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Abstract

Deep Reinforcement Learning proved efficient at learning
universal control policies when the goal state is close enough
to the starting state, or when the value function features few
discontinuities. But reaching goals that require long action
sequences in complex environments remains difficult. Drawing
inspiration from the cognitive process which reuses learned
atomic skills in a global planning procedure, we propose an
algorithm which encodes reachability between abstract goals
as a graph, and produces plans in this goal space. Transitions
between goals rely on the exploitation of a learned policy
which enjoys a property we call translation invariant local
optimality, which encodes the intuition that goal-reaching
skills can be reused throughout the state space. Overall, our
contribution permits solving large and difficult navigation
tasks, outperforming related methods from the literature.

1 Introduction
Model-free Reinforcement Learning (RL) has demonstrated
an outstanding ability to learn complex optimal policies from
raw interaction data, for well-defined atomic tasks with rela-
tively short time and state space outreach, such as balancing
a pendulum (Barto, Sutton, and Anderson 1983), learning to
walk for a quadruped (Kimura, Yamashita, and Kobayashi
2002), or learning to balance a bicycle (Randløv and Alstrøm
1998). But when it comes to solving more structured, long-
term tasks, such as navigating through a building or a maze,
baking a cake, or assembling furniture, humans seem to rely
more on learned models, which they use for planning, instead
of performing trial-and-error learning.
Such a decomposition was inherent to seminal RL agents like
the Dyna architecture (Sutton 1991), and was later one of the
core intuitions behind hierarchical RL (Sutton, Precup, and
Singh 1999). It is notable that often (although not always),
atomic tasks enjoy a property which we call translational
invariance. Balancing a bicycle, for instance, implies in prac-
tice an optimal policy that recommends the same sequences
of actions regardless of the geographical position, mostly
because gravity does not change too much across the globe
and that we ride bicycles on surfaces that have close enough
friction properties. Similarly, when navigating in a reason-
ably homogeneous environment, reaching position B from
position A, can be achieved by applying the same policy than
reaching position B + ∆ from position A + ∆, provided

there are no obstacles in the way. The optimal policies might
somehow differ, but are close enough in many practical cases.
In this paper, we consider such environments which enjoy
this translational invariance property for local, atomic goal-
reaching tasks. We exploit this property to efficiently learn
an abstract model that is used by the agent to plan its course
of action.

Our contribution is threefold.

• We propose a generic framework linking goal spaces and
state spaces for goal-reaching policy optimization.

• We formalize the notion of re-usability of a goal-reaching
policy throughout the state space as one of translation
invariance.

• We propose a complete graph-based model learning
method, which relies on planning in the goal space,
and chains local application of translation invariant goal-
reaching policies. By combining planning and RL, this
method permits solving tasks over long horizons, a com-
mon pitfall for classical RL methods.

As such, the proposed algorithm belongs to the family of
goal-based RL methods. Since it couples planning and RL, it
also connects with hierarchical RL. Finally, it presents many
similarities with the Search on the Replay Buffer (SoRB)
algorithm (Eysenbach, Salakhutdinov, and Levine 2019) and
subsequent works, with several key differences which can
be seen as a generalization of SoRB and permit better ap-
plicability. The next section sets the necessary background
and puts our contribution in perspective of the current litera-
ture. Section “Learning a reachability graph” introduces key
ingredients, namely a formal definition of goals as state ab-
stractions, a characterization of policy translation invariance,
and finally the reachability graph learning (RGL) procedure.
In the following section, we evaluate RGL empirically and
discuss its properties. Finally, we draw some conclusions
about the present approach.

2 Background and related work
Goals in Reinforcement Learning (RL). RL (Sutton and
Barto 2018) considers the problem of learning an optimal
decision making policy for an agent interacting over multiple
time steps with a dynamic environment, modeled as a Markov
Decision Process (Puterman 2014) of unknown transition and



reward models. At each time step, the agent and the environ-
ment are described through a state s ∈ S. When an action
a ∈ A is performed, the system then transitions to a new
state s′, while receiving a reward r(s, a). Stochastic Shortest
Path problems are a particular class of MDPs which aim at
reaching a terminal goal state as quickly as possible. Such
problems can be encoded as MDPs featuring −1 rewards for
all transitions but those to a terminal goal state. One can quan-
tify the efficiency of a policy π : S → A in every state s ∈ S
via its value function V π(s) =

∑∞
t=0 γ

tr (st, π(st)), with
γ ∈ [0, 1) a discount factor on future rewards (which can also
be interpreted as a stepwise probability of non-termination).1
Training an RL agent consists in finding a policy with the
highest possible value function. A long-standing goal in RL
is to design multi-purpose agents, able to achieve various
goals through a single goal-conditioned policy π(s, g) (Kael-
bling 1993), where the goal g is either a single state in S or
an abstraction for a set of states. The ability of deep neural
networks to approximate complex functions has triggered
a renewal of interest in learning universal value function
and policy approximators (Schaul et al. 2015), V (s, g) and
π(s, g) respectively. Among the many approaches developed
to learn goal-based policies and value functions, Hindsight
Experience Replay (Andrychowicz et al. 2017, HER) pro-
poses a seminal method which defines goal-based reward
functions by re-labelling states collected in past trajectories
as goals.

Hierarchical RL (HRL). Combining local goal-reaching
sequences of actions in order to achieve a more general goal
is the core idea of HRL (Sutton, Precup, and Singh 1999; Pre-
cup 2000; Konidaris and Barto 2009). Notably, among recent
works, Kulkarni et al. (2016) define a bi-level hierarchical
policy, using a DQN (Mnih et al. 2015) agent to select high-
level goals, that define options which make use of a low-level
goal-based DQN agent. Nachum et al. (2018) specializes this
idea to the case when the lower-level policy learns to achieve
goals that encode relative changes to the current state. Levy
et al. (2019) couples HER with a three-level hierarchy into
an architecture called Hierarchical Actor-Critic (HAC). Mc-
Clinton, Levy, and Konidaris (2021) enhance HAC with a
separate higher-level goal generator which drives the explo-
ration process during learning. Overall, these approaches all
aim at designing a global neural-network-based controller,
able to solve the tasks at hand.

Planning and learning. An alternative to crafting a hierar-
chy of learned policies is to rely on RL for producing “lower
level” option policies, and on some model of how these op-
tions affect the environment. The aim is then to optimize a
sequence of options, or skills, in a global plan. The key to
such approaches hence relies on how the model is built. Sil-
ver et al. (2017) train a “predictron” which, for a given task,
predicts n-step returns and long term values from any state,
using a network that builds a consistent internal representa-
tion of the environment’s dynamics and rewards. Similarly,

1SSPs are well-defined for γ = 1 but this is not the case for all
MDPs so we keep this discount factor for the sake of genericity in
further developments.

several approaches (Ha and Schmidhuber 2018; Hafner et al.
2020, 2021) build models that emulate the dynamics and
rewards related to a task, and permit planning by simulating
this surrogate model, but without a hierarchy of options and
for a single task. In contrast, Nasiriany et al. (2019) optimize
a sequence of reachable intermediate goal states (represented
in the latent space of a variational auto-encoder on states) in
order to reach a final goal (single task), using a pre-computed
reachability metric for a given goal-based lower-level policy.
Parascandolo et al. (2020) optimize online a similar curricu-
lum of sub-goals between a starting state and a given goal.
They implement a divide-and-conquer approach by build-
ing an AND/OR search tree. Each node corresponds to a
new subgoal in the sequence. They explore this tree with a
Monte Carlo tree search strategy, which exploits the value
function of a pre-trained goal-based policy. Some methods
store explicitly these links between subgoals by construct-
ing a reachability graph. In turn, this graph can be used for
higher-level goal-based planning. Savinov, Dosovitskiy, and
Koltun (2018) build this graph by randomly exploring the
environment, and add a node for every encountered state,
which yields a very dense graph. For a given goal, a shortest
path in this graph is computed. Then a sequence of landmark
subgoals is extracted so that each landmark is far enough
from the previous one according to a pre-trained neural net-
work. Eysenbach, Salakhutdinov, and Levine (2019) intro-
duce Search on the Replay Buffer (SoRB), which supposes
the availability of a replay buffer of states and defines a graph
where each state in a random subset of the replay buffer is a
node. Then it uses the goal-reaching policy’s value function
to estimate edge weights between these nodes and finds a
shortest path of state waypoints to the goal. SGM (Emmons
et al. 2020) improve SoRB’s results by pruning useless nodes
in the graph, and edges that cannot been traversed by the con-
trol policy. Pruning useless nodes enables a reduction in the
number of graph edges and permits a faster convergence to a
close-to-optimal graph (ie. representative of actual reachabil-
ity with a minimal number of nodes and edges). Chaplot et al.
(2020) learn a reachability graph in a robotics navigation
environment. For each new location in his graph, the agent
uses its camera to estimate promising exploration directions.
Aubret, Hassas et al. (2021) and Ruan et al. (2022) incremen-
tally grow a graph representing reachability, where nodes
are abstractions of sets of states, using a neural network as a
surrogate of the similarity between states.

Originality of the present work. With respect to this gen-
eral body of work, our contribution has several key features.
We formalize a context which alleviates the need to train the
lower-level goal-conditioned policy on all states and goals.
Similarly to SoRB, we exploit the policy’s value function
as a local reachability measure, while introducing a level
of abstraction since we clearly distinguish between goals
and states. As developed in the next sections, this provides a
sparser, abstract planning graph, closer to a hierarchy of op-
tions. Also in contrast to SoRB and SGM, we do not rely on
a pre-existing replay buffer and avoid defining nodes over an
arbitrary subset of sampled states; instead we incrementally
grow a reachability graph to cover the attainable goal space.



3 Learning a reachability graph
The rationale for the method we propose below goes as fol-
lows. Because they are continuous universal approximators,
neural networks are intrinsically unsuited to approximate dis-
continuous functions such as the value functions arising in
some difficult RL environments (e.g. mazes, non-holonomous
robots, etc.). Because their optimization assumes that sam-
ples are obtained independently and identically from a sta-
tionary distribution, they are also unsuited to retain local
information: either because the distribution (and hence the
training set) is unbalanced or because of distributional shift
which causes catastrophic forgetting. The sequential nature
of RL decisions makes it crucial to make good decisions in
infrequently-visited states, to retain local information even
when facing distributional shift, and to approximate some
functions that can easily be discontinuous. Neural networks
are great at learning complex continuous functions such as
navigation or movement primitives, or local goal-reaching
policies. Elaborating on this statement, we turn to a hierarchy
of approximators, coupling planning in a graph of goal space
waypoints, with local goal-reaching skills learned with deep
neural networks. When requiring to achieve a goal g∗ ∈ G
from a state s0 ∈ S, we link g∗ and s0 to their closest graph
nodes. Specifically, we find vertices v∗ and v0 whose way-
points gv∗ and gv0 minimize some measure of proximity
d(g∗, gv∗) and d(P (s0), gv0) respectively, with P (s0) an ab-
straction of s0 in the goal space. Then we find a shortest
path between them in the graph, which defines an execution
curriculum of waypoints, and the local policy is used to reach
each waypoint’s vicinity in sequence.

The core of our contribution lies hence in the graph expan-
sion and pruning method, its ability to represent accurately an
abstraction of the environment dynamics despite unbalanced
samples and discontinuous properties, and finally its use to
design goal-conditioned policies over large and complex state
spaces. To present the method in a well-defined framework,
we restrict the set of MDPs we consider to those enjoying
a property we call translation invariance of local optimal
policies which we discuss later on. We also discuss therein
to what extent this assumption is a strong constraint. Then,
given such a goal-reaching policy π, we grow and prune a
graph G which encodes an abstract notion of reachability and
distance over the state space. The pair (π,G) can then be used
jointly to encode a policy that benefits from the best of both
worlds and allows one to exploit planning algorithms over G
in order to define an execution curriculum of waypoints for
π; resulting in a global agent that can reliably learn to reach
distant goals in complex environments.

Goals as state abstractions
In the general sense, a goal g is an abstraction for a set of
states. For instance, a goal for a robotic ant might be “reach
this room, regardless of orientation, legs configuration, or
precise final position”. In this paper, for the sake of genericity,
we assume that goals live in a goal space G, that both S and
G are normed vector spaces, and that there exists a projection
P (s) = g which projects states into the (lower dimensional)
goal space. Consequently, we can define K0 = kerP as the

set of states corresponding to the null goal 0G ∈ G. Let P̄ be
a mapping from goals to states such that P ◦ P̄ is the identity
function on G. There are many possible such mappings if
the dimension of G is smaller than that of S. Conversely,
when dimG = dimS, one can take P̄ = P−1, although in
this case it is practical to straightforwardly identify goals and
states, which means P and P̄ are the identity function. When
S and G differ, we assume such a P̄ mapping is provided.
Then, Kg = {P̄ (g) + δ, δ ∈ K0} is the set of states whose
projection by P is g. In what follows, we retain the P and
P̄ notations for genericity, but the reader is encouraged to
discard them as the identity function in order to catch the key
intuitions. Finally, when the goal and state spaces differ, we
introduce the strong assumption that for a given goal g ∈ G,
any s2 ∈ Kg is reachable for a negligible cost from any other
s1 ∈ Kg. In plain words, moving between any two states
which correspond to the same goal (same state abstraction) is
supposed feasible and costless. Note that this is immediately
verified when S = G.

Translation invariance of local optimal policies
Intuition indicates that a four-legged robot should not have to
learn to walk again when it is moved from a room of the lab
to another. Of course, this assumption might be questionable
if one moves the robot from a room to the hills outside the lab.
We formalize this notion of re-usability of learned policies
as one of translational invariance. We say an MDP admits
translation invariant local optimal policies (TILO policies) if
there exists a goal-conditioned optimal policy π∗ such that

∀s, δ ∈ S × S, ∃ρ ∈ R, such that
∀g ∈ B(P (s), ρ), π∗(s, g) = π∗(s+ δ, g + P (δ)), (1)

where B(P (s), ρ) is a ball, centered in P (s) and of radius
ρ. In plain words, such a policy guarantees that whatever
close enough starting states s and s′ we consider, we can al-
ways find local goals for which the first action recommended
by the policy will be the same. A corollary of this property is
that in deterministic MDPs, all actions taken to reach g from
s are the same as those necessary to reach g+P (s′−s) from
s′, for goals that are close enough to P (s).

To set ideas and illustrate the notion of TILO policies, one
can consider a continuous state space maze, or a problem
of navigation in an environment with isotropic movement
properties, but cluttered with obstacles. In this example, we
assume G = S and P is the identity function. Then, given
two states s and s′, there exists a vicinity of s and s′ where
picking goals g and g + P (s′ − s) will induce the same
sequence of optimal distributions over actions. This vicinity
is constrained by the presence of obstacles close to s and s′

and might shrink to very small balls, but it exists nonetheless
and this property captures the notion of reusability of goal-
reaching policies across the state space. As a consequence, a
TILO policy which has learned to reach goals around s needs
not be trained again in other regions of S, which marks a
notable difference with the relative goal policies introduced
by Nachum et al. (2018). In turn, TILO policies need only
be trained to reach goals from a fixed starting state, and the
TILO property enables their re-usability throughout the state
space to reach local goals.



Arguably, MDPs that admit TILO policies do not represent
the full span of MDPs. However we argue that with an appro-
priate choice of the metric on G, defining B(P (s), ρ), this
property actually applies to many common control problems,
including, in particular, navigation problems. Moreover, one
can extend the reasoning to ϵ-optimal policies, hence defining
ϵ-TILO policies. An MDP admits ϵ-TILO policies if there
exists a policy that is ϵ-optimal and obeys (1). When one
takes the four-legged robot that has only been trained on the
lab’s concrete grounds, to the grassy hills, it is reasonable
to assume its translated goal-conditioned policy will not be
optimal. However, this policy is still likely to perform better
than most other policies and hence to be ϵ-TILO.

The method we develop herein applies to MDPs which
admit ϵ-TILO policies that are pre-trained. Practically, given
a starting state s, we directly train a translation invariant goal-
conditioned policy π(s, g). Training of this policy is done
before directed exploration and graph learning takes place.
We also define a goal-proximity quasi-metric dπ(g, g′) =
(Vmax−V π(P̄ (g), g′))/(Vmax−Vmin), indicating how close
two goals are under policy π, with Vmax and Vmin cho-
sen so that, on the training domain, dπ(g, g′) ∈ [0, 1] and
dπ(g, g) = 0. This quasi-metric dπ(g, g′) can be interpreted
as a measure of how long it takes for policy π to reach Kg

from Kg′ on average. The goal-conditioned policy training
method is any algorithm that trains a universal value func-
tion approximator; it trains π(s, g) and V π(s, g) within a
playground state space with no obstacles. Specifically, start-
ing with a random exploration strategy, a replay buffer is
filled, and the goal-conditioned policy is trained to reach
goals sampled from it. This yields a π(s, g) policy that is also
an ϵ-TILO policy, along with the corresponding dπ(g, g′)
quasi-metric. We emphasize that this policy is not required
to be able to reach any possible goal from s, even in the play-
ground environment (Levy et al. (2019) and Nachum et al.
(2018) have illustrated how RL algorithms struggle when the
goals become too distant). Instead, its performance and goal
outreach is as good as the training procedure can make it,
and we rely on the graph learning procedure to encode the
reachability between states, based on this policy.

Learning a reachability topology
To ease the presentation of ideas, we present the proposed
Reachability Graph Learning algorithm (RGL, Algorithm 1)
in the context of deterministic MDPs, and defer the discus-
sion of the stochastic case to the end of this section. Given
a pre-trained ϵ-TILO policy π, we wish to construct an ori-
ented graph G = (V,E) which will represent the reachability
between sub-goals, using π. Each vertex v ∈ V of such a
graph is associated with a given goal gv, and directed edges
e ∈ E indicate reachability of the successor node’s goal from
the states corresponding to the source node’s goal. In other
words, if an edge exists between v and w, then π successfully
reaches gw from states in Kv = Kgv . The edge linking v and
w is weighted with a traversal cost of dπ(gv, gw). Knowledge
of this weighted graph permits running a planning algorithm
to find an execution curriculum of waypoint vertices (inter-
mediate goals gv) which eventually link any start state and
final goal. This is very similar in spirit to SoRB (although

our graph is defined on goals, not states). The (other) key
difference lies in the fact that graph nodes are not built on
an arbitrary set of sampled states, which might be rather sen-
sitive to the distribution of these sampled states, and graph
edges do not rely solely on evaluating the policy’s value func-
tion, which might poorly account for discontinuities (walls)
or rarely visited states. Instead we grow and prune the graph
dynamically so that it actually encodes reachability between
goals.

During an iteration of the RGL procedure, a starting state
s0 is first sampled from an initial state distribution. Note that
RGL does not suppose a fixed starting state. If s0 is the first
sampled starting state ever, or if the closest goal to P (s0)
lies far from P (s0) in the goal space, this means s0 does
not correspond to any previously explored goal and we add
a node in the graph at P (s0). Then, a node v∗ in the graph
is selected for exploration. This selection relies on a count-
based criterion which influences the progressive coverage
of the goal space. Although one could design heuristics or
refined exploration strategies (Bellemare et al. 2016; Ecoffet
et al. 2019; Badia et al. 2019; Burda et al. 2019; Domingues
et al. 2021) for this criterion, we rely on a simple count of
the number of times a node has been selected for exploration,
hence promoting uniform visits to every node in the graph.
A finite horizon plan (vi)i∈[0,H] is computed by finding a
shortest path in the graph from the starting state’s node v0 to
the selected node v∗ = vH . Note that there may not exist a
path between v0 and v∗ in the graph, in which case H = 0
and the shortestPath procedure returns the single node
{v0}. Let (gi)i∈[0,H] denote the corresponding sequence of
waypoint subgoals. Then π is used to sequentially reach
each goal. Specifically, when trying to reach gv, π(·|gv) is
run until a reached(s, v) := dπ(P (s), gv) ≤ ηreach con-
dition becomes true, or a maximum number of steps Tr is
exceeded. If applying π allowed the agent to reach the ηreach-
neighborhood of gv, then the next waypoint w in the plan is
selected and the procedure is repeated until the node v∗ is
reached.

We interpret not reaching the neighborhood of gw when
applying π as a mismatch between the notion of reachability
encoded in the graph and the actual reachability in the envi-
ronment using π. As a consequence, we set the cost of edge e
between v and w to +∞ to account for this non-reachability.
Consequently, if the graph is learned without errors, the ex-
istence of an edge e between two nodes v and w indicates
that π permits reaching the ηreach-neighborhood of gw from
states s whose P (s) are in the ηreach-neighborhood of gv in
less than Tr time steps (or that this edge is never selected by
the shortest path planning procedure). This pruning2 proce-
dure keeps the graph free of mis-identified edges. In mazes,
it deletes edges that cross walls, and hence accounts for the
discontinuities we wished to represent within the policy.

Conversely, if applying π throughout the sequence of way-
points actually fulfills the goal g∗ of node v∗ selected for ex-
ploration, then a generic exploration procedure is performed
from the reached state s∗ in the ηreach-neighborhood of Kv∗ ,

2Calling this operation pruning is somewhat inaccurate since we
do not delete edges but rather set their weight to +∞.



Algorithm 1: Reachability graph learning (RGL)
1 Input: π, dπ , ηreach, ηnode, ηedge, Tr , Te

2 Initialize: V = ∅, E = ∅
3 repeat
4 s0 = env.init()
5 g0 = goal associated to closest node to P (s0)
6 if dπ(P (s0), g0) > ηedge ∨ V = ∅ then
7 V ← V ∪ {node(P (s0))}
8 g0 = P (s0)

9 v∗ = selectExplorationNode(V )
10 (vi)i∈[0,H] = shortestPath(V,E, g0, v

∗)
11 s = s0, t = 0
12 for i ∈ [1, H] do
13 while ¬reached(s, vi) ∧ t ≤ Tr do
14 s← env.step(s, π(s, gvi))
15 t← t+ 1

16 if ¬reached(s, vi) then
17 setWeight(E, vi−1, vi,+∞)
18 break

19 if reached(s, v∗) ∨H = 0 then
20 {st}t∈[1,Te] ← explore(s, Te)

21 (V,E) = growGraph
(
V,E, {st}t∈[1,Te]

)

22 Function growGraph(V,E, {st}t∈[1,Te]):
23 for t ∈ [1, Te] do
24 addNode = True, Ein = Eout = ∅, w = node(P (st))
25 for v ∈ V do
26 lin = dπ(gv, gw)
27 lout = dπ(gw, gv)
28 if lin ≤ ηnode ∧ lout ≤ ηnode then
29 addNode = False; break

30 if lin ≤ ηedge then
31 Ein ← Ein ∪ {edge(v, w)}
32 setWeight(Ein, v, w, lin)

33 if lout ≤ ηedge then
34 Eout ← Eout ∪ {edge(w, v)}
35 setWeight(Eout, w, v, lout)

36 if addNode = True ∧ Ein ̸= ∅ then
37 V ← V ∪ {w}, E ← E ∪ Ein ∪ Eout

38 return V,E

during Te time steps. The intention of such an exploration pro-
cedure is to discover states s whose P (s) permit expansion of
the graph. We randomly sample a goal within a certain radius
of g∗ and try to reach it using π. If we succeed, we sample an-
other random goal and repeat this exploration until we obtain
a complete exploration trajectory of length Te. Note that this
exploration strategy could be replaced by any other, which
is why we refer to it generically as the explore procedure
in algorithm 1. The states visited along the trajectory are
collected in a buffer. We wish to expand the graph so that its
nodes induce a good coverage of the buffer states’ goals and
its edges indicate proximity (but not necessarily reachability
at this stage). To that end, we cycle through the buffer and
incrementally add vertices to V whenever a goal is dπ-further
away from all nodes than a threshold ηnode. Edges are cre-
ated from this new vertex to all nodes within ηedge > ηnode.
We differentiate between incoming and outgoing edges from
the new candidate node: if there is no incoming edge, then
the node is not added to the graph. This greedy procedure
expands the graph to create new nodes that complete the goal
space coverage wherever required, with limited connectiv-
ity between nodes. At this stage, some newly created edges
might not account for reachability, e.g. in a maze, this might
happen if the closest existing graph node to the newly created
node is behind a wall. We rely on future explorations to prune
the graph as presented in the previous paragraph.

Overall, this growth and pruning RGL procedure results in
a graph G = (V,E) which encodes goal space reachability
when using π in the state space. The pair (G, π) implicitly
defines a general goal-reaching policy which requires com-
puting a shortest path in G to chain local executions of π
between subgoals.

At execution time, determining the action to undertake
in s in order to reach g requires solving a shortest path

problem in G. This can be typically implemented using Di-
jkstra’s algorithm (Dijkstra 1959), which has complexity
O(E + V log V ).3 It is important to note however that in de-
terministic MDPs (or MDPs with limited noise) this shortest
path needs only be computed once per goal-reaching task
and can be carried over to the next time step of the task, thus
strongly dampening the overall computational cost. During
learning, the pruning phase of an iteration of RGL has com-
plexity O(E + V (log V + Tr)). The exploratory collection
of new samples runs in O(Te), while the growGraph func-
tion has complexity O(TeV ).4 This results in an overall time
complexity of O(E+V (log V +Tr+Te)) for each iteration
of RGL, which involves O(V Tr + Te) iteration steps with
the environment.

In the general case of MDPs with stochastic transitions,
the pruning procedure of RGL needs to be adapted to account
for the stochastic outcomes when trying to reach g′ from Kg .
Note that, in this case, dπ(g, g′) captures a broader notion
than the number of required time steps for π to reach g′ from
g: it captures the overall probability to reach g′ from Kg,
given the transition model and a probability of termination of
1−γ at each time step. Thus, reachability can be redefined as
the probability of reaching g′ from Kg being actually equal
(or close to) dπ(g, g′). Verifying this with high confidence
requires running several trials between Kg and g′, which can
be implemented by enhancing the algorithm with a memory
of trial outcomes for each edge in the graph. Introducing
such a delay in updates is similar in spirit to the practice
of RMAX (Brafman and Tennenholtz 2002) or Delayed Q-
learning (Strehl et al. 2006), which introduce an Nknown

3For the sake of simplicity we adopt the notation O(V ) in place
of O(|V |).

4This can be amortized to O(Te log V ) with efficient data struc-
tures for storing V and finding nearest neighbors.



number of samples which are necessary to correctly identify
a transition. Note that in most practical implementations of
such algorithms, Nknown is arbitrarily set to a small value
to preserve computational efficiency. An alternative, which
we do not explore here and reserve for future work, is to let
the weight of an edge adapt to the observed trial durations
between g and g′.

4 Empirical evaluation
To highlight the behavior of RGL, and provide a fair and
interpretable benchmark against comparable methods, we
consider a set of navigation tasks in mazes.

Environments. In each maze, an agent should be able to
reach any position from its starting point. We consider mazes
of different complexities, with various map sizes and hetero-
geneous corridor widths, as illustrated in figure 1. Namely,
“four-rooms” is a 41× 41-size maze resembling the classical
“four-rooms” benchmark, “medium” is a more challenging
maze of the same size, “hard” is an even more challenging
57× 57-size maze and “mixed” has the same size as “hard”
and mixes corridors and rooms of different sizes. Note that
compared to mazes used in the literature (e.g. those of Ey-
senbach, Salakhutdinov, and Levine (2019)), here the walls
are thin, inducing sharper discontinuities in the value func-
tion across a wall. For each map, we consider three different
dynamics and state spaces for the navigating agent, which
we refer to as grid-maze, point-maze and ant-maze (Table 1).
Grid-maze features a discrete {N,S,E,W} action space and
deterministic transitions which perform unit-length moves,
hence emulating navigation on a grid. Point-maze emulates
a point mass moving freely in the maze. It has a continu-
ous, two-dimensional action space of position increments in
[−1, 1] on the x and y axes. The transitions are stochastic due
to an added Gaussian noise N (0, 1). Contrarily to grid-maze
which has a fixed starting state, point-maze randomly draws
the starting point at every episode. In grid-maze and point-
maze environments, the state space is simply described by the
geographical position of the agent, as in the benchmarks of
SoRB (Eysenbach, Salakhutdinov, and Levine 2019) or SGM
(Emmons et al. 2020), and S = G. Ant-maze environments
build upon the MuJoCo Ant simulator (Todorov, Erez, and
Tassa 2012) and sets the ant in one of the navigation maps.
Actions belong to the standard 8-dimensional action space of
the Ant simulator, and the state space is the 29-dimensional
space whose first two coordinates are the position of the ant’s
torso, as in the benchmarks of HAC (Levy et al. 2019) or
Distop (Aubret, Hassas et al. 2021). The transitions follow
the dynamics of the Ant simulator. In ant-maze environments,
the goal space G describes only the torso’s x and y coor-
dinates. In all environments, agents receive a −1 reward at
each time step, unless they reach the goal which terminates
the episode. In all evaluations, every agent is independently
trained 10 times. To enable reproducibility, hyperparameters
for all algorithms are summarized in Appendix 5, and our
code and results are available at [anonymous URL].

Baselines. To illustrate the behavior of RGL, we compare
against a plain DQN agent (Mnih et al. 2015) with HER in
grid-maze environments, and SAC (Haarnoja et al. 2018)

Figure 1: Mazes and starting points. From left to right: “four-
rooms”, “medium” (41× 41), “hard”, “mixed” (57× 57).

with HER in point-maze and ant-maze environments. As
illustrated by previous works (Nachum et al. 2018; Levy
et al. 2019), such a combination can efficiently learn a goal-
reaching policy for goals lying a few actions away from the
starting state, but struggles to reach goals that require turning
around walls. This provides a baseline for performance. An-
other baseline consists in passing the policy learned by this
base agent along with its final replay buffer to SoRB, to ex-
tend its outreach throughout the goal space via planning in a
random subset of size Ninit of the replay buffer. Since SGM
is more efficient than SoRB (due to their pruning method), we
directly compare with SGM.5 We also implement a variant
of RGL which we call TC-RGL, inspired by the STC method
(Ruan et al. 2022), where we replace the dπ pseudo-metric by
a so-called temporal correlation network, which is an addi-
tional network trained to measure reachability between states,
based on their temporal proximity during training trajectories.
This variant permits evaluating the core feature of STC as an
alternative to using the value function as a reachability metric
between goals.

Pretraining. To ensure SGM builds on a sufficiently good
pre-trained policy, and following the practice of SoRB, we
let the base agent learn a goal-reaching policy over 300 (resp.
500) episodes in grid-maze (resp. point-maze). RGL’s lower
level goal-reaching TILO policy is trained for 100 (resp. 150)
episodes in grid-maze (resp. point-maze) environments. Be-
cause training the temporal consistency network of TC-RGL
required more samples, it was trained for 200 (resp. 600)
episodes in grid-maze (resp. point-maze). To account for pre-
training durations, all figures below (e.g. Figure 2) report
them using vertical lines. RGL’s pre-training is performed in
a playground environment of size 40× 40 with no walls. Be-
cause ant-maze environments required specific pre-training,
we defer their discussion to the end of this section.

Visualizing graph growth and pruning. We start by as-
sessing separately the influence of the growth and pruning
procedures on the properties of the final reachability graph.
To isolate the effect of pruning, we artificially generate way-
points by using a generative model to draw states from the
full state space, which yields a graph with the same num-
ber of nodes Ninit as the SGM agents (edges weights are
also initialized with dπ), but with better state space coverage
since the drawn states are not constrained by the exploration

5Note that SoRB and SGM were introduced with tailor-made,
goal-based, distributional DQN and DDPG agents. We found this
was not necessary for finite-length trajectories and we retain the
names even though we slightly change the base agents.



dim(S) dim(G) actions dynamics starting state
grid-maze 2 2 discrete (number = 4) deterministic fixed single state
point-maze 2 2 continuous (dim(A) = 2) stochastic uniform distribution on S
ant-maze 29 2 continuous (dim(A) = 8) deterministic fixed single state

Table 1: Summary of environments

of the pre-trained DQN+HER agent. This permits defining
Prune-only RGL (PO-RGL) as the algorithm which prunes
this graph as it successively tries to reach random goals, but
without performing exploration and graph expansion. Ap-
pendix 5 illustrates the evolution of the graphs produced by
PO-RGL and RGL in the “four-rooms” and “hard” grid-maze
environment.

RGL agents can reach any goal. Figure 2 reports the abil-
ity of each agent to reach any goal in the maze, along training.
The vertical lines correspond to the time at which RGL, TC-
RGL, or SGM start exploiting the pre-trained policy. Every
1,000 interactions with the environment, we randomly draw
30 goals across the full goal space, and report the fraction
of these goals the agent managed to reach. We call this met-
ric the agent’s accuracy. As expected, since exploration in
mazes is difficult, the pre-training replay buffers do not cover
the full state space and the baselines fail to reach all goals.
Interestingly, despite the low performance of the pre-trained
DQN+HER and SAC+HER agents, RGL is still able to lever-
age their ability to reach local goals and manages to quickly
grow a goal graph which eventually covers the full maze.
PO-RGL displays a clear jumpstart effect in the “four-rooms”
maze since its initial graph requires little pruning and most
goals are readily reachable. Conversely, early planning graphs
of RGL and TC-RGL contain few nodes and require expan-
sion (and thus interaction steps) before their accuracy reaches
1. After 1,000 interactions, even though the planning graph
of RGL contains only a few nodes (Figure 10, Appendix 5),
it already reaches more goals than the baseline agents. As the
mazes become more difficult, many more edges need to be
pruned from PO-RGL’s initial graph before it effectively rep-
resents graph reachability and the plans reliably lead to goals.
This need for extended pruning is completely compensated
by the sparse growth of the graph of RGL and TC-RGL, and
PO-RGL presents no advantage in terms of learning curve.
In the most difficult “hard” and “mixed” mazes, the set of
Ninit initial nodes of PO-RGL is just insufficient to properly
cover the full goal space with feasible edges and PO-RGL’s
accuracy is capped around 0.5 and 0.8, while the dynamic
growth of RGL permit reaching close to 1 accuracy. Also,
the extra temporal consistency network of TC-RGL seems
detrimental to the training process compared to RGL. Since
this network only approximates the notion of reachability
instead of directly using the value function, it induces a graph
expansion and pruning phase with more errors or missed
nodes (which were actually reachable). In turn, as TC-RGL’s
graph does not accurately represent reachability, some goals
are eventually missed. In all environments, RGL reaches an
accuracy of 1 and dominates over all variants.

Graph size. Overall, RGL produces sparse graphs with
little variance in number of nodes within an environment.

Due to lack of space, we refer the reader to Appendix 5 for a
more detailed discussion.

Limit case: “reset anywhere”. Point-maze environments
feature a stochastic transition model and random resets any-
where in the state space at the begining of each episode, as
in the benchmarks of Eysenbach, Salakhutdinov, and Levine
(2019); Emmons et al. (2020). This induces diversity in the
replay buffers by triggering easier exploration, and somehow
departs from the more constrained RL framework with a
fixed (or a limited set of) starting state. Consequently, these
environments are more favourable to SGM since their replay
buffer covers a larger portion of the state space, and SGM
performs better in these environments than in grid-maze ones
(Figure 2). Even in this case the graph growth of RGL even-
tually outperforms competing methods, as it progressively
discovers new goal waypoints to better map the state space.

Limit case: stochastic transitions. As mentioned earlier,
RGL in its presented version is designed for deterministic
dynamics and would require some adaptations to account
for transition uncertainty. Point-maze environments feature
a rather high level of action noise (σ = 1 for action values
in [−1, 1]). This makes the pruning procedure stochastic, as
it will prune out edges depending of a single trial’s success.
Despite this rather naive behavior, RGL still manages to find
paths (possibly sub-optimal) to goals and reaches a high level
of accuracy (Figure 2) demonstrating a reasonable level of
robustness to transition stochasticity.

Limit case: high-dimensional state spaces and G ̸= S
in ant-maze tasks. Training a goal-reaching policy in ant-
maze environments, even in an obstacle-free playground, is
already a challenging task. Appendix 5 expands on the pre-
training procedure set in place. HAC is the reference method
for ant-maze environments but, as discussed in Appendix
5, its efficiency appears brittle and despite our best efforts
and the use of the original HAC implementation, it could not
solve any of the ant-maze tasks. Hence, Figure 3 only reports
results for RGL. Ant-maze tasks, on top of being highly chal-
lenging for the baseline agent, also violate the assumption
of section “Goals as state abstractions” that any two states
within Kg are reachable from each other for a negligible
cost. For instance, some ant orientations, velocities and leg
configurations are rather complex to reach from others. Con-
sequently, an edge between g and g′ in RGL’s graph only
represents reachability of g′ from a subset of states in Kg,
which can lead to plan failure (extended discussion in Ap-
pendix 5). Despite this, RGL manages to achieve large values
of accuracy almost as high as those obtained on point-maze
tasks on the “four-rooms”, “medium” and “mixed” mazes.
The most challenging setting remains the “hard” maze, which



Figure 2: Accuracies of all agents on grid-maze (top) and point-maze (bottom) environments, versus interaction steps.

Figure 3: RGL accuracy in ant-maze tasks, as a function of training time steps.

requires fine motor skills to efficiently navigate through nar-
row corridors and requires turning around many corners to
navigate to far goals.

5 Conclusion
Efficient coupling of planning and learning in complex MDPs
with temporally extended goals is an active field of research.
In this work we defend the idea that efficient mechanisms
rely on two implicit hypotheses: planning agents should plan
in the goal space and learned policies are often re-usable
throughout the state space. We propose a formal frame-
work accounting for these two notions, defining goals as
state abstractions and re-usability as translation invariance.
This permits deriving an algorithm which performs planning
over a graph of goal waypoints, reachable by a lower level
goal-reaching policy. This agent is named RGL (reachability
graph learning) after its training mechanism, which incre-
mentally explores its environment using a pre-trained lower
level translation invariant goal-reaching policy, expands and
prunes a graph encoding goal reachability. This approach can
be seen either as a more grounded version of STC (Ruan et al.

2022), or a generalization of SoRB (Eysenbach, Salakhut-
dinov, and Levine 2019) or SGM (Emmons et al. 2020) to
a hierarchical setting with translation invariance. Empirical
evaluation confirms the relevance of RGL agents and their
key features. This contribution also forms a basis for future
research directions. As is, RGL agents build a somewhat
uniformly dense graph, as illustrated in Figure 10 (Appendix
5). This might not be necessary and further sparsity can
be achieved in the open rooms of the “four-rooms” or the
“mixed” environments. Similarly, weight learning in the graph
is currently rather naive and could better exploit interaction
data during exploration, in particular in stochastic environ-
ments. Finally, RGL requires an ϵ-TILO policy for agent’s
control. Appendix 5 proposes a discussion on whether such
policies are easy to obtain in the general case, beyond navi-
gation tasks. We conjecture such policies also exist in more
complex contexts, like vision-based navigation (PO)MDPs,
since humans seem to exploit such invariances in daily life.
Formalizing how these policies can be discovered and how
their definition affects the properties derived in the present
work is an exciting avenue for research.



Appendix
Hyperparameters and computational setup

SAC
Point-Maze Ant-Maze

critic hidden layers 250, Relu, 150, Reluactor layers

optimiser Adam(lr=5e-4, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5 1e6
batch size 100 500

γ 0.99 0.99
τ 5e-3 5e-3

critic alpha 0.6 0.6
actor alpha 0.05 0.1

Table 2: SAC hyper-parameters. SAC+HER serves as a con-
trol policy for RGL, PO-RGL, and TC-RGL, as well as a
baseline, in the “point-maze” and “ant-maze” environments.

Tables 3 to 8 summarize the hyperparameters used when
training the different algorithms. The actor network used for
the lower level goal-reaching policy takes a state and a goal
as input (the dimension varies depending on the task) and pro-
cesses them through a 2 hidden layer MLP. The output layer
depends on the algorithm. Training follows the procedure
of DQN and HER with discount factor γ and exponential
smoothing on the target network (factor τ ), and an Adam
(Kingma and Ba 2015) optimizer with default parameters.
These parameters are the same for pretraining lower level
policies for all algorithms. All RGL agents share the same
Te, ηnode, ηedge, and ηreach when applicable (for instance,
PO-RGL uses ηedge but not ηnode since it does not create
new nodes). TC-RGL uses specific values ηnode and ηedge
for thresholds on node and edge creation, since it uses STC’s
temporal consistency network to measure node distance in-
stead of our dπ pseudo-metric; the scale of this network’s
output is unrelated to that of dπ (hence the different values
of ηnode and ηedge).

DQN
model hidden layers 64, ReLU, 64, ReLU

optimiser
Adam(lr=1e-3,

betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5
batch size 100

discount factor γ 0.95
exponential

smoothing factor τ 1e-3

Table 3: DQN hyperparameters. DQN+HER is used in grid-
maze tasks to compute goal reaching policies.

The results on grid-maze and point-maze were run on a
desktop machine (Intel i9, 10th generation processor, 64GB
RAM) with no GPU usage. The results on ant-maze were
obtained with single node computations. Each of these nodes
was composed of 2 12-core Skylake Intel(R) Xeon(R) Gold
6126 2.6 GHz CPUs with 96 Go of RAM (no GPU hardware).

C51
output distribution

size 20

models layers 64, ReLU, 64, ReLU

optimiser Adam(lr=1e-3, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5
batch size 100

γ 0.95
τ 1e-3

Table 4: C51 hyper-parameters, which serves as a control
policy for SGM in the “grid-maze” environment.

Distributional DDPG
output distribution

size 20

models layers 64, ReLU, 64, ReLU

optimiser Adam(lr=1e-4, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e6
batch size 64

γ 0.99
τ 0.05

Table 5: Distributional DDPG hyper-parameters, which
serves as a control policy for SGM in the “point-maze” envi-
ronment.

RGL
Grid-maze Point-maze Ant-Maze

ηedges 0.2 0.045 0.3
ηnodes 0.1 0.017 0.1

nodes reachability
threshold 1 0.8 0.7

max time-steps to
reach next node 50 50 150

Exploration
goal range 2 4 6

interactions per
exploration 90 90 150

Table 6: RGL hyper-parameters.

PO-RGL
Grid-maze Point-maze

ηedges 0.2 0.03
reachability threshold

of the nodes 1 0.8

max time-steps to
reach next node 50

nb nodes

four rooms: 400
medium: 600

hard: 600
mixed: 900

four rooms: 400
medium: 500

hard: 700
mixed: 900

Table 7: PO-RGL hyper-parameters.

Our code is available at [Anonymous URL].



Visualization of graph growth
Figures 10, 11 and 12 present the reachability graphs evolu-
tion for all mazes in, respectively, grid-maze, point-maze and
ant-maze environments. Blue dots in some figures correspond
to the current selected goal at the time the graph was printed
and should be discarded.

In all these figures, red edges are those whose weights have
been set to +∞ by the pruning procedure. We observe that
(as anticipated in the previous section) only erroneous edges
which were selected in a shortest path are pruned, and some
remain in the graph, especially in grid-maze, which features
a fixed unique starting state. This bears little consequences
in terms of goal reachability since these are never selected
in shortest paths from the initial state, but still result in a
rather dense reachability graph. To avoid misinterpretations,
it is important to note that since the graph is oriented, each
green edge in these figures actually stands for two edges
in the graph. If only one has been pruned and rendering
of the other happens afterwards, the segment appears green
while only one edge in the graph has non-infinite weight.
Overall, the incremental growth of RGL’s graph yields an
efficient coverage of the state space, avoiding the clusters
of unnecessary nodes we can observe using PO-RGL, and
reducing the need for pruning.

PO-RGL was created purely for didactical reasons in order
to illustrate the pruning process independently of the incre-
mental graph growth. Besides this illustration itself, these
figures underline two features. First, the fact that RGL creates
the graph incrementally makes it much sparser and avoids
clusters of really close, redundant nodes. In turn, this sparse
graph is much easier to prune than that of PO-RGL. Sec-
ondly, in environments with a fixed initial state (grid-maze,
ant-maze), some edges never participate in the shortest path
to any goal and hence are never pruned. Even if the sparse
growth of the RGL graph limits this phenomenon, some im-
passable edges remain; e.g. some edges at the far right of
Figure 10p. Randomly resetting the starting state at each
episode permits a more complete and easier exploration of

SGM
Grid-maze Point-maze

node pruning
threshold

four rooms: 2
medium: 3

hard: 3
mixed: 2

four rooms: 3
medium: 3

hard: 3
mixed: 3

max edges
length

four rooms: 5
medium: 6

hard: 6
mixed: 5

four rooms: 7
medium: 7

hard: 7
mixed: 7

nb initial
nodes

four rooms: 1400
medium: 1400

hard: 1800
mixed: 1600

reachability
threshold 1

max interactions
per sub task 20

Table 8: SGM hyper-parameters.

all shortest paths, and hence results in a slightly more accu-
rate pruning; e.g. the unpruned edges in grid-maze are better
pruned on Figure 11p.

Figure 12, Appendix 5, (ant-maze environments) deserves
a few additional comments. On this graph, to ease the read-
ability and account for directed edges, whenever a directed
edge exists between v and w, we plot the edge’s segment
closest to v in green. Orange then means the reverse edge
has not been created. Red means the edge has been pruned.
Some pruned edges appear in areas which seem passable. To
explain this phenomenon, one needs to recall that the state
space is 29-dimensional and a waypoint in the goal space (a
geographical position of the ant’s center of mass) can stand
for a wide variety of configurations, as discussed in the em-
pirical evaluation section. For any two nodes g and g′, it is
possible that g′ was reachable from P̄ (g) but is not reachable
from some other states in Kg, since ant-maze environments
violate the hypothesis that all states in Kg are reachable from
each other for a negligible cost given the pre-trained policy.
This leads to some edges being legitimately pruned while
a “naive eye” laid on the reachability graph might conclude
there was a mistake.

Finally, the graphs grown by RGL in ant-maze environ-
ments feature very few edges crossing walls. This is a side
effect of the default values of ηnode and ηedge (kept the same
throughout all environments and mazes), and the fact that
the ant’s geometry prevents its center of mass to get close to
the wall. This sometimes happens nonetheless when the ant
randomly "tries" to climb over the wall (and systematically
fails), which also places a few nodes that appear to be inside
the walls.

Graph size. Figures 4 to 9 report the number of nodes and
edges for RGL agents as their graph grows in the grid-maze,
point-maze, and ant-maze environments. Note that graphs on
point-maze environments required a log-scale on the y-axis
for readability since TC-RGL spanned an order of magnitude
more nodes than RGL (and two to three orders of magnitude
more edges). Recall that instead of deleting edges that need
to be pruned, their traversal weights are set to +∞ (to avoid
creating them again later). This is why the number of edges
of PO-RGL does not decrease. Dotted curves in Figures 7
to 9 indicate the number of edges with a non-infinite weight.
Overall, RGL and TC-RGL create just enough nodes to accu-
rately represent the reachability graph given their underlying
dπ and temporal consistency network. The relative number
of node and edges between RGL and TC-RGL cannot be
directly compared as the former uses dπ as a distance metric
while the latter uses a reachability representation, on a differ-
ent (uncontrolled) scale. Still, the number of nodes is similar
across mazes. Interestingly, RGL produces graphs with less
connectivity, which can be interpreted as a better ability to
create meaningful connections between goal waypoints for
navigation. Additionally, TC-RGL features a large variance
in the number of nodes and edges developed in the graph.
This seems to stem from the training of the temporal con-
sistency network which is very sensitive to the distribution
of trajectories during pre-training. In turn, this strongly af-
fects the estimation of reachability when learning the graph



TC-RGL
Grid-maze Point-maze

ηedges 0.4 0.1
ηnodes 0.2 0.03

TC-Network

layers 125, ReLU, 100, ReLU, 1, Sigmoid
batch size 250
buffer max

size 1e9

optimizer Adam(lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
targeted edge length 20

Table 9: TC-RGL hyper-parameters. Hyper-parameters that are not reported here are the same that the ones in Table 6 for RGL.
“targeted edge length” is the minimum number of interactions that must separate two states of the same trajectory, so that they
can form a positive pair (distant states) in the TC-network training data.

Figure 4: Number of graph nodes in grid-maze versus interaction steps. Shaded area is the 1σ confidence interval.

Figure 5: Number of graph nodes in point-maze versus interaction steps. Shaded area is the 1σ confidence interval.

Figure 6: Number of graph nodes in ant-maze versus interaction steps. Shaded area is the 1σ confidence interval.

and induces this variance in graph density. Appendix 5 pro-
vides further discussion on the impact of the graph density’s

hyperparameters (ηnode and ηedge) on RGL’s behavior.



Figure 7: Number of graph edges in grid-maze versus interaction steps. Shaded area is the σ confidence interval.

Figure 8: Number of graph edges in point-maze versus interaction steps. Shaded area is the σ confidence interval.

Figure 9: Number of graph edges in ant-maze versus interaction steps. Shaded area is the σ confidence interval.

Are ϵ-TILO policies common?

In the present work, an important assumption is the existence
of an ϵ-TILO policy. Thus it seems important to discuss
how restrictive this assumption is, and how commonly such
policies might occur.

In position-based navigation tasks where S = G, general-
ization by translation invariance seems intuitive and easily
justified by the translation invariance of the MDP’s transition
model properties throughout the state space. In navigation
tasks where the state space is the agent’s full configuration,
but with abstract goal spaces (e.g. agent overall position),
such as the ant-maze benchmarks, finding TILO policies
is closely linked to defining the goal space, and hence the
P : S → G projection. In this specific example, P is de-
fined by simply keeping some variables of S and discarding
the others. Here again, the TILO property is intuitive and

translation invariance permits generalizing learned policies
to unexplored parts of the state and goal spaces. However,
when it comes to state spaces with confounding variables,
such as visual navigation tasks, then defining P for abstract
goal spaces might become more difficult as it links the in-
put image pixels to positions on the navigation map. In a
way, P encodes expert knowledge about what abstractions
of the state define a useful goal space, as discussed for in-
stance by Forestier et al. (2022). Such abstractions might be
learned (Péré et al. 2018) but since they are a pre-requisite for
training a goal-based policy, they are generally considered
to be provided by some expert. Such a description of goals
is sometimes accessible for a minimal cost (as in navigation
tasks), but a perspective for future work implies learning rel-
evant goal descriptors from data. One one can draw a parallel
with recent work in expressing goals with natural language



(a) PO-RGL, 400 nodes (b) PO-RGL 600 nodes (c) PO-RGL 600 nodes (d) PO-RGL 900 nodes

(e) RGL, t = 1,000 (f) RGL, t = 1,000 (g) RGL, t = 1,000 (h) RGL, t = 1,000

(i) RGL, t = 4,000 (j) RGL, t = 4,000 (k) RGL, t = 4,000 (l) RGL, t = 4,000

(m) RGL, t = 100,000 (n) RGL, t = 150,000 (o) RGL, t = 250,000 (p) RGL, t = 210,000

Figure 10: Reachability graphs, grid-mazes.



(a) PO-RGL, 400 nodes (b) PO-RGL 500 nodes (c) PO-RGL 700 nodes (d) PO-RGL 900 nodes

(e) RGL, t = 1,000 (f) RGL, t = 1,000 (g) RGL, t = 1,000 (h) RGL, t = 1,000

(i) RGL, t = 4,000 (j) RGL, t = 4,000 (k) RGL, t = 4,000 (l) RGL, t = 4,000

(m) RGL, t = 100,000 (n) RGL, t = 150,000 (o) RGL, t = 250,000 (p) RGL, t = 210,000

Figure 11: Reachability graphs, point-mazes.

and exploiting (large) language models to embed the goal
description. Note, however, that in the general case, even if
the corresponding P encoding is given, there is no guarantee
that a TILO policy exists.

Besides the considerations above, we argue that the ex-
istence of TILO policies is intrinsically linked more to the
nature of the task at hand than the definition of the goal
space. Navigation is implicitly about finding a (potentially
convoluted) path through a terrain with somewhat homoge-
neous properties. Hence, at least for this family of tasks, the
existence of ϵ-TILO policies is a plausible assumption.

Influence of graph density hyperparameters.
The thresholds ηnode and ηedge on node and edge creation
condition how coarse the graph is in the goal space. Con-
sequently, they impact the density of the graph, hence the
ability to accurately represent transition dynamics. As such,
they encode a notion of minimal required granularity to ef-
ficiently generate efficient goal-reaching plans in the goal
space. Despite RGL’s ability to build sparse representative
graphs, a poor choice of ηnode and ηedge parameters can be
detrimental to RGL’s goal reaching accuracy. Figure 13 re-
ports how sensitive PO-RGL and RGL agents are to these
parameters, in the “medium” grid-maze. Figure 13a illus-



(a) RGL, t = 6,000 (b) RGL, t = 6,000 (c) RGL, t = 6,000 (d) RGL, t = 6,000

(e) RGL, t = 24,000 (f) RGL, t = 24,000 (g) RGL, t = 24,000 (h) RGL, t = 24,000

(i) RGL, t = 500,000 (j) RGL, t = 700,000 (k) RGL, t = 1200,000 (l) RGL, t = 1, 200,000

Figure 12: Reachability graphs, ant-mazes.

trates how increasing the values of ηnode to 0.2 (then 0.3)
and ηedge to 0.4 (then 0.5) results in a graph which does
not enable reaching distant goals anymore. A similar effect
happens for PO-RGL, as choices for Ninit will have a di-
rect impact on the accuracy of the algorithm. Figure 13b
reports how varying Ninit from 100 to 600 affects the goal
reaching accuracy of PO-RGL. With only 100 nodes, the
reachability graph of PO-RGL features subgoals which are
very distant from each other and rarely reachable between
each-other, resulting in a graph with almost no edges (Fig-
ure 13c). Hence, no goals besides those reachable by the
lower-level policy can be reached. With 200 nodes (Figure
13d), the final goal reaching accuracy of PO-RGL improves
to about 50% and keeps improving until Ninit = 400 nodes.
For Ninit = 500 and 600, the number of edges to prune in
the graph becomes so large that it slows the learning down,
resulting in less reachable nodes after 100,000 interaction
steps because the graph contains too many misleading edges
which have not been pruned yet. Overall, this illustrates how
the directed, exploration-driven node and edge creation of
RGL yields graphs which are both much sparser and much
more representative of reachability, than building a graph
over randomly sampled goals (either randomly sampled from

a replay buffer as in SoRB, or randomly sampled from an
oracle as PO-RGL).

Pre-train a goal-conditioned TILO policy in
Ant-Maze.
Learning goal-based policies for ant-maze environments is
challenging, even in the obstacle-free playground. To let
SAC+HER converge efficiently, we build a process inspired
from curriculum learning (Bengio et al. 2009). We sample
goals uniformly in a disc around the agent, starting with a
radius of 0. Every time the agent reaches a goal, we incre-
ment the radius of 0.1, and decrease it when it fails. If the
radius reaches a value of 6, we stop incrementing and let the
agent reach an accuracy close to 100% in this pre-training
playground. Note that this value of 6 is much larger than that
of ηnode and ηedge (see Appendix 5).

While navigating in the graph, following a sequence of
sub-goals, the agent will change its direction many times
in an episode. This may lead to more diversity in the states
encountered while navigating the maze than those seen during
the pre-training. To mitigate this aspect and improve state
diversity during pre-training, every 5 episodes, instead of a
full agent reset, we reset only the agent’s position but retain



(a) Influence of ηnode and ηedge (b) Influence of Ninit on PO-RGL (c) PO-RGL, Ninit = 100 (d) PO-RGL, Ninit = 200

Figure 13: Hyperparameter influence on goal-reaching accuracy in the “medium” grid-maze after 100,000 interaction steps.

the orientation, legs configuration and velocities from the last
state of the previous episode.

Hierarchical actor critic on various tasks
Ant-maze tasks have been tackled in previous work,
notably in the important HAC (Levy et al. 2019) con-
tribution, on similar tasks to those reported here, in
particular the “four-rooms” maze. In order to provide
a fair comparison with RGL, we used the reference
implementation of HAC provided by the authors at https:
//github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
/tree/master/ant_environments/ant_four_rooms_3_levels.
This section discusses why this implementation (without
modifications) fails on the tasks reported here.

Figure 14: Illustration of goals and initial states sampling
areas for HAC.

Goal and initial state sampling in HAC to promotes di-
versity. In the original HAC contribution, during training,
goals are sampled uniformly in the center of each room (red
areas in Figure 14), then initial states are sampled uniformly

in the center of another room. This induces a variety of start-
ing states and insures that starting states and goals are always
at least one room away from each other. In turn, this promotes
diversity in the replay buffers, which facilitate policy train-
ing. In the experiments, we argued that this “reset anywhere”
feature was a particularly favourable case for exploration.

Variations in mazes. We also investigated whether the loss
of efficiency of HAC could be attributed to the difference
between the mazes presented here and those of the HAC
paper. For this purpose, we tested HAC on three tasks and
report results in Figure 16 (averaged over 10 trials).

1. The exact 17× 17 “four-rooms” map used in the HAC pa-
per, with the goal / initial state sampling strategy defined
above (labelled HAC sampling / small “four-rooms” in
Figure 16).

2. The same 17 × 17 maze map, but with uniformly sam-
pled goals while keeping the starting state fixed (labelled
Uniform goals / small “four-rooms” in Figure 16).

3. A larger 41×41 “four-rooms” map, which is the one used
for the reported experiments of RGL, with the HAC goal
/ initial state sampling strategy (labelled HAC sampling
/ large “four-rooms” in Figure 16). This map features
slightly narrower passages between each room (propor-
tionally to the size of the room). Actions remain the same:
the ant is not scaled up. Goals are sampled uniformly.
HAC’s states and goals are scaled to the size of the map.

4. The same 41× 41 “four-rooms” map with a fixed starting
state and uniform goal sampling (labelled Uniform goals
/ large “four-rooms” in Figure 16).

The evaluation accuracy of each agent reported in Figure
16 follows the agent’s goal / initial state sampling procedure
than during training. Specifically, agents that were trained
with the HAC sampling strategy are evaluated by the propor-
tion of reached goals when goals and initial states are drawn
according to HAC’s sampling strategy. Similarly, agents that
were trained with a fixed starting state are evaluated on the
same setting. Consequently, the only fair comparison with the
RGL results in the experimental section is when the starting
state is fixed and the goals are uniformly sampled. Recall
that RGL reaches an accuracy of 89% on the large “four-



Figure 15: HAC average accuracy on the “medium”, “hard”, and “mixed” mazes for the ant-maze task, versus number of episodes
(episode length is capped at 700 time steps but can be smaller if the goal is reached before). Green curve: uniform initial state
sampling. Blue curve: fixed initial state.

Figure 16: HAC average accuracy on variations of the “four-
rooms” ant-maze task, versus number of episodes (episode
length is capped at 700 time steps but can be smaller if the
goal is reached before).

rooms” environment with fixed initial state and uniform goal
sampling (Figure 3).

It appears that the goal / initial state sampling strategy is a
crucial feature of HAC in ant-maze. Removing this feature,
and sampling goals uniformly, reduces the accuracy of HAC’s
optimized policy from 76% to 28% in the small “four-rooms”
environment, and from 29% to 5% in the large one.

It also appears HAC is rather sensitive to the scale of the
map (despite appropriate state scaling in the inputs of the neu-
ral networks): even with the HAC initial state / goal sampling
strategy, the accuracy of the optimized policy does not exceed
28% (versus the 89% of RGL). More steps are required to
cross a room between passages and we hypothesize HAC
suffers from this difficulty to span long trajectories between
goals and hence struggles to reach a good accuracy in larger
mazes.

Note that the HAC sampling strategy is tailor-made for the
“four-rooms” maze and is undefined for other mazes, so the
comparison above cannot be reproduced for the “medium”,
“hard”, and “mixed” mazes. Instead (and this goes beyond
what was proposed by the HAC authors), in an attempt to
have a comparison baseline, we replaced this HAC sampling
strategy by uniform sampling of both the initial state and
the goal in these three mazes. We also evaluated the fixed
initial state / uniform goal sampling setting. Results, shown
in Figure 15, on other maps are similar to those of Figure 16:
HAC reaches very small accuracy levels compared to RGL,
even with the diversity of initial states and goals induced by
uniform sampling. For this reason, we chose not to include
these results in the empirical evaluation section.
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