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Abstract

In convex optimization, first-order optimization methods efficiently minimizing
function values have been a central subject study since Nesterov’s seminal work
of 1983. Recently, however, Kim and Fessler’s OGM-G and Lee et al.’s FISTA-G
have been presented as alternatives that efficiently minimize the gradient magni-
tude instead. In this paper, we present H-duality, which represents a surprising
one-to-one correspondence between methods efficiently minimizing function val-
ues and methods efficiently minimizing gradient magnitude. In continuous-time
formulations, H-duality corresponds to reversing the time dependence of the dis-
sipation/friction term. To the best of our knowledge, H-duality is different from
Lagrange/Fenchel duality and is distinct from any previously known duality or
symmetry relations. Using H-duality, we obtain a clearer understanding of the
symmetry between Nesterov’s method and OGM-G, derive a new class of methods
efficiently reducing gradient magnitudes of smooth convex functions, and find a
new composite minimization method that is simpler and faster than FISTA-G.

1 Introduction

Since Nesterov’s seminal work of 1983 [37], accelerated first-order optimization methods that effi-
ciently reduce function values have been central to the theory and practice of large-scale optimization
and machine learning. In 2012, however, Nesterov initiated the study of first-order methods that
efficiently reduce gradient magnitudes of convex functions [41]. In convex optimization, making the
function value exactly optimal is equivalent to making the gradient exactly zero, but reducing the
function-value suboptimality below a threshold is not equivalent to reducing the gradient magnitude
below a threshold. This line of research showed that accelerated methods for reducing function
values, such as Nesterov’s FGM [37], the more modern OGM [26], and the accelerated composite
optimization method FISTA [11] are not optimal for reducing gradient magnitude, and new optimal
alternatives, such as OGM-G [29] and FISTA-G [31], were presented.

These new accelerated methods for reducing gradient magnitudes are understood far less than those for
minimizing function values. However, an interesting observation of symmetry, described in Section 2,
was made between these two types of methods, and it was conjectured that this symmetry might be a
key to understanding the acceleration mechanism for efficiently reducing gradient magnitude.

Contribution. We present a surprising one-to-one correspondence between methods efficiently
minimizing function values and methods efficiently minimizing gradient magnitude. We call this
correspondence H-duality and formally establish a duality theory in both discrete- and continuous-
time dynamics. Using H-duality, we obtain a clearer understanding of the symmetry between
FGM/OGM and OGM-G, derive a new class of methods efficiently reducing gradient magnitudes,
and find a new composite minimization method that is simpler and faster than FISTA-G, the prior
state-of-the-art in efficiently reducing gradient magnitude in the composite minimization setup.
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1.1 Preliminaries and Notation

Given f : Rd → R, write f⋆ = infx∈Rd f(x) ∈ (−∞,∞) for the minimum value and x⋆ ∈
argminx∈Rn f(x) for a minimizer, if one exists. Throughout this paper, we assume f⋆ ̸= −∞,
but we do not always assume a minimizer x⋆ exists. Given a differentiable f : Rd → R and a
pre-specified value of L > 0, we define the notation

[x, y] := f(y)− f(x) + ⟨∇f(y), x− y⟩

Jx, yK := f(y)− f(x) + ⟨∇f(y), x− y⟩+ 1

2L
∥∇f(x)−∇f(y)∥2

Jx, ⋆K := f⋆ − f(x) +
1

2L
∥∇f(x)∥2

for x, y ∈ Rd. A differentiable function f : Rd → R is convex if the convexity inequality [x, y] ≤ 0
holds for all x, y ∈ Rd. For L > 0, a function f : Rd → R is L-smooth convex if it is differentiable
and the cocoercivity inequality Jx, yK ≤ 0 holds for all x, y ∈ Rd [42]. If f has a minimizer x⋆, then
Jx, ⋆K = Jx, x⋆K, but the notation Jx, ⋆K is well defined even when a minimizer x⋆ does not exist. If
f is L-smooth convex, then Jx, ⋆K ≤ 0 holds for all x ∈ Rd [42].

Throughout this paper, we consider the duality between the following two problems.

(P1) Efficiently reduce f(xN )− f⋆ assuming x⋆ exists and ∥x0 − x⋆∥ ≤ R.
(P2) Efficiently reduce 1

2L∥∇f(yN )∥2 assuming f⋆ > −∞ and f(y0)− f⋆ ≤ R.

Here, R ∈ (0,∞) is a parameter, x0 and y0 denote initial points of methods for (P1) and (P2), and
xN and yN denote outputs of methods for (P1) and (P2).

Finally, the standard gradient descent (GD) with stepsize h is

xi+1 = xi −
h

L
∇f(xi), i = 0, 1, . . . . (GD)

1.2 Prior works

Classically, the goal of optimization methods is to reduce the function value efficiently. In the smooth
convex setup, Nesterov’s fast gradient method (FGM) [37] achieves an accelerated O(1/N2)-rate,
and the optimized gradient method (OGM) [26] improves this rate by a factor of 2, which is, in fact,
exactly optimal [18].

On the other hand, Nesterov initiated the study of methods for reducing the gradient magnitude
of convex functions [41] as such methods help us understand non-convex optimization better and
design faster non-convex machine learning methods. For smooth convex functions, (GD) achieves a
O((f(x0)− f⋆) /N)-rate on the squared gradient magnitude [34, Proposition 3.3.1], while (OGM-G)
achieves an accelerated O((f(x0)− f⋆) /N

2)-rate [29], which matches a lower bound and is there-
fore optimal [35, 36]. Interestingly, (OGM) and (OGM-G) exhibit an interesting hint of symmetry,
as we detail in Section 2, and the goal of this work is to derive a more general duality principle from
this observation.

In the composite optimization setup, iterative shrinkage-thresholding algorithm (ISTA) [13, 45,
16, 14] achieves a O(∥x0 − x⋆∥2/N)-rate on function-value suboptimality, while the fast iterative
shrinkage-thresholding algorithm (FISTA) [11] achieves an accelerated O(∥x0 − x⋆∥ /N2)-rate. On
the squared gradient mapping norm, FISTA-G achieves O((F (x0)− F⋆)/N

2)-rate [31], which is
optimal [35, 36]. Analysis of an accelerated method often uses the estimate sequence technique
[38, 8, 39, 9, 40, 32] or a Lyapunov analysis [37, 11, 50, 10, 53, 1, 5, 6, 7, 43]. In this work, we focus
on the Lyapunov analysis technique, as it is simpler and more amenable to a continuous-time view.

The notion of duality is fundamental in many branches of mathematics, including optimization.
Lagrange duality [46, 47, 12], Wolfe duality [57, 15, 49, 33], and Fenchel–Rockacheller duality [20,
46] are related (arguably equivalent) notions that consider a pairing of primal and dual optimization
problems. The recent gauge duality [21, 22, 3, 58] and radial duality [24, 23] are alternative notions of
duality for optimization problems. Attouch–Théra duality [4, 48] generalizes Fenchel–Rockacheller
to the setup of monotone inclusion problems. In this work, we present H-duality, which is a notion
of duality for optimization algorithms, and it is, to the best of our knowledge, distinct from any
previously known duality or symmetry relations.
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2 H-duality

In this section, we will introduce H-duality, state the main H-duality theorem, and provide applications.
Let N ≥ 1 be a pre-specified iteration count. Let {hk,i}0≤i<k≤N be an array of (scalar) stepsizes and
identify it with a lower triangular matrix H ∈ RN×N via Hk+1,i+1 = hk+1,i if 0 ≤ i ≤ k ≤ N − 1
and Hk,i = 0 otherwise. An N -step Fixed Step First Order Method (FSFOM) with H is

xk+1 = xk − 1

L

k∑
i=0

hk+1,i∇f(xi), ∀ k = 0, . . . , N − 1 (1)

for any initial point x0 ∈ Rd and differentiable f . For H ∈ RN×N , define its anti-transpose
HA ∈ RN×N with HA

i,j = HN−j+1,N−i+1 for i, j = 1, . . . , N . We call [FSFOM with HA] the
H-dual of [FSFOM with H].

2.1 Symmetry between OGM and OGM-G

Let f be an L-smooth convex function. Define the notation z+ = z − 1
L∇f(z) for z ∈ Rd. The

accelerated methods OGM [19, 26] and OGM-G [29] are

xk+1 = x+
k +

θk − 1

θk+1
(x+

k − x+
k−1) +

θk
θk+1

(x+
k − xk) (OGM)

yk+1 = y+k +
(θN−k − 1)(2θN−k−1 − 1)

θN−k(2θN−k − 1)
(y+k − y+k−1) +

2θN−k−1 − 1

2θN−k − 1
(y+k − yk) (OGM-G)

for k = 0, . . . , N − 1, where {θi}Ni=0 are defined as θ0 = 1, θ2i+1 − θi+1 = θ2i for 0 ≤ i ≤ N − 2,
and θ2N − θN = 2θ2N−1.1 (OGM) and (OGM-G) are two representative accelerated methods for
the setups (P1) and (P2), respectively. As a surface-level symmetry, the methods both access the
{θi}Ni=0 sequence, but (OGM-G) does so in a reversed ordering [29]. There turns out to be a deeper-
level symmetry: (OGM) and (OGM-G) are H-duals of each other, i.e., HA

OGM = HOGM-G. The
proof structures of (OGM) and (OGM-G) also exhibit symmetry. We can analyze (OGM) with the
Lyapunov function

Uk =
L

2
∥x0 − x⋆∥2 +

k−1∑
i=0

uiJxi, xi+1K +
k∑

i=0

(ui − ui−1)Jx⋆, xiK (2)

for −1 ≤ k ≤ N with {ui}Ni=0 = (2θ20, . . . , 2θ
2
N−1, θ

2
N ) and u−1 = 0. Since J·, ·K ≤ 0 and {ui}Ni=0

is a positive monotonically increasing sequence, {Uk}Nk=−1 is dissipative, i.e., UN ≤ UN−1 ≤ · · · ≤
U0 ≤ U−1. So

θ2N (f(xN )− f⋆) ≤ θ2N (f(xN )− f⋆) +
L

2
∥x⋆ − x0 + z∥2 (•)

= UN ≤ U−1 =
L∥x0 − x⋆∥2

2
,

where z =
N∑
i=0

ui−ui−1

L ∇f(xi). The justification of (•) is the main technical challenge of this

analysis, and it is provided in Appendix B.2. Dividing both sides by θ2N , we conclude the rate

f(xN )− f⋆ ≤ 1

θ2N

L

2
∥x0 − x⋆∥2.

Likewise, we can analyze (OGM-G) with the Lyapunov function

Vk = v0 (f(y0)− f⋆ + JyN , ⋆K) +
k−1∑
i=0

vi+1Jyi, yi+1K +
k−1∑
i=0

(vi+1 − vi)JyN , yiK (3)

for 0 ≤ k ≤ N with {vi}Ni=0 =
(

1
θ2
N
, 1
2θ2

N−1
, . . . , 1

2θ2
0

)
. Similarly, {Vk}Nk=0 is dissipative, so

1

2L
∥∇f(yN )∥2 (◦)

= VN ≤ V0 =
1

θ2N
(f(y0)− f⋆) +

1

θ2N
JyN , ⋆K ≤ 1

θ2N
(f(y0)− f⋆) .

1Throughout this paper, we use the convention of denoting iterates of a given “primal” FSFOM as xk while
denoting the iterates of the H-dual FSFOM as yk.
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Again, the justification of (◦) is the main technical challenge of this analysis, and it is provided in
Appendix B.2. The crucial observations are (i) ui = 1/vN−i for 0 ≤ i ≤ N and (ii) the convergence
rates share the identical factor 1/θ2N = 1/uN = v0. Interestingly, a similar symmetry relation
holds between method pairs [(OBL-F♭), (OBL-G♭)][44] and [(GD), (GD)], which we discuss later in
Section 2.4.

2.2 H-duality theorem

The symmetry observed in Section 2.1 is, in fact, not a coincidence. Suppose we have N -step FSFOMs
with H and HA. We denote their iterates as {xi}Ni=0 and {yi}Ni=0. For clarity, note that {ui}Ni=0 are
free variables and can be appropriately chosen for the convergence rate analysis. For the FSFOM with
H , define {Uk}Nk=−1 with the general form (2) with u−1 = 0. If 0 = u−1 ≤ u0 ≤ u1 ≤ · · · ≤ uN ,
then {Uk}Nk=−1 is monotonically nonincreasing (dissipative). Assume we can show

uN (f(xN )− f⋆) ≤ UN (∀x0, x⋆,∇f(x0), . . . ,∇f(xN )∈ Rd). (C1)

To clarify, since {xi}Ni=0 lies within span{x0,∇f(x0), . . . ,∇f(xN )}, the UN depends on(
x0, x⋆, {∇f(xi)}Ni=0, {ui}Ni=0, H

)
. If (C1) holds, the FSFOM with H exhibits the convergence rate

uN (f(xN )− f⋆) ≤ UN ≤ · · · ≤ U−1 =
L

2
∥x0 − x⋆∥2. (4)

For the FSFOM with HA, define {Vk}Nk=0 with the general form (3). Also, note that {vi}Ni=0 are free
variables and can be appropriately chosen for the convergence rate analysis. If 0 ≤ v0 ≤ v1 ≤ · · · ≤
vN , then {Vk}Nk=0 is monotonically nonincreasing (dissipative). Assume we can show

1

2L
∥∇f(yN )∥2 ≤ VN (∀ y0,∇f(y0), . . . ,∇f(yN ) ∈ Rd, f⋆ ∈ R). (C2)

To clarify, since {yi}Ni=0 lies within span{y0,∇f(y0), . . . ,∇f(yN )}, the VN depends on(
y0, {∇f(yi)}Ni=0, f⋆, {vi}Ni=0, H

A
)
. If (C2) holds, the FSFOM with HA exhibits the convergence

rate
1

2L
∥∇f(yN )∥2 ≤ VN ≤ · · · ≤ V0 = v0 (f(y0)− f⋆) + v0JyN , ⋆K ≤ v0 (f(y0)− f⋆) . (5)

We now state our main H-duality theorem, which establishes a correspondence between the two types
of bounds for the FSFOMs induced by H and HA.
Theorem 1. Consider sequences of positive real numbers {ui}Ni=0 and {vi}Ni=0 related through
vi =

1
uN−i

for i = 0, . . . , N . Let H ∈ RN×N be lower triangular. Then,[
(C1) is satisfied with {ui}Ni=0 and H

]
⇔

[
(C2) is satisfied with {vi}Ni=0 and HA

]
.

Theorem 1 provides a sufficient condition that ensures an FSFOM with H with a convergence
guarantee on (f(xN ) − f⋆) can be H-dualized to obtain an FSFOM with HA with a convergence
guarantee on ∥∇f(yN )∥2. To the best of our knowledge, this is the first result establishing a
symmetrical relationship between (P1) and (P2). Section 2.3 provides a proof outline of Theorem 1.

2.3 Proof outline of Theorem 1

Define

U : = UN − uN (f(xN )− f⋆)−
L

2

∥∥∥x⋆ − x0 +
1

L

N∑
i=0

(ui − ui−1)∇f(xi)
∥∥∥2

V : = VN − 1

2
∥∇f(yN )∥2 .

Expanding U and V reveals that all function value terms are eliminated and only quadratic terms of
{∇f(xi)}Ni=0 and {∇f(yi)}Ni=0 remain. Now, (C1) and (C2) are equivalent to the conditions[
U ≥ 0, ∀

(
∇f(x0), . . . ,∇f(xN ) ∈ Rd

) ]
,

[
V ≥ 0 ∀

(
∇f(y0), . . . ,∇f(yN ) ∈ Rd

) ]
,
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respectively. Next, define gx =
[
∇f(x0)|∇f(x1)|. . . |∇f(xN )

]
∈ Rd×(N+1) and gy =[

∇f(y0)|∇f(y1)|. . . |∇f(yN )
]
∈ Rd×(N+1). We show that there is S(H,u) and T (HA, v) ∈ SN+1

such that
U = Tr (gxS(H,u)g⊺x) , V = Tr

(
gyT (HA, v)g⊺y

)
.

Next, we find an explicit invertible matrix M(u) ∈ R(N+1)×(N+1) such that S(H,u) =
M(u)⊺T (HA, v)M(u). Therefore,

Tr (gxS(H,u)g⊺x) = Tr
(
gyT (HA, v)g⊺y

)
with gy = gxM(u)⊺ and we conclude the proof. This technique of considering the quadratic forms
of Lyapunov functions as a trace of matrices is inspired by the ideas from the Performance Estimation
Problem (PEP) literature [19, 55]. The full proof is given in Appendix A.

2.4 Verifying conditions for H-duality theorem

In this section, we illustrate how to verify conditions (C1) and (C2) through examples. Detailed
calculations are deferred to Appendices B.1 and B.2.

Example 1. For (OGM) and (OGM-G), the choice

{ui}Ni=0 = (2θ20, . . . , 2θ
2
N−1, θ

2
N ), {vi}Ni=0 =

(
1

θ2N
,

1

2θ2N−1

, . . . ,
1

2θ20

)
leads to

U = 0, V = 0.

Therefore, (C1) and (C2) hold.

Example 2. Again, define z+ = z − 1
L∇f(z) for z ∈ Rd. Consider the FSFSOMs [44]

xk+1 = x+
k +

k

k + 3

(
x+
k − x+

k−1

)
+

k

k + 3

(
x+
k − xk

)
k = 0, . . . , N − 2

xN = x+
N−1 +

N − 1

2(γ + 1)

(
x+
N−1 − x+

N−2

)
+

N − 1

2(γ + 1)

(
x+
N−1 − xN−1

) (OBL-F♭)

and

y1 = y+0 +
N − 1

2(γ + 1)

(
y+0 − y+−1

)
+

N − 1

2(γ + 1)

(
y+0 − y0

)
yk+1 = y+k +

N − k − 1

N − k + 2

(
y+k − y+k−1

)
+

N − k − 1

N − k + 2

(
y+k − yk

)
k = 1, . . . , N − 1

(OBL-G♭)

where y+−1 = y0, x+
−1 = x0 and γ =

√
N(N + 1)/2. It turns out that (OBL-F♭) and (OBL-G♭) are

H-duals of each other. The choice
{ui}Ni=0 =

(
1·2
2 , . . . , N(N+1)

2 , γ2 + γ
)
, {vi}Ni=0 =

(
1

γ2+γ ,
2

N(N+1) , . . . ,
2
1·2

)
leads to

U =

N∑
i=0

ui − ui−1

2L
∥∇f(xi)∥2, V =

v0
2L

∥∇f(yN )∥2 +
N−1∑
i=0

vi+1 − vi
2L

∥∇f(yi)−∇f(yN )∥2

where u−1 = 0. Since U and V are expressed as a sum of squares, (C1) and (C2) hold.

Example 3. Interestingly, (GD) is a self-dual FSFOM in the H-dual sense. For the case h = 1, the
choice
{ui}Ni=0 =

(
. . . , (2N+1)(i+1)

2N−i , . . . , 2N + 1
)
, {vi}Ni=0 =

(
1

2N+1 , . . . ,
N+i

(2N+1)(N−i+1) , . . .
)

leads to

U =
∑

0≤i,j≤N

sij
L

⟨∇f(xi),∇f(xj)⟩ , V =
∑

0≤i,j≤N

tij
L

⟨∇f(yi),∇f(yj)⟩

for some {sij} and {tij} stated precisely in Appendix B.2. V ≥ 0 can be established by showing
that the {tij} forms a diagonally dominant and hence positive semidefinite matrix [29]. U ≥ 0 can
be established with a more elaborate argument [19], but that is not necessary; V ≥ 0 implies (C2),
and, by Theorem 1, this implies (C1).
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2.5 Applications of the H-duality theorem

A family of gradient reduction methods. Parameterized families of accelerated FSFOMs for
reducing function values have been presented throughout the extensive prior literature. Such fami-
lies generalize Nesterov’s method and elucidate the essential algorithmic component that enables
acceleration. For reducing gradient magnitude, however, there are only four accelerated FSFOMs
(OGM-G), (OBL-G♭), and M-OGM-G [60], and [17, Lemma 2.6]. Here, we construct a simple
parameterized family of accelerated FSFOMs for reducing gradient magnitude by H-dualizing an
accelerated FSFOM family for reducing function values.

Let {ti}Ni=0 and {Ti}Ni=0 be sequences positive real numbers satisfying t2i ≤ 2Ti = 2
∑i

j=0 tj for

0 ≤ i ≤ N − 1 and t2N ≤ TN =
∑N

j=0 tj . Consider a family of FSFOMs

xk+1 = x+
k +

(Tk − tk)tk+1

tkTk+1

(
x+
k − x+

k−1

)
+

(t2k − Tk)tk+1

tkTk+1

(
x+
k − xk

)
(6)

for k = 0, 1, . . . , N − 1, where x+
−1 = x0. This family coincides with the GOGM of [28], and it

exhibits the rate [28, Theorem 5]

f(xN )− f⋆ ≤ 1

TN

L

2
∥x0 − x⋆∥2,

which can be established from (2) with ui = Ti for 0 ≤ i ≤ N .

Corollary 1. The H-dual of (6) is

yk+1 = y+k +
TN−k−1(tN−k−1 − 1)

TN−k(tN−k − 1)

(
y+k − y+k−1

)
+

(t2N−k − TN−k)(tN−k−1 − 1)

TN−k(tN−k − 1)

(
y+k − yk

)
for k = 0, . . . , N − 1, where y+−1 = y0, and it exhibits the rate

1

2L
∥∇f(yN )∥2 ≤ 1

TN
(f(y0)− f⋆) .

Proof outline. By Theorem 1, (C2) holds with vi = 1/TN−i for 0 ≤ i ≤ N . We then use (5).

When Ti = t2i for 0 ≤ i ≤ N , the FSFOM (6) reduces to Nestrov’s FGM [37] and its H-dual is,
to the best of our knowledge, a new method without a name. If t2i = 2Ti for 0 ≤ i ≤ N − 1 and
t2N = TN , (6) reduces to (OGM) and its H-dual is (OGM-G). If ti = i+ 1 for 0 ≤ i ≤ N − 1 and
tN =

√
N(N + 1)/2, (6) reduces to (OBL-F♭) and its H-dual is (OBL-G♭).

Gradient magnitude rate of (GD). For gradient descent (GD) with stepsize h, the H matrix is the
identity matrix scaled by h, and the H-dual is (GD) itself, i.e., (GD) is self-dual. For 0 < h ≤ 1, the
rate f(xN ) − f⋆ ≤ 1

2Nh+1
L
2 ∥x0 − x⋆∥2, originally due to [19], can be established from (2) with

{ui}Ni=0 =
(
. . . , (2Nh+1)(i+1)

2N−i , . . . , 2Nh+ 1
)

. Applying Theorem 1 leads to the following.

Corollary 2. Consider (GD) with 0 < h ≤ 1 applied to an L-smooth convex f . For N ≥ 1,

1

2L
∥∇f(xN )∥2 ≤ min

(
f(x0)− f⋆
2Nh+ 1

,
L ∥x0 − x⋆∥2

2(2⌊N
2 ⌋h+ 1)(2⌈N

2 ⌉h+ 1)

)
.

To the best of our knowledge, Corollary 2 is the tightest rate on gradient magnitude for (GD) for the
general step size 0 < h < 1, and it matches [53, Theorem 3] for h = 1.

Resolving conjectures of A⋆-optimality of (OGM-G) and (OBL-F♭). The prior work of [44]
defines the notion of A⋆-optimality, a certain restricted sense of optimality of FSFOMs, and shows
that (OGM) and (OBL-F♭) are A⋆-optimal under a certain set of relaxed inequalities. On the other
hand, A⋆-optimality of (OGM-G) and (OBL-G♭) are presented as conjectures. Combining Theorem 1
and the A⋆-optimality of (OGM) and (OBL-F♭) resolves these conjectures; (OGM-G) and (OBL-G♭)
are A⋆-optimal.
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2.6 Intuition behind energy functions: Lagrangian Formulation

Ome might ask where the energy functions (2) and (3) came from. In this section, we provide
an intuitive explanation of these energy functions using the QCQP and its Lagrangian. Consider
an FSFOM (1) given with a lower triangular matrix H ∈ RN×N with function f , resulting in the
sequence {xi}Ni=0. To analyze the convergence rate of the function value, we formulate the following
optimization problem:

sup
f

f(xN )− f⋆

subject to f : Rn → R is L-smooth convex, ∥x0 − x⋆∥2 ≤ R2.

However, this optimization problem is not solvable, as f is a functional variable. To address this,
[19, 55] demonstrated its equivalence to a QCQP:

sup
f

f(xN )− f⋆

subject to Jxi, xjK ≤ 0 [i, j] ∈ [−1, . . . , N ]2, ∥x0 − x⋆∥2 ≤ R2

where x−1 : = x⋆. To clarify, the optimization variables are {∇f(xi), f(xi)}Ni=0, f⋆, x0, and x⋆

since {xi}Ni=0 lies within span{x0,∇f(x0), . . . ,∇f(xN )}. We consider a relaxed optimization
problem as [26]:

sup
f

f(xN )− f⋆

subject to Jxi, xi+1K ≤ 0, i = 0, 1, . . . , N − 1, Jx⋆, xiK ≤ 0, i = 0, 1, . . . , N,

∥x0 − x⋆∥2 ≤ R2

Now, consider the Lagrangian function and the convex dual.

L1(f, {ai}N−1
i=0 , {bi}Ni=0, α) = −f(xN ) + f⋆ +

N−1∑
i=0

aiJxi, xi+1K +
N∑
i=0

biJx⋆, xiK + α∥x0 − x⋆∥2 − αR2

where {ai}N−1
i=0 , {bi}Ni=0, and α are dual variables which are nonnegative. Considering a−1 = 0

and aN = 1, the infimum of L1 equals −∞ unless bi = ai − ai−1 for 0 ≤ i ≤ N . Therefore, by
introducing uN = L

2α and ui = aiuN for 0 ≤ i ≤ N , the convex dual problem can be simplified as
follows:

inf
{ui}Ni=0

−
LR2

2uN

s.t. inf
x0,x⋆,{∇f(xi)}Ni=0

−uN (f(xN )− f⋆) +
L

2
∥x0 − x⋆∥2 +

N−1∑
i=0

uiJxi, xi+1K +
N∑
i=0

(ui − ui−1)Jx⋆, xiK ≥ 0

{ui}Ni=0 are nonnegative and nondecreasing.

If the above two constraints holds for {ui}Ni=0, we have f(xN )− f⋆ ≤ L
2uN

R2. This understanding
motivates the introduction of (2) and (C1). We can perform a similar analysis on the gradient norm
minimization problem with the relaxed optimization problem as follows:

sup
f

1

2L
∥∇f(yN )∥2

subject to Jyi, yi+1K ≤ 0, i = 0, 1, . . . , N − 1, JyN , yiK ≤ 0, i = 0, 1, . . . , N − 1,

JyN , ⋆K ≤ 0, f(y0)− f⋆ ≤ R.

Finally, we note that although (2) and (3) both originate from the relaxed optimization problems, they
have been commonly employed to achieve the convergence analysis. The function value convergence
rate of OGM[26], FGM[37], G-OGM[28], GD[19], OBL-F♭[44] can be proved by using (2) with
appropriate {ui}Ni=0. The gradient norm convergence rate of OGM-G[29], OBL-G♭[44], M-OGM-
G[60], and [17, Lemma 2.6] can be proved by using (3) with appropriate {vi}Ni=0. We also note that
recent works [2, 25] do not employ (2) to achieve the convergence rate, particularly for gradient
descent with varying step sizes.
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3 H-duality in continuous time

We now establish a continuous-time analog of the H-duality theorem. As the continuous-time result
and, especially, its proof is much simpler than its discrete-time counterpart, the results of this section
serve as a vehicle to convey the key ideas more clearly. Let T > 0 be a pre-specified terminal time.
Let H(t, s) be an appropriately integrable2 real-valued kernel with domain {(t, s) | 0 < s < t < T}.
We define a Continuous-time Fixed Step First Order Method (C-FSFOM) with H as

X(0) = x0, Ẋ(t) = −
∫ t

0

H(t, s)∇f(X(s)) ds, ∀ t ∈ (0, T ) (7)

for any initial point x0 ∈ Rd and differentiable f . Note, the Euler discretization of C-FSFOMs (7)
corresponds to FSFOMs (1). The notion of C-FSFOMs has been considered previously in [30].

Given a kernel H(t, s), analogously define its anti-transpose as HA(t, s) = H(T −s, T − t). We call
[C-FSFOM with HA] the H-dual of [C-FSFOM with H]. In the special case H(t, s) = eγ(s)−γ(t)

for some function γ(·), the C-FSFOMs with H and its H-dual have the form

Ẍ(t) + γ̇(t)Ẋ(t) +∇f(X(t)) = 0 (C-FSFOM with H(t, s) = eγ(s)−γ(t))

Ÿ (t) + γ̇(T − t)Ẏ (t) +∇f(Y (t)) = 0 (C-FSFOM with HA(t, s))

Interestingly, friction terms with γ′ have time-reversed dependence between the H-duals, and this is
why we refer to this phenomenon as time-reversed dissipation.

3.1 Continuous-time H-duality theorem

For the C-FSFOM with H , define the energy function

U(t) = 1

2
∥X(0)− x⋆∥2 +

∫ t

0

u′(s)[x⋆, X(s)]ds (8)

for t ∈ [0, T ] with differentiable u : (0, T ) → R. If u′(·) ≥ 0, then {U(t)}t∈[0,T ] is dissipative.
Assume we can show

u(T ) (f(X(T ))− f⋆) ≤ U(T ) (∀X(0), x⋆, {∇f(X(s))}s∈[0,T ] ∈ Rd). (C3)

Then, the C-FSFOM with H exhibits the convergence rate

u(T ) (f(X(T ))− f⋆) ≤ U(T ) ≤ U(0) = 1

2
∥X(0)− x⋆∥2.

For the C-FSFOM with HA, define the energy function

V(t) = v(0)
(
f(Y (0))− f(Y (T ))

)
+

∫ t

0

v′(s)[Y (T ), Y (s)]ds (9)

for t ∈ [0, T ] with differentiable v : (0, T ) → R. If v′(·) ≥ 0, then {V(t)}t∈[0,T ] is dissipative.
Assume we can show

1

2
∥∇f(Y (T ))∥2 ≤ V(T ) (∀Y (0), {∇f(Y (s))}s∈[0,T ] ∈ Rd). (C4)

Then, the C-FSFOM with HA exhibits the convergence rate

1

2
∥∇f(Y (T ))∥2 ≤ V(T ) ≤ V(0) = v(0) (f(Y (0))− f(Y (T ))) ≤ v(0) (f(Y (0))− f⋆) .

Theorem 2 (informal). Consider differentiable functions u, v : (0, T ) → R related through v(t) =
1

u(T−t) for t ∈ [0, T ]. Assume certain regularity conditions (specified in Appendix C.2). Then,

[(C3) is satisfied with u(·) and H] ⇔
[
(C4) is satisfied with v(·) and HA

]
.

The formal statement of 2 and its proof are given in Appendix C.2. Loosely speaking, we can consider
Theorem 2 as the limit of Theorem 1 with N → ∞.

2In this paper, we avoid analytical and measure-theoretic details and focus on convergence (rather than
existence) results of the continuous-time dynamics.
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3.2 Verifying conditions for H-duality theorem

As an illustrative example, consider the case H(t, s) = sr

tr for r ≥ 3 which corresponds to an ODE
studied in the prior work [50, 51]. For the C-FSFOM with H , the choice u(t) = t2

2(r−1) for the
dissipative energy function {U(t)}Tt=0 of (8) leads to

U(T )− u(T ) (f(X(T ))− f⋆) =
∥TẊ(T )+2(X(T )−x⋆)∥2

+2(r−3)∥X(T )−x⋆∥2

4(r−1) +

∫ T

0

(r−3)s
2(r−1)

∥∥∥Ẋ(s)
∥∥∥2 ds.

For the C-FSFOM with HA, the choice v(t) = 1
u(T−t) =

2(r−1)
(T−t)2 for the dissipative energy function

{V(t)}Tt=0 of (9) leads to

V(T )− 1

2
∥∇f(Y (T ))∥2 = 2(r−1)(r−3)∥Y (0)−Y (T )∥2

T 4 +

∫ T

0

2(r−1)(r−3)∥(T−s)Ẏ (s)+2(Y (s)−Y (T ))∥2

(T−s)5 ds.

Since the right-hand sides are expressed as sums/integrals of squares, they are nonnegative, so (C3)
and (C4) hold. (By Theorem 2, verifying (C3) implies (C4) and vice versa.) The detailed calculations
are provided in Appendix C.1.

3.3 Applications of continuous-time H-duality theorem

The C-FSFOM (7) with H(t, s) = Cp2s2p−1

tp+1 recovers

Ẍ(t) +
p+ 1

t
Ẋ(t) + Cp2tp−2∇f(X(t)) = 0,

an ODE considered in [56]. The rate f(X(T ))− f⋆ ≤ 1
2CTp ∥X(0)− x⋆∥2 can be established from

(8) with u(t) = Ctp. The C-FSFOM with HA can be expressed as the ODE

Ÿ (t) +
2p− 1

T − t
Ẏ (t) + Cp2(T − t)p−2∇f(Y (t)) = 0. (10)

By Theorem 2, using (9) with v(t) = 1
C(T−t)p leads to the rate

1

2
∥∇f(Y (T ))∥2 ≤ 1

CT p
(f(Y (0))− f⋆) .

Note that the continuous-time models of (OGM) and (OGM-G), considered in [51], are special cases
of this setup with p = 2 and C = 1/2. The detailed derivation and well-definedness of the ODE are
presented in Appendix C.3.

4 New method efficiently reducing gradient mapping norm: (SFG)

In this section, we introduce a novel algorithm obtained using the insights of Theorem 1. Consider
minimizing F (x) := f(x) + g(x), where f : Rd → R is L-smooth convex with 0 < L < ∞ and
g : Rd → R ∪ {∞} is a closed convex proper function. Write F⋆ = infx∈Rn F (x) for the minimum
value. For α > 0, define the α-proximal gradient step as

y⊕,α = argmin
z∈Rn

(
f(y) + ⟨∇f(y), z − y⟩+ g(z) +

αL

2
∥z − y∥2

)
= Prox g

αL

(
y − 1

αL
∇f(y)

)
.

Consider FSFOMs defined by a lower triangular matrix H = {hk,i}0≤i<k≤N as follows:

xk+1 = xk −
k∑

i=0

αhk+1,i

(
xi − x⊕,α

i

)
, ∀ k = 0, . . . , N − 1.

When g = 0, this reduces to (1). FISTA [11], FISTA-G [31] and GFPGM [27] are instances of this
FSFOM with α = 1. In this section, we present a new method for efficiently reducing the gradient
mapping norm. This method is faster than the prior state-of-the-art FISTA-G [31] by a constant factor
of 5.28 while having substantially simpler coefficients.
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Theorem 3. Consider the method

yk+1 = y⊕,4
k + (N−k+1)(2N−2k−1)

(N−k+3)(2N−2k+1)

(
y⊕,4
k − y⊕,4

k−1

)
+ (4N−4k−1)(2N−2k−1)

6(N−k+3)(2N−2k+1)

(
y⊕,4
k − yk

)
yN = y⊕,4

N−1 +
3

10

(
y⊕,4
N−1 − y⊕,4

N−2

)
+

3

40

(
y⊕,4
N−1 − yN−1

)
(SFG)

for k = 0, . . . , N − 2, where y⊕,4
−1 = y0. This method exhibits the rate

min
v∈∂F (y⊕,4

N )
∥v∥2 ≤ 25L2

∥∥∥yN − y⊕,4
N

∥∥∥2 ≤ 50L

(N + 2)(N + 3)
(F (y0)− F⋆) .

We call this method Super FISTA-G (SFG), and in Appendix D.3, we present a further general
parameterized family (SFG-family). To derive (SFG-family), we start with the parameterized family
GFPGM [27], which exhibits an accelerated rate on function values, and expresses it as FSFOMs
with H . We then obtain the FSFOMs with HA + C, where C is a lower triangular matrix satisfying
certain constraints. We find that the appropriate H-dual for the composite setup is given by this
HA + C, rather than HA. We provide the proof of Theorem 3 in Appendix D.2.

(SFG) is an instance of (SFG-family) with simple rational coefficients. Among the family, the optimal
choice has complicated coefficients, but its rate has a leading coefficient of 46, which is slightly
smaller than the 50 of (SFG). We provide the details Appendix D.4.

5 Conclusion

In this work, we defined the notion of H-duality and formally established that the H-dual of an
optimization method designed to efficiently reduce function values is another method that efficiently
reduces gradient magnitude. For optimization algorithms, the notion of equivalence, whether informal
or formal [59], is intuitive and standard. For optimization problems, the notion of equivalence is
also standard, but the beauty of convex optimization is arguably derived from the elegant duality of
optimization problems. In fact, there are many notions of duality for spaces, problems, operators,
functions, sets, etc. However, the notion of duality for algorithms is something we, the authors, are
unfamiliar with within the context of optimization, applied mathematics, and computer science. In
our view, the significance of this work is establishing the first instance of a duality of algorithms. The
idea that an optimization algorithm is an abstract mathematical object that we can take the dual of
opens the door to many interesting questions. In particular, exploring for what type of algorithms the
H-dual or a similar notion of duality makes sense is an interesting direction for future work.
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A Proof of Theorem 1

Reformulate (C1) and (C2) into U and V . In this paragraph, we will show

(C1) ⇔
[
U ≥ 0,

(
∀∇f(x0), . . . ,∇f(xN ) ∈ Rd

) ]
and

(C2) ⇔
[
V ≥ 0,

(
∀∇f(y0), . . . ,∇f(yN ) ∈ Rd

) ]
.

Recall the definition of U and V.

U : = UN − uN (f(xN )− f⋆)−
L

2

∥∥∥x⋆ − x0 +
1

L

N∑
i=0

(ui − ui−1)∇f(xi)
∥∥∥2 (11)

V : = VN − 1

2
∥∇f(yN )∥2 . (12)

First we calculate UN − uN (f(xN )− f⋆).

UN − uN (f(xN )− f⋆)

=
L

2
∥x0 − x⋆∥2 +

N∑
i=0

(ui − ui−1)

(
f(xi)− f⋆ + ⟨∇f(xi), x⋆ − xi⟩+

1

2L
∥∇f(xi)∥2

)

+

N−1∑
i=0

ui

(
f(xi+1)− f(xi) + ⟨∇f(xi+1), xi − xi+1⟩+

1

2L
∥∇f(xi)−∇f(xi+1)∥2

)
− uN (f(xN )− f⋆)

(◦)
=

L

2
∥x0 − x⋆∥2 +

N∑
i=0

(ui − ui−1)

(
⟨∇f(xi), x⋆ − xi⟩+

1

2L
∥∇f(xi)∥2

)

+

N−1∑
i=0

ui

(
⟨∇f(xi+1), xi − xi+1⟩+

1

2L
∥∇f(xi)−∇f(xi+1)∥2

)

=
L

2

∥∥∥∥∥x0 − x⋆ +

N∑
i=0

ui − ui−1

L
∇f(xi)

∥∥∥∥∥
2

− 1

2L

∥∥∥∥∥
N∑
i=0

(ui − ui−1)∇f(xi)

∥∥∥∥∥
2

+

N∑
i=0

(ui − ui−1)

(
⟨∇f(xi), x0 − xi⟩+

1

2L
∥∇f(xi)∥2

)

+

N−1∑
i=0

ui

(
⟨∇f(xi+1), xi − xi+1⟩+

1

2L
∥∇f(xi)−∇f(xi+1)∥2

)
.

Note that all function value terms are deleted at ◦. Therefore,

U =− 1

2L

∥∥∥∥∥
N∑
i=0

(ui − ui−1)∇f(xi)

∥∥∥∥∥
2

+

N∑
i=0

(ui − ui−1)

(
⟨∇f(xi), x0 − xi⟩+

1

2L
∥∇f(xi)∥2

)

+

N−1∑
i=0

ui

(
⟨∇f(xi+1), xi − xi+1⟩+

1

2L
∥∇f(xi)−∇f(xi+1)∥2

)
(13)

and

UN − uN (f(xN )− f⋆)

=U+
L

2

∥∥∥∥∥x0 − x⋆ +

N∑
i=0

ui − ui−1

L
∇f(xi)

∥∥∥∥∥
2

.
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Since (x0 − xi), (xi − xi+1) ∈ span {∇f(x0), . . . ,∇f(xN )}, the value of U is independent with

x0, x⋆. Thus the only term that depends on x0 and x⋆ is L
2

∥∥∥x0 − x⋆ +
∑N

i=0
ui−ui−1

L ∇f(xi)
∥∥∥2.

Next, since x0, x⋆ can have any value, we can take x0 − x⋆ = ui−ui−1

L ∇f(xi). Thus it gives the fact

that (C1) is equivalent to
[
U ≥ 0,

(
∀∇f(x0), . . . ,∇f(xN ) ∈ Rd

) ]
.

Now we calculate VN − 1
2 ∥∇f(yN )∥2.

VN − 1

2
∥∇f(yN )∥2

=v0

(
f⋆ − f(yN ) +

1

2L
∥∇f(yN )∥2

)
+ v0 (f(y0)− f⋆)

+

N−1∑
i=0

vi+1

(
f(yi+1)− f(yi) + ⟨∇f(yi+1), yi − yi+1⟩+

1

2L
∥∇f(yi)−∇f(yi+1)∥2

)

+

N−1∑
i=0

(vi+1 − vi)

(
f(yi)− f(yN ) + ⟨∇f(yi), yN − yi⟩+

1

2L
∥∇f(yi)−∇f(yN )∥2

)
− 1

2L
∥∇f(yN )∥2

(◦)
=

v0
2L

∥∇f(yN )∥2 +
N−1∑
i=0

vi+1

(
⟨∇f(yi+1), yi − yi+1⟩+

1

2L
∥∇f(yi)−∇f(yi+1)∥2

)

+

N−1∑
i=0

(vi+1 − vi)

(
⟨∇f(yi), yN − yi⟩+

1

2L
∥∇f(yi)−∇f(yN )∥2

)
− 1

2L
∥∇f(yN )∥2.

Note that all function values are deleted at (◦). By the calculation result,

V =
v0
2L

∥∇f(yN )∥2 +
N−1∑
i=0

vi+1

(
⟨∇f(yi+1), yi − yi+1⟩+

1

2L
∥∇f(yi)−∇f(yi+1)∥2

)

+

N−1∑
i=0

(vi+1 − vi)

(
⟨∇f(yi), yN − yi⟩+

1

2L
∥∇f(yi)−∇f(yN )∥2

)
− 1

2L
∥∇f(yN )∥2.

(14)

(C2) is equivalent to
[
V ≥ 0,

(
∀∇f(y0), . . . ,∇f(yN ) ∈ Rd

) ]
. To establish Theorem 1, demon-

strating[
U ≥ 0,

(
∀∇f(x0), . . . ,∇f(xN ) ∈ Rd

) ]
⇔

[
V ≥ 0,

(
∀∇f(y0), . . . ,∇f(yN ) ∈ Rd

) ]
(15)

would suffice.

Transforming U and V into a trace. Define

gx : =
[
∇f(x0)|∇f(x1)|. . . |∇f(xN )

]
∈ Rd×(N+1),

gy : =
[
∇f(y0)|∇f(y1)|. . . |∇f(yN )

]
∈ Rd×(N+1).

In this paragraph, we convert the U of (11) and the V of (12) into the trace of symmetric matrices.
The key idea is: For each ⟨a, b⟩ term where a, b ∈ span{∇f(x0), . . . ,∇f(xN )}, we can write
a = gxa, b = gxb for some a,b ∈ R(N+1)×1. Then

⟨a, b⟩ = ⟨gxa, gxb⟩ = b⊺g⊺xgxa = Tr (b⊺g⊺xgxa) = Tr (ab⊺g⊺xgx) = Tr (gxab
⊺g⊺x) . (16)

Also note that (x0 − xi), (xi − xi+1) ∈ span{∇f(x0), . . . ,∇f(xN )} and (yi − yN ), (yi −
yi+1) ∈ span{∇f(y0), . . . ,∇f(yN )}. By using this technique, we observe that there exists
S(H,u), T (HA, v) that satisfy

(11) = Tr (gxS(H,u)g⊺x) , (12) = Tr
(
gyT (HA, v)g⊺y

)
.
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From now, we specifically calculate S(H,u) and T (HA, v). Denote {ei}Ni=0 ∈ R(N+1)×1 as a unit
vector which (i+ 1)-th component is 1, e−1 = eN+1 = 0 and define H as

H =

[
0 0

H 0

]
∈ R(N+1)×(N+1).

Then, by the definition of gx and H, we have

gxei = ∇f(xi) 0 ≤ i ≤ N,
1

L
gxH⊺e0 = 0, (17)

1

L
gxH⊺ei+1 =

1

L

i∑
j=0

hi,jgxej =
1

L

i∑
j=0

hi,j∇f(xj) = xi − xi+1 0 ≤ i ≤ N − 1. (18)

Therefore, we can express (11) with H, {ui}Ni=0, gx and {ei}Ni=0 using (17) and (18) as

(11)

= − 1

2L

∥∥∥∥∥
N∑
i=0

(ui − ui−1)∇f(xi)

∥∥∥∥∥
2

+

N∑
i=0

(ui − ui−1)

(
⟨∇f(xi), x0 − xi⟩+

1

2L
∥∇f(xi)∥2

)

+

N−1∑
i=0

ui

(
⟨∇f(xi+1), xi − xi+1⟩+

1

2L
∥∇f(xi)−∇f(xi+1)∥2

)

= − 1

2L

∥∥∥∥∥
N∑
i=0

(ui − ui−1)gxei

∥∥∥∥∥
2

+

N∑
i=0

(ui − ui−1)

(〈
gxei,

1

L
gxH⊺(e0 + · · ·+ ei)

〉
+

1

2L
∥gxei∥2

)

+

N−1∑
i=0

ui

(〈
gxei+1,

1

L
gxH⊺ei+1

〉
+

1

2L
∥gx(ei − ei+1)∥2

)
.

Using (16) induces (11) = Tr (gxS(H,u)g⊺x) where

S(H,u)

= − 1

2L

(
N∑
i=0

(ui − ui−1)ei

)(
N∑
i=0

(ui − ui−1)ei

)⊺

+
1

2L
H⊺

[
N∑
i=0

ui(e0 + · · ·+ ei)(ei − ei+1)
⊺

]
+

1

2L

[
N∑
i=0

ui(ei − ei+1)(e0 + · · ·+ ei)
⊺

]
H

+
1

2L

[
N∑
i=0

ui ((ei − ei+1)e
⊺
i + ei(ei − ei+1)

⊺)− uNeNe⊺N

]
.

(19)

Similarly, we calculate (12). Define HA as a anti-transpose matrix of H:

HA =

[
0 0

HA 0

]
∈ R(N+1)×(N+1).

Then, by the definition of gy and HA, we have

gyei = ∇f(yi) 0 ≤ i ≤ N,
1

L
gy
(
HA
)⊺

e0 = 0, (20)

1

L
gy
(
HA
)⊺

ei+1 =
1

L

i∑
j=0

hi,jgyej =
1

L

i∑
j=0

hi,j∇f(yj) = yi − yi+1 0 ≤ i ≤ N − 1. (21)
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Therefore, we can express (12) with HA, {vi}Ni=0, g and {ei}Ni=0 using (20) and (21) as
(12)

=
v0 − 1

2L
∥∇f(yN )∥2 +

N−1∑
i=0

vi+1

(
⟨∇f(yi+1), yi − yi+1⟩+

1

2L
∥∇f(yi)−∇f(yi+1)∥2

)

+

N−1∑
i=0

(vi+1 − vi)

(
⟨∇f(yi), yN − yi⟩+

1

2L
∥∇f(yi)−∇f(yN )∥2

)

=
v0 − 1

2L
∥gyeN∥2 +

N−1∑
i=0

vi+1

(〈
gyei+1,

1

L
gy
(
HA
)⊺

ei+1

〉
+

1

2L
∥gy(ei − ei+1)∥2

)

+

N−1∑
i=0

(vi+1 − vi)

(
−
〈
gyei,

1

L
gy
(
HA
)⊺

(ei+1 + · · ·+ eN )

〉
+

1

2L
∥gy(ei − eN )∥2

)
.

We can write (12) = Tr
(
gyT (HA, v)g⊺y

)
where

T (HA, v)

=
1

2L

[
N∑
i=0

vi ((ei−1 − ei)(ei−1 − eN )⊺ + (ei−1 − eN )(ei−1 − ei)
⊺)

]
− v0

2L
e0e

⊺
0 − 1

2L
eNe⊺N

+
1

2L

[
N∑
i=0

vi

((
HA
)⊺

(ei + · · ·+ eN )(ei − ei−1)
⊺ + (ei − ei−1)(ei + · · ·+ eN )⊺HA

)]

=
1

2L

[
N∑
i=0

1

uN−i
((ei−1 − ei)(ei−1 − eN )⊺ + (ei−1 − eN )(ei−1 − ei)

⊺)

]
− 1

2uNL
e0e

⊺
0 − 1

2L
eNe⊺N

+
1

2L

[
N∑
i=0

1

uN−i

((
HA
)⊺

(ei + · · ·+ eN )(ei − ei−1)
⊺ + (ei − ei−1)(ei + · · ·+ eN )⊺HA

)]
.

(22)

Finding auxiliary matrix M(u) that gives the relation between S(H,u) and T (HA, v). We
can show that there exists an invertible M(u) ∈ R(N+1)×(N+1) such that

S(H,u) = M(u)⊺T (HA, v)M(u). (23)
If we assume the above equation,

Tr (gxS(H,u)g⊺x) = Tr
(
gyT (HA, v)g⊺y

)
(24)

with gy = gxM(u)⊺. Since M(u) is invertible,

{g|g ∈ Rd×(N+1)} = {gM(u)⊺|g ∈ Rd×(N+1)}. (25)
Also, note that[

U ≥ 0 ∀∇f(x0), . . . ,∇f(xN )
]

⇔
[
Tr (gxS(H,u)g⊺x) ≥ 0 ∀gx ∈ Rd×(N+1)

]
and[

V ≥ 0 ∀∇f(y0), . . . ,∇f(yN )
]

⇔
[
Tr
(
gyT (HA, u)g⊺y

)
≥ 0 ∀gy ∈ Rd×(N+1)

]
.

By combining (24) and (25), we obtain[
Tr (gxS(H,u)g⊺x) ≥ 0 ∀gx ∈ Rd×(N+1)

]
⇔
[
Tr
(
gyS(H,u)g⊺y

)
≥ 0 ∀gx ∈ Rd×(N+1), gy = gxM(u)⊺

]
⇔
[
Tr
(
gyS(H,u)g⊺y

)
≥ 0 ∀gy ∈ Rd×(N+1)

]
.

To sum up, we obtain (15)[
U ≥ 0 ∀∇f(x0), . . . ,∇f(xN )

]
⇔

[
V ≥ 0 ∀∇f(y0), . . . ,∇f(yN )

]
,

which concludes the proof.
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Explicit form of M(u) and justification of (23) . Explicit form of M(u) is

M =



0 · · · 0 0 uN

0 · · · 0 uN−1 uN − uN−1

0 · · · uN−2 uN−1 − uN−2 uN − uN−1

...
...

...
...

...
u0 · · · uN−2 − uN−3 uN−1 − uN−2 uN − uN−1

 ∈ R(N+1)×(N+1). (26)

Now, we express M(u) =
∑

0≤i,j≤N

mij(u)eie
⊺
j , S(H,u) =

∑
0≤i,j≤N

sijeie
⊺
j , and T (HA, v) =∑

0≤i,j≤N

tijeie
⊺
j . Calculating M⊺(u)T (HA, v)M(u) gives

M⊺(u)T (HA, v)M(u) =

∑
i,j

mij(u)eje
⊺
i

∑
i,j

tijeie
⊺
j

∑
i,j

mij(u)eie
⊺
j


=
∑
i,j

tij

(∑
k

mik(u)ek

)(∑
l

mjl(u)el

)⊺

: =
∑
i,j

tijfi(u)fj(u)
⊺.

Thus it is enough to show that
∑
i,j

sijeie
⊺
j and

∑
i,j

tijfi(u)fj(u)
⊺ are the same under the basis transfor-

mation fi(u) =
∑
k

mik(u)ek. From here, we briefly write fi instead fi(u), and f−1 = 0. Note that

ui(ei − ei+1) = (fN−i − fN−i−1), 0 ≤ i ≤ N by definition of M(u). Therefore, we have

1

L
H⊺

N∑
i=0

ui(e0 + · · ·+ ei)(ei − ei+1)
⊺ =

1

L
H⊺

N∑
i=0

(e0 + · · ·+ ei)(fN−i − fN−i−1)
⊺

=
1

L
H⊺

[
N∑
i=0

eif
⊺
N−i

]
.

Therefore, we can rewrite (19) as follows:

S(H,u) =− 1

2L
fN f⊺N +

1

2L
H⊺

[
N∑
i=0

eif
⊺
N−i

]
+

1

2L

N∑
i=0

fN−ie
⊺
i H

+
1

2L

N∑
i=0

[
(fN−i − fN−i−1)e

⊺
i + ei(fN−ifN−i−1)

⊺
]
− uN

2L
eNe⊺N

=− 1

2L
fN f⊺N︸ ︷︷ ︸

A1

+
1

2L

∑
i,j

hi,jejf
⊺
N−i

+
1

2L

∑
i,j

hi,jfN−ie
⊺
j


︸ ︷︷ ︸

B1

+
1

2L

N∑
i=0

[
(fN−i − fN−i−1)e

⊺
i + ei(fN−i − fN−i−1)

⊺
]

︸ ︷︷ ︸
C1

− uN

2L
eNe⊺N︸ ︷︷ ︸
D1

.

(27)

Similarly, by using

eN−i − eN−i+1 =
1

uN−i
(fi − fi−1) = vi (fi − fi−1) ,
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we can rewrite (22) as follows:

M⊺(u)T (HA, v)M(u)

=
1

2L

N∑
i=0

(eN−i+1 − eN−i)(fi−1 − fN )⊺ + (fi−1 − fN )(eN−i+1 − eN−i)
⊺

− 1

2uNL
f0f

⊺
0 − 1

2L
fN f⊺N +

1

2L

(
HA
)⊺ [ N∑

i=0

fie
⊺
N−i

]
+

1

2L

[
N∑
i=0

eN−if
⊺
i

]
HA

=− 1

2uNL
f0f

⊺
0︸ ︷︷ ︸

D2

+
1

2L

∑
i,j

hN−i,N−jfje
⊺
N−i

+
1

2

∑
i,j

hN−j,N−ieN−if
⊺
j


︸ ︷︷ ︸

B2

+

[
1

2L

N∑
i=0

(eN−i+1 − eN−i)f
⊺
i−1 + fi−1(eN−i+1 − eN−i)

⊺ − 1

2L
(e0f

⊺
N + fNe⊺0)

]
︸ ︷︷ ︸

C2

− 1

2L
fN f⊺N︸ ︷︷ ︸
A2

.

(28)

For the final step, we compare (28) and (27) term-by-term, by showing X1 = X2 for X =
A,B,C,D.

• A1 = A2 comes directly.
• B1 = B2 comes from changing the summation index i → N − i and j → N − j.
• C1 = C2 comes from the expansion of summation.
• D1 = D2 comes from f0 = uNeN .

Therefore,

S(H,u) = M⊺(u)T (HA, v)M(u),

which concludes the proof.

Remark 1. We can interpret M as a basis transformation, where

uNeN = f0, ui(ei − ei+1) = fN−i − fN−i−1 i = 0, 1, . . . , N − 1. (29)

Remark 2. To clarify, the quantifier [∀∇f(x0), . . . ,∇f(xN )] in (C1) means
∇f(x0), . . . ,∇f(xN ) can be any arbitrary vectors in Rd. This is different from
[∇f(x0), . . . ,∇f(xN ) be gradient of some f : Rd → R]. The same is true for (C2).

B Omitted calculation of Section 2

B.1 Calculation of H matrices

OGM and OGM-G. [26, Proposition 3] provides a recursive formula for (OGM) as follows:

hk+1,i =


θk−1
θk+1

hk,i i = 0, . . . , k − 2
θk−1
θk+1

(hk,k−1 − 1) i = k − 1

1 + 2θk−1
θk+1

i = k.

(30)

If k > i,

hk+1,k−1 =
θk − 1

θk+1

2θk−1 − 1

θk
,

hk+1,i =
θk − 1

θk+1
hk,i = · · · =

(
k∏

l=i+2

θl − 1

θl+1

)
hi+1,i−1 =

(
k∏

l=i+1

θl − 1

θl+1

)
2θi − 1

θi+1
.
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Thus HOGM can be calculated as

HOGM(k + 1, i+ 1) =


0 i > k

1 + 2θk−1
θk+1

i = k(
k∏

l=i+1

θl−1
θl+1

)
2θi−1
2θi+1

i < k.

Recursive formula [29] of (OGM-G) is as following:

hk+1,i =


θN−i−1−1

θN−i
hk+1,i+1 i = 0, . . . , k − 2

θN−k−1
θN−k+1

(hk+1,i − 1) i = k − 1

1 + 2θN−k−1−1
θN−k

i = k.

(31)

If k > i,

hk+1,k−1 =
θN−k − 1

θN−k+1

2θN−k−1 − 1

θN−k
,

hk+1,i =
θN−i−1 − 1

θN−i
hk+1,i+1 = · · · =

(
N−i−1∏

l=N−k+1

θl − 1

θl+1

)
hk+1,k−1 =

(
N−i−1∏
l=N−k

θl − 1

θl+1

)
2θN−k−1 − 1

θN−k
.

Thus HOGM-G can be calculated as

HOGM-G(k + 1, i+ 1) =


0 i > k

1 + 2θN−k−1−1
θN−k

i = k(
N−i−1∏
l=N−k

θl−1
θl+1

)
2θN−k−1−1

θN−k
i < k

,

which gives HOGM-G = HA
OGM.

Gradient Descent. For (GD), H(i+1, k+1) = hi+1,k = hδi+1,k+1, where δi,j is the Kronecker
delta. Therefore, HGD = HA

GD.

OBL-F♭ and OBL-G♭. Recall γ =
√

N(N+1)
2 . We obtain the recursive formula of the H matrix

of (OBL-F♭).

hk+1,i =



k
k+3hk,i k = 0, . . . , N − 2, i = 0, . . . , k − 2

1 + 2k
k+3 k = 0, . . . , N − 2, i = k

k
k+3 (hk,k−1 − 1) k = 1, . . . , N − 2, i = k − 1

1 + N−1
γ+1 k = N − 1, i = N − 1

N−1
2(γ+1) (hN−1,N−2 − 1) k = N − 1, i = N − 2
N−1

2(γ+1)hN−1,i k = N − 1, i = 0, . . . , N − 3

. (32)

By using the above formula, we obtain

HOBL-F♭
(k + 1, i+ 1) =


1 + 2k

k+3 k = 0, . . . , N − 2, i = k
2i(i+1)(i+2)

(k+1)(k+2)(k+3) k = 0, . . . , N − 2, i = 0, . . . , k − 1

1 + N−1
γ+1 k = N − 1, i = N − 1

i(i+1)(i+2)
(γ+1)N(N+1) k = N − 1, i = 0, . . . , N − 2

.
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Similarly, we achieve the following recursive formula of the H matrix of (OBL-G♭).

hk+1,i =



N−k−1
N−k+2hk,i k = 1, . . . , N − 1, i = 0, . . . , k − 2

1 + 2(N−k−1)
N−k+2 k = 1, . . . , N − 1, i = k

N−k−1
N−k+2 (hk,k−1 − 1) k = 1, . . . , N − 1, i = k − 1

1 + N−1
γ+1 k = 0, i = 0

. (33)

By using the above recursive formula, we obtain

HOBL-G♭
(k + 1, i+ 1) =



1 + N−1
γ+1 k = 0, i = 0

(N−k−1)(N−k)(N−k+1)
(γ+1)N(N+1) k = 1, . . . , N − 1, i = 0

1 + 2(N−k−1)
N−k+2 k = 1, . . . , N − 1, i = k

2(N−k−1)(N−k)(N−k+1)
(N−i)(N−i+1)(N−i+2) k = 1, . . . , N − 1, i = 1, . . . , k − 1

.

Thus HOBL-F♭
= HA

OBL-G♭
.

B.2 Calculation of energy functions

Calculation of U and V with H matrix In this paragraph, we calculate U and V. Recall (13)
and (14).

First, we put xk+1 − xk = − 1
L

k∑
i=0

hk+1,i∇f(xi) to (11). We have

U = − 1

2L

∥∥∥∥∥
N∑
i=0

(ui − ui−1)∇f(xi)

∥∥∥∥∥
2

+

N∑
i=0

(ui − ui−1)

(
⟨∇f(xi), x0 − xi⟩+

1

2L
∥∇f(xi)∥2

)

+

N−1∑
i=0

ui

(
⟨∇f(xi+1), xi − xi+1⟩+

1

2L
∥∇f(xi)−∇f(xi+1)∥2

)

= − 1

2L

∥∥∥∥∥
N∑
i=0

(ui − ui−1)∇f(xi)

∥∥∥∥∥
2

+

N∑
i=0

ui − ui−1

L

〈∇f(xi),

i−1∑
l=0

l∑
j=0

hl+1,j∇f(xj)

〉
+

1

2
∥∇f(xi)∥2


+

N−1∑
i=0

ui

L

〈∇f(xi+1),

i∑
j=0

hi+1,j∇f(xj)

〉
+

1

2
∥∇f(xi)−∇f(xi+1)∥2

 .

By arranging, we obtain

U =
∑

0≤j≤i≤N

si,j
L

⟨∇f(xi),∇f(xj)⟩

where

si,j =



− 1
2 (uN − uN−1)

2 + 1
2uN j = i, i = N

− 1
2 (ui − ui−1)

2 + ui j = i, i = 0, . . . , N − 1

uihi,i−1 − ui−1 − (ui − ui−1)(ui−1 − ui−2) j = i− 1

(ui − ui−1)
i−1∑
l=j

hl+1,j + ui−1hi,j − (ui − ui−1)(uj − uj−1) j = 0, . . . , i− 2.

.

(34)
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Recall that we defined u−1 = 0. Next, put yk+1 − yk = − 1
L

k∑
i=0

hk+1,i∇f(yi) to (12). We have

V = VN − 1

2L
∥∇f(yN )∥2

=
v0
2L

∥∇f(yN )∥2 +
N−1∑
i=0

vi+1

(
⟨∇f(yi+1), yi − yi+1⟩+

1

2L
∥∇f(yi)−∇f(yi+1)∥2

)

+

N−1∑
i=0

(vi+1 − vi)

(
⟨∇f(yi), yN − yi⟩+

1

2L
∥∇f(yi)−∇f(yN )∥2

)
− 1

2L
∥∇f(yN )∥2

=
v0 − 1

2L
∥∇f(yN )∥2 +

N−1∑
i=0

vi+1

〈∇f(yi+1),
1

L

i∑
j=0

hi+1,j∇f(yj)

〉
+

1

2L
∥∇f(yi)−∇f(yi+1)∥2


+

N−1∑
i=0

(vi+1 − vi)

〈∇f(yi),−
1

L

N−1∑
l=i

l∑
j=0

hl+1,j∇f(yj)

〉
+

1

2L
∥∇f(yi)−∇f(yN )∥2

 .

By arranging, we obtain

V =
∑

0≤j≤i≤N

ti,j
L

⟨∇f(yi),∇f(yj)⟩

where

ti,j =



v1
2 + v1−v0

2 − (v1 − v0)
N−1∑
l=0

hl+1,0 i = 0, j = i

vi+1+vi
2 + vi+1−vi

2 − (vi+1 − vi)
N−1∑
l=i

hl+1,i i = 1, . . . , N − 1, j = i

v0−1
2 + vN

2 +
N−1∑
i=0

vi+1−vi
2 i = N, j = i

vihi,i−1 − vi − (vi+1 − vi)
N−1∑
l=i

hl+1,i−1 − (vi − vi−1)
N−1∑
l=i

hl+1,i i = 1, . . . , N − 1, j = i− 1

vNhN,N−1 − vN − (vN − vN−1) i = N, j = i− 1

vihi,j − (vi+1 − vi)
N−1∑
l=i

hl+1,j − (vj+1 − vj)
N−1∑
l=i

hl+1,i i = 2, . . . , N − 1, j = 0, . . . , i− 2

vNhN,j − (vj+1 − vj) i = N, j = 0, . . . , N − 2

.

(35)

Now we calculate {sij} and {tij} for [(OGM), (OGM-G)] [(OBL-F♭), (OBL-G♭)] and [(GD), (GD)].

B.2.1 Calculation of energy function of (OGM) and (OGM-G)

We will show sij = 0 and tij = 0 for all i, j. By the definition of {ui}Ni=−1 and {θi}Ni=−1,

ui − ui−1 = 2θ2i − 2θ2i−1 = 2θi 0 ≤ i ≤ N − 1,

uN − uN−1 = θ2N − 2θ2N−1 = θN .

Therefore, we have

si,i =

{
− 1

2 (uN − uN−1)
2 + 1

2uN = −θN + θN = 0 j = i, i = N

− 1
2 (ui − ui−1)

2 + ui = −θi + θi = 0 j = i, i = 0, . . . , N − 1.
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Now we claim that sij = 0 when j ̸= i. In the case that i = j + 1, we have
si,i−1 = uihi,i−1 − ui−1 − (ui − ui−1)(ui−1 − ui−2)

= ui

(
2θi−1 − 1

θi
+ 1

)
− ui−1 − (ui − ui−1)(ui−1 − ui−2)

=

2θ2i

(
2θi−1−1

θi
+ 1
)
− 2θ2i−1 − 4θiθi−1 0 ≤ i ≤ N − 1

θ2N

(
2θN−1−1

θN
+ 1
)
− 2θ2N−1 − 2θN−1θN i = N

= 0.

We show sij = 0 for j ̸= i with induction on i, i.e., provingsi,j = (ui − ui−1)

i−1∑
l=j

hl+1,j + ui−1hi,j − (ui − ui−1)(uj − uj−1) = 0, j = 0, . . . , i− 2

 .

(36)
First we prove (36) for i = j + 2.

(uj+2 − uj+1) (hj+1,j + hj+2,j) + uj+1hj+2,j − (uj+2 − uj+1)(uj − uj−1)

=(uj+2 − uj+1)hj+1,j + uj+2hj+2,j − (uj+2 − uj+1)(uj − uj−1)

=

{
2θj+2hj+1,j + 2θ2j+2hj+2,j − 4θj+2θj 0 ≤ j ≤ N − 3

θNhN−1,N−2 + θ2NhN,N−2 − 2θNθN−2 j = N − 2

=0.

Next, assume (36) for i = i0. When i = i0 + 1,

(ui0+1 − ui0)

i0∑
l=j

hl+1,j + ui0hi0+1,j − (ui0+1 − ui0)(uj − uj−1)

=(ui0+1 − ui0)

i0−1∑
l=j

hl+1,j + hi0+1,j

+ ui0hi0+1,j − (ui0+1 − ui0)(uj − uj−1)

=(ui0+1 − ui0)

(
(ui0 − ui0−1)(uj − uj−1)− ui0−1hi0,j

ui0 − ui0−1
+ hi0+1,j

)
+ ui0hi0+1,j

− (ui0+1 − ui0)(uj − uj−1)

=ui0+1hi0+1,j −
ui0−1(ui0+1 − ui0)

ui0 − ui0−1
hi0,j

=

2θ2i0+1hi0+1,j −
4θ2

i0−1θi0+1

2θi0
hi0,j 0 ≤ i0 ≤ N − 2

θ2Nhi0+1,j −
2θ2

N−2θN
2θN−1

hi0,j i0 = N − 1

=0

where the second equality comes from the induction hypothesis, and the third equality comes from
(30). In sum, we proved sij = 0 for every i and j, which implies U = 0.

Next, we will claim that tij = 0 for all i, j. Firstly, explicit formula of HOGM-G(k + 1, i+ 1) first.
When k > i,

HOGM-G(k + 1, i+ 1) =
θN−k − 1

θN−k+1

θN−k+1 − 1

θN−k+2
· · · θN−i−1 − 1

θN−i

2θN−k−1 − 1

θN−k

=
θ2N−k − θN−k

θN−kθN−k+1

θ2N−k+1 − θN−k+1

θN−k+1θN−k+2
· · ·

θ2N−i−1 − θN−i−1

θN−i−1θN−i

2θN−k−1 − 1

θN−k

=
θ2N−k−1

θN−kθN−k+1

θ2N−k

θN−k+1θN−k+2
· · ·

θ2N−i−2

θN−i−1θN−i

2θN−k−1 − 1

θN−k

=
θ2N−k−1(2θN−k−1 − 1)

θ2N−i−1θN−i
.
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To calculate {ti,j}, it is enough to deal with the sum
N−1∑
l=i

hl+1,j , which can be expressed as

N−1∑
l=i

hl+1,j =


θN+1

2 i = 0, j = i

θN−i i = 1, . . . , N − 1, j = i

θ4
N−i−1

θN−jθ2
N−j−1

i = 1, . . . , N − 1, j = 0, . . . , i− 1

. (37)

By inserting (37) in (35), [tij = 0,∀i, j] is obtained, which implies V = 0. (37) and (35) are also
stated in [29, Lemma 6.1].

B.2.2 Calculation of energy function of (OBL-F♭) and (OBL-G♭)

First we calculate {sij} for (OBL-F♭). Recall ui =
(i+1)(i+2)

2 for 0 ≤ i ≤ N − 1 and uN = γ2 + γ

where γ =
√
N(N + 1)/2. When j = i,

si,i =

{
− 1

2 (uN − uN−1)
2
+ 1

2uN i = N

− 1
2 (ui − ui−1)

2
+ ui 0 ≤ i ≤ N − 1

=

{
γ
2 = uN−uN−1

2 i = N

− 1
2 (i+ 1)

2
+ (i+1)(i+2)

2 = ui−ui−1

2 0 ≤ i ≤ N − 1
.

Now we claim that sij = 0 when j ̸= i. In the case j = i− 1, we have

si,i−1 = uihi,i−1 − ui−1 − (ui − ui−1)(ui−1 − ui−2)

=

{
(i+1)(i+2)

2 hi,i−1 − i(i+1)
2 − (i+ 1)i 0 ≤ i ≤ N − 1(

γ2 + γ
)
hN,N−1 − N(N+1)

2 − γN i = N

= 0.

We show sij = 0 for j ̸= i with induction on i, i.e., proving

si,j = (ui − ui−1)

i−1∑
l=j

hl+1,j + ui−1hi,j − (ui − ui−1)(uj − uj−1) = 0 j = 0, . . . , i− 2

 .

(38)

(38) holds when i = j + 2 since

(uj+2 − uj+1) (hj+1,j + hj+2,j) + uj+1hj+2,j − (uj+2 − uj+1)(uj − uj−1)

=(uj+2 − uj+1)hj+1,j + uj+2hj+2,j − (uj+2 − uj+1)(uj − uj−1)

=

{
(j + 3)hj+1,j +

(j+3)(j+4)
2 hj+2,j − (j + 3)(j + 1) 0 ≤ j ≤ N − 3

γhN−1,N−2 +
(
γ2 + γ

)
hN,N−2 − γ j = N − 2

=0.
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Assume (38) for i = i0. For i = i0 + 1,

(ui0+1 − ui0)

i0∑
l=j

hl+1,j + ui0hi0+1,j − (ui0+1 − ui0)(uj − uj−1)

=(ui0+1 − ui0)

i0−1∑
l=j

hl+1,j + hi0+1,j

+ ui0hi0+1,j − (ui0+1 − ui0)(uj − uj−1)

=(ui0+1 − ui0)

(
(ui0 − ui0−1)(uj − uj−1)− ui0−1hi0,j

ui0 − ui0−1
+ hi0+1,j

)
+ ui0hi0+1,j

− (ui0+1 − ui0)(uj − uj−1)

=ui0+1hi0+1,j −
ui0−1(ui0+1 − ui0)

ui0 − ui0−1
hi0,j

=

{
(i0+2)(i0+3)

2 hi0+1,j − i0(i0+1)(i0+2)
2(i0+1) hi0,j 0 ≤ i0 ≤ N − 2(

γ2 + γ
)
hN,j − (N−1)Nγ

2N hN−1,j i0 = N − 1

=0.

Next, we calculate {tij} for (OBL-G♭). We need to deal with the sum
N−1∑
l=k

hl+1,i, which can be

expressed as

N−1∑
l=i

hl+1,j =


1 + (N+2)(N−1)

4(γ+1) i = 0, j = 0
(N−i+2)(N−i+1)(N−i)(N−i−1)

4(γ+1)N(N+1) i = 1, . . . , N − 1, j = 0
(N−i+2)(N−i+1)(N−i)(N−i−1)

2(N−j)(N−j+1)(N−j+2) i = j + 1, . . . , N − 1, j = 1, . . . , N − 1

1 + N−i−1
2 i = j, j = 1, . . . , N − 1

.

By combining v0 = 1
γ2+γ , vi = 1

(N−i+1)(N−i+2) for 1 ≤ i ≤ N and (35), we obtain

tij =



1 i = N, j = N
1

2N(N+1) −
v0
2 i = 0, j = 1

v0 − 1
N(N+1) i = N, j = 0

1
(N−i)(N−i+1)(N−i+2) i = 1, . . . , N − 1, j = i

− 2
(N−i)(N−i+1)(N−i+2) i = N, j = 1, . . . , N − 1

0 otherwise

=



vN

2 i = N, j = N
vi+1−vi

2 i = 0, . . . , N − 1, j = i

−vi+1 + vi i = N, j = 0, . . . , N − 1

0 otherwise

Therefore,

V =
∑

0≤j≤i≤N

tij
L

⟨∇f(yi),∇f(yj)⟩ =
v0
2L

∥∇f(yN )∥2 +
N−1∑
i=0

vi+1 − vi
2L

∥∇f(yi)−∇f(yN )∥2 .
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B.2.3 Calculation of energy function of GD

We calculate {tij} first. Recall that {vi}Ni=0 =
(

1
2N+1 , . . . ,

N+i
(2N+1)(N−i+1) , . . .

)
and hi+1,k = δi,k

to (35), and making {tij} symmetric gives us

tij =



1
2v0 i = j, i = 0

vi i = j, 1 ≤ i ≤ N − 1

vN − 1
2 i = j, i = N

1
2

(
vmin(i,j) − vmin(i,j)+1

)
i ̸= j.

We can verify that the matrix {tij}0≤i,j≤N is diagonally dominant: tii = |
∑

j ̸=i tij |. Therefore,∑
0≤i,j≤N−1

tij
L ⟨∇f(yi),∇f(yj)⟩ ≥ 0 for any {∇f(yi)}Ni=0. This proof is essentially the same as the

proof in [29], but we repeat it here with our notation for the sake of completeness.

Next, we prove that (GD) with h = 1 and {ui}Ni=0 =
(
. . . , (2N+1)(i+1)

2N−i , . . . , 2N + 1
)

satisfies (C1),
by showing more general statement:[

(GD) and {ui}Ni=0 =

(
. . . ,

(2Nh+ 1)(i+ 1)

2N − i
, . . . , 2Nh+ 1

)
satisfies (C1)

]
(39)

Note that (39) gives

(2Nh+ 1)(f(xN )− f⋆) ≤ UN ≤ U−1 =
L

2
∥x0 − x⋆∥2. (40)

Later in the proof of Corollary 2, we will utilize the equation (39). The result (39) is proved in [19,
Theorem 3.1], and we give the proof outline here.

In order to demonstrate (39), we will directly expand the expression UN −uN (f(xN )− f⋆), instead
of employing U as a intermediary step. Define {u′

i}Ni=0 : =
(
. . . , (2N+1)(i+1)

2N−i , . . . , 2N + 1
)

. Then

UN − uN (f(xN )− f⋆) =
1

L
Tr (g⊺gS)

where g = [∇f(x0)|. . . |∇f(xN )|L(x0 − x⋆)] ∈ Rd×(N+2) and S ∈ SN+2 is given by

S =

[
S′ λ

λ 1
2

]
,

λ = [u0|u1 − u0|. . . |uN − uN−1]
⊺, S′ = 2Nh+1

2N+1 (hS0 + (1− h)S1),

S0 =

N−1∑
i=0

u′
i

2

(
ei+1e

⊺
i + eie

⊺
i+1 + (ei − ei+1)(ei − ei+1)

⊺
)

+

N∑
i=0

u′
i − u′

i−1

2
(ei(e0 + · · ·+ ei−1)

⊺ + (e0 + · · ·+ ei−1)e
⊺
i + eie

⊺
i )

S1 =

N−1∑
i=0

u′
i

2
(ei − ei+1)(ei − ei+1)

⊺ +

N∑
i=0

u′
i − u′

i−1

2
eie

⊺
i .

Now we will show S ⪰ 0 to obtain
[
UN − uN (f(xN )− f⋆) ≥ 0, ∀ g

]
, which is (C1). By using

Sylvester’s Criterion, S0 ≻ 0 follows. S1 ≻ 0 follows from the fact that S1 expressed by the sum of
positive semi-definite matrices zz⊺. Since the convex sum of two positive semi-definite matrices is
also positive semi-definite, S′ = hS0 + (1− h)S1 ≻ 0.

Next, we argue that detS = 0. Indeed, take τ = (1, . . . ,−(2Nh+ 1))
⊺ to show Sτ = 0, which

gives detS = 0. Note that the determinant of S can also be expressed by

det(S) =

(
1

2
− λ⊺ (S′)

−1
λ

)
det(S′). (41)

We have shown that S′ ≻ 0, (41) implies 1
2 − λ⊺ (S′)

−1
λ = 0, which is the Schur complement of

the matrix S. By a well-known lemma on the Schur complement, we conclude S ⪰ 0.
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B.3 Omitted proof in Section 2.5

B.3.1 Omitted calculation of Corollary 1

Here, we will give the general formulation of H-dual FSFOM of
xk+1 = xk + βk

(
x+
k − x+

k−1

)
+ γk

(
x+
k − xk

)
, k = 0, . . . , N − 1. (42)

Proposition 1. The H-dual of (42) is
yk+1 = yk + β′

k

(
y+k − y+k−1

)
+ γ′

k

(
y+k − yk

)
, k = 0, . . . , N − 1 (43)

where

β′
k =

βN−k(βN−1−k + γN−1−k)

βN−k + γN−k

γ′
k =

γN−k(βN−1−k + γN−1−k)

βN−k + γN−k

for k = 0, . . . , N − 1 and (βN , γN ) is any value that βN + γN ̸= 0. 3

Proof. The H matrix {hk,i}0≤i<k≤N satisfies

hk+1,i =


1 + βk + γk i = k, k = 0, . . . , N − 1

βk (hk,i − 1) i = k − 1, k = 1, . . . , N − 1

βkhk,i i = k − 2, k = 2, . . . , N − 1

.

Therefore,

hk+1,i =

 k∏
j=i+1

βj

 (βi + γi + δk,i)

where δk,i is a Kronecker Delta function. Similarly, H matrix of (43) {gk,i}0≤i<k≤N satisfies

gk+1,i =

 k∏
j=i+1

β′
j

 (β′
i + γ′

i + δk,i)

=

 k∏
j=i+1

βN−j(βN−1−j + γN−1−j)

βN−j + γN−j

 (βN−1−i + γN−1−i + δk,i)

=

 k∏
j=i+1

βN−j

 (βN−k−1 + γN−i−1 + δN−k−1,N−i−1) .

Thus gk+1,i = hN−i,N−1−k.

Now we derive the H-dual of (6) by applying Proposition 1. Note that

βk =
(Tk − tk)tk+1

tkTk+1
, γk =

(t2k − Tk)tk+1

tkTk+1
, k = 0, . . . , N − 1.

Next, define βN and γN as a same form of {βi, γi}N−1
i=0 with any tN+1 > 0. Note that

βk + γk =
tk+1(t

2
k − tk)

tkTk+1
=

tk+1(tk − 1)

Tk+1
.

By applying the formula at Proposition 1, we obtain

β′
k =

(TN−k − tN−k)
tN−k(tN−k−1−1)

TN−k

t2N−k − tN−k
=

(TN−k − tN−k)(tN−k−1 − 1)

TN−k(tN−k − 1)
=

TN−k−1(tN−k−1 − 1)

TN−k(tN−k − 1)

and

γ′
k =

(t2N−k − TN−k)
tN−k(tN−k−1−1)

TN−k

t2N−k − tN−k
=

(t2N−k − TN−k)(tN−k−1 − 1)

TN−k(tN−k − 1)
.

3Here, note that FSFOM (43) is independent with the any choice of βN , γN since y1 = y0 +
(β′

0 + γ′
0)

(
y+
0 − y0

)
= y0 + (βN−1 + γN−1)

(
y+
0 − y0

)
.
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B.3.2 Proof of Corollary 2

First, recall (39) when 0 < h ≤ 1:[
(GD) and {ui}Ni=0 =

(
. . . ,

(2Nh+ 1)(i+ 1)

2N − i
, . . . , 2Nh+ 1

)
satisfies (C1)

]
Additionally, observe that the H matrix of (GD) is diag (h, . . . , h), which gives the fact that the
H-dual of (GD) is itself.

Next, use Theorem 1 to obtain[
(GD) with 0 < h ≤ 1 and {vi}Ni=0 =

(
1

2Nh+ 1
, . . . ,

N + i

(2Nh+ 1)(N − i+ 1)
, . . .

)
satisfies (C2)

]
.

(44)

By using the same argument with (5), (44) gives
1

2L
∥∇f(yN )∥2 ≤ VN ≤ V0 =

1

2Nh+ 1
(f(y0)− f⋆) +

1

2Nh+ 1
JyN , y⋆K ≤

1

2Nh+ 1
(f(y0)− f⋆) .

(45)

In addition, we can achieve the convergence rate of the gradient norm under the initial condition of
∥x0 − x⋆∥2:

1

2L
∥∇f(x2N )∥2 ≤ 1

2Nh+ 1
(f(xN )− f⋆) ≤

1

(2Nh+ 1)2
L

2
∥x0 − x⋆∥2

and
1

2L
∥∇f(x2N+1)∥2 ≤ 1

2(N + 1)h+ 1
(f(xN )− f⋆) ≤

1

(2(N + 1)h+ 1) (2Nh+ 1)

L

2
∥x0 − x⋆∥2 .

The first inequality comes from (45) and the second inequality comes from (40).

B.3.3 Proof of A⋆-optimality of (OGM-G) and (OBL-G♭)

Definition of A⋆-optimal FSFOM. For the given inequality sets L, A⋆-optimal FSFOM with
respect to [L,P1] is defined as a FSFOM which H matrix is the solution of following minimax
problem:

minimize
H∈RN×N

L

maximize
f

f(xN )− f⋆

subject.to. [x0, . . . , xN are generated by FSFOM with the matrix H]

[∀ l ∈ L, f satisfies l]

∥x0 − x⋆∥2 ≤ R2

(46)

Similarly, A⋆-optimal FSFOM with respect to [L, (P2)] is specified with its H matrix, which is the
solution of the following minimax problem:

minimize
H∈RN×N

L

maximize
f

1

2L
∥∇f(yN )∥2

subject.to. [y0, . . . , yN are generated by FSFOM with the matrix H]

[∀ l ∈ L, f satisfies l]

f(y0)− f⋆ ≤ 1

2
LR2

(47)

Here RN×N
L is the set of lower triangular matrices. Next we denote the inner maximize problem

of (46) and (47) as P1(L, H,R) and P2(L, H,R), respectively. For a more rigorous definition of
A⋆-optimal FSFOM, refer [44].

Remark. We discuss the minimax problems (46) and (47) and their interpretation. Specifically,
we consider the meaning of the maximization problem in these minimax problems, which can be
thought of as calculating the worst-case performance for a fixed FSFOM with H . In other words, the
minimization problem in (46) and (47) can be interpreted as determining the optimal value of H that
minimizes the worst-case performance.
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Prior works. The prior works for A⋆-optimality are summarized as follows. Consider the
following sets of inequalities.

LF ={Jxi, xi+1K}N−1
i=0 ∪ {Jx⋆, xiK}Ni=0

=
{
f(xi) ≥ f(xi+1) + ⟨∇f(xi+1), xi − xi+1⟩+

1

2L
∥∇f(xi)−∇f(xi+1)∥2

}N−1

i=0⋃{
f⋆ ≥ f(xi) + ⟨∇f(xi), x⋆ − xi⟩+

1

2L
∥∇f(xi)∥2

}N

i=0
,

LG ={Jyi, yi+1K}N−1
i=0 ∪ {JyN , yiK}N−1

i=0 ∪ {JyN , ⋆K}

=
{
f(yi) ≥ f(yi+1) + ⟨∇f(yi+1), yi − yi+1⟩+

1

2L
∥∇f(yi)−∇f(yi+1)∥2

}N−1

i=0⋃{
f(yN ) ≥ f(yi) + ⟨∇f(yi), yN − yi⟩+

1

2L
∥∇f(yi)−∇f(yN )∥2

}N−1

i=0⋃{
f(yN ) ≥ f⋆ +

1

2L
∥∇f(yN )∥2

}
,

LG′ ={Jyi, yi+1K}N−1
i=0 ∪

{
JyN , yiK −

1

2L
∥∇f(yi)−∇f(yN )∥2

}N−1

i=0
∪
{

JyN , ⋆K − 1

2L
∥∇f(yN )∥2

}
=
{
f(yi) ≥ f(yi+1) + ⟨∇f(yi+1), yi − yi+1⟩+

1

2L
∥∇f(yi)−∇f(yi+1)∥2

}N−1

i=0⋃{
f(yN ) ≥ f(yi) + ⟨∇f(yi), yN − yi⟩

}N−1

i=0

⋃{
f(yN ) ≥ f⋆

}
,

LF′ ={Jxi, xi+1K}N−1
i=0 ∪

{
Jx⋆, xiK −

1

2L
∥∇f(xi)∥2

}N

i=0

=
{
f(xi) ≥ f(xi+1) + ⟨∇f(xi+1), xi − xi+1⟩+

1

2L
∥∇f(xi)−∇f(xi+1)∥2

}N−1

i=0⋃{
f⋆ ≥ f(xi) + ⟨∇f(xi), x⋆ − xi⟩

}N

i=0
,

and

Lexact ={Jxi, xjK}(i,j)∈{⋆,0,1,...,N}2 .

(OGM) is A⋆-optimal with respect to [LF, (P1)] [26]. Furthermore, (OGM) is also A⋆-optimal
under [Lexact, (P1)] which implies that (OGM) is the exact optimal FSFOM with respect to (P1). In
addition, the A⋆-optimality of (OGM-G) with respect to [LG, (P2)] was presented as a conjecture in
[29], (OBL-F♭) is A⋆-optimal with respect to [LF′ , (P1)] [44, Theorem 4], and the A⋆-optimality of
(OBL-G♭) with respect to [LG′ , (P2)] was presented as a conjecture [44, Conjecture 8]. 4

In the remaining parts, we give the proof of the following two theorems.

Theorem 4. (OGM-G) is A⋆-optimal with respect to [LG, (P2)].

Theorem 5. (OBL-G♭) is is A⋆-optimal with respect to [LG′ , (P2)].

4Originally, the inequality set suggested that (OBL-G♭) would A⋆-optimal is which (f(yN ) ≥ f⋆) is
replaced with

(
f(yN ) ≥ f⋆ + 1

2L
∥∇f(yN )∥2

)
in LG′ .
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Proof of A⋆-optimality of (OGM-G) We provide an alternative formulation of P2(LG, H,R) by
using the methodology called PEP [19, 52]

maximize
f

1

2L
∥∇f(yN )∥2

subject to f(yi+1)− f(yi) + ⟨∇f(yi+1), yi − yi+1⟩+
1

2L
∥∇f(yi)−∇f(yi+1)∥2 ≤ 0, i = 0, . . . , N − 1

f(yi)− f(yN ) + ⟨∇f(yi), yN − yi⟩+
1

2L
∥∇f(yi)−∇f(yN )∥2 ≤ 0, i = 0, . . . , N − 1

f⋆ +
1

2L
∥∇f(yN )∥2 ≤ f(yN )

f(y0)− f⋆ ≤ 1

2
LR2

yi+1 = yi −
1

L

i∑
j=0

hi+1,j∇f(yj), i = 0, . . . , N − 1

.

(48)

Next, define F, G, {ei}Ni=0 and {xi}Ni=0 as

G :=


⟨∇f(y0),∇f(y0)⟩ ⟨∇f(y0),∇f(y1)⟩ · · · ⟨∇f(y0),∇f(yN )⟩

...
...

...
⟨∇f(yN ),∇f(yN )⟩ ⟨∇f(yN ),∇f(y1)⟩ · · · ⟨∇f(yN ),∇f(yN )⟩

 ∈ SN+1,

F :=


f(y0)− f⋆
f(y1)− f⋆

...
f(yN )− f⋆

R(N+1)×1,

ei ∈ RN+1 is a unit vector which (i+ 1)-th component is 1, and

y0 := 0, yi+1 := yi −
1

L

i∑
j=0

hi+1,jej i = 0, . . . , N − 1.

By using the definition of F, G, {ei}Ni=0 and {yi}Ni=0, P2(LG, H,R) can be converted into

minimize
F,G⪰0

− 1

2L
Tr (GeNe⊺N )

subject to F(ei+1 − ei)
⊺ +Tr (GAi) ≤ 0, i = 0, . . . , N − 1

F(ei − eN )⊺ +Tr (GBi) ≤ 0, i = 0, . . . , N − 1

− Fe⊺N +
1

2
Tr (GeNe⊺N ) ≤ 0

Fe⊺0 − 1

2
LR2 ≤ 0

(49)

where

Ai :=
1

2
ei+1(yi − yi+1)

⊺ +
1

2
(yi − yi+1)e

⊺
i+1 +

1

2L
(ei − ei+1) (ei − ei+1)

⊺

Bi :=
1

2
ei(yN − yi)

⊺ +
1

2
(yN − yi)e

⊺
i +

1

2L
(ei − eN ) (ei − eN )

⊺
.

Moreover, under the condition d ≥ N + 2, we can take the Cholesky factorization of G to recover
the triplet {(yi, f(yi),∇f(yi))}Ni=0.5 Thus (48) and (49) are equivalent. The next step is calculating
the Lagrangian of (49) and deriving the Lagrangian dual problem of it. In [54], they argued about the
strong duality of (49).

5Cholesky factorization is unique if G > 0 but it may be not unique if G ⪰ 0. In this case, we choose one
representation of Cholesky factorization.
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Fact 1. Assume hi+1,i ̸= 0 for 0 ≤ i ≤ N − 1. Then the strong duality holds between (48) and (49).

Denote the dual variables of each constraints as {δi}N−1
i=0 , {λi}N−1

i=0 , δN and τ . Then Lagrangian
becomes

L(δ, λ, τ,F,G) = F ·X⊺ +Tr (G ·T)− τL

2
R2

where

X =

N−1∑
i=0

δi(ei+1 − ei) +

N−1∑
i=0

λi(ei − eN )− δNeN + τe0,

T =

N−1∑
i=0

δiAi +

N−1∑
i=0

λiBi +
δN
2
eNe⊺N − 1

2
eNe⊺N .

If [X = 0 and T ⪰ 0] is false, we can choose F and G that makes the value of Lagrangian to be
−∞. Thus the convex dual problem of (49) is

maximize
δ,λ,τ

minimize
F,G

L(δ, λ, τ,F,G) =


maximize

δ,λ,τ
− τL

2 R2

subject to X = 0, T ⪰ 0

δi ≥ 0, λi ≥ 0, τ ≥ 0

. (50)

For the constraint X = 0, λi = δi − δi−1 for 1 ≤ i ≤ N − 1, τ = δN and −δ0 + λ0 + δN = 0. By
substituting vi+1 = δi for 0 ≤ i ≤ N − 1 and v0 = δN , (50) becomes

maximize
v0,...,vN

minimize
F,G

L(δ, λ, τ,F,G) =


maximize

δ,λ,τ
− v0L

2 R2

subject to T ⪰ 0

0 ≤ v0 ≤ · · · ≤ vN

. (51)

Therefore if strong duality holds, P2(LG, H,R) becomes

minimize
v0,...,vN

v0L

2
R2

subject.to. T ⪰ 0, 0 ≤ v0 ≤ · · · ≤ vN .

(52)

We can apply a similar argument for P1(LF, H,R). To begin with, define {fi}Ni=−1 as a unit vector
of length N +2 which (i+2)-component is 1. Additionally, define {xi}Ni=0, {Ci}N−1

i=0 and {Di}Ni=0
as follows:

x0 := f−1, xi+1 := xi −
1

L

i∑
j=0

hi+1,jfj i = 0, . . . , N − 1,

Ci :=
1

2
fi+1(xi − xi+1)

⊺ +
1

2
(xi − xi+1)f

⊺
i+1 +

1

2L
(fi − fi+1) (fi − fi+1)

⊺
,

Di := −1

2
fix

⊺
i − 1

2
xif

⊺
i +

1

2L
fif

⊺
i .

(53)

Then, if the strong duality holds, the problem

maximize
f

f(xN )− f⋆

subject.to. [x0, . . . , xN are generated by FSFO with the matrix H]

[∀l ∈ LF, f satisfies l]

∥x0 − x⋆∥2 ≤ R2

(54)

is equivalent to

maximize
u0,...,uN

L

2uN
R2

subject.to. S ⪰ 0, 0 ≤ u0 ≤ · · · ≤ uN ,

(55)
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where

S =
L

2
f−1f

⊺
−1 +

N−1∑
i=0

uiCi +

N∑
i=0

(ui − ui−1)Di.

By using Schur’s Complement,

S ⪰ 0 ⇔ S′ ⪰ 0

where

S′ =

N−1∑
i=0

uiCi +

N∑
i=0

(ui − ui−1)Di −
1

2L

(
N∑
i=0

(ui − ui−1)fi

)(
N∑
i=0

(ui − ui−1)fi

)⊺

.

Hence (55) is equivalent to

maximize
u0,...,uN

L

2uN
R2

subject.to. S′ ⪰ 0, 0 ≤ u0 ≤ · · · ≤ uN .

(56)

Now we will prove the following proposition.

Proposition 2. Consider a matrix H = {hi,j}0≤j<i≤N and HA. If hi+1,i ̸= 0 for 0 ≤ i ≤ N − 1
and treating the solution of infeasible maximize problem as 0, the optimal values of P1(LF, H,R)
and P2(LG, H

A, R) are same.

Proof. To simplify the analysis, we can consider {fi}Ni=0 as a length N + 1 unit vector, as all terms
with f−1 can be eliminated by using S′ instead of S. With this simplification, both S′ and T belong
to SN+1.

Next, let 0 < u0 ≤ u1 ≤ · · · ≤ uN and vi = 1
uN−i

for 0 ≤ i ≤ N , noting that 0 < v0 ≤
· · · ≤ vN . It is important to observe that S′ and T can be expressed in terms of S (H,u) and
T
(
HA, v

)
, respectively. Furthermore, in the proof of Theorem 1 (A), we proved that S(H,u) =

M(u)⊺T (HA, v)M(u) for some invertible M(u). Thus,

S(H,u) ⪰ 0 ⇔ T (HA, v) ⪰ 0.

Therefore, we obtain

(a0, . . . , aN ) ∈ {(u0, . . . , uN )|S′ ⪰ 0, 0 < u0 ≤ · · · ≤ uN} (57)

if and only if (
1

aN
, . . . ,

1

a0

)
∈ {(v0, . . . , vN )|T ⪰ 0, 0 < v0 ≤ · · · ≤ vN}. (58)

For the next step, we claim that the optimal value of (56) and

maximize
u0,...,uN

L

2uN
R2

subject.to. S′ ⪰ 0, 0 < u0 ≤ · · · ≤ uN

(59)

are same, i.e., consider the case when all ui are positive is enough. To prove that, assume there
exists 0 = u0 = · · · = uk, 0 < uk+1 ≤ · · · ≤ uN and H that satisfy S′ ⪰ 0. Next, observe that
the fkf

⊺
k component of S′ is 0 but fk+1f

⊺
k component of S′ is uk+1hk+1,k ̸= 0, which makes S′ ⪰ 0

impossible.

When the optimal value of (52) is 0, it implies {(v0, . . . , vN )|T ⪰ 0, 0 < v0 ≤ · · · ≤ vN} is an
empty set. Therefore, {(u0, . . . , uN )|S′ ⪰ 0, 0 < u0 ≤ · · · ≤ uN} is also empty set. Since (59)
and (56) have the same optimal value, the optimal value of (56) is 0.

If the optimal value of (52) is positive, the optimal values of (56) and (52) are the same since (57)
and (58) are equivalent.

32



Proof of Theorem 4. HOGM is the solution of (46) since (OGM) is A⋆-optimal with respect to LF
and (P1). Additionally, if

(46) = maximize
H,hi+1,i ̸=0

P1(LF, H,R) (60)

holds, HOGM is the solution to the following problem due to the strong duality.

maximize
H,hi+1,i ̸=0

maximize
u0,...,uN

L

2uN
R2

subject.to. S ⪰ 0, 0 ≤ u0 ≤ · · · ≤ uN .

(61)

Applying Proposition 2 and using the fact HOGM-G = HA
OGM provides that HOGM-G is the solution of

maximize
H,hi+1,i ̸=0

minimize
v0,...,vN

v0L

2
R2

subject.to. T ⪰ 0, 0 ≤ v0 ≤ · · · ≤ vN .

(62)

Finally, if

(47) = maximize
H,hi+1,i ̸=0

P1(LF, H,R) (63)

holds, the optimal solution of (47) is the HOGM-G, which proves the A⋆-optimality of (OGM-G) with
respect to LG and (P2). The proof of (60) and (63) uses the continuity argument with H and please
refer [44, Claim 4].

Remark of Proof of A⋆-optimality of (OGM-G). We proved that (OGM-G) is A⋆-optimal if we
use the subset of cocoercivity inequalities. Therefore, it is still open whether (OGM-G) is optimal or
not among the L-smooth convex function’s gradient minimization method.

Proof of A⋆-optimality of (OBL-G♭). We provide the proof that the H matrix of (OBL-G♭) is the
solution of

minimize
H∈RN×N

L

P2(LG’, H,R) (64)

To begin with, bring to mind the A⋆-optimality of (OBL-F♭): (OBL-F♭) is A⋆-optimal with respect
to the [LF′ , P1], i.e., the H matrix of (OBL-F♭) is the solution of

minimize
H∈RN×N

L

P1(LF’, H,R). (65)

To prove the A⋆-optimality of (OBL-G♭), we use the A⋆-optimality of (OBL-F♭).

Under the assumption of strong duality, we could change P1(LF’, H,R) into the following SDP:

maximize
u0,...,uN

L

2uN
R2

subject.to. S1 ⪰ 0, 0 ≤ u0 ≤ · · · ≤ uN

(66)

where

S1 =
L

2
f−1f

⊺
−1 +

N−1∑
i=0

uiCi +

N∑
i=0

(ui − ui−1)

(
Di −

1

2L
fif

⊺
i

)
.

Here we used the same notation with (53). Each 1
2L fif

⊺
i term is subtracted from the original S since

we consider the inequality Jxi, x⋆K − 1
2L∥∇f(xi)∥2 instead of Jxi, x⋆K for LF′ . Moreover, (66) is

equivalent to

maximize
u0,...,uN

L

2uN
R2

subject.to. S′
1 ⪰ 0, 0 ≤ u0 ≤ · · · ≤ uN

(67)
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where

S′
1 =

N−1∑
i=0

uiCi +

N∑
i=0

(ui − ui−1)

(
Di −

1

2L
fif

⊺
i

)
− 1

2L

(
N∑
i=0

(ui − ui−1)fi

)(
N∑
i=0

(ui − ui−1)fi

)⊺

.

Similarly, under the assumption of strong duality, P2(LG’, H,R) is equivalent to

minimize
v0,...,vN

v0L

2
R2

subject.to. T1 ⪰ 0, 0 ≤ v0 ≤ · · · ≤ vN

(68)

where

T1 =

N−1∑
i=0

vi+1Ai +

N−1∑
i=0

(vi+1 − vi)

(
Bi −

1

2L
(ei − eN )(ei − eN )⊺

)
− 1

2
eNe⊺N .

Now we will prove the following proposition.

Proposition 3. Consider a matrix H = {hk,i}0≤i<k≤N and HA. If hi+1,i ̸= 0 for 0 ≤ i ≤ N − 1
and treating the solution of infeasible maximize problem as 0, the optimal values of P1(LF’, H,R)
and P2(LG’, H

A, R) are same.

Proof. The proof structure is the same as the proof of Proposition 2. First consider {fi}Ni=0 as length
N + 1, which gives S′

1,T1 ∈ SN+1. Furthermore, in the proof of Appendix A, we proved that

S′
1 = M(u)⊺T1M(u).

Therefore,

S′
1 ⪰ 0 ⇔ T ⪰ 0.

The other steps are the same as the proof of Proposition 2.

Proof of Theorem 5. HOGM is the solution of (46) since (OGM) is A⋆-optimal with respect to LF
and (P1). Additionally, if

(46) = maximize
H,hi+1,i ̸=0

P1(LF, H,R) (69)

holds, HOGM is the solution to the following problem due to the strong duality.

maximize
H,hi+1,i ̸=0

maximize
u0,...,uN

L

2uN
R2

subject.to. S ⪰ 0, 0 ≤ u0 ≤ · · · ≤ uN .

(70)

Applying Proposition 2 and using the fact HOGM-G = HA
OGM provides that HOGM-G is the solution of

maximize
H,hi+1,i ̸=0

minimize
v0,...,vN

v0L

2
R2

subject.to. T ⪰ 0, 0 ≤ v0 ≤ · · · ≤ vN .

(71)

Finally, if

(47) = maximize
H,hi+1,i ̸=0

P1(LF, H,R) (72)

holds, the optimal solution of (47) is the HOGM-G, which proves the A⋆-optimality of (OGM-G) with
respect to LG and (P2). The proof of (69) and (72) uses the continuity argument with H and please
refer [44, Claim 4].
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C Omitted parts in Section 3

C.1 Omitted calculations in Section 3.1

Strictly speaking, (7) is not a differential equation but rather a diffeo-integral equation. However, if H
is separable, i.e., when H(t, s) = eβ(s)−γ(t) for some β, γ : [0, T ) → R, then (7) can be reformulated
as an ODE.

Assume the process (7) is well-defined. We can alternatively write (7) as

X(0) = x0, Ẋ(t) = −e−γ(t)

∫ t

0

eβ(s)∇f(X(s))ds. (73)

By multiplying eγ(t) each side and differentiating, we obtain

Ẍ(t) + γ̇(t)Ẋ(t) + eβ(t)−γ(t)∇f(X(t)) = 0.

The H-dual of (73) is

Y (0) = x0, Ẏ (t) = −eβ(T−t)

∫ t

0

e−γ(T−s)∇f(Y (s))ds.

Under the well-definedness, by multiplying e−β(T−t) each side and differentiating, we obtain

Ÿ (t) + β̇(T − t)Ẏ (t) + eβ(T−t)−γ(T−t)∇f(Y (t)) = 0.

When β(s) = γ(t) = r log t, two ODEs become

Ẍ(t) +
r

t
Ẋ(t) +∇f(X(t)) = 0 (74)

and

Ÿ (t) +
r

T − t
Ẋ(t) +∇f(X(t)) = 0, (75)

which are introduced in Section 3.2.

For the calculations of energy functions of (74) and (75), refer [51, Section 3.1, Section 4.2]. They
proved that

(r − 1) ∥X(0)− x⋆∥2 =T 2 (f(X(T ))− x⋆) +
1

2

∥∥∥TẊ(T ) + 2(X(T )− x⋆)
∥∥∥2

+ (r − 3) ∥X(T )− x⋆∥2 +
∫ T

0

(r − 3)s
∥∥∥Ẋ(s)

∥∥∥2 ds− ∫ T

0

2s[X(s), x⋆]ds

holds for (74) and
1

T 2
(f(Y (0))− f(Y (T ))) +

−r + 3

T 4
∥Y (0)− Y (T )∥2

=
1

4(r − 1)
∥∇f(Y (T ))∥2 +

∫ T

0

r − 3

(T − s)5

∥∥∥(T − s)Ẏ (s) + 2(Y (s)− Y (T ))
∥∥∥2 ds− ∫ T

0

2

(T − s)3
[Y (s), Y (T )]ds

holds for (75). After arranging terms, we obtain the results in Section 3.2. 6

C.2 Proof of Theorem 2

To begin with, we give a formal version of Theorem 2. Consider two following conditions.

u(T ) (f(X(T ))− f⋆) ≤ U(T ), (∀X(0), x⋆, {∇f(X(s))}s∈[0,T ] ∈ A1). (C3′)

1

2
∥∇f(Y (T ))∥2 ≤ V(T ), (∀Y (0), {∇f(Y (s))}s∈[0,T ] ∈ A2). (C4′)

where A1 and A2 are family of vectors which makes Fubini’s Theorem can be applied and will be
defined later in this section.

6In [51], they considered the ODE which gradient term is 2∇f(Y (t)) instead of ∇f(Y (t)).
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Theorem 6 (Formal version of Theorem 2). Assume the C-FSFOMs (7) with H and HA are well-
defined in the sense that solutions to the diffeo-integral equations exist. Consider differentiable
functions u, v : (0, T ) → R that v(t) = 1

u(T−t) for t ∈ [0, T ] and

(i) lims→0 u(t) = 0

(ii) lims→−T v(s) (f(Y (s))− f(Y (T )) + ⟨∇f(Y (T )), Y (T )− Y (s)⟩) = 0.

(iii) f is L-smooth and convex.

Then the following holds.

[(C3′) is satisfied with u(·) and H] ⇔
[
(C4′) is satisfied with v(·) and HA

]
.

Calculations of energy functions via transformation Frist of all, we calculate U(T ) −
u(T )(f(X(T ))− f⋆).

U(T )− u(T ) (f(X(T ))− f⋆)

=
1

2
∥X(0)− x⋆∥2 +

∫ T

0

u′(s) (f(X(s))− f⋆ + ⟨∇f(X(s)), x⋆ −X(s)⟩) ds− u(T ) (f(X(T ))− f⋆) ds

=
1

2
∥X(0)− x⋆∥2 +

∫ T

0

u′(s) ⟨∇f(X(s)), x⋆ −X(s)⟩ ds−
∫ T

0

u(s)
〈
∇f(X(s)), Ẋ(s)

〉
ds

=
1

2
∥X(0)− x⋆∥2 +

∫ T

0

u′(s) ⟨∇f(X(s)), x⋆ −X(0)⟩ ds

+

∫ T

0

u′(s) ⟨∇f(X(s)), X(0)−X(s)⟩ ds−
∫ T

0

u(s)
〈
∇f(X(s)), Ẋ(s)

〉
ds

=
1

2

∥∥∥∥∥X(0)− x⋆ −
∫ T

0

u′(s)∇f(X(s))ds

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥
∫ T

0

u′(s)∇f(X(s))ds

∥∥∥∥∥
2

+

∫ T

0

u′(s) ⟨∇f(X(s)), X(0)−X(s)⟩ ds−
∫ T

0

u(s)
〈
∇f(X(s)), Ẋ(s)

〉
ds.

We used parts of integration and u(0) : = lims→0 u(s) = 0. Since X(0)− x⋆ can have any value,
(C3) is equivalent to

− 1

2

∥∥∥∥∥
∫ T

0

u′(s)∇f(X(s))ds

∥∥∥∥∥
2

+

∫ T

0

u′(s) ⟨∇f(X(s)), X(0)−X(s)⟩ ds−
∫ T

0

u(s)
〈
∇f(X(s)), Ẋ(s)

〉
ds ≥ 0 (76)

holds for any {∇f(X(s))}s∈[0,T ].

Now define a transformation {fs ∈ Rd}s∈[0,T ] → {gs ∈ Rd}s∈[0,T ] as

gs : = u(s)fs +

∫ T

s

u′(z)fzdz, s ∈ [0, T ] (77)

and {gs ∈ Rd}s∈[0,T ] → {fs ∈ Rd}s∈[0,T ].

fs : =
1

u(T )
g0 +

1

u(s)
(gs − g0)−

∫ T

s

u′(b)

u(b)2
(gb − g0) db, s ∈ [0, T ]. (78)

One can show that the above two transformations are in the inverse relationship. Next, we calculate
U(T ). Define fs : = ∇f(X(s)). Under the transformation (77), we can find a simple expression of
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(76).

(76) =− 1

2
∥g0∥2 −

∫ T

0

u′(s) ⟨fs, X(s)−X(0)⟩ ds−
∫ T

0

u(s)
〈
fs, Ẋ(s)

〉
ds

=− 1

2
∥g0∥2 −

∫ T

0

u′(s)

〈
fs,

∫ s

0

Ẋ(a)da

〉
ds+

∫ T

0

u(s)

〈
fs,

∫ s

0

Ẋ(a)da

〉
ds

=− 1

2
∥g0∥2 −

∫ T

0

u′(s)

〈
fs,

∫ s

0

Ẋ(a)da

〉
ds+

∫ T

0

∫ s

0

H(s, a) ⟨u(s)fs, fa⟩ dads

(◦)
= − 1

2
∥g0∥2 −

∫ T

0

〈
Ẋ(a),

∫ T

a

u′(s)fsds

〉
da+

∫ T

0

∫ s

0

H(s, a) ⟨u(s)fs, fa⟩ dads

=− 1

2
∥g0∥2 +

∫ T

0

∫ s

0

H(s, a) ⟨fa, gs⟩ dads.

(79)

We used Fubini’s Theorem at (◦). Next we calculate V(T ).

V(T ) = 1

u(T )
(f(Y (0))− f(Y (T ))) +

∫ T

0

d

ds

1

u(T − s)
(f(Y (s))− f(Y (T )) + ⟨∇f(Y (s)), Y (T )− Y (s)⟩) ds

=
1

u(T )
(f(Y (0))− f(Y (T ))) +

∫ T

0

u′(T − s)

u(T − s)2
⟨Y (T )− Y (s),∇f(Y (s))−∇f(Y (T ))⟩ ds

+

∫ T

0

d

ds

1

u(T − s)
(f(Y (s))− f(Y (T )) + ⟨∇f(Y (T )), Y (T )− Y (s)⟩) ds

(◦)
=

1

u(T )
⟨∇f(Y (T )), Y (0)− Y (T )⟩+

∫ T

0

u′(T − s)

u(T − s)2
⟨Y (T )− Y (s),∇f(Y (s))−∇f(Y (T ))⟩ ds

−
∫ T

0

1

u(T − s)

〈
Ẏ (s),∇f(Y (s))−∇f(Y (T ))

〉
ds.

(◦) comes from parts of integration and the assumption

lim
s→T

v(s) (f(Y (s))− f(Y (T )) + ⟨∇f(X(T )), Y (T )− Y (s)⟩) = 0.

To clarify, u′(T − s) = u′(z)|z=T−s. Now briefly write gs : = ∇f(Y (T − s)). Then

V(T )− 1

2
∥∇f(Y (T ))∥2

=− 1

2
∥g0∥2 −

1

u(T )

∫ T

0

〈
g0, Ẏ (s)

〉
ds+

∫ T

0

u′(T − s)

u(T − s)2
⟨Y (T )− Y (s), gT−s − g0⟩ ds

−
∫ T

0

1

u(T − s)

〈
Ẏ (s), gT−s − g0

〉
ds

=− 1

2
∥g0∥2 +

∫ T

0

u′(T − s)

u(T − s)2

〈∫ T

s

Ẏ (a)da, gT−s − g0

〉
ds

− 1

u(T )

∫ T

0

〈
g0, Ẏ (s)

〉
ds−

∫ T

0

1

u(T − s)

〈
Ẏ (s), gT−s − g0

〉
ds

(◦)
= − 1

2
∥g0∥2 +

∫ T

0

〈
− 1

u(T )
g0 −

1

u(T − s)
(gT−s − g0) +

∫ s

0

u′(T − b)

u(T − b)2
(gT−b − g0) db, Ẏ (s)

〉
ds.

(80)
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We use Fubini’s Theorem at (◦). Finally, using (78), we obtain

V(T )− 1

2
∥∇f(Y (T ))∥2

=− 1

2
∥g0∥2 −

∫ T

0

〈
fT−s, Ẏ (s)

〉
ds

=− 1

2
∥g0∥2 +

∫ T

0

〈
fT−s,

∫ s

0

HA(s, a)gT−ada

〉
ds

=− 1

2
∥g0∥2 +

∫ T

0

〈
fT−s,

∫ s

0

H(T − a, T − s)gT−ada

〉
ds

=− 1

2
∥g0∥2 +

∫ T

0

∫ s

0

H(s, a) ⟨fa, gs⟩ dads.

(81)

Proof of Theorem 2 Define A1 and A2 as follows.

A1 = {{fs}s∈[0,T ]|Analysis in the previous paragraph holds},
A2 = {{gs}s∈[0,T ]|Analysis in the previous paragraph holds}.

Now we prove Theorem 2. We have shown that (C3′) is equivalent to (76) ≥ 0 for all
{∇f(X(s))}s∈[0,T ] ∈ A1. By definition of A1, it is equivalent to

−1

2
∥g0∥2 +

∫ T

0

∫ s

0

H(s, a) ⟨fa, gs⟩ dads ≥ 0

for any {gs}s∈[0,T ] ∈ A2. Moreover, by (81), it is also equivalent to

−1

2
∥g0∥2 +

∫ T

0

∫ s

0

H(s, a) ⟨fa, gs⟩ dads = V(T )− 1

2
∥∇f(Y (T ))∥2 ≥ 0

for any {gs}s∈[0,T ] ∈ A2, which is (C4′).

C.3 Omitted parts in Section 3.3

Regularity of (10) at t = −T . To begin with, note that ODE (10) can be expressed as{
Ẇ (t) = − 2p−1

T−t W (t)− Cp2(T − t)p−2∇f(Y (t))

Ẏ (t) = W (t)

for t ∈ (0, T ). Since right hand sides are Lipschitz continuous with respect to W and Y in any
closed interval [0, s] ∈ [0, T ), solution (Y,W ) uniquely exists that satisfies above ODE with initial
condition (Y (0),W (0)) = (y0, 0). Next, we give the proof of regularity of ODE (10) at terminal
time T in the following order. The proof structure is based on the regularity proof in [51]:

(i) sup
t∈[0,T )

∥∥∥Ẏ (t)
∥∥∥ is bounded

(ii) Y (t) can be continuously extended to T

(iii) lim
t→T−

∥∥∥Ẏ (t)
∥∥∥ = 0

(iv) lim
t→T−

Ẏ (t)
(T−t)p−1 = Cp∇f(Y (T )).

Step (i): sup
t∈[0,T )

∥∥∥Ẏ (t)
∥∥∥ is bounded. ODE (10) is equivalent to

1

(T − s)p−2
Ÿ (s) +

2p− 1

(T − s)p−1
Ẏ (s) + Cp2∇f(Y (s)) = 0. (82)
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By multiplying Ẏ (s) and integrating from 0 to t, we obtain∫ t

0

1

(T − s)p−2

〈
Ÿ (s), Ẏ (s)

〉
ds+

∫ t

0

2p− 1

(T − s)p−1

∥∥∥Ẏ (s)
∥∥∥2 ds+ Cp2

∫ t

0

〈
Ẏ (s),∇f(Y (s))

〉
ds = 0

and integration by parts gives us

1

2(T − t)p−2

∥∥∥Ẏ (t)
∥∥∥2 − 1

2T p−2

∥∥∥Ẏ (0)
∥∥∥2 + ∫ t

0

2p− 1

(T − s)p−1

∥∥∥Ẏ (s)
∥∥∥2 ds+ Cp2 (f(Y (t))− f(Y (0))) = 0.

Define Ψ(t) : [0, T ) → R as

Ψ(t) =
1

2(T − t)p−2

∥∥∥Ẏ (t)
∥∥∥2 + Cp2 (f(Y (t))− f(Y (0))) .

Since

Ψ̇(t) = − 2p− 1

(T − s)p−1

∥∥∥Ẏ (s)
∥∥∥2 ds,

Ψ(t) is a nonincreasing function. Thus∥∥∥Ẏ (t)
∥∥∥2 = 2(T − t)p−2

(
Ψ(t) + Cp2 (f(Y (0))− f(Y (t)))

)
≤ 2T p−2

(
Ψ(0) + Cp2 (f(Y (0))− f⋆)

)
,

(83)

and the right hand side of (83) is constant, which implies M := sup
t∈[0,T )

∥∥∥Ẏ (t)
∥∥∥ < ∞.

Step (ii): Y (t) can be continuously extended to T . We can prove Y (t) is uniformly continuous
due to the following analysis.

∥Y (t+ δ)− Y (δ)∥ =

∥∥∥∥∥
∫ t+δ

t

Ẏ (s)ds

∥∥∥∥∥ ≤
∫ t+δ

t

∥∥∥Ẏ (s)
∥∥∥ ds ≤ δM.

Since a uniformly continuous function g : D → Rd can be extended continuously to D, Y : [0, T ) →
Rd can be extended to [0, T ].

Step (iii): lim
t→T−

∥∥∥Ẏ (t)
∥∥∥ = 0. We first prove the limit lim

t→T−

∥∥∥Ẏ (t)
∥∥∥ = 0 exists. From C.3,

we know lim
t→T−

Y (t) exists and by continuity of f , lim
t→T−

f(Y (t)) also exists. Moreover, Ψ(t) is

non-increasing and

Ψ(t) =
1

2(T − t)p−2

∥∥∥Ẏ (t)
∥∥∥2 + Cp2 (f(Y (t))− f(Y (0))) ≥ Cp2 (f⋆ − f(Y (0))) ,

thus lim
t→T−

Ψ(t) exists. Therefore, lim
t→T−

∥Ẏ (t)∥2

(T−t)p−2 exists, which implies lim
t→T−

∥∥∥Ẏ (t)
∥∥∥ = 0 when

p > 2. For the case p = 2, lim
t→T−

∥∥∥Ẏ (t)
∥∥∥ exists, and lim

t→T−

∥∥∥Ẏ (t)
∥∥∥ = 0 follows since we have

Ψ(t) =
1

2T p

∥∥∥Ẏ (0)
∥∥∥2 − ∫ t

0

3

(T − s)p−1

∥∥∥Ẏ (s)
∥∥∥2 ds

is bounded below. Thus the value of integration is finite.

Step (iv): lim
t→T−

Ẏ (t)
(T−t)p−1 = Cp∇f(Y (T )). The (7) form of process Y is

Ẏ (t) = −
∫ t

0

Cp2(T − t)2p−1

(T − s)p+1
∇f(Y (s))ds.
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By dividing (T − t)p−1 each side, we obtain

Ẏ (t)

(T − t)p−1
= −(T − t)p

∫ t

0

Cp2

(T − s)p+1
∇f(Y (s))ds.

By the result of C.3, we can apply L’Hopital’s rule, which gives

lim
t→T−

Ẏ (t)

(T − t)p−1
= − lim

t→T−

∫ t

0
Cp2

(T−s)p+1∇f(Y (s))ds

(T − t)−p
= Cp∇f(Y (T )).

Also, since ∇f is L-l=Lipshitz, ∥∇f(Y (t))−∇f(Y (T ))∥ ≤ L ∥Y (t)− Y (T )∥. Therefore,

lim
t→T−

∇f(Y (t))−∇f(Y (T ))

(T − t)β
= 0 (84)

for any β < p.

Applying Theorem 2 to (10). For the case p = 2, refer [51]. Now we consider the case p > 2,
with u(t) = Ctp and v(t) = 1

C(T−t)p . First, we verify conditions (i) and (ii) in Theorem 6. (i) holds
since u(0) = 0, and (ii) holds since

lim
s→T−

v(s) (f(Y (s))− f(Y (T )) + ⟨∇f(Y (T )), Y (T )− Y (s)⟩)

=
1

C
lim

s→T−

f(Y (s))− f(Y (T )) + ⟨∇f(Y (T )), Y (T )− Y (s)⟩
(T − s)p

(◦)
=

1

C
lim

s→T−

〈
Ẏ (s),∇f(Y (s))−∇f(Y (T ))

〉
−p(T − s)p−1

(•)
= − 1

pC
lim

s→T−

〈
Ẏ (s)

(T − s)p−1
,∇f(Y (s))−∇f(Y (T ))

〉
=0.

(◦) uses L’Hospital’s rule and (•) uses the limit results at the previous paragraph.

To prove

1

2
∥∇f(Y (T ))∥2 ≤ 1

CT p
(f(Y (0))− f(Y (T ))) ,

we carefully check that for any L-smooth convex function f , {∇f(Y (s))}s∈[0,T ] ∈ A2.

Verification of (80). Fubini’s Theorem is used for∫
0≤s,a≤T

1s≤a
u′(T − s)

u(T − s)2

〈
Ẏ (a), (∇f(Y (s))−∇f(Y (T )))

〉
=

∫
0≤s,a≤T

1s≤aẎ (a) (∇f(Y (s))−∇f(Y (T )))
p

C(T − s)p+1
.

The above function is continuous in 0 ≤ s, a ≤ T due to lim
t→T−

Ẏ (t)
(T−t)p−1 = Cp∇f(Y (T )) and (84)

with β = 2 < p.

Verification of (79). First,

lim
t→T−

Y (t)− Y (T )

(T − t)p
= lim

t→T−

Ẏ (t)

−p(T − t)p−1
= −C∇f(Y (T ))

holds from (iv). Thus supb∈(0,T ]

∥∥∥Y (T−b)−Y (T )
bp

∥∥∥ < ∞. Now we will show

lim
a→+0

a1+ϵfa = 0, ∀ ϵ > 0.
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Observe

fa =
1

CT p
g0 +

1

CT p
(ga − g0)−

∫ T

a

p

Cbp+1
(gb − ga) db

and∥∥a1+ϵfa
∥∥ =

∥∥∥∥∥a1+ϵ

CT p
g0 +

a1+ϵ

CT p
(ga − g0)−

∫ T

a

pa1+ϵ

Cbp+1
(gb − ga) db

∥∥∥∥∥
≤
∥∥∥∥a1+ϵ

CT p
g0 +

a1+ϵ

CT p
(ga − g0)

∥∥∥∥+ ∫ T

a

pa1+ϵ

Cbp+1
∥gb − g0∥ db+

∫ T

a

pa1+ϵ

Cbp+1
∥ga − g0∥ db

≤
∥∥∥∥a1+ϵ

CT p
g0 +

a1+ϵ

CT p
(ga − g0)

∥∥∥∥+ ∫ T

a

Lpa1+ϵ

Cbp+1
∥Y (T − b)− Y (T )∥ db+

∫ T

a

Lpa1+ϵ

Cbp+1
∥Y (T − a)− Y (T )∥ db

≤
∥∥∥∥a1+ϵ

CT p
g0 +

a1+ϵ

CT p
(ga − g0)

∥∥∥∥+ ∫ T

a

Lpaϵ
∥∥∥∥Y (T − b)− Y (T )

bp

∥∥∥∥ db
+

La1+ϵ

C

(
1

ap
− 1

T p

)
∥Y (T − a)− Y (T )∥ .

By using the boundness of Y (T−b)−Y (T )
bp , we obtain the desired result.

Next, ∥∥∥a2ϵ−p+2Ẋ(a)
∥∥∥ =

∥∥∥∥∫ a

0

aϵ−p+2H(a, b)fbdb

∥∥∥∥
≤
∫ a

0

Cp2b2p−1

a2p−1−2ϵ
∥fb∥ db

=

∫ a

0

Cp2b2p−2−ϵ

a2p−1−2ϵ

∥∥b1+ϵfb
∥∥ db

=

(
sup

b∈[0,a]

∥∥b1+ϵfb
∥∥) Cp2

2p− 1− ϵ
aϵ,

which gives

lim
a→+0

a2ϵ−p+2Ẋ(a) = 0, ∀ 0 < ϵ < 2p− 1.

For the final step, recall that Fubini’s Theorem is used for∫
0≤a,s≤T

1a≤ss
p−1

〈
fs, Ẋ(a)

〉
dads.

To prove that the above function is continuous, take any 0 < ϵ < p−2
2 . Then

lim
0≤a≤s,s→+0

∥∥∥sp−1
〈
fs, Ẋ(a)

〉∥∥∥ ≤ lim
0≤a≤s,s→+0

∥∥∥∥s−2ϵ+2p−3

a−2ϵ+p−2

〈
Ẋ(a), fs

〉∥∥∥∥ = lim
s→+0

∥∥s−2ϵ+2p−3fs
∥∥ · lim

a→+0

∥∥∥∥∥ Ẋ(a)

a−2ϵ+p−2

∥∥∥∥∥ = 0,

which gives the desired result.

D Omitted calculation in Section 4

D.1 Preliminaries

General proximal step and composite FSFOM For a > 0, we newly define a prox-grad step with
step size 1

L
1
α as follows:

y⊕,α := argmin
z∈Rd

(
f(y) + ⟨∇f(y), z − y⟩+ g(z) +

αL

2
∥z − y∥2

)
. (85)

First, we will provide a generalized version of prox-grad inequality; Prox-grad inequality is originally
used to prove the convergence of FISTA as below [11]:

F (y⊕)− L
〈
y⊕,1 − y, x− y⊕,1

〉
≤ F (x) +

L

2
∥y⊕,1 − y∥2.
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Proposition 4 (Generalized version of prox-grad inequality). For every x, y ∈ Rd, the following
holds:

Lx, yMα : = F (y⊕,α)− F (x⊕,α)− La
〈
y⊕,α − y, x⊕,α − y⊕,α

〉
− L

2
∥y⊕,α − y∥2 ≤ 0.

Proof. The optimality condition of (85) provides

Lα(y⊕,α − y) +∇f(y) + u = 0, u ∈ ∂g(y⊕,α). (86)

In addition, L-smoothness of f and convexity inequality of f and g give

F (y⊕,α) ≤ f(y) +
〈
∇f(y), y⊕,α − y

〉
+

L

2
∥y⊕,α − y∥2 + g(y⊕,α)

g(y⊕,α) +
〈
u, x⊕,α − y⊕,α

〉
= g(y⊕,α) +

〈
−Lα(y⊕,α − y)−∇f(y), x⊕,α − y⊕,α

〉
≤ g(x⊕,α),

f(y) +
〈
∇f(y), x⊕,α − y

〉
≤ f(x⊕,α).

Summing the above inequalities provides the generalized version of prox-grad inequality.

Two problem settings for the composite optimization problem. For the composite optimization
problem, we consider the following two problems.

(P1′) Efficiently reduce F (x⊕,α
N )− F⋆ assuming x⋆ exists and ∥x0 − x⋆∥ ≤ R.

(P2′) Efficiently reduce minv∈∂F (y⊕,α
N ) ∥v∥

2 assuming F⋆ > −∞ and F (y0)− F⋆ ≤ R.

Note that when g = 0, (P1′) and (P2′) collapse to (P1) and (P2), respectively.

Parameterized FSFOM that reduces the composite function value : GFPGM [27] First define
x⋆ : = argminx∈Rd F (x). We recall the composite function minimization FSFOMs with x⊕,α

i by a
lower triangular matrix {hk,i}0≤i<k≤N as follows:

xk+1 = xk −
k∑

i=0

αhk+1,i

(
xi − x⊕,α

i

)
, ∀ k = 0, . . . , N − 1. (87)

In the case g = 0, (87) collapses to (1) as α (z − z⊕,α) = (z − z+) = 1
L∇f(z). The iterations of

GFGPM are defined as

xk+1 = x⊕,1
k +

(Tk − tk)tk+1

tkTk+1

(
x⊕,1
k − x⊕,1

k−1

)
+

(t2k − Tk)tk+1

tkTk+1

(
x⊕,1
k − xk

)
, k = 0, . . . , N − 1

(88)

where x⊕,1
−1 = x0 and [ti > 0, Ti =

∑i
j=0 tj ≤ t2i for 0 ≤ i ≤ N ]. (88) reduces the composite

function value as follows:

F (x⊕,1
N )− F⋆ ≤ 1

TN

1

2
∥x0 − x⋆∥2 . (89)

We can reconstruct the convergence proof of [27, Theorem 3.3] via our energy function scheme,
which is defined as

Uk =
L

2
∥x0 − x⋆∥2 +

k−1∑
i=0

uiLxi, xi+1M1 +
k∑

i=0

(ui − ui−1)Lx⋆, xiM1 (90)

for k = −1, . . . , N . The convergence rate result (89) is proved by using that {Uk]
N
k=−1 is dissipative,

and

UN − TN

(
F (x⊕,1

N )− F⋆

)
=

L

2

∥∥∥∥∥x0 − x⋆ +

N∑
i=0

(ui − ui−1)(xi − x⊕,1
i )

∥∥∥∥∥
2

+

N∑
i=0

L(Ti − t2i )

2

∥∥∥x⊕,1
i − xi

∥∥∥2 ≥ 0.

(91)
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Here, we can make a crucial observation.

The formulation of (90) is same with (2), which all J·, ·K are changed into L·, ·M1 and ui = Ti.
(⋄)

Moreover, we can express the recursive formula of the H matrix of (88) as

hk+1,i =


1 + (tk−1)tk+1

Tk+1
i = k

(Tk−tk)tk+1

tkTk+1
(hk,k−1 − 1) i = k − 1

(Tk−tk)tk+1

tkTk+1
hk,i i = 0, . . . , k − 2

. (92)

As we used a parameterized family in the convex function (see Section 2.5), we will use these
convergence results to construct the method for minimizing minv∈∂F (y⊕,α

N ) ∥v∥
2.

Relationship between minimizing α2

2L

∥∥y⊕,α
N − yN

∥∥2 and minimizing minv∈∂F (y⊕,α
N ) ∥v∥

2.
Note that Lα(y⊕,α

N − yN ) +∇f(yN ) + u = 0, u ∈ ∂g(y⊕,α
N ), which gives

min
v∈∂F (y⊕,α

N )
∥v∥2 ≤

(•)

(∥∥∇f(yN )−∇f(y⊕,α
N )

∥∥+ Lα
∥∥yN − y⊕,α

N

∥∥)2 ≤
(◦)

L2(α+ 1)2
∥∥yN − y⊕,α

N

∥∥2 .
(93)

(•) is triangle inequality and (◦) comes from the L-smoothness of f .

D.2 Proof of Theorem 3

In this section, we give the proof outline of Theorem 3 and discuss the construction of matrix C.

Proof outline of Theorem 3. We begin by proposing a parameterized family reduces
1
2L

∥∥y⊕,α
N − yN

∥∥2 under a fixed value of a > 0. To construct this family, take {ti}Ni=0, Ti =
∑i

j=0 tj

that satisfies (96). We define the H matrix of the family as
(
1
αH0 +

1
α2C

)A
, where H0 has the same

formulation as the H matrix of GFGPM (88) and C follows the recursive formula (97). We refer to
this family as (SFG-family).

We can prove that (SFG-family) exhibits the convergence rate

αL

2
∥y⊕,α

N − yN∥2 ≤ 1

TN
(F (y0)− F⋆) , (94)

which is motivated by the observation (⋄). In parallel with (⋄), we consider the energy function

Vk =
F (y0)− F (y⊕,α

N ) + Ly−1, y0Mα

TN
+

k−1∑
i=0

1

TN−i−1
Lyi, yi+1Mα +

k−1∑
i=0

(
1

TN−i−1
− 1

TN−i

)
LyN , yiMα

for k = 0, . . . , N , which JyN , ⋆K changed into Ly−1, y0Mα, all other J·, ·K terms changed into L·, ·Mα
and vi =

1
TN−i

.

(94) follows from the fact that {Vi}Ni=0 is dissipative and

αL

2
∥y⊕,α

N − yN∥2 ≤ VN .

Detailed justification is given in Appendix D.3.

For the next step, we show that (SFG) is an instance of (SFG-family), under the choice of

α = 4, Ti =
(i+ 2)(i+ 3)

4
, 0 ≤ i ≤ N.

The detailed derivation is given in Appendix D.4.
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Finally, combining the convergence result

2L∥y⊕,4
N − yN∥2 ≤ VN ≤ V0 ≤ 4

(N + 2)(N + 3)
(F (y0)− F⋆)

and (93) gives

min
v∈∂F (y⊕,4

N )
∥v∥2 ≤ 25L2

∥∥∥y⊕,4
N − yN

∥∥∥2 ≤ 50

(N + 2)(N + 3)
(F (y0)− F⋆) .

Construction of matrix C. Define
g : = Lα

[
y0 − y⊕,α

0 |. . . |yN − y⊕,α
N

]
.

For an FSFOM (87) with matrix H1, we have VN − αL
2 ∥y⊕,α

N − yN∥2 = 1
2Lα2 Tr (g

⊺gT ⊕) with

T ⊕ : =α2

[
N∑
i=0

1

TN−i
(H⊺

1(ei + · · ·+ eN )(ei − ei−1)
⊺ + (ei − ei−1)(ei + · · ·+ eN )⊺H1)

]
︸ ︷︷ ︸

A3

+ α

[
N∑
i=0

1

TN−i
((ei−1 − ei)(ei−1 − eN )⊺ + (ei−1 − eN )(ei−1 − ei)

⊺)− 1

TN
e0e

⊺
0 − eNe⊺N

]
︸ ︷︷ ︸

B3

+

[
α

TN
e0e

⊺
0 −

N−1∑
i=0

1

TN−1−i
eie

⊺
i − 1

T0
eNe⊺N

]
where e−1 = 0, ei is a unit vector which (i + 1) − th component is 1 and RN+1 and H1 : =[
0 0

H1 0

]
. If we take H1 that makes T ⊕ ⪰ 0, VN ≥ αL

2 ∥y⊕,α
N − yN∥2 follows. Next we observe

1
α2A3 +

1
αB3 = T (H1, v) for vi = 1

TN−i
which is defined as (22). By expanding (91) and defining

g′ : = L
[
x0 − x⊕,α

0 |. . . |xN − x⊕,α
N

]
,

UN − TN

(
F (x⊕,1

N )− F⋆

)
− L

2

∥∥∥∥∥x0 − x⋆ +

N∑
i=0

(ui − ui−1)(xi − x⊕,1
i )

∥∥∥∥∥
2

= Tr
(
g′ (g′)

⊺ S⊕)
follows where

S⊕ : = S(H0, u)−
N−1∑
i=0

(Ti − t2i )eie
⊺
i .

Here, ui = Ti, and S(H0, u) is given by the formulation (19). Using (91), we obtain

S(H0, u) =

N−1∑
i=0

(2Ti − t2i )eie
⊺
i + (TN − t2N )eNe⊺N .

Now recall matrix M(u) (26) and the result of Theorem 1:
S(H0, u) = M(u)⊺T (HA

0 , v)M(u). (95)
By substituting H1 = 1

αH
A
0 +X and using (95), the result is

M(u)⊺T ⊕M(u) =α

[
N−1∑
i=0

(2Ti − t2i )eie
⊺
i + (TN − t2N )eNe⊺N

]

+ α2M(u)⊺

[
N∑
i=0

1

TN−i
(X ⊺(ei + · · ·+ eN )(ei − ei−1)

⊺ + (ei − ei−1)(ei + · · ·+ eN )⊺X )

]
M(u)︸ ︷︷ ︸

A4

+M(u)⊺

[
α

TN
e0e

⊺
0 −

N−1∑
i=0

1

TN−1−i
eie

⊺
i − 1

T0
eNe⊺N

]
M(u)︸ ︷︷ ︸

C3
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where X : =

[
0 0

X 0

]
.

Next, consider A4 as a function of the lower triangular matrix X . The key observation is that if we
choose X appropriately, all non-diagonal terms of C3 can be eliminated. With this choice of X , we
have

T ⊕ = α

N∑
i=0

(2Ti − t2i )eie
⊺
i − T0e0e

⊺
0 −

N∑
i=1

 T 2
i

Ti−1
+ t2i

i−2∑
j=0

1

Tj

 eie
⊺
i .

Note that T ⊕ contains only diagonal terms. Therefore, T ⊕ ⪰ 0 is equivalent to all coefficients of
eie

⊺
i being nonnegative, which can be formulated using ti and Ti.

Remark. In the proof of Theorem 1 ( B2 and B1 at (27) and (28)), we have shown that

A4 = α2

[ N∑
i=0

(
XA
)⊺

Ti(ei − ei+1)(e0 + · · ·+ ei)
⊺ + Ti(e0 + · · ·+ ei)(ei − ei+1)

⊺XA

]
.

Observe that (ei − ei+1)(e0 + · · · + ei)
⊺ is a lower triangular matrix and XA is a strictly lower

triangular matrix, i.e., all diagonal component is 0. Thus it is worth noting that A4 cannot induce any
diagonal term eie

⊺
i , choosing matrix C as the optimal one.

D.3 Parameterized family reduces the gradient mapping norm

FSFOM that reduces 1
2L

∥∥y⊕,α
N − yN

∥∥2 in the composite minimization. We propose the param-

eterized family that reduces 1
2L

∥∥y⊕,α
N − yN

∥∥2. For fixed a > 0, take {ti}Ni=0, Ti =
∑i

j=0 tj that
satisfies the following conditions:

α(2T0 − t20) ≥ T0,

α(2Tk − t2k) ≥
T 2
k

Tk−1
+ t2k

(
1

T0
+

k−2∑
i=0

1

Ti

)
k = 1, . . . , N

(96)

where we define
∑k−2

i=0
1
Ti

= 0 for k = 1 case. We define an lower triangular matrix C =

{ck,i}0≤i<k≤N as

ck+1,i =



t1
T1

i = 0, k = 0

tk+1

Tk+1

(
tk
T0

+ tk
k−2∑
j=0

1
Tj

+ Tk

Tk−1

)
i = k, k = 1, . . . , N − 1

tk+1(Tk−tk)
tkTk+1

ck,i i = 0, . . . , k − 1, i = 2, . . . , N − 1

. (97)

Matrix C has a crucial role in the correspondence between composite function value minimization
and composite function gradient norm minimization with H →

(
1
αH + 1

α2C
)A

.
Proposition 5 (SFG family). Assume that we choose H0 matrix of (88), and define C as (97).
Consider an FSFOM (87) which H matrix is

(
1
αH0 +

1
α2C

)A
. Such FSFOM can be expressed as

yk+1 = y⊕,α
k + β′

k

(
y⊕,α
k − y⊕,α

k−1

)
+ γ′

k

(
y⊕,α
k − yk

)
, k = 0, . . . , N − 1,

β′
k =

βN−k(βN−1−k + γN−1−k)

βN−k + γN−k
, γ′

k =
γN−k(βN−1−k + γN−1−k)

βN−k + γN−k
,

βk =
tk+1(Tk − tk)

tkTk+1
, γk =

tk+1(t
2
k − Tk)

tkTk+1
+

1

α
ck+1,k.

(SFG-family)

and y⊕,α
−1 = y0. Then it exhibits the convergence rate

αL

2
∥y⊕N − yN∥2 ≤ 1

TN
(F (y0)− F⋆) .
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Proof of Proposition 5. To start, we give the claim about matrix C.

Claim 1. C : =

[
0 0

C 0

]
satisfies the following equality.

2

(
N∑
i=0

Ti(ei − ei+1)(e0 + · · ·+ ei)
⊺

)
C

=

N∑
i=1

1

Ti−1
fN−if

⊺
N−i +

1

T0
fN f⊺N − T0e0e

⊺
0 −

N∑
i=1

 T 2
i

Ti−1
+ t2i

i−2∑
j=0

1

Tj

 eie
⊺
i

(98)

where {ei}Ni=0 is a any basis of RN+1, eN+1 , f−1 are zero vectors and {fi}Ni=0 are another basis of
RN+1 which is defined as

Ti (ei − ei+1) = fN−i − fN−i−1, i = 0, 1, . . . , N.

The proof of Claim 1 will be provided after the proof of Proposition 5. To begin with, for the FSFOM
with matrix

(
1
αH0 +

1
α2C

)A
, define the energy function

Vk =
F (y0)− F (y⊕,α

N ) + Ly−1, y0Mα

TN
+

k−1∑
i=0

1

TN−i−1
Lyi, yi+1Mα +

k−1∑
i=0

(
1

TN−i−1
− 1

TN−i

)
LyN , yiMα,

for k = 0, . . . , N . {Vk}Nk=0 is dissipative since L·, ·Mα ≤ 0. This energy function is inspired by (3).
Note that if we can prove

αL

2
∥y⊕,α

N − yN∥2 ≤ VN , (99)

then

αL

2

∥∥y⊕,α
N − yN

∥∥2 ≤ VN ≤ V0 ≤ 1

TN

(
F (y0)− F (y⊕,α

N )
)
≤ 1

TN
(F (y0)− F⋆) .

Thus, it is enough to show (99). Defining gi : = Lα(yi − y⊕,α
i ) for 0 ≤ i ≤ N gives

Lyi, yjMα = F (y⊕,α
j )− F (y⊕,α

i ) + ⟨gj , yi − yj⟩+
1

La
⟨gj , gj − gi⟩ −

1

2Lα2
∥gj∥2 ,

Ly−1, y0Mα = F (y⊕,α
0 )− F (y0) +

1

L

2α− 1

2α2
∥g0∥2 .
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Plugging the above equalities provides

2Lα2

(
VN − αL

2

∥∥y⊕,α
N − yN

∥∥2)
= 2Lα2

[
N−1∑
i=0

1

TN−i−1
⟨gi+1, yi − yi+1⟩+

N−1∑
i=0

(
1

TN−i−1
− 1

TN−i

)
⟨gi, yN − yi⟩

]
+

2α− 1

TN
∥g0∥2 − α ∥gN∥2

+

N−1∑
i=0

1

TN−i−1

(
2α ⟨gi+1, gi+1 − gi⟩ − ∥gi+1∥2

)
+

N−1∑
i=0

(
1

TN−i−1
− 1

TN−i

)(
2α ⟨gi, gi − gN ⟩ − ∥gi∥2

)
= 2Lα2

(
N−1∑
i=0

1

TN−i−1
⟨gi+1, yi − yi+1⟩+

N−1∑
i=0

(
1

TN−i−1
− 1

TN−i

)
⟨gi, yN − yi⟩

)

+

[
N−1∑
i=0

α

TN−i−1
∥gi+1 − gi∥2 +

N−1∑
i=0

(
α

TN−i−1
− α

TN−i

)
∥gi − gN∥2 − a∥gN∥2 + α

TN
∥gN∥2

]

+

N−1∑
i=0

1

TN−i−1

(
−α∥gi∥2 + (a− 1)∥gi+1∥2

)
+

N−1∑
i=0

(
1

TN−i−1
− 1

TN−i

)(
−α∥gN∥2 + (α− 1)∥gi∥2

)
+

2α− 1

TN
∥g0∥2 −

α

TN
∥gN∥2

= 2Lα2

(
N−1∑
i=0

1

TN−i−1
⟨gi+1, yi − yi+1⟩+

N−1∑
i=0

(
1

TN−i−1
− 1

TN−i

)
⟨gi, yN − yi⟩

)

+

[
N−1∑
i=0

α

TN−i−1
∥gi+1 − gi∥2 +

N−1∑
i=0

(
α

TN−i−1
− α

TN−i

)
∥gi − gN∥2 − α∥gN∥2 + α

TN
∥gN∥2

]

+
α

TN
∥g0∥2 −

N−1∑
i=0

1

TN−1−i
∥gi∥2 −

1

T0
∥gN∥2 .

Next, define g : = [g0|g1 . . . |gN ] and

H1 : =

[
0 0(

1
αH0 +

1
α2C

)A
0

]
, H0 : =

[
0 0

H0 0

]
.

By the same procedure as the proof of Theorem 1, we obtain 2Lα2
(
VN − αL

2

∥∥y⊕,α
N − yN

∥∥2) =

Tr (g⊺gT ⊕) where

T ⊕ =α2

[
N∑
i=0

1

TN−i
(H⊺

1(fi + · · ·+ fN )(fi − fi−1)
⊺ + (fi − fi−1)(fi + · · ·+ fN )⊺H1)

]

+ α

[
N∑
i=0

1

TN−i
((fi−1 − fi)(fi−1 − fN )⊺ + (fi−1 − fN )(fi−1 − fi)

⊺)− 1

TN
f0f

⊺
0 − fN f⊺N

]

+

[
α

TN
f0f

⊺
0 −

N−1∑
i=0

1

TN−1−i
fif

⊺
i − 1

T0
fN f⊺N

]
And consider the vector ei ∈ R(N+1)×1 which is same with (29).

In the proof of Theorem 1
(
(27), (28)

)
, we have shown that

1

2L

N∑
i=0

1

TN−i
(H⊺

1(fi + · · ·+ fN )(fi − fi−1)
⊺ + (fi − fi−1)(fi + · · ·+ fN )⊺H1)

=
1

2L

(
H⊺

0

α
+

C⊺

α2

)[ N∑
i=0

Ti(e0 + · · ·+ ei)(ei − ei+1)
⊺

]
+

1

2L

[
N∑
i=0

Ti(ei − ei+1)(e0 + · · ·+ ei)
⊺

](
H0

α
+

C
α2

)
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and

1

2L

N∑
i=0

1

TN−i
((fi−1 − fi)(fi−1 − fN )⊺ + (fi−1 − fN )(fi−1 − fi)

⊺)− 1

2TNL
f0f

⊺
0 − 1

2L
fN f⊺N

=− 1

2L

(
N∑
i=0

(Ti − Ti−1)ei

)(
N∑
i=0

(Ti − Ti−1)ei

)⊺

+
1

2L

[
N∑
i=0

Ti ((ei − ei+1)e
⊺
i + ei(ei − ei+1)

⊺)− TNeNe⊺N

]
under the above transformation. Therefore, T ⊕ can be expressed as

T ⊕ = α2

((
H⊺

0

α
+

C⊺

α2

)[ N∑
i=0

Ti(e0 + · · ·+ ei)(ei − ei+1)
⊺

]
+

[
N∑
i=0

Ti(ei − ei+1)(e0 + · · ·+ ei)
⊺

](
H0

α
+

C
α2

))

+ α

(
−

(
N∑
i=0

(Ti − Ti−1)ei

)(
N∑
i=0

(Ti − Ti−1)ei

)⊺

+

[
N∑
i=0

Ti ((ei − ei+1)e
⊺
i + ei(ei − ei+1)

⊺)− TNeNe⊺N

])

+

[
α

TN
f0f

⊺
0 −

N−1∑
i=0

1

TN−1−i
fif

⊺
i − 1

T0
fN f⊺N

]
= αA+ B +

α

TN
f0f

⊺
0

where

A = H⊺
0

[
N∑
i=0

Ti(e0 + · · ·+ ei)(ei − ei+1)
⊺

]
+

[
N∑
i=0

Ti(ei − ei+1)(e0 + · · ·+ ei)
⊺

]
H0

−

(
N∑
i=0

(Ti − Ti−1)ei

)(
N∑
i=0

(Ti − Ti−1)ei

)⊺

+

[
N∑
i=0

Ti ((ei − ei+1)e
⊺
i + ei(ei − ei+1)

⊺)− TNeNe⊺N

]
and

B =C⊺

[
N∑
i=0

Ti(e0 + · · ·+ ei)(ei − ei+1)
⊺

]
+

[
N∑
i=0

Ti(ei − ei+1)(e0 + · · ·+ ei)
⊺

]
C

−
N−1∑
i=0

1

TN−1−i
fif

⊺
i − 1

T0
fN f⊺N .

To calculate A, expand the energy function (91). Then we obtain

A =

N−1∑
i=0

(2Ti − t2i )eie
⊺
i + (TN − t2N )eNe⊺N .

Moreover, by Claim 1,

B = −T0e0e
⊺
0 −

N∑
i=1

 T 2
i

Ti−1
+ t2i

i−2∑
j=0

1

Tj

 eie
⊺
i .

Combining above results and TNeN = f0, we achieve

T ⊕ = α

N∑
i=0

(2Ti − t2i )eie
⊺
i − T0e0e

⊺
0 −

N∑
i=1

 T 2
i

Ti−1
+ t2i

i−2∑
j=0

1

Tj

 eie
⊺
i

and the condition (96) makes each coefficient of eie
⊺
i nonnegative, which gives T ⪰ 0. To achieve

the iteration formula (SFG-family), consider the FSFOM (87) with 1
αH0 + 1

α2C, which can be
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expressed as

xk+1 = x⊕,α
k + βk

(
x⊕,α
k − x⊕,α

k−1

)
+ γk

(
x⊕,α
k − xk

)
, k = 0, . . . , N − 1,

βk =
tk+1(Tk − tk)

tkTk+1
, γk =

tk+1(t
2
k − Tk)

tkTk+1
+

1

α
ck+1,k.

For last step, We make an observation that Proposition 1 can be applied when all z+ terms changed
into z⊕,α. Proposition 1 gives the H-dual.

Proof of Claim 1. The left hand side of (98) is

2

(
N∑
i=0

Ti(ei − ei+1)(e0 + · · ·+ ei)
⊺

)
C

=2

(
N∑
i=0

Ti(ei − ei+1)(e0 + · · ·+ ei)
⊺

)(∑
k>i

ck,ieke
⊺
i

)

=2

(
N∑
i=0

(fN−i − fN−i+1)(e0 + · · ·+ ei)
⊺

)(∑
k>i

ck,ieke
⊺
i

)

=2

(
N∑
i=0

fN−ie
⊺
i

)(∑
k>i

ck,ieke
⊺
i

)

=2

N∑
i=0

(
N∑

k=i+1

ck,ifN−k

)
e⊺i

Now we calculate the right-hand side of (98). By plugging

fN−i = Tiei + ti+1ei+1 + · · ·+ tNeN ,

N∑
i=1

1

Ti−1
fN−if

⊺
N−i +

1

T0
fN f⊺N − T0e0e

⊺
0 −

N∑
i=1

 T 2
i

Ti−1
+ t2i

i−2∑
j=0

1

Tj

 eie
⊺
i = 2

N−1∑
i=0

aie
⊺
i

where

a0 = t1e1 + · · ·+ tNeN ,

ai =

 ti
T0

+

i−2∑
j=0

ti
Tj

+
Ti

Ti−1

 (ti+1ei+1 + · · ·+ tNeN ) , i = 1, . . . , N − 1.

Now we claim that ai =
∑N

k=i+1 ck,ifN−k for i = 0, . . . , N − 1. Note that

N∑
k=i+1

ck,ifN−k =

N∑
k=i+1

ck,i (Tkek + tk+1ek+1 + · · ·+ tNeN )

=

N∑
k=i+1

(ck,iTk + ck−1,itk + · · ·+ ci+1,itk) ek.

Coefficients of ei+1 are coincides since

c1,0T1 = t1,

ci+1,iTi+1 = ti+1

 ti
T0

+

i−2∑
j=0

ti
Tj

+
Ti

Ti−1

 i = 1, . . . , N − 1.

Now assume
tj

tj+1
=

cj,iTj + cj−1,itj + · · ·+ ci+1,itj
cj+1,iTj+1 + cj,itj+1 + · · ·+ ci+1,itj+1

. (100)
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By multiplying the above equation recursively, we obtain

ti+1

tj+1
=

ci+1,iTi

cj+1,iTj+1 + cj,itj+1 + · · ·+ ci+1,itj+1

for 1 ≤ j ≤ N − 1. which implies ai =
∑N

k=i+1 ck,ifN−k.

To prove (100), expand and obtain

tj+1cj,iTj = tj (cj+1,iTj+1 + cj,itj+1) .

Above equation holds due to the recursive formula of C (97).

D.4 Instances of SFG family

Derivation of (SFG) Here, we will show that (SFG) is the instance of SFG family, under the choice
of

α = 4, Ti =
(i+ 2)(i+ 3)

4
, 0 ≤ i ≤ N.

First, ti = i+2
2 for i ≥ 1 and t0 = 3

2 . Also (96) holds since

4

(
3− 9

4

)
≥ 3

2

4

(
(k + 2)(k + 3)

2
− (k + 2)2

4

)
≥

(k+2)2(k+3)2

16
(k+1)(k+2)

4

+
(k + 2)2

4

(
2

3
+ 4

(
1

2
− 1

k + 1

))
k = 1, . . . , N.

Plugging above values into (92) and (97), we obtain

hk+1,i =


1 + 1

4 i = k, k = 0

1 + k
k+4 i = k, k = 1, . . . , N − 1

k+1
k+4 (hk,k−1 − 1) i = k − 1
k+1
k+4hk,i i = 0, . . . , k − 2

.

and

ck+1,i =


1
2 i = 0, k = 0
2(4k+5)
3(k+4) i = k, k = 1, . . . , N − 1
k+1
k+4ck,i i = 0, . . . , k − 1, i = 2, . . . , N − 1

.

Other terms come directly, and

ck+1,k =
tk+1

Tk+1

 tk
T0

+ tk

k−2∑
j=0

1

Tj
+

Tk

Tk−1


=

tk+1

Tk+1

 tk
T0

+ tk

k−1∑
j=0

1

Tj
+ 1


=

k+3
2

(k+3)(k+4)
4

(
k + 2

2
× 2

3
+

k + 2

2

(
4

2× 3
+ · · ·+ 4

(k + 1)(k + 2)

)
+ 1

)
=

2

k + 4

(
k + 2

3
+

k + 2

2

2k

k + 2
+ 1

)
=

2(4k + 5)

3(k + 4)
.
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To sum up, the matrix {gk,i}0≤i<k≤N : = 1
4H0 +

1
16C satisfies the following recursive formula.

gk+1,i =



1
4

(
1 + 3

8

)
i = 0, k = 0

1
4

(
1 + 10k+5

6(k+4)

)
i = k, k = 1, . . . , N − 1

k+1
k+4

(
gk,i − 1

4

)
i = k − 1

k+1
k+4gk,i i = 0, . . . , k − 2

.

Note that

gk+1,k =
1

4

(
1 +

k

k + 4

)
+

1

16

(
2(4k + 5)

3(k + 4)

)
=

1

4

(
1 +

k

k + 4
+

4k + 5

6(k + 4)

)
=

1

4

(
1 +

10k + 5

6(k + 4)

)
.

Therefore, the FSFOM with {gk,i}0≤i<k≤N can be expressed as

x1 = x⊕,4
0 +

1

4
·
(
x⊕,4
0 − x⊕,4

−1

)
+

1

8

(
x⊕,4
0 − x0

)
,

xk+1 = x⊕,4
k +

k + 1

k + 4

(
x⊕,4
k − x⊕,4

k−1

)
+

4k − 1

6(k + 4)

(
x⊕,4
k − xk

)
, k = 1, . . . , N − 1

where x⊕,4
−1 = x0. To obtain the H-dual, we apply Proposition 1.

yk+1 = y⊕,4
k +

(N − k + 1)(2N − 2k − 1)

(N − k + 3)(2N − 2k + 1)

(
y⊕,4
k − y⊕,4

k−1

)
+

(4N − 4k − 1)(2N − 2k − 1)

6(N − k + 3)(2N − 2k + 1)

(
y⊕,4
k − yk

)
yN = y⊕,4

N−1 +
3

10

(
y⊕,4
N−1 − y⊕,4

N−2

)
+

3

40

(
y⊕,4
N−1 − yN−1

)
where k = 0, . . . , N − 2 and y⊕,4

−1 = y0.

Fastest method among the SFG family via a numerical choice of a In this section, we give
simple form of SFG, when all inequality conditions in (96) holds as equalities. {gk,i}0≤i<k≤N

becomes

g1,0 =
1

α

(
1 +

(t0 − 1)t1
T1

)
+

1

α2

(
t1
T1

)
and for k > 0,

gk+1,k =
1

α

(
1 +

(tk − 1)tk+1

Tk+1

)
+

1

α2

tk+1

Tk+1

(
tk

(
1

T0
+

1

T0
+ · · ·+ 1

Tk−2

)
+

Tk

Tk−1

)

=
1

α

(
1 +

(tk − 1)tk+1

Tk+1

)
+

1

α2

tk+1

Tk+1

α(2Tk − t2k)−
T 2
k

Tk−1

tk
+

Tk

Tk−1


=
1

α

(
1 +

(tk − 1)tk+1

Tk+1

)
+

1

α2

tk+1

Tk+1

(
α(2Tk − t2k)

tk
− Tk

tk

)
=
1

α
+

1

α

tk+1

Tk+1

(
tk − 1 +

2Tk − t2k
tk

− Tk

tk

)
−
(

1

α2
− 1

α

)
tk+1Tk

Tk+1tk

=
1

α
+

1

α

(Tk − tk)tk+1

tkTk+1
+

(
1

α
− 1

α2

)
tk+1Tk

Tk+1tk
,

gk+1,k−1 =
tk+1(Tk − tk)

tkTk+1

(
gk,k−1 −

1

α

)
,

gk+1,i =
tk+1(Tk − tk)

tkTk+1
gk,i, i = k − 2, . . . , 0.
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Hence FSFOM with 1
αH0 +

1
α2C is

xk+1 = x⊕,α
k +

Tk−1tk+1

tkTk+1
(x⊕,α

k − x⊕,α
k−1) +

(
1− 1

α

)
tk+1Tk

Tk+1tk
(x⊕,α

k − xk)

where T−1 = 2a−1
α2 . By using Proposition 1, we obtain H-dual.

yk+1 = y⊕,α
k + β′

k(y
⊕,α
k − y⊕,α

k−1) +

(
1− 1

α

)
TN−k

TN−k+1
βN−k(y

⊕,α
k − yk)

β′
k =

TN−k−1tN−k

(
TN−k−2 +

(
1− 1

α

)
TN−k−1

)
tN−k−1TN−k

(
TN−k−1 +

(
1− 1

α

)
TN−k

) , k = 0, . . . , N − 1.

Since all equality holds at (96), the above FSFOM achieves the fastest rate among the SFG family
under fixed α. 7 Now we optimize a to achieve the fastest convergence rate. Combine (93) and the
result of Proposition 5 to obtain

min
v∈∂F (y⊕

N )
∥v∥2 ≤ L2(α+ 1)2

∥∥yN − y⊕,α
N

∥∥2 ≤ L2 2(α+ 1)2

αTN
(F (y0)− F⋆) .

To achieve the tightest convergence guarantee, we solve the following optimization problem under
the fixed N .

minimize
α

2(α+ 1)2

αTN

subject to. α(2T0 − t20) = T0,

α(2Tk − t2k) =
T 2
k

Tk−1
+ t2k

(
1

T0
+

k−2∑
i=0

1

Ti

)
k = 1, . . . , N.

Denote the solution of the above optimization problem as R(α,N). Since R(α,N) depends on a and
cannot achieve a closed-form solution, we numerically choose a and observe an asymptotic behavior
of R(α,N). By choosing α = 3.8, asymptotic rate of R(3.8, N) is about 46

N2 .

E Broader Impacts

Our work focuses on the theoretical aspects of convex optimization algorithms. There are no negative
social impacts that we anticipate from our theoretical results.

F Limitations

Our analysis concerns L-smooth convex functions. Although this assumption is standard in op-
timization theory, many functions that arise in machine learning practice are neither smooth nor
convex.

7In fact, when a = 1, the FSFOM becomes FISTA-G [31].
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