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Abstract

There continues to be a trade-off between the biological realism and performance
of neural networks. Contemporary deep learning techniques allow neural networks
to be trained to perform challenging computations at (near) human-level, but these
networks typically violate key biological constraints. More detailed models of
biological neural networks can incorporate many of these constraints but typically
suffer from subpar performance and trainability. Here, we narrow this gap by
developing an effective method for training a canonical model of cortical neural
circuits, the stabilized supralinear network (SSN), that in previous work had to
be constructed manually or trained with undue constraints. SSNs are particularly
challenging to train for the same reasons that make them biologically realistic:
they are characterized by strongly-connected excitatory cells and expansive firing
rate non-linearities that together make them prone to dynamical instabilities unless
stabilized by appropriately tuned recurrent inhibition. Our method avoids such
instabilities by initializing a small network and gradually increasing network size
via the dynamics-neutral addition of neurons during training. We first show how
SSNs can be trained to perform typical machine learning tasks by training an SSN
on MNIST classification. We then demonstrate the effectiveness of our method by
training an SSN on the challenging task of performing amortized Markov chain
Monte Carlo-based inference under a Gaussian scale mixture generative model of
natural image patches with a rich and diverse set of basis functions – something
that was not possible with previous methods. These results open the way to training
realistic cortical-like neural networks on challenging tasks at scale.

1 Introduction

Biological neural network models of the brain have long been studied to understand some of the
fundamental network mechanisms employed by the brain [1–4]. However, these models were not
capable of actually achieving the brain’s performance on its wide range of complex computations.
Conversely, artificial neural networks have been achieving competitive performance in a multitude of
image, language, and speech-related tasks, but typically without regard to biological realism [5–8].
In systems neuroscience, neural networks have also been trained on laboratory tasks employed in
typical experiments [9–16]. These approaches provided important insights into the contributions of
experimentally found macroscopic neural dynamics and representations to the successful performance
of such tasks. However, these networks did not incorporate some of the most salient constraints
on the detailed organization of cortical circuits. For example, they were purely feedforward [10],
utilized neuronal transfer functions that were either outright saturating (e.g. tanh) or at best lacked the
superlinear characteristics of cortical neurons (as in ReLUs, or the rectified softplus) [9–11, 15, 16],
had noiseless dynamics [12], no separation of excitatory (E) and inhibitory (I) cells [9, 10, 15], and
sometimes even employed artificial gating mechanisms such as LSTMs [13]. Due to these properties,
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these networks remained abstracted away from biological neurons in key aspects, and hence offered
limited insight into the neuron-level mechanisms that drive their computations.

To bring the modeling of neural circuit mechanisms underlying challenging computations at (or
near) single-cell resolution within reach, we develop a novel method to train an experimentally-
supported neural network model, the stabilized supralinear network (SSN) [17]. Critically, the SSN
satisfies many of the key constraints of cortical circuits: it has separate but recurrent excitatory
and inhibitory populations, expansive (rectified power-law) single neuron non-linearities, realistic
single-neuron time constants, and no reliance on artificial gating mechanisms. In its original form,
the SSN continues a venerable tradition of handcrafted excitatory-inhibitory (E-I) networks whose
dynamics have been extensively studied [18, 19], and that helped reveal key consequences of the
cortex operating in a balanced E-I regime [3, 20–22]. In particular, the SSN accounts for the
experimentally-observed effects of stimulus tuning, sublinear response summation and surround
suppression of neural responses in sensory cortices [4, 23], as well as oscillations, bistable and
persistent responses [24]. Furthermore, when extended to include noise, the resultant stochastic SSN
produces realistic, stimulus-modulated population-wide patterns of noise variability [25].

However, the same features that make the SSN an attractive substrate for its biological realism also
make it particularly challenging to train it. This is because, in SSNs, excitatory cells are typically
strongly connected with one-another in order to implement non-trivial nonlinear transformations of
their inputs, such as divisive normalization, which underlie many of the experimentally observed
phenomena for which they account. In addition, single neuron non-linearities are expansive to reflect
the experimental finding that cortical neurons almost exclusively use the convex (non-saturating) part
of their firing rate non-linearities under physiological conditions, including for the strongest stimuli
[26] (even if they can be trivially driven to saturation by direct current injection, due to the refractory
period of the mechanism generating action potentials). These properties make SSNs particularly
susceptible to dynamical instabilities resulting in run-away excitation, thus rendering their training
highly challenging. Indeed, in the few cases in which the training of SSNs was attempted, either
noiseless neurons were used [27, 28], or the network was so heavily under-parameterized that it
substantially limited its expressivity [29].

Here, we develop a new method to train SSNs that avoids dynamical instabilities during training and is
able to train SSNs at scale on a variety of tasks. While standard approaches to training networks only
optimize weights and keep the architecture of the network fixed throughout network training (but see
recent work in Refs. 30–32), our method alternates between optimizing network weights with a fixed
architecture, and changing the architecture by growing the network. Importantly, in each network
growth step, new neurons are added such that they do not affect the dynamics of the network before
weights are optimized again. We first demonstrate the effectiveness of our method by training an
SSN on a standard machine learning benchmark, MNIST classification [33]. We achieve only slightly
lower accuracies than state-of-the-art, despite restricting our network to be biologically plausible. For
a direct comparison, we also train an SSN on a probabilistic inference task that has been shown to have
neurobiological relevance but has proved to be a challenging target [29]. Our approach successfully
trains an SSN that has three orders of magnitude more parameters than what was previously possible to
optimize. The trained SSN performs accurate inference under a Gaussian scale mixture-model (GSM)
[34] with a set of basis functions that is sufficiently rich for allowing high-quality reconstructions
of CIFAR-10 [35] images. Inference under this GSM represents an unachievable target for previous,
heavily constrained approaches for training SSNs. These results validate our approach and open the
way to training SSNs on a large variety of different tasks, and to using the resulting networks to study
the circuit mechanisms of neural computations at a single cell resolution.

2 Methods

2.1 Stochastic supralinear stabilized network

The SSN is a canonical model of cortical circuits that has been shown to account for a wealth of
neural response properties in the primary visual cortex [17, 4, 25]. Its dynamics are described by

τ
du

dt
= −u+ f(h) +Wr+ η (1)
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where τ collects the neurons’ time constants, u denotes their membrane potentials, W is the symaptic
weight matrix, η represents noise, correlated across time with time constant τη, as well as across
neurons with covariance Ση , f(h) represents a non-linear transformation of the external input h,

fi(hi) = θ1 (hi + θ2)
θ3 (2)

with parameters θh = {θ1, θ2, θ3}, and r denotes neural firing rates, given by a rectified expansive
non-linearity,

ri = k ⌊ui⌋γ+ (3)

with γ > 1 and k > 0. Note that there is no built-in upper saturation to the model, which presents
potential instability problems – excitations within the network can exponentially grow unbounded
through mutual and self-excitation. The network relies purely on inhibition to stabilize, which
therefore restricts the parameter regime in which the network is stable. The network comprises of
distinct populations of excitatory and inhibitory neurons, imposing restrictions on the polarity of the
elements of W. Specifically, the elements of each column of W must have the same sign (positive
for excitatory neurons, negative for inhibitory neurons).

2.2 Theoretical motivation

We note that under the assumption of reasonable noise characteristics, it is always possible to add
a new neuron to an existing stable SSN while preserving stability in a non-trivial manner. We
begin by defining the newly-added neuron as a “twin” of an existing neuron. The new twin has the
same incoming recurrent weights as its original counterpart. This way, the newly-added neuron is
guaranteed to receive the same input as the original neuron. Second, the newly-added neuron also
inherits the outgoing weights of its original counterpart, but such that all outgoing weights of both
neurons are halved. Thus, disregarding noise and external input, all other neurons in the network
receive the same total input from these twin neurons as they used to receive from just the original
neuron before its duplication. Therefore, still disregarding noise and external input, the activity of
every neurons remains unchanged, and the newly-added neuron simply repeats the activity of its
original counterpart. In other words, if the network was stable before adding the new neuron, it will
also be stable after having added it. We refer to this process as the “dynamics-neutral” addition of a
neuron to the network. This idea forms the mathematical foundation of our proposed training method.

Formally, let neuron n be the cloning candidate. The membrane potential vector u, and thus the firing
rate vector r now each have an additional element:

u =

[
u¬n

un

]
→

[
u¬n

un

un

]
, and r =

[
r¬n

rn

]
→

[
r¬n

rn
rn

]
(4)

where ¬n represents the indices of all neurons that are not n. Similarly, we split the weight matrix
W into four blocks, {W(¬n,¬n),W(¬n,n),W(n,¬n),W(n,n)}. We update the network weights
according to

W =

[
W(¬n,¬n) W(¬n,n)

W(n,¬n) W(n,n)

]
→

W(¬n,¬n)
1
2 W(¬n,n)

1
2 W(¬n,n)

W(n,¬n)
1
2 W(n,n)

1
2 W(n,n)

W(n,¬n)
1
2 W(n,n)

1
2 W(n,n)

 (5)

The synaptic input into all neurons (the equivalent of the third term on the RHS of Eq. 1) is now
given byW(¬n,¬n)

1
2 W(¬n,n)

1
2 W(¬n,n)

W(n,¬n)
1
2 W(n,n)

1
2 W(n,n)

W(n,¬n)
1
2 W(n,n)

1
2 W(n,n)

 [
r¬n

rn
rn

]
=

W(¬n,¬n) r¬n +W(¬n,n) rn
W(n,¬n) r¬n +W(n,n) rn
W(n,¬n) r¬n +W(n,n) rn

 (6)

where the top rows of this vector are[
W(¬n,¬n) r¬n +W(¬n,n) rn
W(n,¬n) r¬n +W(n,n) rn

]
= Wr (7)

which is the same input as that received by the previously existing neurons, before the addition of
the new neuron, as claimed (cf. Eq. 1). Note that during optimization, symmetry between the twin
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Figure 1: Method sketch for training SSNs by dynamics-neutral growth. As randomly initializing
large SSNs yields unstable or trivially stable (silent) networks with high probability [29], we start
with a small network of two neurons, comprising of a single excitatory and inhibitory neuron, by
generating network parameters until a set of parameters corresponding to a stable network is found
(initialization phase). We subsequently add neurons in a dynamics-neutral manner while concurrently
optimizing for the training objective until the desired network size is achieved (growth phase).

neurons is broken due to them receiving statistically equal but nonetheless uniquely-generated noise
inputs. As our test cases are constructed to have the same number of inputs as the number of neurons
in the network, we also choose not to duplicate incoming weights from external inputs for newly
added neurons, but instead to connect each newly added neuron to a single new input. (In future work,
we will consider all-to-all connections between external inputs and existing neurons, with trainable
weights, which are duplication at network growth.) These factors wear down the absolute guarantee
of stability, but it is still reasonable to build on this intuitively high chance of stability.

2.3 Training method

Even with a reliable way of growing a network, we still explicitly require an existing (smaller)
network as a starting point. By “backward induction”, we recognize that the simplest and most
reliable solution is to initialize the whole process by generating the smallest SSN possible – a
network with only one excitatory and one inhibitory neuron. This can be achieved by brute-force
or by some targeted initialization specific to the training objective in order to get a head-start on
performance optimization. The full network can then be gradually constructed by adding neurons in
a dynamics-neutral way as previously described. The entire training method is summarized in Fig. 1.

2.4 Training reliability

We calculate three different metrics that together characterize how reliably our method protects
against instability problems typically encountered in training SSNs.

1. Proportion of unstable networks during training. We repeat the entire training method for
a total of 100 separate networks and count the number of networks that become unstable over
training (i.e. runaway activity for any of the training inputs).

2. Proportion of unstable trials with shuffled weights. For each of the 100 fully trained networks
(see above), we shuffle the elements within each quadrant of their weight matrix, defined by the
excitatory (E) or inhibitory (I) nature of the pre- and postsynaptic neurons (E-E, E-I, I-E and I-I).
We repeat this shuffling 100 times, run each shuffled network for 100 trials, each with a different
input (from either MNIST or CIFAR-10, see below), and count the number of trials in which the
network becomes unstable. We report the mean and standard error of the proportion of unstable
trials across the 10,000 shuffled networks.

3. Proportion of unstable randomly generated networks. For each of the 100 fully trained
networks (see above), we generate 100 random networks, such that each element of their weight
matrix is generated from a zero-mean Gaussian with variance equal to the variance of all weights
in the corresponding trained stable network. We then set the sign of each weight to comply
with the E/I identity of the presynaptic neuron. We run each random network for 100 trials with
different inputs, as above, count the number of unstable trials, and report the mean and standard
error of the proportion of unstable trials across the 10,000 random networks.
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Figure 2: Training an SSN to perform the MNIST classification task. Right: the network consists
of 40 excitatory and 10 inhibitory neurons (not shown). Left: before training the SSN, we optimize a
3-layer autoencoder (green) to reduce the dimensionality of each MNIST image to match the number
of excitatory neurons in the network, receiving the encoded image as input after transformation by the
input function, f . For each input, SSN activities, yi, evolve over time until reaching their stationary
distribution, after which the mean membrane potentials are passed through a feedforward readout
layer to make a prediction (red). Trained parameters are highlighted on the two sides of the figure.

3 MNIST classification task

We first train SSNs on MNIST digit classification [33]. Due to its recurrent dynamics (Eq. 1),
neural activities in an SSN evolve over time even in response to a fixed external input, instead of
instantaneously producing a fixed output. Moreover, due to the presence of noise in the dynamics,
a stochastic SSN never settles onto a single response. While these features are ever-present in
experimental neural recordings, and thus contribute to the biological realism of stochastic SSNs, they
also make their training challenging. Therefore, to define the network’s output for the purposes of
training (and, more generally, for measuring its performance), we evolve neural activities until they
reach a steady-state distribution, and pass the mean membrane potentials into a readout (softmax)
layer.

An overview of the training approach is shown in Fig. 2. We train an SSN with 80 excitatory and 20
inhibitory neurons (a biologically-realistic E:I ratio). We also train an SSN with 50 excitatory and 50
inhibitory neurons to compare with the performance of previous models [29]. Only the excitatory
neurons receive external input (i.e. MNIST images) and are decoded in the readout layer, although
activities in the entire network (including inhibitory neurons) evolve over time. In order to transform
the MNIST images into inputs for the SSN, we optimize an autoencoder (also comprising of 3 layers)
to reduce input dimensionality from 784 (number of pixels in the MNIST images) to 50 (number
of excitatory neurons in the network). As a base comparison, we also train multi-layer perceptrons
(MLPs) with 3 layers, and perform logistic regression on the encoded data from the autoencoder.

Training results are summarized in Table 1. None of our 200 trained networks encountered instability
problems. This is highly non-trivial: at both E:I ratios, it is virtually impossible to initialize networks
randomly so that they are stable, and even shuffling the weights of trained stable networks results
in instability in nearly 80% of cases. In addition, our trained SSNs at both E:I ratios perform at
only slightly lower levels than the corresponding MLPs, and also better than logistic regression
despite having noise injected at every time step and also having to maintain dynamic stability. SSNs
constrained to have a “ring” architecture (such that each E-I quadrant of the weight matrix is circulant)
with Gaussian weight profiles, as in previous work [29], are not able to perform the task competently
because of their highly-constrained parameterization designed to exploit rotational symmetries in
their training images, which do not exist in the MNIST dataset. Nevertheless, their performance is
still above chance (0.1).

4 Amortized probabilistic inference

We next train an SSN on a challenging probabilistic inference task. This task requires the SSN to act as
the recognition model for a probabilistic generative model of natural image patches, the Gaussian scale
mixture (GSM) model [34, 36], by performing amortized approximate Markov chain Monte Carlo
(MCMC) inference [29] (Fig. 3). That is, in response to an input (observation), the network needs to
produce trajectories in the state space of its neurons (encoding latent variables of the GSM) such that
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Table 1: Stability and performance of SSNs trained on MNIST classification. Numbers separated
by colons indicate the number of excitatory and inhibitory neurons in the SSN, respectively. The
encoded data are labeled according to their reduced dimensionality (see Fig. 2. For comparison, we
separately train MLPs (with 3 layers) and perform logistic regression to classify the encoded data.
Despite the presence of noise, our trained SSN performs only slightly worse than the MLP and better
than logistic regression.

stability
SSN E:I ratio networks proportion unstable

trained networks 0.0
50:50 networks w/ shuffled weights 0.790 (± 0.007)

random networks 1.0 (± 0.0)

trained networks 0.0
80:20 networks w/ shuffled weights 0.794 (± 0.008)

random networks 1.0 (± 0.0)

performance
model MNIST data test accuracy

Logit encoded-50 0.914
MLP encoded-50 0.974
Gaussian ring SSN [29] (50:50) encoded-50 0.223
SSN (50:50) encoded-50 0.949
Logit encoded-80 0.922
MLP encoded-80 0.976
SSN (80:20) encoded-80 0.952

the distribution of multi-neuron response patterns sampled by these trajectories approximately matches
the joint posterior distribution of the GSM for corresponding input (hence performing approximate
MCMC inference). Notably, the network needs to achieve this with a single set of parameters
(prominently, synaptic weights) for a large number of inputs (hence the inference is “amortized”). This
is a challenging task because the objective requires the network to maintain finite levels of variability
while modulating the co-variability of its neurons in a stimulus-dependent way, which is only possible
if stochasticity of neural noise is not suppressed and recurrent connections are sufficiently strong –
a combination that pushes the network towards instability. This task has also been suggested to have
neurobiological relevance. Previous work indicated that the stationary statistics of neural responses in
the primary visual cortex (V1) may be accounted for by a model assuming these responses represent
statistical samples from a GSM posterior [36, 37], and that SSNs producing such samples also account
for other dynamical aspects of V1 responses such as oscillations and transient overshoots [29].

4.1 Gaussian scale mixture model

The GSM [34, 36] was proposed as a generative model of natural image patches suitable for image
processing, and as an internal model that the visual system (in particular, V1) may implicitly use to
process images. According to the GSM, an image x is generated as a linear combination of so-called
“projective fields” (columns of a matrix, A, see below), with overall scaling (“global contrast”)
determined by a scalar, z, and with some additive zero-mean, Gaussian white noise pixel noise,
ηx ∼ N

(
0, σ2

x I
)

(where I is the identity matrix):

x = zAy + ηx (8)
where y are latent variables scaling the individual contribution of each projective field in A. The
projective fields are 2D Gabor filters, each characterized by four parameters determining the orienta-
tion, size, and 2D location of the filter (see also Appendix A in the Supplementary material) such that
each column of A corresponds to the pixels of a single vectorized 2D Gabor filter. An ideal observer,
when presented with an image x, computes a posterior distribution over y and z by incorporating
their respective priors:

y ∼ N (y; 0,C) , and z ∼ Gamma(α, β) (9)
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Figure 3: Training an SSN to perform inference under a GSM. The GSM (left) is a generative
model of natural image patches proposed to underlie computations in the visual cortex. According to
it, an image is constructed as a linear combination of (oriented Gabor filter-based) projective fields,
each contributing according to its corresponding latent “activation”, yi, scaled by a global scalar
contrast level, z, and corrupted by white zero-mean Gaussian pixel noise, ηx. We train an SSN to
perform approximate amortized MCMC inference under the GSM (right). Input the the SSN is an
image patch linearly filtered by oriented receptive fields (taken to be identical to the projective fields
of the GSM), elementwise transformed by a nonlinear “input function”, f . Excitatory neurons in the
SSN are taken to correspond to latent variables of the GSM, such that their responses, ui, given some
input image, represents statistical samples from the posterior over the latent variables of the GSM
given the same observed image. Trained parameters are highlighted on the two sides of the figure.

so that (by Bayes’ rule)

P(y, z|x) ∝ N
(
x; zAy, σ2

x I
)
N (y; 0,C) Gamma(z;α, β) (10)

after which the contrast level z is marginalized, resulting in a posterior distribution over y:

P(y|x) =
∫

P(y, z|x) dz (11)

We construct our GSM by first maximizing the fraction of variance explained by the projective fields
on CIFAR-10 images and then optimizing its remaining parameters by maximizing model (marginal)
likelihood on the same images. Additional details can be found in Appendix A.

4.2 Sampling-based probabilistic inference

Given an observed image as input, the membrane potential responses of the SSN, u, as determined
by Eq. 1, are required to (approximately) represent statistical samples from the posterior distribution
over the latent variables of the GSM as computed by an ideal observer using Eq. 11 (assuming
a one-to-one correspondence between the excitatory neurons of the SSN and the latent variables
of the GSM). This inference method is therefore described as “sampling-based”. We achieve this
by optimizing the SSN parameters with respect to the mean-squared errors (averaged over 50,000
training images) between the mean and (co)variance of its response distributions, ESSN[u], VSSN[u],
and CSSN[u], and of the corresponding target posterior distributions, µGSM, σ2

GSM, and ΣGSM:

L = λµ ∥ESSN[u]− µGSM∥22 + λσ2

∥∥VSSN[u]− σ2
GSM

∥∥2
2
+ λΣ ∥CSSN[u]−ΣGSM∥2F (12)

for constant coefficients λµ, λσ2 and λΣ (and where ∥·∥F denotes the Frobenius norm). In this
case, both excitatory and inhibitory neurons receive external input corresponding to their respective
receptive fields (such that an E-I pair shares the same receptive field) but, as before, only excitatory
neurons are considered in the computation of the cost function.
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Table 2: Stability and performance of SSNs trained on probabilistic inference under the GSM.
SSNs have been previously been trained for the same task [29], which serves as a comparison. We
train two SSNs, one for the ring GSM in [29] (labeled as ring SSN), and another for our GSM which
consists of a diverse set of basis functions optimized from CIFAR-10 images (general SSN). Since
training targets are different for the two GSMs, we compute a modified cost (Eq. 13) in order to
directly compare optimization performance.

stability
model networks proportion unstable

trained networks 0.0
general SSN networks w/ shuffled weights 0.446 (± 0.008)

random networks 1.0 (± 0.0)

performance
network GSM target normalized cost

Gaussian ring SSN [29] ring [29] 1.0
ring SSN ring [29] 0.158
Gaussian ring SSN [29] optimized for CIFAR-10 ∼ 104

general SSN optimized for CIFAR-10 0.745

4.3 Results

We train an SSN with circulant quadrants in the weight matrix (“ring SSN”) for a GSM whose
projective fields only differ in their orientation (and thus form a ring topology), used in earlier work
[29]. We also train an unconstrained SSN (“general SSN”) for the GSM with a richer set of projective
fields we described above (Section 4.1. For both GSMs, we also train ring SSNs that are constrained
to have Gaussian weight profiles (Gaussian ring), as in previous work [29]. As target moments are
different in the two GSMs, we compute a normalized cost function so that we can compare networks
trained across different GSMs:

L′ = λµ
∥ESSN[u]− µGSM∥22

∥µGSM∥22
+ λσ2

∥∥VSSN[u]− σ2
GSM

∥∥2
2

∥σ2
GSM∥22

+ λΣ
∥CSSN[u]−ΣGSM∥2F

∥ΣGSM∥2F
(13)

In order to fully appreciate these results, we briefly describe the GSM-SSN pairs in each row of
Table 2 and how they are trained. A full comparison can be found in Appendix B.

1. The first row describes the Gaussian ring-SSN from [29] optimized for the ring GSM from the
same study. This SSN is highly constrained; for example, the entire 100× 100 weight matrix is
parameterized by only 8 parameters. The same 5 rotationally-symmetric images are used for both
training and testing, due to the high computational costs associated with the method. Optimization
is first done using Adam for a small number of iterations, followed by a zero-variance but biased
semi-analytical mean-field method described in [38] (and Appendix B). The normalized cost of
this model is set to 1 by definition.

2. The ring SSN in the second row is trained by our method, with the same 5 images used as the
training and test set (as above). The weight matrix is constrained to be block-symmetric-circulant
in order to fully exploit the rotational symmetry of the images. Each symmetric-circulant 50× 50
block is parameterized by 26 parameters, giving a total of 104 parameters for the weight matrix.
The additional degrees of freedom has resulted in nearly an order of magnitude lower cost.

3. The third row shows the Gaussian ring SSN from [29] trained for our GSM. Due to its highly-
constrained parameterization (see above) and built-in rotational symmetry assumptions, the model
is not able to succeed in matching the moments of the GSM posterior moments when observing
CIFAR-10 natural images and fails to converge during training.

4. The general SSN in the fourth row has all 10,000 parameters of its 100 × 100 weight matrix
individually trained on our GSM. Despite the increase in difficulty of the task (matching a more
complex GSM), our method produces a network that achieves a normalized cost lower than that
achieved by a Gaussian ring SSN specifically designed to work for a ring GSM [29].

8



A

B

C

Figure 4: Response statistics in the trained network rapidly adapt after a stimulus change. The
network is initially in steady state, with responses producing (approximate) samples from the posterior
corresponding to some stimulus (red) as input. At t = 0 ms, a new stimulus (blue) replaces the old
one as the input to the network. As a result, network responses evolve over time to represent the
new posterior distribution. Each column represents the state of the network at some time t after new
stimulus onset (top). A. Input image into the network (top left) and current image “perceived” by the
network, as reconstructed from the neural responses (bottom right). B-C. Membrane potential means
(B) and variances (C) of excitatory neurons (dots) versus target GSM posterior means corresponding
the old (blue) and new (red) stimuli, respectively.

In summary, our method provides two advantages. First, it allows training networks with a large
number of free parameters, which in turn achieves a much lower cost than the more highly constrained
networks to which previous training methods were restricted (first two rows). Second, our stability-
focused approach successfully trains networks to perform inference under a complex GSM of
natural images, a feat which was previously impossible (last two rows). Once again, in all 100
independent training attempts, not a single network became unstable. Full-sized stable networks are
also impossible to obtain by random generation, further justifying our approach.

4.4 Analysis of the trained network

It is interesting to analyze the trained SSN and explore its dynamics. For this, we reverse-engineer
the network in order to obtain the image that it “perceives” at a given time by interpreting the mean
membrane potentials of its excitatory neurons as the latent activations of the GSM, from which
an image is reconstructed using the GSM’s projective fields and generative process (Eq. 8). We
observe the phenomenon of percept morphing (Fig. 4A), driven by membrane potential moments
initially matching the GSM targets corresponding to the old stimulus, and gradually evolving over
time to instead match those corresponding to the new stimulus (Fig. 4B-C). While the target means
are matched with high precision and within ∼40 ms (Fig. 4B), variances are slightly less precisely
matched and take longer to converge (Fig. 4C), demonstrating the difficulty of matching higher-order
moments. Furthermore, membrane potential means transition between the two posteriors faster than
membrane potential variances do. From an MCMC perspective, this suggests a difference in mixing
times for the two quantities.
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5 Discussion

Network stability is a problem faced in both artificial [39, 40] and biological neural networks [17].
Typically, artificial neural networks (ANNs) can implement quick-fix solutions that will not impact
their performance negatively, such as applying batch and layer normalizations [41–43]. Furthermore,
artificial neurons may be designed to be stable, e.g. by simply choosing a saturating activation
function (tanh, sigmoid) or by implementing other bounded-input-bounded-output designs.

In general, the concept of growing networks during training has recently been proposed in ANNs.
Previous work combined both network growing and pruning to produce efficient networks [31],
allowed the splitting of an existing neuron into multiple neurons [30], and used principles similar to
ours for adding nodes without impacting the operation of the existing network [32]. Broadly speaking,
the two primary goals of these algorithms were to reduce training load and improve performance.
Here, given its particular relevance for biological networks, we instead focused on the even more
basic requirement of staying within a stable dynamical regime.

Building a network gradually during optimization may adversely afftect the speed and scalability of
our algorithm because it requires computationally expensive function retracing operations every time
the network grows and thus changes in architecture. We justify this with two reasons. First, there
is presently no other effective way of training SSNs. Second, the computational resources spent on
optimization are still much greater than those spent on tracing, especially as there is only a finite
number of tracing operations required (until the network reaches full size), but a much larger number
of gradient computations and optimization iterations (which may need to continue even once the
network reaches full size). Better balancing network building and its associated computational costs
is an important future direction.

Our method may be further improved by fine-tuning its hyperparameters, such as the number of
neurons to duplicate at the same time, or the criteria for selecting which neuron(s) to duplicate.
In addition, our method may also be combined with methods based on fundamentally different
approaches, such as adding regularization terms to the cost function explicitly encouraging networks
to stay within a stable regime [27].

Throughout our analysis, we use backpropagation through time with Adam [44] to train SSNs (see
Appendix C for additional information on the training procedure). This is because our primary
objective is to build biologically-realistic networks so as to study their dynamics and network
characteristics after they have been optimized. Future work will need to study how biologically
plausible plasticity mechanisms may achieve the same goal.

Finally, as an example of a computationally particularly challenging and (for V1) biologically relevant
task, we chose to train SSNs to perform sampling-based inference [29]. Our method is readily applica-
ble to training SSNs on other cognitive tasks engaging a number of different cortical areas, including
the prefrontal cortex [16], opening the way to studying SSNs beyond primary sensory cortices.

6 Conclusion

We present an effective method for training SSNs, a canonical model of cortical circuits highly
prone to exhibit dynamic instabilities. To demonstrate the generality of our method, we train SSNs
to perform MNIST image classification. We also train SSNs to perform sampling-based inference
under a GSM optimized for CIFAR-10 images, a previously unattainable task. Our contribution also
makes it possible to train SSNs on other neurobiologically relevant cognitive tasks and thus study the
network dynamics that underlie the complex computations performed by the brain.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] In our abstract and introduction, we claim that we have
developed a method to train supralinear stabilized networks. This method can be found
in Section 2. We also claim that we have successfully trained the network to perform
sampling-based inference on an internal generative model of natural images. These
results can be found summarized in Section 4. Finally, we claim that our method is an
order of magnitude better than previous approaches. This can be found in Table 2.

(b) Did you describe the limitations of your work? [Yes] We have highlighted some
potential limitations in Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We have
not found any potential negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 2.2
(b) Did you include complete proofs of all theoretical results? [Yes] Section 2.2

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The link to our
code can be found in the supplementary material. Additional information required to
replicate our results are also included.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All parameters of the model are clearly introduced early in the
text. Numerical values assigned to all parameters can be found in the supplementary
material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Tables 1 and 2

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Computational resources and
related information can be found in the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We have used

CIFAR-10 and MNIST and have cited the creators.
(b) Did you mention the license of the assets? [Yes] We have linked the licenses in the

supplementary material.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] CIFAR-10 and MNIST are publicly available datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] This can be found in the supplementary.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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