) -> int: ...

(< Coding Step >)

Turn 2: < Coding Instruction >

<>

Evaluation in our UTMath

The Same Question with {n=10000}

Question

Ground Truth: 2499

…, so there are 2500 non-
congruent isosceles triangles with a
perimeter of 10,000 and integer side
lengths.

2500

2500

However, GPT-4o is wrong with another n …

Figure 1: Comparison of UTMath with other bench-
marks. On the left, GPT-4o easily solved one question
but failed with a different numeric input. On the right,
our benchmark is shown, where each problem includes
multiple test cases, and a solution is correct only if all
test cases are passed. We also propose a new prompting
method RCoT in which the LLM first reasons through
the problem and then generates code.

sive assessment of these models’ capabilities (Ahn 043

et al., 2024). First, these benchmarks test models 044

on narrowly defined problems with some specific 045

numbers, which do not adequately assess generality 046

to similar but varied scenarios as shown in Fig. 1. 047

Second, their evaluation relies on predetermined 048

rules or the method of LLM-as-a-Judge((Dubois 049

et al., 2024; Zheng et al., 2023)) that usually failed 050

with capricious responses of LLMs. For example, 051

an accurate answer need to be extracted to exactly 052

match the fianl answer in the dataset GSM8K, The- 053

oremQA, and MATH dataset. While recent work 054

has made great progress in developing new bench- 055

marks, many of these approaches still fall short 056

of addressing the fundamental limitations of ear- 057

lier datasets. For instance, benchmarks like GSM- 058

HARD (Gao et al., 2023), GSM-IC (Shi et al., 059

2023), GSM-Plus (Li et al., 2024a), MetaMath (Yu 060

et al., 2023) have extended the dataset of GSM8K 061

1

https://anonymous.4open.science/r/UTMath-3356

or MATH with some perturbation such as substitu-062

tion, reversing, distractor insertion. These efforts,063

while valuable, are characterized by limited cov-064

erage and high costs. In this context, our work065

seeks to bridge these gaps by proposing a solid066

and robust benchmark that accurately evaluates the067

mathematical capabilities of LLMs.068

Drawing on evaluation methods from software069

development, we propose the design of a compre-070

hensive set of unit tests for mathematical problems071

to rigorously assess the reasoning processes of072

LLMs. If a solution successfully passes all unit073

tests within a class of problems, it suggests that074

the reasoning underlying the solution is more reli-075

able and trustworthy. Specifically, we introduce076

the UTMath, a novel benchmark derived from077

the On-Line Encyclopedia of Integer Sequences078

(OEIS) (OEIS Foundation Inc., 2024). The bench-079

mark consists of 1,053 cutting-edge problems span-080

ning 9 mathematical domains, such as Number081

Theory and Geometry. Each problem is accompa-082

nied by more than 68 test cases that provide a set083

of inputs and their corresponding outputs.084

In terms of evaluation methodology, our bench-085

mark requires models to derive a general solution086

for a class of problems, typically represented in087

the form of code. Compared to solving a problem088

defined by specific numbers, developing such a gen-089

eral solution is substantially more challenging, re-090

quiring higher levels of intelligence and reasoning091

ability. However, when we performed “Program092

of Thoughts (PoT)” (Chen et al., 2022), wherethe093

model is required to perform reasoning and coding094

in a single response, it consistently tends to produce095

simpler and straightforward solutions. We surmise096

that this tendency may be influenced by the distribu-097

tion of coding data. To address this, we introduced098

the “Reasoning-to-Coding of Thoughts (RCoT)”,099

which requires the LLM to perform mathematical100

reasoning in the first turn without any coding in-101

struction, then writing code based on the reasoning.102

Compared to PoT, RCoT shifts the code distribu-103

tion towards mathematics in the first turn, prompt-104

ing more reasoning steps.105

We conducted a comprehensive study with 8106

LLMs. Some of our key findings are summarized107

as follows: (1) The best model, GPT-4o, only108

solves 26.93% problem in our benchmark, demon-109

strate the difficulty of our benchmarks. (2) Modern110

LLMs perform poorly in Graph Theory, Group111

Theory, Geometry and Topology (Fig. 5). (3) With112

RCoT, all evaluated LLMs generated more effi-113

H
ig

he
r

is
 b

et
te

r

lower is better

Figure 2: RCoT significantly improves the efficiency
and effectiveness of the solution. It indicates that our
RCoT proves to be more effective, suggesting that it
encourages the model to reason critically and find more
efficient solutions.

cient solutions, with most models achieving higher 114

scores (Fig. 2). (4) RCoT can significantly improve 115

the pass@k performance of LLMs (§ 5.4). (5) The 116

quality of reasoning significantly impacts the ac- 117

curacy and efficiency of the model’s final solution 118

(§ 5.5). More interesting findings can be found in 119

§ 5. We hope our findings contribute to a deeper 120

understanding of current reasoning ability of LLMs 121

and the further development of models. 122

2 Related Work 123

2.1 Benchmarks 124

With the rapid development of LLMs, evaluating 125

and exploring the intelligence and limitations of 126

these models has emerged as an urgent issue to 127

address (Chang et al., 2024). Reasoning abil- 128

ity, as a crucial component of general intelligence, 129

has garnered widespread attention since the advent 130

of LLMs (Patel et al., 2021; Cobbe et al., 2021; 131

Valmeekam et al., 2022; Perez et al., 2022; Gupta 132

et al., 2022; Shakarian et al., 2023). Mathemat- 133

ical reasoning, due to its complex mathematical 134

characteristics and rigorous logical relationships, 135

is considered an abstract and high-difficulty task, 136

playing a pivotal role in demonstrating a model’s 137

reasoning capabilities. 138

To this end, researchers have proposed various 139

benchmarks focused on mathematical reasoning. 140

2

A natural and mainstream approach is to evalu-141

ate LLMs as humans would take math exams, us-142

ing human exam questions to test their reasoning143

abilities, categorized by required knowledge levels.144

Examples include GSM8K at elementary school145

level, Math and GaokaoBench-Math (Zhang et al.,146

2023) at high school level , College Math (Tang147

et al., 2024), TheoremQA (Chen et al., 2023),148

ARB (Sawada et al., 2023) at university level, and149

OlympiadBench (He et al., 2024), AGIeval-Math150

(Zhong et al., 2023) at competition level.151

Besides, researchers have also introduced many152

others focused on evaluating various aspects of153

LLMs like the robustness. These include GSM8K-154

based variants: GSM-8K-Adv (Anantheswaran155

et al., 2024), GSM-Hard (Gao et al., 2023), GSM-156

Plus (Li et al., 2024a), GSM-IC (Shi et al., 2023),157

and several independent benchmarks: RobustMath158

(Zhou et al., 2024b), MetaMathQA (Yu et al.,159

2023), PROBLEMATHIC (Anantheswaran et al.,160

2024), MATHCHECK (Zhou et al., 2024a), as161

well as other benchmarks (Li et al., 2024b, 2023).162

The distinctions between our proposed bench-163

mark and existing ones are as follows. (1) Multiple164

Case Validation. Instead of using single cases that165

can be memorized, our questions are sequence-166

based, allowing numerous cases for validating true167

understanding. (2) True Reasoning Evaluation.168

Hard cases and runtime metrics help filter memo-169

rization and compare solution efficiency, precisely170

assessing reasoning abilities.171

2.2 Building Methods172

Constructing effective, high-quality datasets is a173

complex and labor-intensive process. The advent of174

LLMs offers an opportunity to change this scenario175

(Valmeekam et al., 2022; Drori et al., 2023; Perez176

et al., 2022; Chiang and Lee, 2023; Liu et al., 2023;177

Fu et al., 2023; Kocmi and Federmann, 2023; Li178

et al., 2024b). For instance, (Almoubayyed et al.,179

2023) employed GPT-4o to rewrite mathematics180

problems based on MATHia (Ritter et al., 2007) to181

aid students in improving their math performance,182

validating this with 12,374 students and demon-183

strating the effectiveness of using LLMs for data184

construction. These efforts provide a reliable foun-185

dation for utilizing LLMs in data processing.186

In our study, we utilized GPT-4o to help us deal187

with data, such as by providing necessary back-188

ground knowledge for questions and making them189

more understandable, with more information about190

the prompts used shown in the Appendix C. Sub-191

sequently, human verification was performed to 192

ensure consistency before and after LLM usage. 193

2.3 Prompting Methods 194

Considering the attributes of large models, they 195

exhibit significant sensitivity to prompts, rendering 196

prompt engineering a critical area of study. 197

The Chain-of-Thought (Wei et al., 2022) prompt- 198

ing technique encourages models to express rea- 199

soning steps in natural language before conclud- 200

ing. Similarly, the approach by (Kojima et al., 201

2022) uses the phrase "Let’s think step by step" to 202

effectively guide large language models through 203

their reasoning. Inspired by CoT, several effec- 204

tive prompting methods have been developed, such 205

as Tree-of-Thoughts (Yao et al., 2024), Graph-of- 206

Thoughts (Besta et al., 2024). Program-of-Thought 207

prompting (Chen et al., 2022): PoT generates pro- 208

grams as the intermediate steps and integrates exter- 209

nal tools like a Python interpreter for precise calcu- 210

lations, as well as other prompting methods (Wang 211

et al., 2023; Gao et al., 2023). 212

Our RCoT method stands out by dividing rea- 213

soning into two steps: reasoning and implement- 214

ing based on reasoning. This segmentation pro- 215

vides deeper insights into LLM reasoning abilities. 216

The advantages can be summarized as follows. (1) 217

Code Output Evaluation. We require LLMs to out- 218

put code, focusing on reasoning rather than direct 219

answers, to better reflect their reasoning skills. (2) 220

Observation of Reasoning Process. By mandating 221

code implementation, we can validate the LLM’s 222

reasoning process, not just the final answer. 223

3 UTMath Benchmark 224

3.1 Introduction for OEIS. 225

The OEIS was established to document integer se- 226

quences of interest to both professional and am- 227

ateur mathematicians, and it has become widely 228

cited in the mathematical community. Most se- 229

quences are derived or updated from academic 230

papers, contributing to their cutting-edge level of 231

difficulty. As of February 2024, it contains over 232

370,000 sequences (OEIS Foundation Inc., 2024). 233

Each sequence is accompanied by an identification 234

number, a brief description, some sample integers, 235

generation rules, links to relevant literature, and, 236

where possible, program code for computing the 237

sequences. An example sequence is shown in Ap- 238

pendix A. 239

3

Data

Case 1: a(1) =2

Case 2: a(2) =5

…

Hard Case 1: a(61833) =78971
Hard Case 2: a(61834) =78972
…

OEIS

370,000

Sequences 1,053

Sequences

23,238

Sequences
UTMath

1,053 Problems

Data Crawling
Download
Principal Sequences

Data Cleaning
With Rules and GPT-4o

The definition of a(n) is: Number n
such that the sum of the divisors of
x (denoted as 𝜎 𝑥) equals n has no
solution.

After Standardize

Standardize Description

Add Hard Cases

Figure 3: UTMath generation pipline. After downloading 23,238 Principle Sequences from OEIS and cleaning the
data, 1,053 usable sequences were obtained. Descriptions were standardized by adding background information and
improving readability (highlighted in green, also shown in Appendix B.2). Hard cases were introduced to enhance
discriminative capability, including terms from later positions to prevent simplistic algorithms from passing.

3.2 Benchmark Construction.240

UTMath is a rigorous and expansive benchmark241

designed to more accurately assess the mathemat-242

ical reasoning abilities of LLMs. It consists of243

1053 math problems, with each problem having244

an average of 68 test cases. The benchmark cov-245

ers 9 mathematical domains, including not only246

common topics like number theory but also graph247

theory, group theory, topology, and geometry. The248

difficulty of UTMath is considered Cutting-Edge,249

with the majority of the sequences that form the250

problems having been studied in academic papers.251

UTMath was obtained as follow (see also Fig.3).252

Data Crawling. OEIS provides users with a list253

of principal sequences 1, which are most impor-254

tant sequences defined by OEIS. OEIS categorizes255

these sequences into sections based on the first 2-3256

letters of their content themes. By scraping the257

category tags within each section and the AIDs of258

their subordinate sequences, we obtained 23,238259

principal sequences’ AIDs. OEIS provides an inter-260

face to request the JSON data of the HTML page261

for each sequence using its AID 2. By passing the262

sequence AIDs to this interface, we acquired the263

JSON data for these 23,238 sequences.264

Data Cleaning. We found that some of the se-265

quences we collected did not meet our criteria and266

should be removed, with further details provided in267

the Appendix B. Here are several main situations.268

• Hard to solve, few terms are discoverable.269

A portion of the sequences retrieved are marked270

as “hard” in the keyword field of their entries in271

OEIS. According to OEIS, “Any sequence which272

can be extended only by new ideas, rather than273

more computation deserves keyword: hard. Simi-274

1https://oeis.org/wiki/Index_to_OEIS
2https://oeis.org/wiki/JSON_Format

larly, if computing a term of the sequence would 275

probably merit a paper in a peer-reviewed jour- 276

nal (discussing the result, the algorithm, etc.)” 3 277

Another related keyword attribute is "fin" (finite), 278

indicating sequences with limited length. For our 279

purposes, sequences should be infinitely derivable. 280

• Difficult to Generate Programmatically. In 281

OEIS, most sequences are provided with fields such 282

as Mathematica, program, or formula, but not all 283

sequences include these fields. Since OEIS does 284

not specify the reasons for missing these fields, we 285

assume that these sequences might be difficult to 286

generate programmatically. 287

• Simple Sequences. Some sequences are too 288

simple to require any reasoning. We use GPT-4o 289

to determine if a sequence requires reasoning or 290

just implementation; if mostly implementation, it’s 291

excluded. For instance, A0001784: ’Superfacto- 292

rials: product of the first n factorials,’ a sequence 293

requiring only implementation, will be excluded. 294

After addressing the aforementioned issues, we 295

ultimately obtained 1053 sequences. 296

Standardization of Question Statements. As 297

a specialized academic database in the field of 298

mathematics, OEIS provides a wealth of useful 299

information for each sequence. However, we have 300

found that some sequences cannot be directly used 301

with the descriptions provided by OEIS as problem 302

statements, primarily for the following reasons: (1) 303

Specialized Terminology. Some sequence descrip- 304

tions use complex math terms that need examples 305

or explanations to be clear. Using them directly 306

as problems might test mathematical knowledge 307

rather than reasoning skills. So, it is important to 308

explain key concepts to focus on reasoning and 309

3https://oeis.org/wiki/User:Charles_R_
Greathouse_IV/Keywords/difficulty

4https://oeis.org/A000178

4

https://oeis.org/wiki/Index_to_OEIS
https://oeis.org/wiki/JSON_Format
https://oeis.org/wiki/User:Charles_R_Greathouse_IV/Keywords/difficulty
https://oeis.org/wiki/User:Charles_R_Greathouse_IV/Keywords/difficulty
https://oeis.org/A000178

Dataset Size Level Multi-test Efficiency Metric Output

College Math 2,818 University ✗ ✗ Accuracy Text
GSM8K 1,319 Elementary school ✗ ✗ Accuracy Text
MATH 5,000 High school ✗ ✗ Accuracy Text
RobustMath 300 High school ✗ ✗ Accuracy Text
OlympiadBench 8,476 Competition ✗ ✗ Accuracy Text
TheoremQA 800 University ✗ ✗ Accuracy Text

UTMath(ours) 1,053 Cutting-edge ✓ ✓ Pass Rate Code

Table 1: Comparison between UTMath and other benchmarks. UTMath offers a cutting-edge benchmark with a
comprehensive set of 1,053 problems across multiple mathematical domains, providing a more accurate evaluation
of LLMs’ mathematical reasoning capabilities.

reduce the extra knowledge needed. (2) Brevity310

and Ambiguity. Some sequence descriptions are311

excessively brief and lack a clear definition of what312

a(n) is. We used GPT-4o to standardize these by313

adding background info without revealing solutions314

and making the language smoother. The prompts315

we used are provided in the Appendix C and an316

example is shown in Appendix B.2. Despite our re-317

quirement that ensuring the consistency of meaning318

between the original and processed descriptions,319

hallucinations can still occur. To mitigate this, we320

performed a manual verification of the standard-321

ized problem statements to ensure they matched322

the original descriptions in meaning and were easy323

to comprehend.324

Hard Test Cases Mining. The primary goal325

of this paper is to evaluate the reasoning ability326

of LLMs. Generally, more efficient solutions to327

a problem imply stronger reasoning capabilities.328

Therefore, we aim for our evaluation to distinguish329

whether a solution is efficient. However, in the330

OEIS, each sequence only lists the first few n terms,331

normally n<100, which can be obtained without332

requiring particularly efficient methods. This limi-333

tation prevents the evaluation from effectively dis-334

tinguishing between efficient and inefficient solu-335

tions. An obvious fact is that the difficulty of com-336

puting the first 10 terms of a sequence within a337

time limit is significantly different from computing338

terms starting from the 106th term. Therefore, we339

aim to create more challenging test data to better340

assess the reasoning capabilities of LLMs.341

Fortunately, many OEIS sequences include cor-342

responding Mathematica code that can be regarded343

as the ground-truth solution for each problem.344

We extract this Mathematica code for each se-345

quence, formalizing it to compute the first N terms,346

A1, ..., AN , of the sequence. We determine the347

maximum value of Nmax for which the code can348

Category # of Problems

Number Theory 159
Graph Theory 79
Group Theory 65
Discrete Mathematics 158
Combinatorial Mathematics 158
Geometry and Topology 70
Poly. and Series Expan. 151
Special Numbers 157
Formal Languages 56

Total 1053

Table 2: Categories and distribution of problems.

compute the sequence within 10 seconds, where we 349

set 106 as the upper bound. Finally, we add the last 350

10 terms ANmax−9 , ..., ANmax into our benchmark 351

as the hard test cases to evaluate the complexity 352

of a solution. Our experiments demonstrate that 353

these cases precisely differentiate more efficient 354

and intelligent solutions. 355

3.3 Evaluation Metrics 356

We adopt the metric pass@k to evaluate the per- 357

formance of LLMs. The metric pass@k is a clas- 358

sic metric in code generation, where a problem is 359

solved if any of the k generated samples passes the 360

unit tests. We use the stable method of calculation 361

proposed by (Chen et al., 2021): 362

pass@k := EProblems

[
1−

(
n− c

k

)/(n
k

)]
(1) 363

3.4 Dataset Statistics 364

The main statistics of UTMath are shown in Tab. 1. 365

To gain a deeper understanding of the composi- 366

tion of the UTMath Benchmark, we identified nine 367

mathematical fields and used GPT-4o to categorize 368

each problem to these fields as shown in Tab. 2. 369

Our analysis reveals that only 10 out of 1,053 prob- 370

lems have no references. The reference years span 371

5

Model Pass@1 (%) ↑ Pass@5(%) ↑ Avg. Run Time (s) ↓
PoT RCoT PoT RCoT PoT RCoT Efficiency

closed-source models
GPT-4o 25.53 26.93 (+1.40) 32.67 35.90 (+3.23) 6.98 6.23 +12.04%
Gemini-1.5-Pro 19.70 19.43 (−0.27) 31.24 33.14 (+1.90) 6.30 6.22 +1.28%
Claude-3.5-Sonnet 18.58 19.11 (+0.53) 27.83 31.34 (+3.51) 6.44 5.32 +21.05%
GPT-3.5-Turbo 11.68 6.82 (−4.86) 17.09 13.30 (−3.79) 5.42 5.06 +7.11%

open-source models
Qwen2.5-72B 23.48 22.17 (−1.31) 31.05 33.33 (+2.28) 5.88 4.31 +36.42%
DeepSeek-V2.5-236B 20.95 21.63 (+0.68) 30.10 31.72 (+1.62) 6.64 5.44 +22.06%
Qwen2.5-Math-72B 19.72 20.53 (+0.81) 26.69 28.11 (+1.42) 5.04 3.81 +24.40%
LLaMA-3.1-405B 15.76 16.09 (+0.33) 25.26 27.35 (+2.09) 5.73 5.12 +11.91%

Table 3: Pass Rate and Average Run Time of LLMs on UTMath. We listed the performance of eight large models
by the PoT or the RCoT methods across a range of metrics.The average run time is calculated based on the
problems solved by both the PoT and the RCoT methods. The efficiency is calculated as: (Avg.Runtime(PoT) -
Avg.Runtime(RCoT)) / Avg.Runtime(RCoT). Two qualitative cases are shown in Appendix D.

from 1950 to 2024, with the maximum number of372

references exceeding 6,000. These findings under-373

score the cutting-edge nature of our benchmark.374

More details can be found in Appendix B.375

4 Reasoning-to-Coding of Thoughts376

Compared to methods that simply check whether377

the outputs generated by LLMs are identical, the378

code-based evaluation approach enables more ac-379

curate assessment by using multiple test cases. It380

provides additional evaluation metrics, such as run-381

time, and allows for the observation of the reliabil-382

ity of LLMs.383

Initially, we adopted the Program of Thought384

(PoT) method, where the LLM had to perform rea-385

soning and implement it in one step. However,386

we noticed that the LLMs often resorted to sim-387

pler algorithms, which led to high time complexity388

or even failure with more complex problems due389

to limited reasoning depth. To improve this, we390

explored the Reasoning-to-Coding of Thoughts391

(RCoT) framework, which separates reasoning and392

implementation into different steps.393

In the first round, LLM focuses only on reason-394

ing about the problem. Compared to PoT, RCoT395

dedicate an entire round to reasoning allowing the396

LLM to generate a step-by-step, detailed logical397

reasoning chain, including mathematical theorems,398

formulas, and properties used. This deeper rea-399

soning approach facilitates the creation of more400

efficient algorithms with lower time complexity.401

In the second round, RCoT requires the LLM to402

implement the reasoning process generated in the403

first round. By converting the computation process404

into code, we can introduce new metrics beyond the405

final pass rate. The solution generated by the LLM 406

can be evaluated based on its runtime during testing, 407

which indirectly reflects the solution’s time com- 408

plexity. Additionally, this approach avoids errors 409

caused by the limited computational capabilities 410

of large models, allowing for more accurate and 411

genuine insights into the LLM’s reasoning abilities. 412

Clearly, the stronger the reasoning capabilities of 413

the large model, the higher the overall pass rate and 414

the lower the time complexity, which is reflected in 415

the shorter runtime of the generated solution. 416

We present qualitative cases in Appendix D, 417

where GPT-4o solves problems from UTMath us- 418

ing PoT and RCoT, respectively. The case studies 419

show that, with RCoT prompting, the model en- 420

gages in deeper reasoning, significantly reducing 421

solution complexity. 422

5 Experiment 423

5.1 Experimental Setup 424

Here, we consider the closed-source models, 425

i.e., GPT-3.5-Turbo/GPT-4o from OpenAI (Ope- 426

nAI, 2024), Claude-3.5-Sonnet (Claude, 2024), 427

Gemini-1.5-Pro (Reid et al., 2024), as well as 428

the open-source models, i.e., LLaMA-3.1 (Dubey 429

et al., 2024), Qwen2.5 (Qwen, 2024a), Qwen2.5- 430

Math (Qwen, 2024b), DeepSeek-V2.5 (Bi et al., 431

2024). The metric pass@1 is calculated as the aver- 432

age result over 5 run times. We run all evaluations 433

in a laptop with CPU Intel(R) Core(TM) i7-10750H 434

CPU @ 2.60GHz. 435

5.2 Evaluation on UTMath 436

Here we evaluate both open-source and closed- 437

source models using RCoT and PoT in Tab. 3. The 438

6

1 2 3 4 5

0.275

0.300

0.325

0.350
Ac

cu
ra

cy

GPT-4o

RCoT
PoT

1 2 3 4 5
0.20

0.25

0.30

Gemini-1.5-Pro

RCoT
PoT

1 2 3 4 5

0.20

0.25

0.30

Claude-3.5-Sonnet

RCoT
PoT

1 2 3 4 5
0.075

0.100

0.125

0.150

0.175
GPT-3.5-Turbo

RCoT
PoT

1 2 3 4 5
Inference Times

0.225

0.250

0.275

0.300

0.325

Ac
cu

ra
cy

Qwen2.5-72B

RCoT
PoT

1 2 3 4 5
Inference Times

0.225

0.250

0.275

0.300

DeepSeek-V2.5

RCoT
PoT

1 2 3 4 5
Inference Times

0.20

0.22

0.24

0.26

0.28
Qwen2.5-Math-72B

RCoT
PoT

1 2 3 4 5
Inference Times

0.20

0.25

Llama-3.1-405B

RCoT
PoT

Figure 4: Performance comparison of models across PoT and RCoT tasks at different pass@k levels.

experimental results shows that all tested models439

performed poorly on our benchmark. The best440

model, GPT-4o, only solves 26.93% problem in441

our benchmark. Since our problems are sourced442

from the OEIS, they consist of sequences and so-443

lutions proposed by various mathematicians in the444

context of cutting-edge research. This suggests that445

our benchmark is challenging enough to help guide446

future directions for improving LLMs.447

Compared to PoT, our method RCoT demon-448

strates superiority in two aspects. First, prompt-449

ing with RCoT achieves higher pass@5 perfor-450

mance across 7 LLMs, with the best results ob-451

served on GPT-4o. Second, the solutions gener-452

ated by RCoT for all LLMs demonstrate more453

efficient performance, particularly Qwen2.5-72B,454

where the RCoT approach achieves an efficiency455

improvement of over 36.42% compared to PoT,456

as shown in Tab. 3 and Fig. 2. It indicates that,457

RCoT prompting enables the model to engage in458

deeper reasoning, significantly reducing solution459

complexity and enhancing solution performance.460

However, some models experienced a decrease in461

pass@1 with RCoT . Specifically, the accuracies462

of Gemini-1.5-Pro, GPT-3.5-Turbo, and Qwen2.5-463

72B slightly dropped. Notably, while Gemini-464

1.5-Pro and Qwen2.5-72B experienced a drop in465

pass@1, their pass@5 performance improved. It466

indicates that RCoT brings more room in multiple467

inference times. The observed decrease in perfor-468

mance may stem from the fact that formulating469

more efficient solutions often requires higher-level470

reasoning, which can increase the difficulty of the471

task and make these models more susceptible to er-472

rors when attempting more sophisticated solutions.473

Model Easy Easy & Hard

cl
os

ed
GPT-4o 34.95 26.93
Gemini-1.5-Pro 23.84 19.43
Claude-3.5-Sonnet 24.86 19.11
GPT-3.5-Turbo 8.72 6.82

op
en

Qwen2.5-72B 28.96 22.17
DeepSeek-V2.5 27.52 21.63
Qwen2.5-Math-72B 24.60 20.53
LLaMA-3.1-405B 22.09 16.09

Table 4: Performance (%) of different models on easy
and hard test cases. Easy cases: The initial terms in
OEIS. Hard cases: mined hard test cases (§ 3.2).

5.3 The Effectiveness of Hard Test Cases 474

As we mentioned in § 3.2, each sequence in the 475

OEIS lists only the initial terms, which we refer 476

to as “easy test cases”. To investigate the model’s 477

ability to handle challenging cases, we evaluated 478

whether it could predict values that appear later 479

(i.e., 106) in a sequence. These later values are 480

typically underrepresented in pre-training data and 481

often require more computation time and a more 482

precise implementation to retrieve accurately. The 483

experimental results, which depicted in Tab. 4, re- 484

veal that the model’s performance drops signifi- 485

cantly when handling these hard cases. This in- 486

dicates that introducing these cases can prevent 487

simple solutions from passing all the test cases, 488

thereby filtering for more advanced solutions. 489

5.4 Scaling of the Inference Times 490

We compared the performance difference between 491

running the LLMs five times and reported the met- 492

ric of pass@k. As shown in Fig. 4, all models 493

improved their performance with an increasing 494

7

Model NT Graph T. Group T. DM CM GT PSE SN FL pass@1
closed-source models

GPT-4o 43.90 2.78 11.69 38.23 24.94 3.43 16.42 33.89 42.50 26.93
Gemini-1.5-Pro 31.70 1.27 8.92 27.47 15.19 5.71 15.23 27.39 17.86 19.43
Claude-3.5-Sonnet 33.58 1.52 8.00 29.49 12.91 5.43 11.52 26.62 20.36 19.11
GPT-3.5-Turbo 13.08 0.00 1.85 11.39 3.29 0.29 2.78 10.96 8.93 6.82

open source models
Qwen2.5-72B 36.86 2.53 12.00 30.63 15.95 6.00 18.15 29.43 24.29 22.17
DeepSeek-V2.5 38.24 1.27 8.92 33.16 17.34 2.29 12.45 31.08 20.00 21.63
Qwen2.5-Math-72B 35.35 1.27 8.62 28.73 14.81 4.00 17.48 28.15 20.00 20.53
LLaMA-3.1-405B 29.56 0.76 4.92 25.44 9.62 2.00 9.54 22.55 21.43 16.09

Table 5: Performance (%) on different problem categories. Categories are represented by abbreviations. NT: Number
Theory; T.: Theory; DM: Discrete Mathematics; CM: Combinatorial Mathematics; GT: Geometry and Topology;
PSE: Polynomial and Series Expansions; SN: Special Numbers; FL: Formal Languages.

number of inference times. For Qwen2.5-72B and495

Gemini-1.5-Pro, RCoT was slightly weaker than496

PoT in pass@1 but quickly approached and sur-497

passed PoT in subsequent run times. We observed498

that with an increasing number of inference time,499

RCoT consistently demonstrated a growing advan-500

tage in performance across almost all models, ex-501

cept for GPT-3.5. However, it is worth noting that502

GPT-3.5 exhibited the lowest pass rate. This sug-503

gests that RCoT may perform better in models with504

stronger reasoning capabilities.505

5.5 Importance of the Reasoning Step506

GPT-4o has the best performance, while we are un-507

clear whether this was due to its superior reasoning508

or coding ability. To investigate further, we tested509

using GPT-4o for the reasoning step while other510

models perform the coding step based on the rea-511

soning result from GPT-4o. As depicted in Fig.5,512

the results showed that the performance of models513

increased significantly when implementing coding514

based on GPT-4o’s reasoning output, suggesting515

that the reasoning quality is important and GPT-4o516

does produce higher-quality reasoning results.517

5.6 Performance on Different Categories518

Our benchmark comprehensively evaluates the519

LLMs’ ability across various categories of math520

problems. GPT-4o continued to demonstrate a clear521

advantage across most tasks, achieving the best per-522

formance in six domains. Notably, it outperformed523

the second-best model by 7.6% in combinatorial524

mathematics and by 18.21% in formal languages.525

All models performed very poorly in the categories526

of Graph Theory, Group Theory, and Geometry and527

Topology, with accuracy rates below 12%, high-528

lighting the need for further exploration in these529

areas.530

DeepSeek-V2.5 Qwen2.5-72B Claude-3.5-SonnetQwen2.5-Math-72B0.150

0.175

0.200

0.225

0.250

0.275

0.300

Ac
cu

ra
cy

0.210

0.235

0.186
0.197

0.216 0.222

0.191
0.205

0.252 0.253 0.248

0.211

GPT4o accuracy: 0.269

Performance Comparison: Self-reasoning vs use-GPT4o-reasoning
Baseline (PoT)
RCoT (self-reasoning + self-coding)
RCoT (GPT4o-reasoning + self-coding)

Figure 5: Performance comparison between self-
reasoning and using GPT-4o reasoning for coding across
different models. The results show that models perform
better when relying on GPT-4o’s reasoning output.

6 Conclusion 531

In this work, we investigate how to more accurately 532

and effectively evaluate the mathematical reasoning 533

capabilities of LLMs. We propose a cutting-edge 534

benchmark, UTMath, which comprises 1,053 prob- 535

lems spanning nine mathematical domains, with 536

an average of 68 test cases per problem. This 537

benchmark presents significant challenges: GPT- 538

4o, the best-performing model, successfully solves 539

only 26.93% of the problems. Additionally, we in- 540

troduce RCoT (Reasoning-to-Coding of Thought). 541

Our study finds that, compared to PoT (Program- 542

of-Thought), RCoT significantly improves the al- 543

gorithmic efficiency and pass rates of most models 544

by facilitating deeper reasoning steps prior to code 545

generation. Overall, this research contributes to 546

a deeper understanding of the current capabilities 547

of LLMs in mathematical reasoning and lays the 548

groundwork for the development of more advanced 549

models in the future. 550

8

Limitation551

The primary limitation of UTMath lies in the eval-552

uation metrics: the performance of the evaluation553

machine affects the runtime of the generated code,554

making the absolute numerical results incompa-555

rable across different machines. We utilized an556

i7-10750H processor to execute the reference solu-557

tions and conduct evaluations, and we recommend558

using the same machine for testing and replication.559

There are two main limitations of RCoT. First, we560

only installed a set of common packages, such as561

sympy, in the standard testing environment. This562

avoids allowing LLMs to call highly integrated563

packages while also preventing the generation of564

potentially harmful code that could damage the565

evaluation system. Second, while our experiments566

demonstrate the critical role of reasoning quality567

in determining success rates, we have not further568

explored methods for enhancing reasoning quality,569

which remains an area for future investigation.570

Ethics Statements571

The UTMath Benchmark is designed to advance572

the evaluation of mathematical reasoning in LLMs.573

We recognize the potential ethical concerns asso-574

ciated with this work, particularly the risk of data575

misuse. To mitigate this, we strictly adhere to us-576

age guidelines and licensing terms for the UTMath-577

Train dataset, which is intended solely for academic578

and research purposes. While the UTMath Bench-579

mark evaluates model performance in terms of ac-580

curacy and generality, automated evaluations may581

introduce biases due to the nature of the datasets582

and evaluation algorithms. Additionally, while UT-583

Math covers a wide range of mathematical domains,584

it may not fully represent diverse cultural or edu-585

cational perspectives. We encourage further devel-586

opment of benchmarks that incorporate a broader587

array of reasoning styles to ensure more inclusive588

evaluations. By releasing UTMath, we aim to fos-589

ter responsible AI development, promoting better,590

more generalizable mathematical reasoning sys-591

tems.592

References593

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui594
Zhang, and Wenpeng Yin. 2024. Large language595
models for mathematical reasoning: Progresses and596
challenges. arXiv preprint arXiv:2402.00157.597

Husni Almoubayyed, Rae Bastoni, Susan R Berman,598

Sarah Galasso, Megan Jensen, Leila Lester, April 599
Murphy, Mark Swartz, Kyle Weldon, Stephen E Fanc- 600
sali, et al. 2023. Rewriting math word problems to 601
improve learning outcomes for emerging readers: a 602
randomized field trial in carnegie learning’s mathia. 603
In International Conference on Artificial Intelligence 604
in Education, pages 200–205. Springer. 605

Ujjwala Anantheswaran, Himanshu Gupta, Kevin 606
Scaria, Shreyas Verma, Chitta Baral, and Swa- 607
roop Mishra. 2024. Investigating the robustness 608
of llms on math word problems. arXiv preprint 609
arXiv:2406.15444. 610

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten- 611
berger, Michal Podstawski, Lukas Gianinazzi, Joanna 612
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi- 613
otr Nyczyk, et al. 2024. Graph of thoughts: Solving 614
elaborate problems with large language models. In 615
Proceedings of the AAAI Conference on Artificial 616
Intelligence, volume 38, pages 17682–17690. 617

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, 618
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, 619
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal- 620
ing open-source language models with longtermism. 621
arXiv preprint arXiv:2401.02954. 622

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, 623
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, 624
Cunxiang Wang, Yidong Wang, et al. 2024. A sur- 625
vey on evaluation of large language models. ACM 626
Transactions on Intelligent Systems and Technology, 627
15(3):1–45. 628

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 629
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 630
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 631
Greg Brockman, et al. 2021. Evaluating large 632
language models trained on code. arXiv preprint 633
arXiv:2107.03374. 634

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 635
William W Cohen. 2022. Program of thoughts 636
prompting: Disentangling computation from reason- 637
ing for numerical reasoning tasks. arXiv preprint 638
arXiv:2211.12588. 639

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, 640
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony 641
Xia. 2023. Theoremqa: A theorem-driven question 642
answering dataset. In Proceedings of the 2023 Con- 643
ference on Empirical Methods in Natural Language 644
Processing, pages 7889–7901. 645

Cheng-Han Chiang and Hung-yi Lee. 2023. Can large 646
language models be an alternative to human evalua- 647
tions? arXiv preprint arXiv:2305.01937. 648

Claude. 2024. Claude-3.5-sonnet. 649
https://www.anthropic.com/claude/. 650

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 651
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 652
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 653
Nakano, et al. 2021. Training verifiers to solve math 654
word problems. arXiv preprint arXiv:2110.14168. 655

9

Iddo Drori, Sarah J Zhang, Reece Shuttleworth, Sarah656
Zhang, Keith Tyser, Zad Chin, Pedro Lantigua,657
Saisamrit Surbehera, Gregory Hunter, Derek Austin,658
et al. 2023. From human days to machine seconds:659
Automatically answering and generating machine660
learning final exams. In Proceedings of the 29th661
ACM SIGKDD Conference on Knowledge Discovery662
and Data Mining, pages 3947–3955.663

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,664
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,665
Akhil Mathur, Alan Schelten, Amy Yang, Angela666
Fan, et al. 2024. The llama 3 herd of models. arXiv667
preprint arXiv:2407.21783.668

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-669
sunori B Hashimoto. 2024. Length-controlled al-670
pacaeval: A simple way to debias automatic evalua-671
tors. arXiv preprint arXiv:2404.04475.672

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao673
Peng, and Tushar Khot. 2023. Chain-of-thought674
hub: A continuous effort to measure large language675
models’ reasoning performance. arXiv preprint676
arXiv:2305.17306.677

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,678
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-679
ham Neubig. 2023. Pal: Program-aided language680
models. In International Conference on Machine681
Learning, pages 10764–10799. PMLR.682

Himanshu Gupta, Neeraj Varshney, Swaroop Mishra,683
Kuntal Kumar Pal, Saurabh Arjun Sawant, Kevin684
Scaria, Siddharth Goyal, and Chitta Baral. 2022. "685
john is 50 years old, can his son be 65?" evaluat-686
ing nlp models’ understanding of feasibility. arXiv687
preprint arXiv:2210.07471.688

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,689
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,690
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-691
bench: A challenging benchmark for promoting agi692
with olympiad-level bilingual multimodal scientific693
problems. arXiv preprint arXiv:2402.14008.694

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul695
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-696
cob Steinhardt. 2021. Measuring mathematical prob-697
lem solving with the math dataset. arXiv preprint698
arXiv:2103.03874.699

Tom Kocmi and Christian Federmann. 2023. Large700
language models are state-of-the-art evaluators of701
translation quality. arXiv preprint arXiv:2302.14520.702

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-703
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-704
guage models are zero-shot reasoners. Advances in705
neural information processing systems, 35:22199–706
22213.707

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng708
Kong, and Wei Bi. 2024a. Gsm-plus: A compre-709
hensive benchmark for evaluating the robustness of710
llms as mathematical problem solvers. arXiv preprint711
arXiv:2402.19255.712

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, 713
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and 714
Ion Stoica. 2024b. From crowdsourced data to high- 715
quality benchmarks: Arena-hard and benchbuilder 716
pipeline. arXiv preprint arXiv:2406.11939. 717

Zekun Li, Baolin Peng, Pengcheng He, and Xifeng 718
Yan. 2023. Do you really follow me? adversarial 719
instructions for evaluating the robustness of large 720
language models. arXiv preprint arXiv:2308.10819. 721

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, 722
Ruochen Xu, and Chenguang Zhu. 2023. G-eval: 723
Nlg evaluation using gpt-4 with better human align- 724
ment. arXiv preprint arXiv:2303.16634. 725

OEIS Foundation Inc. 2024. The on-line encyclope- 726
dia of integer sequences. Published electronically at 727
https://oeis.org. 728

OpenAI. 2024. Hello gpt-4o, 2024. https://openai. 729
com/index/hello-gpt-4o/. 730

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 731
2021. Are nlp models really able to solve 732
simple math word problems? arXiv preprint 733
arXiv:2103.07191. 734

Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina 735
Nguyen, Edwin Chen, Scott Heiner, Craig Pettit, 736
Catherine Olsson, Sandipan Kundu, Saurav Kada- 737
vath, et al. 2022. Discovering language model behav- 738
iors with model-written evaluations. arXiv preprint 739
arXiv:2212.09251. 740

Team Qwen. 2024a. Qwen2.5-72b-instruct. 741
https://qwenlm.github.io/blog/qwen2.5/. 742

Team Qwen. 2024b. Qwen2.5-math-72b-instruct. 743
https://qwenlm.github.io/blog/qwen2.5-math/. 744

Machel Reid, Nikolay Savinov, Denis Teplyashin, 745
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste 746
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi- 747
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un- 748
locking multimodal understanding across millions of 749
tokens of context. arXiv preprint arXiv:2403.05530. 750

Steven Ritter, John R Anderson, Kenneth R Koedinger, 751
and Albert Corbett. 2007. Cognitive tutor: Applied 752
research in mathematics education. Psychonomic 753
bulletin & review, 14:249–255. 754

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, 755
Pranav Tadepalli, Paula Vidas, Alexander Kranias, 756
John J Nay, Kshitij Gupta, and Aran Komatsuzaki. 757
2023. Arb: Advanced reasoning benchmark for large 758
language models. arXiv preprint arXiv:2307.13692. 759

Paulo Shakarian, Abhinav Koyyalamudi, Noel Ngu, and 760
Lakshmivihari Mareedu. 2023. An independent eval- 761
uation of chatgpt on mathematical word problems 762
(mwp). arXiv preprint arXiv:2302.13814. 763

10

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan764
Scales, David Dohan, Ed H Chi, Nathanael Schärli,765
and Denny Zhou. 2023. Large language models can766
be easily distracted by irrelevant context. In Inter-767
national Conference on Machine Learning, pages768
31210–31227. PMLR.769

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and770
Furu Wei. 2024. Mathscale: Scaling instruction771
tuning for mathematical reasoning. arXiv preprint772
arXiv:2403.02884.773

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,774
and Subbarao Kambhampati. 2022. Large language775
models still can’t plan (a benchmark for llms on plan-776
ning and reasoning about change). In NeurIPS 2022777
Foundation Models for Decision Making Workshop.778

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi779
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-780
and-solve prompting: Improving zero-shot chain-of-781
thought reasoning by large language models. arXiv782
preprint arXiv:2305.04091.783

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten784
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,785
et al. 2022. Chain-of-thought prompting elicits rea-786
soning in large language models. Advances in neural787
information processing systems, 35:24824–24837.788

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,789
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.790
2024. Tree of thoughts: Deliberate problem solving791
with large language models. Advances in Neural792
Information Processing Systems, 36.793

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,794
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-795
guo Li, Adrian Weller, and Weiyang Liu. 2023.796
Metamath: Bootstrap your own mathematical ques-797
tions for large language models. arXiv preprint798
arXiv:2309.12284.799

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,800
Liang He, and Xipeng Qiu. 2023. Evaluating the801
performance of large language models on gaokao802
benchmark. arXiv preprint arXiv:2305.12474.803

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan804
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,805
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.806
Judging llm-as-a-judge with mt-bench and chatbot807
arena. Advances in Neural Information Processing808
Systems, 36:46595–46623.809

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,810
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,811
and Nan Duan. 2023. Agieval: A human-centric812
benchmark for evaluating foundation models. arXiv813
preprint arXiv:2304.06364.814

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu,815
Jindong Wang, Derek F Wong, Xiaowei Huang, Qi-816
ufeng Wang, and Kaizhu Huang. 2024a. Is your817
model really a good math reasoner? evaluating math-818
ematical reasoning with checklist. arXiv preprint819
arXiv:2407.08733.820

Zihao Zhou, Qiufeng Wang, Mingyu Jin, Jie Yao, Jianan 821
Ye, Wei Liu, Wei Wang, Xiaowei Huang, and Kaizhu 822
Huang. 2024b. Mathattack: Attacking large language 823
models towards math solving ability. In Proceedings 824
of the AAAI Conference on Artificial Intelligence, 825
volume 38, pages 19750–19758. 826

11

A An Example Sequence in OEIS827

Figure 6: Sequence A007369 in OEIS. Its description: "Numbers n such that sigma(x) = n has no solution." (Clearly,
without specific background knowledge, we cannot fully understand what the function sigma() represents, which
is one of the reasons we perform standardization. §B.2) Next, OEIS shows the first 67 terms of this sequence,
which we classify as easy cases. Below that, additional metadata is provided, including comments, references, links,
formulas, examples, programs, author, status, and more. It is evident that this sequence has garnered significant
attention from researchers, reflecting the Cutting-Edge difficulty of our benchmark. We used the Mathematica
program included in the metadata to generate Hard cases, with detailed procedures provided in § 3.2. As a scientific
database, each sequence submitted to OEIS undergoes a review process, and the status "approve" indicates that the
sequence has been validated and approved by OEIS administrators.

12

B Dataset Construction Details828

This section primarily presents some details on the829

construction of UTMath. B.1 discusses the issues830

encountered when observing data crawled from831

OEIS, along with the corresponding cleaning rules.832

UTMath applies all 14 rules. Additionally, we833

crawled all sequences from OEIS and, for conve-834

nience, applied only the first 12 rules to create UT-835

Math_Train, which contains over 70k sequences.836

B.2 outlines the process followed for standardizing837

the descriptions of problems in UTMath, while B.3838

explains the referencing of sequences within UT-839

Math, highlighting both the Cutting-Edge difficulty840

level of UTMath and its scalability.841

B.1 Rules for Data Cleaning842

843 1. Issues: The sequence is too difficult, requiring844
extensive background knowledge, or only a845
limited number of terms are found.846
Method: Remove sequences with keywords847
containing ‘hard’, ‘fin’ (finite).848

2. Issues: The sequence is hard to generate with849
a program.850
Method: Check if it contains program, for-851
mula, or Mathematica fields in the sequence’s852
json data.853

3. Issues: The sequence is too simple with an854
explicit recurrence or closed formula.855
Method: Search if the description includes856
‘a(n) =’.857

4. Issues: Solving the sequence requires infor-858
mation from other OEIS sequences.859
Method: Search if the sequence’s description860
contains the AID of other sequences (‘A’ +861
six-digit number with leading zeros).862

5. Issues: The sequence is decimal expansion of863
a certain number.864
Method: Search if the description includes865
‘decimal’.866

6. Issues: The sequence consists of repetitions867
or a constant value.868
Method: Search if the description includes869
both ’repeat’ and ’period’ or ’constant se-870
quence’.871

7. Issues: The description is too vague.872
Method: Search if the description includes873
‘related to’.874

8. Issues: Another version of a concept.875
Method: Search if the title includes ‘another876
version’, ‘second kind’, etc.877

9. Issues: The sequence is formed by taking mod878
of a constant.879
Method: Search if the description includes880
‘module’.881

10. Issues: The values in the sequence are too882
large, which might cause LLM tokenization883
errors.884
Method: Check if any term’s length exceeds885
18 digits(i.e., greater than 1e18), remove it.886

11. Issues: Coefficient triangles or ‘read by row’ 887
topics. 888
Method: Search if the sequence’s description 889
includes ‘read by row’, ‘triangle of coeffi- 890
cient’. 891

12. Issues: The description is too short, either 892
purely implementation or lacks necessary in- 893
formation. 894
Method: Check if the title length is below 5. 895

13. Issues: More like a reasoning puzzle. 896
Method: Use GPT-4o to judge, with the 897
prompt outlined in the Appendix C. 898

14. Issues: Non-mathematical topics. 899
Method: Use GPT-4o to judge, with the 900
prompt outlined in the Appendix C. 901

B.2 Standardization of Problems’ Description 902

Numbers n such that σ(x) = n has no
solution.

Original Description

The definition of a(n) is: Numbers n such
that the sum of the divisors of x (denoted
as σ(x)) equals n has no solution.

After Standardize
Standardized by LLM

Figure 7: Comparison between original and standard-
ized problem description. The standardized version in-
cludes hints and explains the specific meaning of σ(x).

B.3 Dataset Statistics 903

To demonstrate that our benchmark is of cutting- 904

edge level, we have analyzed the distribution of the 905

publication years and the number of references in- 906

cluded in the problems of the benchmark as shown 907

in Fig. 8. Additionally, OEIS is a dynamic database. 908

Over the past five years, more than 35,000 se- 909

quences in UTMath_Train have been further re- 910

searched, and over 2,000 new sequences have been 911

added. This ongoing development makes it pos- 912

sible to continuously update UTMath_Train and 913

UTMath, helping to address the challenges posed 914

by data leakage. 915

1960 1980 2000 2020
Year

0

100

200

300

400

500

Fr
eq

ue
nc

y

Distribution of Reference by Year

0 2000 4000 6000
Reference Count

100

101

102

103

Fr
eq

ue
nc

y

Distribution of Reference by Count

Figure 8: Distribution of references in UTMath.

13

C Prompts916

--------------- Turn 1: < Reasoning Instruction > ---------------

Please analyze the following sequence problem and provide a detailed

reasoning process for the sequence. You need to follow these

requirements:

1. Use the solution with the lowest time complexity.

2. Not to implement the solution.

Question Statements:
{The statement of the question}

Examples:
a(1) == 𝑎1
a(2) == 𝑎𝟐
a(3) == 𝑎𝟑

---------------Turn 2: < Coding Instruction > ---------------
Please implement the above solution using Python code, adhering to the

following requirements:

1. The code must be written in Python.

2. Use the function signature def solution(x: int), and ensure the code

portion is in markdown format.

3. To ensure the code is runnable, please import any necessary

libraries.

4. You do not need to provide any explanations or examples, just the

implementation code.

5. test contains multiple test cases, each of which will call the solution

function.

Examples:
Solution(1) == 𝑎1
Solution(2) == 𝑎𝟐
Solution(3) == 𝑎𝟑

Prompt 2: the prompt for Reasoning-to-Coding of Thoughts

Please reason through the following sequence problem and implement
your reasoning using code. You need to follow these requirements:

1. The code must use the Python language.

2. Use the function signature def solution(x: int), and make sure the

code part is in markdown format.

3. To ensure the code is runnable, please import any necessary

libraries.

4. Provide the reasoning process first.

5. Use the solution with the lowest time complexity.

Question Statements:
{The statement of the question}

Examples:
Solution(1) == 𝑎1
Solution(2) == 𝑎𝟐
Solution(3) == 𝑎𝟑

Prompt 1: the prompt for Program-of-Thoughts

This is a description of a sequence. Please judge whether solving this
sequence requires more reasoning or implementation. You need to
follow these rules:

1. If the problem statement already has a clear recurrence relation or
explicit formula, the question should be considered an
implementation question.

2. If the problem does not include a direct calculation formula and
requires reasoning to derive it, the question should be considered a
reasoning question.

3. Implementation questions usually just require translating the
problem requirements directly into code without designing
complex algorithms or using advanced data structures.

4. If the question requires more reasoning, answer "reasoning
question"; otherwise, answer "implementation question.“

5. Your answer should be in italics.

Question Statements:
{The statement of the question}

This is information about a sequence from OEIS (The On-Line
Encyclopedia of Integer Sequences) and contains four types of
information: 'name’, 'data’, 'comment’ and 'formula’. Please use this
information and your knowledge to judge the domain to which the
sequence belongs. Please follow these rules:

1. Your response should only contain the answer, without any other
explanations or examples.

2. Your answer can only be selected from these five options: {'math
question’, 'physics question’, 'chemistry question’, 'biology
question’, 'other question’}

3. Your answer should be in italics

Question Statements:
{The statement of the question}

Data:
{The items of the sequence}

Comment:
{The comment of the question}

Formula:
{The formula of the question}

Prompt 4: the prompt used to determine whether the
question belongs to the field of mathematics：

I want to create a math problem based on a sequence from the OEIS.
The output should be the first n terms of the sequence, but the original
problem statement for the sequence may be vague or difficult to
understand or might require additional background knowledge. I will
provide you with the original problem statement and other information.
Please use this information and your knowledge to complete the
original problem statement without revealing the sequence's reasoning
method or content, and you need to follow these rules:

1. If the original problem statement is sufficient to deduce the entire
sequence, no additional information is needed.

2. You should retain as much of the original problem statement as
possible.

3. The completed problem statement should include necessary
background knowledge.

4. The completed problem statement should maintain the same
meaning as the original.

5. The completed problem statement should not contain direct
recurrence relations or explicit formulas.

6. The completed problem statement should remain in English.
7. The completed problem statement should begin with "The

definition of a(n) is".
8. Your response should only include the completed problem

statement without any explanations or examples.

Question Statements:
{The statement of the question}

Other information:
{The information about the question}

Prompt 5: the prompt used to standardize question
statements

Prompt 3: the prompt used to determine reasoning or
implementation questions

Figure 9: The main prompts we used.

917

14

D Case Studies 918

To analyze the sequence problem, we need to determine the least number (m) such that either (2m + 1) or (2m − 1) is divisible by
(4𝑛 + 1). Let's break down the problem and find a solution with the lowest time complexity.

Understanding the Divisibility Condition:
We need to find the smallest (m) such that either 2m + 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) or 2m − 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) .
This means 2m ≡ −1 𝑚𝑜𝑑 4𝑛 + 1 or 2m ≡ 1 (𝑚𝑜𝑑 4𝑛 + 1).

Order of 2 Modulo 𝟒𝐧 + 𝟏 :
• The order of 2 modulo 𝟒𝐧 + 𝟏 is the smallest positive integer (𝐦) such that 𝟐𝒎 ≡ 𝟏 (𝐦𝐨𝐝 𝟒𝐧 + 𝟏).
• If 𝟐𝐦 ≡ −𝟏 𝐦𝐨𝐝 𝟒𝐧 + 𝟏 , then 𝟐𝟐𝐦 ≡ 𝟏 𝐦𝐨𝐝 𝟒𝐧 + 𝟏 and (𝐦) is half the order of 2 modulo (𝟒𝐧 + 𝟏).

Efficient Calculation :
• To find the order of 2 modulo (4n + 1), we can use the fact that the order must divide φ 4n + 1 where φ is Euler's totient function.
• Calculate 𝛗 𝟒𝐧 + 𝟏 and check divisors of this value to find the smallest (𝐦) such that 𝟐𝐦 ≡ 𝟏 (𝐦𝐨𝐝 𝟒𝐧 + 𝟏) or 𝟐𝐦 ≡ −𝟏 (

)
𝐦𝐨𝐝 𝟒𝐧 +

𝟏 .

Steps to Solve :
1. Compute 𝟒𝐧 + 𝟏 : For a given (𝑛), compute (4𝑛 + 1).
2. Calculate 𝛗 𝟒𝐧 + 𝟏 : Use the prime factorization of 𝟒𝐧 + 𝟏 to compute 𝛗 𝟒𝐧 + 𝟏 .
3. Find the Order of 2: Check each divisor 𝑑 of φ 4𝑛 + 1 to see if 2d ≡ 1 (𝑚𝑜𝑑 4𝑛 + 1) or 2d ≡ −1 (𝑚𝑜𝑑 4𝑛 + 1).
The smallest such 𝑑 is the desired 𝑚 .

Time Complexity
• Prime Factorization: The time complexity for factorizing 4𝑛 + 1 is O 4𝑛 + 1
• Checking Divisors: For each divisor 𝑑 of φ 4𝑛 + 1 , compute 2d 𝑚𝑜𝑑 (4𝑛 + 1) using fast exponentiation, which is O log 𝑑 .
• Overall Complexity: The overall complexity is dominated by the factorization step, making it O 4𝑛 + 1 .
This approach efficiently finds the least (m) with the lowest time complexity by leveraging number theory concepts such as modular
arithmetic and Euler's totient function.

-------------------------- Turn 1: < Reasoning > -------------------------

-------------------------- Turn 2: < Coding > -------------------------

def solution(x: int) -> int:

 import math

 def euler_totient(n):

 result = n

 p = 2

 while p * p <= n:

 if n % p == 0:

 while n % p == 0:

 n //= p

 result -= result // p

 p += 1

 if n > 1:

 result -= result // n

 return result

 def order_of_2_modulo(n):

 phi = euler_totient(n)

 for d in range(1, phi + 1):

 if phi % d == 0:

 if pow(2, d, n) == 1 or pow(2, d, n) == n - 1:

 return d

 return phi

 mod = 4 * x + 1

 return order_of_2_modulo(mod)

Associative Euler function

Task_Id: UTMath_948
OEIS_Id: A019567
Main_Category: Special Numbers

Problem Statement:
The definition of a(n) is the least number m for which
either 2m + 1 or 2m − 1 is divisible by 4n + 1, where n
represents the number of pairs of cards in a Mongean
shuffle.

Case 1 : a(0) = 1
Case 2 : a(1) = 2
…

Hard Case 1 : a(1882) = 941
Hard Case 2 : a(1883) = 810
…
Hard Case 10 : a(1891) = 88

The Responses of GPT-4o by Reasoning-To-Coding Thoughts of Thought Methods

 To solve this problem, we need to find the smallest integer
(m) such that either 2m + 1 or 2m − 1 is divisible by (4𝑛 + 1).
This means we need to check for the smallest (m) where:
 1. 2m + 1 ≡ 0 (𝑚𝑜𝑑 4𝑛 + 1) or
 2. 2m − 1 ≡ 0 𝑚𝑜𝑑 4𝑛 + 1

Given the examples:
• For n = 0, 4𝑛 + 1 = 1. The smallest (m) is 1 because 21 − 1 =
1 which is divisible by 1.
• For n = 1, 4𝑛 + 1 = 5. The smallest (m) is 2 because 22 − 1 =
3 and 22 + 1 = 5 , and 5 is divisible by 5.
• For n = 2, 4𝑛 + 1 = 9. The smallest (m) is 3 because 23 + 1 =
9, and 9 is divisible by 9.

The approach is to iterate over increasing values of (m) starting
from 1, and for each (m) check the divisibility conditions. The
first (m) that satisfies either condition is the answer.
Here's the implementation in Python:

This code iterates over possible values of (m) starting from 1,
checking the divisibility conditions for each (m). It returns the
first (m) that satisfies either condition, ensuring the solution is
found with the lowest time complexity possible given the
problem constraints.

def solution(x: int) -> int:

 n = x

 divisor = 4 * n + 1

 m = 1

 while True:

 if (2**m + 1) % divisor == 0 or (2**m

- 1) % divisor == 0:

 return m

 m += 1

The Responses of GPT-4o by Program of Thought Methods

Case merging after classification discussion

Figure 10: GPT-4o solves UTMath_948 by the PoT method, by the RCoT method, respectively. The input prompt
is omitted here but can be found in Appendix C. PoT simply performs brute-force solving, while RCoT involves
deeper reasoning through Case merging after a classification discussion and the application of Euler’s formula,
providing a solution with lower time complexity.

To analyze the sequence problem where a(n) is defined as the sum of the fourth powers of the first n odd numbers, we need to
derive a formula or method to compute a(n) efficiently.

Step-by-Step Analysis:
Understanding the Sequence: The sequence involves summing the fourth powers of the first n odd numbers. The first n odd
numbers are：

1, 3, 5, 7, … , (2𝑛 − 1)

Expressing the Sequence: The nth odd number can be expressed as (2𝑘 − 1) for 𝑘 = 1 to 𝑛.Therefore:
𝑎(𝑛) = (14) + (34) + (54) + … + ((2𝑛 − 1)4)

General Term: The general term for the kth odd number is (2𝑘 − 1).The fourth power of this term is:
（2𝑘 − 1)4

Summation: We need to compute the sum:

𝑎(𝑛) = ෍

𝑘=1

𝑛

(2𝑘 − 1)4

Simplifying the Expression: Expand (𝟐𝒌 − 𝟏)𝟒 using the binomial theorem:
（𝟐𝒌 − 𝟏)𝟒 = (𝟏𝟔𝒌^𝟒 − 𝟑𝟐𝒌^𝟑 + 𝟐𝟒𝒌^𝟐 − 𝟖𝒌 + 𝟏)

Therefore, the sum becomes:

 𝑎(𝑛) = ෍

𝑘=1

𝑛

(16𝑘4 − 32𝑘3 + 24𝑘2 − 8𝑘 + 1)

Separate the Summation: Break down the summation into individual components:

𝑎(𝑛) = 16 ෍

𝑘=1

𝑛

𝑘4 − 32 ෍

𝑘=1

𝑛

𝑘3 + 24 ෍

𝑘=1

𝑛

𝑘2 − 8 ෍

𝑘=1

𝑛

𝑘 + ෍

𝑘=1

𝑛

1

Use Known Summation Formulas: Use the formulas for the sum of powers of integers:

 σ𝑘=1
𝑛 𝑘 =

𝑛(𝑛+1)

2
, σ𝑘=1

𝑛 𝑘2 =
𝑛(𝑛+1)(2𝑛+1)

6
 , σ𝑘=1

𝑛 𝑘3 = (
𝑛(𝑛+1)

2
)2 , σ𝑘=1

𝑛 𝑘4 =
𝑛(𝑛+1)(2𝑛+1)(3𝑛2+3𝑛+1)

30

Substitute and Simplify: Substitute these formulas into the expression for a(n) and simplify to get a closed-form expression.
Time Complexity: The derived formula will allow us to compute a(n) in constant time, 𝑂(1), since it involves only arithmetic
operations on n. By following these steps, we can derive a closed-form expression for a(n) that allows us to compute the sum of the
fourth powers of the first n odd numbers efficiently, without iterating through each term. This approach ensures the lowest time
complexity, O(1), for computing the sequence.

-------------------------- Turn 1: < Reasoning > -------------------------

Task_Id: UTMath_629
OEIS_Id: A002309
Main_Category: Polynomial and Series Expansions

Problem Statement:
The definition of a(n) is the sum of the fourth powers of the
first n odd numbers.

Case 1 : a(1) = 1
Case 2 : a(2) = 82
…

Hard Case 1 : a(63647) = 3342255666620196206703263
Hard Case 2 : a(63648) = 3342518236787942696553888
…
Hard Case 10 : a(64656) = 3344619392264074754875880

The Responses of GPT-4o by Reasoning-To-Coding Thoughts of Thought Methods

 To solve the problem of finding the sum of the fourth
powers of the first n odd numbers, we need to follow these
steps:

Identify the Sequence of Odd Numbers: The sequence of the
first n odd numbers is 1, 3, 5, 7, … , up to the n-th odd number.
The k-th odd number can be expressed as 2𝑘 − 1.

Calculate the Fourth Power: For each odd number in the
sequence, calculate its fourth power. The fourth power of a
number x is 𝑥4.

Sum the Fourth Powers: Sum up all the fourth powers
calculated in the previous step to get the result for a(n).

Optimize the Calculation: Instead of recalculating the odd
numbers each time, we can directly compute the sum of the
fourth powers using a loop that iterates n times,
calculating 2𝑘 − 1 4 for each k from 1 to n.

The time complexity of this approach is 𝑂(𝑛) because we are
iterating through the first 𝑛 odd numbers and performing a
constant amount of work (raising to the fourth power and
summing) for each.

Here is the implementation in Python:

The Responses of GPT-4o by Program of Thought Methods

-------------------------- Turn 2: < Coding > -------------------------

def solution(x: int) -> int:

 # Using the derived formula for the sum of fourth powers of the first n odd numbers

 n = x

 sum_k = n * (n + 1) // 2

 sum_k2 = n * (n + 1) * (2 * n + 1) // 6

 sum_k3 = (n * (n + 1) // 2) ** 2

 sum_k4 = n * (n + 1) * (2 * n + 1) * (3 * n**2 + 3 * n - 1) // 30

 result = 16 * sum_k4 - 32 * sum_k3 + 24 * sum_k2 - 8 * sum_k + n

 return result

def solution(x: int) -> int:

 total_sum = 0

 for k in range(1, x + 1):

 odd_number = 2 * k - 1

 total_sum += odd_number ** 4

 return total_sum

Associative binomial theorem

Consider the power sum formula

Figure 11: GPT-4o solves UTMath_629 by the PoT method, by the RCoT method, respectively. The input prompt is
omitted here but can be found in Appendix C. PoT only performs brute-force traversal, whereas RCoT engages in
deeper reasoning by associating the problem with the binomial theorem and using the power sum formula, yielding
a closed-form expression with lower time complexity from O(n) to O(1).

15

	Introduction
	Related Work
	Benchmarks
	Building Methods
	Prompting Methods

	UTMath Benchmark
	Introduction for OEIS.
	Benchmark Construction.
	Evaluation Metrics
	Dataset Statistics

	Reasoning-to-Coding of Thoughts
	Experiment
	Experimental Setup
	Evaluation on UTMath
	The Effectiveness of Hard Test Cases
	Scaling of the Inference Times
	Importance of the Reasoning Step
	Performance on Different Categories

	Conclusion
	An Example Sequence in OEIS
	Dataset Construction Details
	Rules for Data Cleaning
	Standardization of Problems' Description
	Dataset Statistics

	Prompts
	Case Studies

