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ABSTRACT

Despite great achievements in algorithm design for Personalized Federated Learn-
ing (PFL), research on the theoretical analysis of generalization is still in its early
stages. Some theoretical results have investigated the generalization performance
of personalized models under the problem setting and hypothesis in the convex
condition, which do not consider the real iteration performance during the non-
convex training. To further understand the testing performance from the theoretical
perspective, we propose the first [R2: algorithm-dependent] generalization analy-
sis with uniform stability for the typical PFL method Partial Model Personalization
on smooth and non-convex objectives. In an attempt to distinguish the shared and
personalized errors, we decouple the shared aggregation and the local fine-tuning
progress and illustrate the interaction mechanism between the shared and personal-
ized variables. The [R2: algorithm-dependent] generalization bounds analyze
the impact of the trivial hyperparameters like learning steps and stepsizes as well
as the communication modes in both Centralized and Decentralized PFL (C-PFL
and D-PFL), which also concludes that C-PFL generalizes better than D-PFL.
Combined with the convergence errors, we then obtain the excess risk analysis and
establish the recommended early stopping point for better population risk of PFL.
Promising experiments on CIFAR datasets also corroborate our theoretical results.

1 INTRODUCTION

Modern Machine Learning (ML) increasingly deals with large-scale, distributed but privacy-
concerned datasets, which urgently calls for effective model collaboration from the decentralized
clients with Federated Learning (FL) technologies. However, due to the statistical heterogeneity
among clients, the only consensus model can not meet the needs of all local data distributions. To
tackle this problem, Personalized Federated Learning (PFL), aiming to customize the local optimal
model for each client, effectively design the relationships to leverage global model collaboration
and satisfy the unique needs of individual clients. Partial Model Personalization is one of the most
significant strategies in PFL. It decouples the model into two variables, then satisfies the individual
distribution with personalized variables and leverages the collective knowledge with shared variables.

Nowadays, most theoretical works in PFL primarily focus on the convergence capability of the
training progress with Empirical Risk Minimization (ERM), but only convergence analysis can
not access the real performance in the testing scenario. Due to the gap between the training and
testing datasets, the well-converged training model may lead to the overfitting problem in the testing
dataset. Therefore, it is necessary to conduct the generalization analysis and pursue both better
convergence and generalization performance to obtain the expected risk for PFL. Currently, the
existing generalization analysis for PFL is mainly obtained in three ways: 1) high-probability
generalization bounds with concentration inequalities based on the PAC hypothesis complexity like
VC dimension complexity (Deng et al., 2020; Marfoq et al., 2022; Xie et al., 2024), Rademacher
complexity (Mansour et al., 2020); 2) information-theoretical distances between the output hypothesis
and the prior from PAC-Bayes generalization (Achituve et al., 2021; Zhang et al., 2022); 3) the
privacy-preserving ability of the change in output hypothesis when the algorithm is exposed to
attacks (Dai et al., 2022b). Most upper bounds above only depend on the problem setting and
hypothesis in the convex condition, which can not apply to the commonly used non-convex functions
such as neural networks and can not reflect the real iteration performance during personalized
training. In other words, they are weak in evaluating the effectiveness of the algorithm design and
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Table 1: [All: Main results on the stability-based generalization bounds. G is G-Lipschitz of
the loss function and L,Lu, Lv and Luv are smoothness of the gradient. m denotes the total
clients number, n is the partial selected clients number and S is each local data amount.
N is the total sample size, so N = mS. σ2

u and σ2
v represent the local gradient variance.

µ, µu, µv are specific constants associated with 1/L, 1/Lu, 1/Lv. U = supu,vi,zf(u, vi; z).
Cλ, λ and κλ are the communication topologies variables in decentralized learning. ]

Algorithm Generalization Bound Remark

SGM
(Hardt et al., 2016) O

([
2Gµ(GL+1)

L(N−1)

] 1
µL+1

T
µL

µL+1

)
No multi local updates.

FedProx
(Chen et al., 2021) O

(
1

N/m ∧ R√
N/m

+
√
m
N

)
Only in convex conditions,
no local training analysis.

FedAvg
(Sun et al., 2024b) O

(
T
n (Dmax + σ)

)
+O

((
∆0

Km

) 1
4 T

3
4

n +
(
∆2

0D̃
) 1

6 T
2
3

n +
√
∆0

T
1
2

n

)
No local learning rate.

D-SGD
(Sun et al., 2021) O

((
1+Cλ

N

)
T

µL
µL+1

)
No multi local updates.

D-SGD
(Zhu et al., 2022) O

(
1
N +

(
λ2
√
m

+ 1
m

)√
N
)

No multi local updates.

C-PFL (Our) O
(

4
N

[
G(σuLv+σvLu)

LuLv

] 1
1+µL

(nUTK)
µL

1+µL

)
First algorithm dependent

analysis for C-PFL, D-PFL
with multi local update and
hyperparameter analysis.

D-PFL (Our) O
(

4
S

[
σuG
Lum

(1 + 6
√
mκλ) +

σvG
Lv

(1 + 6
√
mκλLuv

mLv
)
] 1

1+µL

(UTK)
µL

1+µL

)

the hyperparameter selection while building the relationship between global collaboration and local
fine-tuning. Moreover, the upper generalization bound of Decentralized PFL (D-PFL) without the
central server is still unexplored, whose generalization performance is related to not only the trivial
factors above but also the communication topologies. Therefore, the [R2: algorithm-dependent]
generalization bounds can help us understand more about the optimization progress of C-PFL and
D-PFL, and it is a powerful tool to promote personalized optimization design.

To advance the theoretical understanding and obtain further optimization guidance, we present
the first stability-based generalization for the typical PFL method Partial Model Personalization
in non-convex conditions and evaluate the excess risk for both C-PFL and D-PFL. Though there
exist several works to study the stability bounds for SGD (Hardt et al., 2016; Sun et al., 2021; Zhou
et al., 2021; Sun et al., 2024a), these results cannot be directly extended to PFL due to the biased
gradient estimation from multiple updates and the personalized aims. Intuitively, each shared and
personalized update may introduce a specific impact on the generalization errors. Therefore, we
decompose the generalization errors into aggregation errors from shared variables and fine-tuning
errors from both shared and personalized variables, then establish a generalization analysis framework
corresponding to the gradient estimation process of the personalized training. We list the comparisons
with other stability-based generalization bounds in both centralized and decentralized learning in
Tabel 1 above and comparisons with other PFL generalization bounds in Table 2 in Appendix B. As
we know, it is the first work to analyze the generalization impact from personalized variables to shared
variables, which uncovers the interaction mechanism between these two updating processes and
provides valuable guidance for alternating personalized optimization. Moreover, we conclude that the
larger learning steps, larger learning rates and denser network connections will hurt the generalization
performance for both C-PFL and D-PFL, meaning that better testing performance is the trade-off
between communication cost and computational efficiency. Besides, with different aggregation modes
in the shared variables, we demonstrate that C-PFL generalizes better than D-PFL, which aligns with
the conclusion of the generalized FL (Sun et al., 2023). Combined with the convergence analysis, we
obtain the excess risk and establish the recommended stop points to achieve better performance.

The findings in the stability-based generalization for PFL help us understand more about the nature
of PFL and design better personalized methods. In summary, our main contributions are as follows:

• First work on the algorithm-dependent generalization for both centralized and de-
centralized PFL under non-convex conditions.[All: We build up the stability-based
generalization analysis for PFL with the biased gradient from multi local updates. It
decouples the global aggregation and the local fine-tuning corresponding to the train-
ing process and our analysis establishes the interaction mechanism between them.
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We also extend this analysis to the decentralized scenarios with the consideration
of different communication topologies. ]

• New theoretical results for upper generalization bounds and excess risks for PFL. Our
theoretical results reveal the impacts of the trivial factors on generalization performance.
Also, we analyze how communication topologies influence the upper generalization bounds
of D-PFL and demonstrate that C-PFL generalizes better than D-PFL. Combined with the
convergence errors, we obtain the excess risk analysis and better early stopping points.

• Massive experiments to verify the theoretical findings of PFL. We evaluate important
factors to verify our theoretical findings on CIFAR10/100 with different models under
non-convex conditions. The empirical results strongly support our theoretical insights.

2 RELATED WORK

Generalization for PFL. PFL is proposed to find the greatest personalized models for each client
(related work in Appendix A). Generalization analysis represents the performance in the unseen data
of a well-train model, which is defined as the difference between the population risk and empirical risk.
Various statistical methods have been introduced into PFL, including methods based on PAC-based
analysis, Differential Privacy analysis, and PAC-Bayes analysis. For PAC-based analysis, Deng et al.
(2020) derives the VC dimension complexity bound of a mixture of local and global models, and
finds the optimal mixing parameter. Mansour et al. (2020) derives the Rademacher complexity bound
of the clusters, data interpolation, and model interpolation. Chen et al. (2021) analyzed the stability
and excess risk of both FL and local SGD under different data heterogeneity, but failed to extend
them to the non-convex condition. For Differential Privacy analysis, Dai et al. (2022a) assumes that
the algorithm satisfies (ε, δ)-differentially private condition and proposes the lower generalization
bound with the noisy perturbation. For PAC-Bayes analysis, Zhang et al. (2022) gives an upper bound
of averaged generalization error on the Bayesian variational inference method and illustrates that the
convergence rate of the generalization error is minimax optimal up to a logarithmic factor.

Stability for generalization. The stability-based methods measure the sensitivity of the data
perturbation of an algorithm via uniform stability (Bousquet & Elisseeff, 2002; Hardt et al., 2016),
Bayes stability (Li et al., 2019), model stability (Lei & Ying, 2020; Liu et al., 2017), on-average
stability (Lei et al., 2023; Sun et al., 2024b; Kuzborskij & Lampert, 2018), and so on. More
information can be seen from the introduction in Lei et al. (2023). For the generalization bounds in
FL, Lei et al. (2023) develop the stability analysis for minibatch SGD and local SGD for convex,
strongly convex and nonconvex problems. [R1: Sun et al. (2024b) show that the generalization
performances of FedAvg, FedProx and Scaffold are closely related to the data heterogeneity
and the convergence behaviors when training.] Sun et al. (2023) discuss the better generalization
performance between the Central FL and Decentralized FL. In decentralized training, Zhu et al.
(2022) extend the stability-based generalization to D-SGD and discuss the topology effect of it. Zhu
et al. (2024) refine the stability analysis for the minimax problem in a decentralized manner.

Nowadays, almost all upper generalization bounds of PFL based on the complexity theory ignore
the impact of algorithm design and the iteration nature. Therefore, we try to propose the stability-
based generalization analysis to answer how algorithm design and hyperparameter selection impact
the generalization capacity. Meanwhile, we extend the non-trivial analysis to D-PFL with various
communication network topologies. Extensive experiments also corroborate our theoretical findings.

3 PROBLEM FORMULATION

In this section, we first propose the problem setup for C-PFL and D-PFL. Then we present the uniform
stability for generalization error and combine it with convergence error to obtain the excess risk.

3.1 PROBLEM SETUP

Personalized Federated Learning. Compared to the typical FL problem, PFL focuses on the
average minimization with the personalized models rather than the consensus one. Partial Model
Personalization is one of the most significant strategies for PFL, which decouples the model as the
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personalized variables to satisfy the individual requirements and the shared variables to leverage the
collective knowledge. The optimization of Partial Model Personalization is defined as follows:

min
u,V

f(u, V ) :=
1

m

m∑
i=1

fi (u, vi) , where fi (u, vi) = Eξ∼Di
F (u, vi; ξi) . (1)

Algorithm 1: Local updating for PFL.
Input :Local steps K, local learning rate ηu and ηv ,

initialize ut
i,0 = ut, and vti,0 = vti .

Output :For each client, locally update ut+1
i , vt+1

i .
1 for local update round k = 0, 1, ...,Kv − 1 do
2 vti,k+1 ← vti,k − ηv∇vF (ut

i,0, v
t
i,k, ξ

t
i,k).

3 end
4 for local update round k = 0, 1, ...,Ku − 1 do
5 ut

i,k+1 ← ut
i,k − ηu∇uF (ut

i,k, v
t
i,Kv

, ξti,k).
6 end
7 ut+1

i ← ut
i,Ku

, vt+1
i ← vti,Kv

.

Algorithm 2: C-PFL and D-PFL.
Input :Total communication rounds T , number of

selected clients n, initial the shared and
personal variables u0, v0 = {v0i }ni=0.

Output :Personal solution uT and vT = {vTi }ni=0.
1 C-PFL:
2 for communication round t = 0 to T − 1 do
3 Sample clients |St| = n uniformly randomly and

distribute the shared variables ut.
4 for client i ∈ St in parallel do
5 ut+1

i , vt+1
i ← Local updating (ut

i, v
t
i )

6 end
7 ut+1 ← [R3 : 1

n

∑
i∈st u

t+1
i ].

8 end
9 D-PFL:

10 for communication round t = 0 to T − 1 do
11 for client i ∈ [m] in parallel do
12 ut+1

i , vt+1
i ← Local updating (ut

i, v
t
i )

13 end
14 Receive shared variables ut+1

i with matrix W :
ut+1
i,0 ← [R3 :

∑
l∈G(i) wi,lu

t+1
i ] .

15 end

We consider the typical setting with m clients,
where each client i owns the local training
data ξi and it satisfies the data distribution
Di. For each client, the machine learning
model wi ∈ Rd are partitioned into two
parts: the shared parameters u ∈ Rdu and
the personalized parameters vi ∈ Rdi for
i = 1, . . . ,m. To simplify the presentation,
we denote V = (v1, . . . , vm) ∈ Rd1+...+dm .
So the full model on client i is denoted as
wi = (u, vi). fi is the loss function for each
client, and F denotes the loss function for
each client trained on the specific data ξi.

From the perspective of engineering purposes,
we set the feature extraction layers (close to
the input) as the shared variables and the lin-
ear classification layers (close to the output)
as the personalized variables as Arivazhagan
et al. (2019); Collins et al. (2021); Pillutla
et al. (2022). Meanwhile, we alternately up-
date the shared and personalized variables to
distinguish the generalization effects between
them explicitly. Algorithm 1 illustrates the
specific update process. We set ∇u and ∇v

as stochastic gradients of the shared variables
u and the personal variables vi respectively.
Personal variables vi first perform the local
updating with the shared variable u fixed in
Line 2, then the shared variable u updates
with the personal variables vi fixed in Line 5.

C-PFL and D-PFL. We consider both C-PFL
and D-PFL in Algorithm 2. For C-PFL, the
only central server first distributes the shared
variables ut to the n selected clients in Line
3, then aggregates the updated shared variables ut+1

i to ut+1 from the selected clients in Line 7.
Different from the general FL, partial model personalization only aggregates the shared variables ui

in the central server, while keeping the personal variables vi on the client side. We focus on the case
of the averaged aggregation, which means αi = 1/n. For D-PFL, it allows clients to communicate
with their neighbors in a peer-to-peer manner without the central server. The communication can
be modeled as an undirected connected graph G = (N ,V,W ), where N = {1, 2, . . . ,m} is the set
of all clients, V ⊆ N ×N is the set of communication channels, and the gossip/mixing matrix W
present as below records whether the communication connects or not between any two clients. [R3:
Set Gi as the neighbors set for each client in the undirected graph.]

Definition 1 (The gossip/mixing matrix (Nedic & Ozdaglar, 2009)). The gossip matrix W =
[wi,j ] ∈ [0, 1]m×m is assumed to have these properties: (i) (Graph) If i ̸= j and (i, j) /∈ V , wi,j = 0,
otherwise, wi,j > 0; (ii) (Symmetry) W = W⊤; (iii) (Null space property) null{I−W} = span{1};
(iv) (Spectral property) I ⪰ W ≻ −I. Under these properties, the eigenvalues of W satisfies
1 = λ1(W)) > λ2(W)) ≥ · · · ≥ λm(W)) > −1. And λ := max{|λ2(W)|, |λm(W))|} and
1− λ ∈ (0, 1] is the spectral gap of W, which usually measures the degree of the network topology.
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3.2 STABILITY AND EXCESS RISK

Generalization Stability. Recalling the unseen data distribution Di in the population risk function
in Formula (1), we select the sample ξi from the local datasets Si and estimate the expectation to
represent the real distribution. The training process is rewritten as the Empirical Risk Minimization:

min
u,V

f(u, V ) :=
1

m

m∑
i=1

fi (u, vi) , where fi (u, vi) =
1

S
∑
ξi∈Si

[F (u, vi; ξi)] . (2)

Assuming the joint datasets of local dataset Si as S, we consider a solution A(S) of a specific
algorithm A trained on the joint dataset S, the generalization error between the population risk in
(1) and empirical risk in (2) can be defined as εG = ES,A[F (A(S))− f(A(S))]. This joint impact
caused by both the algorithm A and the datasets S may cause a bad performance from a well-trained
model on the testing dataset, which is called overfitting. Motivated by the previous studies in Hardt
et al. (2016), we use the uniform stability bound to explore the generalization performance of PFL.

Definition 2. (Uniform Stability) Considering a new joint dataset S̃, which differs from the vanilla
dataset S at most one data sample z. The ε-uniformly stability for algorithm A is defined as below:

sup
zj∼{Di}

E[f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)] ≤ ϵ. (3)

The generalization error can be bound by ϵG ≤ ϵ, if the algorithm A satisfies the ε-uniformly stability.

Excess Risk. Considering (u∗, V ∗) as the optimal model that can be achieved by the algorithm A on
the dataset S, the real test performance E[F (A(S))] can be measured by the excess risk as follows:

EE = E[F (A(S))]− E[f(w∗)] = E[F (A(S))− f(A(S))]︸ ︷︷ ︸
EG: generalization error

+E[f(A(S))− f(u∗, V ∗)]︸ ︷︷ ︸
EO: optimization error

.
(4)

Actually, if the optimal model (u∗, V ∗) could fit the dataset well, the loss function E[f(u∗, V ∗)] will
tend to zero when the training time is large enough. Therefore, the real risk of the well-trained model
(u, V ) on the test dataset can be bounded by the generalization and optimization error. EG represents
the performance risk of (u, V ) between the training dataset and testing dataset, while EO means
the empirical risk between the theoretical optimum (u∗, V ∗) and the obtained one (u, V ). Previous
studies focus on the optimization error εO of general C-PFL and D-PFL, but there is little work to
discuss the generalization nature for them. To further understand the optimization progress of the
algorithm design and its iteration nature, we provide a comprehensive analysis of their excess risks.

3.3 BASIC ASSUMPTIONS

Assumption 1 (Smoothness). For each client i = {1, . . . ,m}, the function F is continuously
differentiable. There exist constants Lu, Lv, Luv, Lvu such that for each client i = {1, . . . ,m}:

• ∇uF (ui, vi) is Lu–Lipschitz with respect to ui and Luv–Lipschitz with respect to vi

• ∇vF (ui, vi) is Lv–Lipschitz with respect to vi and Lvu–Lipschitz with respect to ui.

Assumption 2 (Bounded Variance). The stochastic gradients in both C-PFL and D-PFL have
bounded variance. That is to say, for all ui and vi, there exist constants σu and σv such that:

E
[∥∥∇u[R2 : F(ui, vi; ξi)−∇uF(ui, vi)]

∥∥2] ≤ σ2
u,E

[∥∥∇v[R2 : F(ui, vi; ξi)−∇vF(ui, vi)]
∥∥2] ≤ σ2

v .

(5)

Assumption 3 (G-Lipschitz). For A (S) ,A(S̃) ∈ Rd which are well trained by an ϵ-uniformly
stable algorithm A on dataset S and S̃, the personalized objective f(u, V ) satisfies G-Lipschitz
continuity between them:

∥f(A(S))− f(A(S̃))∥ ≤ G∥A(S)−A(S̃)∥. (6)

5
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Assumptions 1 and 2 are mild and commonly used in the convergence analysis of FL and PFL (Liu
et al., 2024; Chen et al., 2023; Shi et al., 2023; Li et al., 2023; Pillutla et al., 2022; Sun et al., 2022;
Deng et al., 2020; Reddi et al., 2021). Assumption 3 is a variant of the vanilla Lipschitz continuity
assumption, which is widely used in the uniform stability analysis (Elisseeff et al., 2005; Hardt et al.,
2016; Zhou et al., 2021; Zhu et al., 2022; Sun et al., 2023; 2024a).

4 THEORETICAL ANALYSIS

4.1 STABILITY AND EXCESS RISK FOR CENTRALIZED PERSONALIZATION

In this part, we first provide the stability analysis of PFL with the centralized server in the non-convex
objectives. Then we combine its convergence performance to conduct the excess risk analysis.
Theorem 1 (Stability of C-PFL). Under Assumption 1∼ 3, let the active ratio per communication
round be n/m, and assume the learning rates satisfy ηu = O

(
1

tKu+k

)
= µu

tKu+k and ηv =

O
(

1
tKv+k

)
= µv

tKv+k . They decay per iteration τ = tK + k, where µu and µv are the specific

constants and satisfy µu ≤ 1
Lu

and µv ≤ 1
Lv

. [R4: Let U = supu,vi,zf(u, vi; z),] then the
generalization bound of C-PFL satisfies:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ nUτ0

mS
+

(
TKu

τ0

)µuLu 2Gσu

mSLu
+

(
TKv

τ0

)µvLv
(
1 +

Luv

Lu
(
TKu

τ0
)µuLu

)
2Gσv

mSLv
.

(7)

To simplify subsequent analysis, we assume µL = max{µuLu, µvLv} and K = max{Ku,Kv}. By

selecting τ0 =
[
2G(σuLv+σvLu)

nULuLv

] 1
1+µL

(TK)
µL

1+µL , we can minimize the bound with τ0:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ 4

mS

[
G(σuLv + σvLu)

LuLv

] 1
1+µL

(nUTK)
µL

1+µL . (8)

Remark 1 (Influencal factors of C-PFL). From the stability-based generalization analysis above,
the number of samples set S, the selected clients each round n, the total participated clients m as
well as the total iterations TKu and TKv greatly influence the stability of C-PFL. More selected
clients n and more local epochs Ku and Kv increase the time of training on only different samples,
which leads to a larger generalization gap and worse generalization performance. In contrast, the
generalization gap can be alleviated with more total clients m and the number of samples S involved.
Remark 2 (Special cases of C-PFL). If we remove all personal variables vi, the problem (2) degenerates

to the classical FL problem FedAvg. The stability reduces toO
(
(nKuT )

µuLu
1+µuLu /m

)
by removing the Kv and

σv in the proof, which is compatible with the upper bound O
(
(nKT )

µL
1+µL /m

)
of the stability of central FL

algorithm FedAvg (Sun et al., 2023) with multiple local update. That is to say, the upper bound of the stability is
only related to the training paradigm, no matter whether training for the consensus model or the personalized
models. This finding builds the bridge between the stability of Federated Learning and Personalized Federated
Learning. [R1: If we remove all shared variables u, the stability of C-PFL in eq. (7) can be reduced to
O

(
(nKvT )

µvLv
1+µvLv /mS

)
, which is the stability bound of the whole FL system with partial participation

ratio n/m and local updates Kv. For further degradation, we set full participation n/m = 1 and only

one local update Kv = 1, our results can degrade to O
(
T

µL
1+µL /S

)
on each client, which are align

with the vanilla SGD in (Hardt et al., 2016). ]

Remark 3 (Comparison with the other generalization of C-PFL). The generalization analysis
compared in Table 2 in Appendix B calculates the complexity of the PAC problem in infinite space
as the generalization error, which is mainly related to the total number of clients m in the PFL
training. Although complexity-based generalization considers the nature of the learning problem, it
cannot analyze the impact of algorithm design and its iterative nature on the generalization bound.
Therefore, we highlight our contributions to the proposed stability-based generalization bound: 1)
conduct the generalization analysis in the non-convex condition, which is based on the more realistic
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assumptions adapted to the neural networks; 2) analyze the impacts of the algorithm design and
the hyperparameters selection of the number of samples S, the number of selected clients n, total
clients m, total iterations TKu and TKv and the local learning rates ηu and ηv; 3) illustrate the
error propagation process between model aggregation and local training with the iteration nature,
which provides a reference for the choice of early stopping points when training.
Corollary 1 (Excess risk of central partial model personalization). Pillutla et al. (2022) pro-
vide the upper convergence bounds of εO = E

[
f(wT )− f(w⋆)

]
on non-convex smooth objec-

tives, which propose the convergence rates of C-PFL are dominated by O
(
1/
√
T
)

rate. There-
fore, when the number of dataset samples S is fixed, the excess risks of C-PFL are dominated by
O
(
1/

√
T + (nKT )

µL
1+µL /m

)
. Both terms are caused by the stochastic variance σu and σv .

Remark 4 ([R2: Influential] factors of the centralized excess risks). Our analysis shows that the
excess risk of the centralized partial personalization is decided by the number of active clients n,
the local interval Ku,Kv, the total communication rounds T , the total clients m, the smoothness
constants L and the gradient variance σ. Assume in an analysis of data distribution with the
specific algorithm, the smoothness constants L, the gradient variance σ and the total client number
m are fixed. Therefore, we can adjust the hyperparameters n, Ku,Kv and T to optimize the
testing performance during training. [R2: Though we can not present the optimal choice of
hyperparameters due to the inability of a lower bound, we can recommend some strategies
for better test performance. The good choice of the number of active clients n and the local
interval Ku,Kv are the same as that in the stability analysis. But the time of the better
theoretical performance is a trade-off of the total communication rounds T in central partial
personalization. We meticulously provide the recommended training rounds T to achieve
better efficiency. Increasing the communication rounds T leads to better convergence but
worse generalization performance, which accounts for the training over-fitting. With a fixed
local interval Ku,Kv and the number of the selected clients n, the better stopping point T
of C-PFL satisfies T ⋆ = O

(
m

1+µL
1+2µL /nK

)
, which could efficiently make a trade-off between

the convergence error and generalization error to obtain the better excess risk.]

4.2 STABILITY AND EXCESS RISK FOR DECENTRALIZED PERSONALIZATION

In this section, we first provide the stability analysis of PFL with the peer-to-peer communication in
the non-convex objectives. Then we combine its convergence performance to obtain the excess risk.
Theorem 2 (Stability for D-PFL). Under Assumption 1∼ 3, let clients communicate with each
other in a peer-to-peer manner, and assume the learning rates satisfy ηu = O

(
1

tKu+k

)
= µu

tKu+k

and ηv = O
(

1
tKv+k

)
= µv

tKv+k . They decay per iteration τ = tK + k, where µu and µv are the

specific constants and they satisfy µu ≤ 1
Lu

and µv ≤ 1
Lv

. [R4: Let U = supu,vi,zf(u, vi; z),] then
the generalization bound of D-PFL satisfies:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ Uτ0

S
+

2σuG

SLu

(
1 + 6

√
mκλ

m

)(
TKu

τ0

)µuLu

+
2σvG

SLv

(
1 +

6
√
mκλ

m

(
Luv

Lv

))(
TKv

τ0

)µvLv (9)

[R2: where κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

and λ are the widely used coefficient

to measure different communication connections. ]

To simplify subsequent analysis, we assume µL = max{µuLu, µvLv} and K = max{Ku,Kv}. By

selecting τ0 =
[
2GσuL

2
v(1+6

√
mκλ)+2GσvLuLuv(m+6

√
mκλ)

UmLuL2
v

] 1
1+µL

(TK)
µL

1+µL , we can minimize the
upper generalization bound:

E
[
∥f(uT , V T ; zj)− f(ũT , Ṽ T ; zj)∥

]
≤ 4

S

[
σuG

Lum
(1 + 6

√
mκλ) +

σvG

Lv
(1 +

6
√
mκλLuv

mLv
)

] 1
1+µL

(UTK)
µL

1+µL .

(10)
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Remark 5 ([R2: Influential] factors of the decentralized stability). The stability of D-PFL is
impacted by the number of samples S, total clients m, and total iterations TKu and TKv. Besides,
it is also decided by the communication topology. κλ is a widely used coefficient related to the λ
that could measure different connections in the topology, significantly associated with the number of
participation clients m. Figure 2 and Table 3 in Appendix C show the different topological diagrams
and properties. For κλ =

(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

, when λ → 1, the upper bound for

κλ is mainly decided by O
(
1/(λ

(
ln 1

λ

)
)
)

, when λ → 0, the upper bound for κλ is mainly decided
by O

(
1/(λ

(
ln 1

λ

)α
)
)
. We can clearly see that denser communication topology with a smaller κλ,

leads to better generalization performance. Therefore, the fully connected topology achieves the best
generalization performance of shared variables and is compatible with the central ones.
Remark 6 (Special cases of the decentralized partial personalization). If we remove all personal
variables vi, the problem 2 degenerates to the classical DFL algorithm DFedAvg. The stability
reduces to O

(
(1 + 6

√
mκλ/m)

1
1+µuLu (KuT )

µuLu
1+µuLu

)
by removing all personal constants in the

proof, which is compatible with the upper bound O
(
(1 + 6

√
mκλ/m)

1
1+µL (KT )

µL
1+µL

)
of the

stability of decentralized federated learning DFedAvg (Sun et al., 2023) with multiple local update.
Remark 7 (Comparison with the other generalization of D-PFL). The mere generalization
analysis of D-PFL can be seen in Dis-PFL (Dai et al., 2022b), which acquires a generalization lower
bound through the lens of differential privacy with the inspiration in He et al. (2021). It describes
the relationship between the remaining model and generalization performance at each iteration
point and suggests that a more sparse network leads to better generalization performance. However,
the understanding of the algorithm design and the impacts of training parameters is still limited,
especially lack of the analysis of the communication topologies in decentralized learning.
Corollary 2 (Excess risk of decentralized partial model personalization). Shi et al. (2023) provide
the analysis of εO = E

[
f(wT )− f(w⋆)

]
on non-convex smooth objectives. The convergence

rates of decentralized partial model personalization are dominated by O
(
1/(1− λ)2

√
T
)

rate.
Therefore, when the number of dataset samples S is fixed, the excess risks of D-PFL are dominated
by O

(
1/(1− λ)2

√
T + (1 + 6

√
mκλ/m)

1
1+µL (KT )

µL
1+µL

)
. Discussions are as follows.

Remark 8 ([R2: Influential] factors of the decentralized excess risks). Our analysis shows that
the excess risk of D-PFL is highly influenced by the number of the local interval Ku,Kv, the total
communication rounds T , the total clients m, the smoothness constants L and the gradient variance σ,
and the communication topologies λ and κλ (More details about the communication topologies can
be seen in Table 3). Assuming that the total client number m is fixed under the specific algorithm and
data distribution (with the fixed smoothness constants L and the gradient variance σ), we can adjust
the communication networks λ and kλ, local interval K and the stopping point T to optimize the
testing performance. A denser connection (smaller κλ and smaller 1

1−λ ) means better convergence
performance and generalization performance, but it brings more communication cost. The better
choice for local interval Ku,Kv is the same as that in stability analysis. However, the better theoreti-
cal stopping point T for the testing performance of D-PFL is a trade-off between the convergence
error and the generalization error. Under a fixed local interval Ku,Kv and communication connec-
tions λ, the better stopping time T satisfies T ⋆ = O

(
(1− λ)

−2(1+µL)
µL (1 + 6

√
mκλ/m)

−1
µL )/K

)
.

Remark 9 (Comparisions between the C-PFL and D-PFL). From the comparison between
Theorem 1 and Theorem 2, we can clearly see that C-PFL always converges and generalizes better
than D-PFL. The centralized mode largely reduces the propagations of the generalization error,
which benefits from the regular averaging on a global server for the shared variables. That is to
say, the global server helps C-PFL methods achieve a high level of shared consensus for better
generalization performance throughout the training process. This conclusion is also consistent with
the generalization analysis in the typical FL (Sun et al., 2023), which shares an identical aggregation
process. However, to achieve a more reliable performance, the number of active clients n in C-PFL
must satisfy at least a polynomial order of m. It means that the high communication costs are
unavoidable when the whole federated system m gets larger. Also, the communication burden in
the central server becomes a big challenge in the training progress. Therefore, the suitable choice
between C-PFL and D-PFL or the choice of different communication topologies in real scenarios is a
trade-off among communication ability, communication cost and personalized performance.
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5 EXPERIMENTS

In this section, we conduct extensive experiments to verify the theoretical findings. We first introduce
the typical setting for experiments, then present the empirical results and corresponding analysis.

5.1 EMPIRICAL SETUP

We conduct the experiments on CIFAR-10 datasets (Krizhevsky et al., 2009) in the Dirichlet distribu-
tion (Non-IID α = 0.3) (Hsu et al., 1909) with ResNet-18(He et al., 2016) and CIFAR-100 datasets
(Krizhevsky et al., 2009) in the Pathological distribution (Non-IID c = 20) with VGG-11 (Simonyan
& Zisserman, 2014) for both C-PFL and D-PFL. [All: Experiments on CIFAR-100 are placed in
Appendix D.2]. To verify the impacts of the key hyperparameters, we follow (Hardt et al., 2016; Zhu
et al., 2022; 2024) and study the parameter distance when disturbing only one data, the generalization
gap of the difference between training and testing error, and testing performance during training. We
explore the impact of the four factors: 1) Local Learning Epochs, 2) Local Learning Rates, 3) Client
Fraction / Communication topology, 4) Total Client Number. In each study, we keep the same sets for
the other factors for fairness. More implementation details can be seen in Appendix D.1.

5.2 EMPIRICAL ANALYSIS

We show the changing trends of parameter distance in Figure 1a, generalization error between testing
and training loss in Figure 1b, and real testing performance in Figure 1c for both C-PFL and D-PFL.
From the empirical results, we present the conclusions as below:

Both less local learning epochs and lower learning rates lead to better generalization perfor-
mance, but they affect the convergence speed more seriously. We discuss this phenomenon in the
first two columns for Learning Epoch and Learning Rate in Figure 1a-1c. Increasing local learning
epochs and learning rates means amplifying the model distance when learning on different samples.
It brings about a larger generalization error and more severe fluctuation in the comparisons. However,
less local learning epochs and lower local learning rates mean slower learning efficiency, which has a
greater impact on model convergence while training. Combined with the testing accuracies in Figure
1c, larger local learning epochs and suitable learning rates help to achieve better performance.

More client participation and denser network connection in each communication round enlarge
the generalization gap, but they speed up the convergence rate to the same extent. We discuss
this phenomenon in the third column for Client Selection and Communication Topology in Figure
1a-1c. From the weight distance and generalization errors in Figure 1a and 1b, increasing the fraction
of client selection and choosing denser connection topologies means more frequency to learn unique
samples, which enlarges the generalization gap between two models. This is aligned with our
theoretical findings in Theorem 1. Moreover, from the testing performance in Figure 1c, the testing
accuracies reach the same level despite the sparsest client participation condition, which means the
convergence errors are affected almost to the same extent as the generalization errors. Therefore, it is
a trade-off between the communication cost and the personalized performance in real-life scenarios.

A larger total participation clients and a smaller number of local training samples increase
the generalization error and reduce the convergence speed simultaneously. We discuss this
phenomenon in the fourth column for Total Client Number in Figure 1a-1c. Since the total data
number on CIFAR-10 dataset remains the same, bigger participation clients mean fewer training
samples per client. The generalization gaps get worse with the number of clients increasing in Figure
1b. Also, fewer training samples have an negative impact on the testing performance in Figure 1c.

C-PFL outperforms D-PFL in both generalization performance and convergence performance
when their upper communication bandwidths are at the same level. We discuss this difference in
the comparisons of each line in Figure 1a-1c. Maintaining the maximum communication capacity of
the busiest node, the central server in C-PFL helps mitigate the inconsistencies driven by the updates
on different samples, which is consistent with the conclusions drawn from our theoretical analysis.
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(a) Disturbed loss distance of C-PFL and D-PFL on CIFAR-10.
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(b) Testing and training loss distance of C-PFL and D-PFL on CIFAR-10.
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(c) Testing accuracies of C-PFL and D-PFL on CIFAR-10.
Figure 1: Empirical results of C-PFL (first line) and D-PFL (second line) on CIFAR-10.

6 CONCLUSION

In this paper, we develop the first stability-based generalization bounds and the corresponding
excess risk analysis for PFL in centralized and decentralized scenarios under non-convex conditions.
Compared with the previous works, the proposed analysis studies the impact of algorithm design and
hyperparameter selection on each iteration point. Combined with the convergence errors, we obtain
an early stopping point for better population risk. Various experiments verify our theoretical findings.

Limitation. Despite the contributions above, there are numerous avenues for future works: 1)
improve the generalization bounds for C-PFL and D-PFL with the more advanced stability methods;
2) build up the bridge between the generalization bound and data heterogeneity analysis for PFL.
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Supplementary Material for
“ Understanding the Stability-based Generalization of the

Personalized Federated Learning ”

In this part, we provide the supplementary materials to prove the main theorem.

• Appendix A: Related Work about PFL.

• Appendix B: Detailed Comparisions of Generalization.

• Appendix C: Communication Network Topologies.

• Appendix D: Implementation Details and Results for Experiments.

• Appendix E: Generalization Bounds for C-PFL and D-PFL.

A RELATED WORK ABOUT PFL.

Personalized Federated Learning. PFL aims to produce the optimal personalized models for each
client via model decoupling (Arivazhagan et al., 2019; Collins et al., 2021), knowledge distillation (Li
& Wang, 2019; Lin et al., 2020), multi-task learning (Huang et al., 2021; Shoham et al., 2019), model
interpolation (Deng et al., 2020; Diao et al., 2020) and clustering (Ghosh et al., 2020; Sattler et al.,
2020). More details can be referred to the PFL survey (Tan et al., 2022). Among them, the model
decoupling method Partial Model Personalization, which divides the model into shared variables
and personal variables, has proved to achieve better performance than full model personalization
with fewer shared parameters. LG-FedAvg (Liang et al., 2020) relieves the data variance and device
variance with jointly learning compact local representations on each device and a global model across
all devices. FedPer (Arivazhagan et al., 2019), FedRep (Collins et al., 2021) and FedBABU (Oh et al.,
2021) set the feature extractor as the shared variable and the linear classifiers as the personal variables.
They are different from the optimization progress between the shared representation and the private
linear parts. Fed-RoD (Chen & Chao, 2021) trains a global full model and many private classifiers
with empirical risk minimization and balanced risk minimization. Most theoretical analyses for
Partial Model Personalization mainly focus on their convergence performance. FedSim & FedAlt
(Pillutla et al., 2022) provide the convergence analyses in the general non-convex setting, while
FedAvg-P & Scaffold-P (Chen et al., 2023) achieve linear speedup respecting the number of the
local steps. DFedPGP (Liu et al., 2024) presents the decentralized convergence bound in non-convex
conditions under the directed graph, while DFedMDC & DFedSMDC (Shi et al., 2023) focus on the
convergence with the undirected network.

B DETAILED COMPARISON OF GENERALIZATION.

Table 2: Main results on the upper generalization bounds of PFL.

Algorithm Generalization Bound T K η n m

APFL,
(Deng et al., 2020)

O
(
2 (1− αi)

2
(L̂D(h̄

∗) +B
∥∥D −Di

∥∥
1
+ C

√
(d+ log(1/δ))/N)

)
+O

(
2α2

i (LDi(h
∗
i ) + 2C

√
(d+ log(1/δ))/Si +GλH(Si))

) ✓

MAPPER,
(Mansour et al., 2020) O
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2L
(√

dc

m log em
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+
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dlp
m log em

dl

)
+ 2

√
log 1

δ
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)
✓

pFedBayes,
(Zhang et al., 2022) O
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− 2β
2β+d log2δ

′
(m)
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✓

FedAvg & LocalTraining,
(Chen et al., 2021) O
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Compared to the above generalization bounds for PFL, the proposed analysis has made the following
progress: 1) conduct the generalization analysis in the non-convex condition, which is based on the
more realistic assumptions adapted to the neural networks; 2) analyze the impacts of the algorithm
design and the hyperparameters selection of the number of samples S, the number of selected clients
n, total clients m, total iterations TKu and TKv and the local learning rates ηu and ηv; 3) illustrate
the error propagation process between model aggregation and local training with the iteration nature,
which provides a reference for the choice of early stopping points when training.

APFL is a typical PFL method based on model interpolation, which aims to find the optimal
combination of the global model and the local model with the adaptive parameter αi to achieve a
better client-specific model. It derives the generalization bound of a mixture of local and global
models with the analysis of VC dimension complexity. Si, i = 1, 2, ..., n is the number of training
data at ith user, N = m1+ ...+mn is the total number of all data, Si to be the local training set drawn
from Di,

∥∥D −Di

∥∥
1
=
∫
Ξ

∣∣∣P(x,y)∼D − P(x,y)∼Di

∣∣∣ dxdy, is the difference between distributions

D = (1/n)
∑n

i=1 Di and Di, and h∗
i = argminh∈H LDi

(h).

MAPPER is also a model interpolation method combining local and global models to pursue the
better personalized results. It derives the generalization bound with the analysis of Rademacher
complexity. Hc is the hypotheses class for the central model, and Hl is the hypotheses class for the
local models. dc is the pseudo-dimension of Hc and dl is the pseudo-dimension of Hl. This bound
only depends on the average number of samples and not the minimum number of samples.

pFedBayes is a novel PFL method via Bayesian variational inference. Each client uses the aggre-
gated global distribution as prior distribution and updates its personal distribution by balancing the
construction error over its personal data and the KL divergence with aggregated global distribution.
It derives the generalization bound with the PAC-Bayes analysis. δ′ > δ > 1, and C1, C2 > 0 are
constants related to Hölder smooth β, the intrinsic dimension of data d, the number of hidden layers
L, the widths of neural network are equalwidth M , the balance parameter ζ between personalization
and global aggregation, and sample size of each client n.

FedAvg and LocalTraining are the most typical methods for FL and PFL. Though the generalization
analysis in (Chen et al., 2021) is not designed based on the PFL definition, it concludes a surprising
theorem that there exists a threshold of data heterogeneity to decide whether FedAvg or LocalTraining
could achieve the minimax optimal for PFL. It derives the generalization bound for LocalTraining
with uniform stability and the generalization bound for FedAvg with federated stability under strongly
convex conditions. m represenets the client index, and N = n1 + + nm denotes the total number of
training samples. R2 := minw∈W

∑
i∈[m] ni∥w(i)

⋆ −w∥2/N measures the level of heterogeneity
among clients (here ∥∥ denotes the Euclidean distance).

C COMMUNICATION NETWORK TOPOLOGIES

We present various network topologies in DFL in Figure 2 and the corresponding spectral properties
in Table 3.

Fully-connected Exponential Grid Ring

Figure 2: Illustration of various network topologies in DFL.
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Table 3: κλ and Spectral Gap 1 − λ of communication topologies (Sun et al., 2023; Zhu et al., 2024). m

represents the number of total participating clients in DFL. κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

and

λ are the widely used coefficient to measure different communication connections.

Network Topology κλ Spectral Gap 1− λ

Fully-connected 0 1
Disconnected 1 0

Ring O(m2) ≈ 3m2/16π2

Grid O(mlnm ) O(mlog_2(m))
Exponential O(lnm) O (1 + log_2(m))

D APPENDIX FOR EXPERIMENTS.

D.1 IMPLEMENTATION DETAILS FOR EXPERIMENTS.

According to Definition 2, we construct distributed neighboring dataset S = {S1, ...,Sm} and
S̃ = {S̃1, ..., S̃m}, where each corresponding local dataset pair (Si, S̃i) only differs on one randomly
selected data sample. Then we deploy the same initial model (u, V ) with its local dataset pair (Si, S̃i)
to the local client i. To focus on the effect of the essential factors, the regularization methods such
as weight decay, data augmentations and dropout are ignored to prevent unnecessary impacts (Zhu
et al., 2024; Lei et al., 2021). We keep the same experiment setting for all methods and perform
300 communication rounds. The number of client sizes is 20. The client sampling radio is 0.2 in
C-PFL, while each client communicates with 4 neighbors in D-PFL accordingly. The batch size is
128 and the number of local epochs is 5. We set SGD (Robbins & Monro, 1951) as the base local
optimizer with a learning rate η = 0.1. We ran each experiment 3 times with different random seeds
and reported the mean accuracy with standard deviation for each method.

D.2 MORE EXPERIMENTS RESULTS ON CIFAR-100.

We explore the impact of the four factors on CIFAR-100 in Figure 3: 1) Local Learning Epochs, 2)
Local Learning Rates, 3) Client Fraction / Communication Topology, and 4) Total Client Number.
The empirical results on CIFAR-100 also verify that 1) Both less local learning epochs and lower
learning rates lead to better generalization performance, but they affect the convergence speed
more seriously; 2) More client participation and denser network connection in each communication
round enlarge the generalization gap, but they speed up the convergence rate to the same extent;
3) A larger total participation clients and a smaller number of local training samples increase the
generalization error and reduce the convergence speed simultaneously; 4) C-PFL outperforms D-PFL
in both generalization performance and convergence performance when their upper communication
bandwidths are at the same level.

E GENERALIZATION BOUNDS FOR C-PFL AND D-PFL.

In this section, we introduce our proof of the generalization bounds in the main context. We first
introduce the general lemmas for both C-PFL and D-PFL. Then we prove the uniform stability to
measure the generalization error for them. At the beginning of our proof, we list the important
variables used in the study as follows.

Table 4: Some abbreviations of the used terms in the proofs.

Notation Description

wt
i,k = (ut

i,k, v
t
i,k) parameters at k-th iteration

wt = (ut, vt) parameters in round t with set S
∆t

u,k =
∑

i∈ [m] E∥u
t − ũt∥ stability difference of variables u

∆t
v,k =

∑
i∈ [m] E∥v

t
i − ṽti∥ stability difference of variables vi

F initial function value gap
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(a) Loss distance of C-PFL and D-PFL on CIFAR-100.
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(b) Training losses of C-PFL and D-PFL on CIFAR-100.
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(c) Testing accuracies of C-PFL and D-PFL on CIFAR-100.
Figure 3: Empirical results of C-PFL (first line) and D-PFL (second line) on CIFAR-100.

E.1 PRELIMINARY LEMMAS

Lemma 1 (Mixing Matrix for Decentralized FL, Lemma 4, Lian et al. (2017)). For any t ∈ Z+,
the mixing matrix W ∈ Rn satisfies ∥Wt −P∥op ≤ λt, where λ := max{|λ2|, |λn(W )|} and for a
matrix A, we denote its spectral norm as ∥A∥op. Furthermore, 1 := [1, 1, . . . , 1]⊤ ∈ Rm and

P :=
11⊤

n
∈ Rn×n.

Lemma 2 (Stability for C-PFL). We follow the definition in (Hardt et al., 2016; Zhou et al., 2021)
to upper bound the uniform stability term for the shared and personalized variables u and vi after
round T in the central FL paradigm. The updated progress of the shared variables u is like the
vanilla FedAvg, where the local updates and server aggregation are conducted alternately. The
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updated progress of the personalized variables vi is like the SGD with multiple local updates. Let
function f(wi) satisfies Assumption 3, the models wT

i = A(S) and w̃T
i = A(S̃) are generated after

T training rounds by the centralized method, we can bound their objective difference as:

E∥f(wT
i ; z)− f(w̃T

i ; z)∥

≤ nUτ0
mS

+GE
[
∥wT

i − w̃T
i ∥ | ξ

]
≤ nUτ0

mS
+GE

[
∥uT − ũT ∥ | ξ

]
+GE

[
∥vTi − ṽTi ∥ | ξ

] (11)

[R3: where U = supwi,z f(wi; z) = supu,vi,z f(u, vi; z) < +∞ is the upper bound of the loss
and τ0 = t0K + k0 is a specific index of the total iterations. ]

Proof. [R3: Let I represent the index of the first time to sample the perturbation sample
z̃i∗,j∗ on the dataset S̃i∗ . When t0K + k0 < I, ∆t0

k0
= 0. Then we define

P (ξc) = P (∆t0
k0

> 0) ≤ P (I ≤ t0K + k0).

Expanding the probability we have:]

E∥f(wT
i ; z)− f(w̃T

i ; z)∥
= P ({ξ}) E

[
∥f(wT

i ; z)− f(w̃T
i ; z)∥ | ξ

]
+ P ({ξc}) E

[
∥f(wT

i ; z)− f(w̃T
i ; z)∥ | ξc

]
≤ E

[
∥f(wT

i ; z)− f(w̃T
i ; z)∥ | ξ

]
+ P ({ξc}) sup

wi,z
f(wi; z)

≤ GE
[
∥wT

i − w̃T
i ∥ | ξ

]
+ UP ({ξc})

= GE
[
∥uT − ũT ∥ | ξ

]
+GE

[
∥vTi − ṽTi ∥ | ξ

]
+ UP ({ξc}).

Before the j⋆-th data on i⋆-th client is sampled, the iterative states are identical on both S and
S̃. [R3: When the dataset S̃i∗ is selected, the perturbation sample z̃i∗,j∗ can be selected
with probability 1/S.] Define χ as the event sampling dataset Si⋆ and the observation moment
τ0 = t0K + k0. Then we have:

P ({ξc}) ≤ P (I ≤ t0K + k0)

≤
t0−1∑
t=0

K−1∑
k=0

P (I = tK + k;χ) +

k0∑
k=0

P (I = t0K + k;χ)

=

t0−1∑
t=0

K−1∑
k=0

∑
χ

P (I = tK + k | χ)P (χ) +

k0∑
k=0

∑
χ

P (I = t0K + k | χ)P (χ)

=
n

m

(
t0−1∑
t=0

K−1∑
k=0

P (I = tK + k) +

k0∑
k=0

P (I = t0K + k)

)

=
nt0K + k0

mS

=
nτ0
mS

.

The random active clients with the probability of n/m in the second equality.

Lemma 3 (Stability for D-PFL). We follow the definition in (Hardt et al., 2016; Zhou et al., 2021)
to upper bound the uniform stability term for the shared and personalized variables u and vi after
round T in the decentralized FL paradigm. Let function f(wi) satisfies Assumption 3, the models
wT

i = A(S) and w̃T
i = A(S̃) are generated after T training rounds by the decentralized method, we

can bound their objective difference as:

E∥f(wT
i ; z)− f(w̃T

i ; z)∥

≤ Uτ0
S

+GE
[
∥wT

i − w̃T
i ∥ | ξ

]
≤ Uτ0

S
+GE

[
∥uT

i − ũT
i ∥ | ξ

]
+GE

[
∥vTi − ṽTi ∥ | ξ

] (12)
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Proof. For the D-PFL, the most part is the same as the proof for the central algorithms except the
probability P (χ) = 1 in a Decentralized Federated Learning setup (because all clients will participate
in the training). We bound their objective difference as:

E
[
∥f(wT ; z)− f(w̃T ; z)∥

]
≤ G

∑
i∈[m]

E
[
∥wT

i,K − w̃T
i,K∥ | ξ

]
+

Uτ0
S

. (13)

Lemma 4 (Upper Bound of Aggregation Gaps). According to Algorithm 2, the aggregation of
C-PFL is ut+1

i,0 = ut+1 = 1
n

∑
i∈St ut

i,Ku
, and the aggregation of D-PFL is ut+1

i,0 =
∑

j∈Ai
aiju

t
i,Ku

.
On both setups, we can upper bound the aggregation gaps by:

∆t+1
u,0 ≤ ∆t

u,Ku
,

∆t+1
v,0 = ∆t

v,Kv
.

(14)

Proof. For the personal variable vi, they are always kept locally without aggregation, which means
that vti,K = vt+1

i,0 . So it is obvious to see that vti,K − ṽti,K = vt+1
i,0 − ṽt+1

i,0 , which proves that
∆t+1

v,0 = ∆t
v,K . Then we prove the inequation for the shared variables u. We discuss it in central and

decentralized mode respectively.

(1) C-PFL setup (Acar et al., 2021).

In centralized federated learning, we select a subset St in each communication round t. Thus we
have:

∆t+1
u,0 =

∑
i∈[m]

E∥ut+1
i,0 − ũt+1

i,0 ∥ =
∑
i∈[m]

E∥ut+1 − ũt+1∥

[R3 :=
∑
i∈[m]

E∥1
n

∑
i∈St

(
ut+1
i − ũt+1

i

)
∥ =

∑
i∈[m]

E∥1
n

∑
i∈St

(
uti,Ku

− ũti,Ku

)
∥]

≤
∑
i∈[m]

1

n
E

[∑
i∈St

∥ut
i,Ku

− ũt
i,Ku

∥

]
=
∑
i∈[m]

1

n

n

m

∑
i∈[m]

E∥ut
i,Ku

− ũt
i,Ku

∥

=
∑
i∈[m]

1

m

∑
i∈[m]

E∥ut
i,Ku

− ũt
i,Ku

∥ =
∑
i∈[m]

E∥ut
i,Ku

− ũt
i,Ku

∥ = ∆t
u,Ku

.

(2) D-PFL setup (Sun et al., 2023).

In decentralized federated learning, we aggregate the models in each neighborhood. Thus we have:

∆t+1
u,0 =

∑
i∈[m]

E∥ut+1
i,0 − ũt+1

i,0 ∥ =
∑
i∈[m]

E∥
∑
j∈Ai

aij
(
ut
j,Ku

− ũt
j,Ku

)
∥

≤
∑
i∈[m]

∑
j∈Ai

aijE∥ut
j,Ku

− ũt
j,Ku

∥ =
∑
j∈[m]

∑
i∈Aj

ajiE∥ut
j,Ku

− ũt
j,Ku

∥

≤
∑
j∈[m]

E∥ut
j,Ku

− ũt
j,Ku

∥ = ∆t
u,Ku

.

The last equality adopts the symmetry of the adjacent matrix A = A⊤.

Lemma 5 (Decentralized Topologies Bounds of λ). For 0 < λ < 1 and 0 < α < 1, we have the
following inequality:

t−1∑
s=0

λt−s−1

(s+ 1)
α ≤ κλ

tα
, (15)
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where κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

.

Proof. According to the accumulation, we have:

t−1∑
s=0

λt−s−1

(s+ 1)
α = λt−1 +

t−1∑
s=1

λt−s−1

(s+ 1)
α ≤ λt−1 +

∫ s=t

s=1

λt−s−1

sα
ds

= λt−1 +

∫ s= t
2

s=1

λt−s−1

sα
ds+

∫ s=t

s= t
2

λt−s−1

sα
ds

≤ λt−1 + λ
t
2−1

∫ s= t
2

s=1

1

sα
ds+

(
2

t

)α ∫ s=t

s= t
2

λt−s−1ds

≤ λt−1 + λ
t
2−1 1

1− α

(
t

2

)1−α

+

(
2

t

)α
λ−1

ln 1
λ

.

Thus we have LHS ≤ 1
tα

(
λt−1tα + λ

t
2−1 t

(1−α)21−α + 2α

λ ln 1
λ

)
. The first term can be bounded

as λt−1tα ≤
(
α
e

)α 1

λ(ln 1
λ )

α and the second term can be bounded as λ
t
2−1t ≤ 2

eλ ln 1
λ

, which

indicates the selection of the constant κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

. Furthermore,

if 0 < α ≤ 1
2 < 1, we have κλ ≤ 1

λ(ln 1
λ )

α + 2
√
2

eλ ln 1
λ

+
√
2

λ ln 1
λ

≤ max

{
1
λ ,

1

λ
√

ln 1
λ

}
+ (2+e)

√
2

eλ ln 1
λ

=

O
(
max

{
1
λ ,

1

λ
√

ln 1
λ

}
+ 1

λ ln 1
λ

)
with respect to the constant λ.

E.2 GENERALIZATION BOUNDS FOR C-PFL

Lemma 6 (Selecting the Same Sample). Under the Assumption 1 and Assumption 3, the gradi-
ent for the shared and personalized variables satisfy gtu,i,k = ∇uFi(u

t
i,k, v

t
i,Kv

; z) and gtv,i,k =

∇vFi(u
t
i, v

t
i,k; z), the local updates satisfy ut

i,k+1 = ut
i,k − γgtu,i,k and vti,k+1 = vti,k − γgtv,i,k . We

use E[∇uFi(u
t
i,k, v

t
i,Kv

; z)] = ∇ufi(u
t
i,k, v

t
i,Kv

; z) and E[∇vFi(u
t
i, v

t
i,k; z)] = ∇vfi(u

t
i, v

t
i,k; z). If

we sample the same data z (not the zi⋆,j⋆ ) in dataset S and S̃ at k iteration on round t, we have:

E∥ut
i,k+1 − ũt

i,k+1∥ ≤ (1 + ηuLu)E∥ut
i,k − ũt

i,k∥+ ηuLuvE∥vti,Kv
− ṽti,Kv

∥,
E∥vti,k+1 − ṽti,k+1∥ ≤ (1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut

i − ũt
i∥.

(16)

Proof. We first conduct the local update for the personalized variables. The update progress in each
round t is as follows:

E∥vti,k+1 − ṽti,k+1∥ = E∥vti,k − ṽti,k − ηv(g
t
v,i,k − g̃tv,i,k)∥

≤ E∥vti,k − ṽti,k∥+ ηvE∥∇vfi(u
t
i, v

t
i,k; z)−∇vfi(ũ

t
i, ṽ

t
i,k; z)∥

≤ (1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut
i − ũt

i∥.

The alternative update progress for the shared variables is based on the updated vt+1
i = vt+1

i,Kv
:

E∥ut
i,k+1 − ũt

i,k+1∥
= E∥ut

i,k − ũt
i,k − ηu(g

t
u,i,k − g̃tu,i,k)∥

≤ E∥ut
i,k − ũt

i,k∥+ ηuE∥∇ufi(u
t
i,k, v

t
i,Kv

; z)−∇ufi(ũ
t
i,k, ṽ

t
i,K ; z)∥

≤ (1 + ηuLu)E∥ut
i,k − ũt

i,k∥+ ηuLuvE∥vti,Kv
− ṽti,Kv

∥.
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Lemma 7 (Selecting the Different Sample). Assume gtu,i,k = ∇uFi(u
t
i,k, v

t
i,Kv

; z) and gtv,i,k =

∇vFi(u
t
i, v

t
i,k; z), the local updates satisfy ut

i,k+1 = ut
i,k − γgtu,i,k and vti,k+1 = vti,k − γgtv,i,k.If we

sample the different data samples zi⋆,j⋆ and z̃i⋆,j⋆ (simplified to z and z̃), we have:

E∥ut
i,k+1 − ũt

i,k+1∥ ≤ (1 + ηuLu)E∥ut
i,k − ũt

i,k∥+ ηuLuvE∥vti,K − ṽti,K∥+ 2ηuσu,

E∥vti,k+1 − ṽti,k+1∥ ≤ (1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut
i − ũt

i∥+ 2ηvσv.
(17)

Proof. We first conduct the local update for the personalized variables. The update progress in each
round t is as follows:

E∥vti⋆,k+1 − ṽti⋆,k+1∥
= E∥vti⋆,k − ṽti⋆,k − ηv(g

t
v,i⋆,k − g̃tv,i⋆,k)∥

≤ E∥vti⋆,k − ṽti⋆,k∥+ ηvE∥∇vFi⋆(u
t
i⋆ , v

t
i⋆,k, z)−∇vFi⋆(ũ

t
i⋆ , ṽ

t
i⋆,kz̃)∥

≤ E∥vti⋆,k − ṽti⋆,k∥+ ηvE∥∇vFi⋆(u
t
i⋆ , v

t
i⋆,k, z)−∇vFi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k, z)∥

+ ηvE∥∇vFi⋆(ũ
t
i⋆ , ṽ

t
i⋆,k, z)−∇vFi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k, z̃)∥

≤ (1 + ηvLv)E∥vti⋆,k − ṽti⋆,k∥+ ηvLvuE∥ut
i − ũt

i∥
+ ηvE∥∇vFi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k, z)−∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k)−∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k, z̃) +∇vfi⋆(ũ

t
i⋆ , ṽ

t
i⋆,k)∥

≤ (1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut
i − ũt

i∥+ 2ηvσv.

The last inequality adopts E [x] =

√
(E [x])

2
=

√
E [x2]− E [x− E [x]]

2 ≤
√
E [x2].

The alternative update progress for the shared variables is based on the updated vt+1
i = vt+1

i,Kv
:

E∥ut
i⋆,k+1 − ũt

i⋆,k+1∥
= E∥ut

i⋆,k − ũt
i⋆,k − ηu(g

t
u,i⋆,k − g̃tu,i⋆,k)∥

≤ E∥ut
i⋆,k − ũt

i⋆,k∥+ ηuE∥∇uFi⋆(u
t
i⋆,k, v

t
i⋆,Kv

, z)−∇uFi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z̃)∥
≤ E∥ut

i⋆,k − ũt
i⋆,k∥+ ηuE∥∇uFi⋆(u

t
i⋆,k, v

t
i⋆,Kv

, z)−∇uFi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z)∥
+ ηuE∥∇uFi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

, z)−∇uFi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z̃)∥
≤ (1 + ηuLu)E∥ut

i⋆,k − ũt
i⋆,k∥+ ηuLuvE∥vti,k − ṽti,Kv

∥
+ ηuE∥∇uFi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

)−∇ufi⋆(ũ
t
i⋆,Kv

, ṽti⋆,Kv
, z̃) +∇ufi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

)∥
≤ (1 + ηuLu)E∥ut

i,k − ũt
i,k∥+ ηuLuvE∥vti,Kv

− ṽti,Kv
∥+ 2ηuσu.

Lemma 8 (Recursion in local update). Since ∆t
k = ∆t

u,k +∆t
v,k, according to the Lemma 6 and 7,

we can bound the recursion in the local training:

∆t
v,k+1 ≤ (1 + ηvLv) (∆

t
v,k +

2σv

SLv
+

Lvu∆
t
u,0

Lv
).

∆t
u,k+1 ≤ (1 + ηuLu) (∆

t
u,k +

2σu

SLu
+

Luv∆
t
v,Kv

Lu
).

Proof. In each iteration, the specific j⋆-th data sample in the Si⋆ and S̃i⋆ is uniformly selected with
the probability of 1/S. In other datasets Si, all the data samples are the same. Thus we have the
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recursion for the personalized variables:

∆t
v,k+1 =

∑
i ̸=i⋆

E
[
∥vti,k+1 − ṽti,k+1∥

]
+ E

[
∥vti⋆,k+1 − ṽti⋆,k+1∥

]
≤ (1 + ηvLv)

∑
i̸=i⋆

E∥vti,k − ṽti,k∥+ ηvLvu

∑
i ̸=i⋆

E∥ut
i − ũt

i∥

+

(
1− 1

S

)[
(1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut

i − ũt
i∥
]

+
1

S

[
(1 + ηvLv)E∥vti,k − ṽti,k∥+ ηvLvuE∥ut

i − ũt
i∥+ 2ηvσv

]
= (1 + ηvLv)∆

t
v,k + ηvLvu∆

t
u,0 +

2ηvσv

S
.

Similarly, for the shared variables, we have the progress in each round t:

∆t
u,k+1 =

∑
i̸=i⋆

E
[
∥ut

i,k+1 − ũt
i,k+1∥

]
+ E

[
∥ut

i⋆,k+1 − ũt
i⋆,k+1∥

]
≤ (1 + ηuLu)

∑
i ̸=i⋆

E∥ut
i,k − ũt

i,k∥+ ηuLuv

∑
i̸=i⋆

E∥vti,Kv
− ṽti,Kv

∥

+

(
1− 1

S

)
[(1 + ηuLu)E∥ut

i,k − ũt
i,k∥+ ηuLuvE∥vti,Kv

− ṽti,Kv
∥]

+
1

S
[(1 + ηuLu)E∥ut

i,k − ũt
i,k∥+ ηuLuvE∥vti,Kv

− ṽti,Kv
∥+ 2ηuσu]

= (1 + ηuLu)∆
t
u,k + ηuLuv∆

t
v,Kv

+
2ηuσu

S
.

Then we can bound the recursion formulation as:

∆t
v,k+1 +

2σv

SLv
+

Lvu∆
t
u

Lv
≤ (1 + ηvLv) (∆

t
v,k +

2σv

SLv
+

Lvu∆
t
u,0

Lv
),

∆t
u,k+1 +

2σu

SLu
+

Luv∆
t
v,Kv

Lu
≤ (1 + ηuLu) (∆

t
u,k +

2σu

SLu
+

Luv∆
t
v,Kv

Lu
).

Zoom out the variables on the left-hand side, then we finish the proof.

Main Proof for Theorem 1 According to the Lemma 4 and 8, it is easy to bound the local stability
term. We still obverse it when the event ξ happens, and we have ∆t0

k0
= 0. Therefore, we unwind

the recurrence formulation from T,K to t0, k0. Let ηu = µu

τ = µu

tK+k and ηv = µv

τ = µv

tK+k are
decayed as the communication round t and iteration k where µu ≤ 1

Lu
and µv ≤ 1

Lv
are specific
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constants, we have:

∆T
v,Kv

≤

 TKv∏
τ=(T−1)Kv+1

(
1 +

µvLv

τ

)(∆T
v,0 +

2σv

SLv
+

Lvu∆
T
u,0

Lv

)

≤

 TKv∏
τ=(T−1)Kv+1

(
1 +

µvLv

τ

)(∆T−1
v,Kv

+
2σv

SLv
+

Lvu∆
T−1
u,Kv

Lv

)

≤

[
TKv∏

τ=t0K+k0+1

(
1 +

µvLv

τ

)](
∆t0

v,k0
+

2σv

SLv
+

Lvu∆
t0
u,k0

Lv

)

≤

[
TKv∏

τ=t0K+k0+1

e(
µvLv

τ )

](
2σv

SLv

)
= e

µvLv

(∑TKv
τ=t0K+k0+1

1
τ

)
2σv

SLv

≤ e
µvLv ln

(
TKv

t0K+k0

)
2σv

SLv

≤
(
TKv

τ0

)µvLv 2σv

SLv
.

(18)

Similarly, for the shared variables, we have the progress in round T :

∆T
u,Ku

≤

 TKu∏
τ=(T−1)Ku+1

(
1 +

µuLu

τ

)(∆T
u,0 +

2σu

SLu
+

Luv∆
T
v,Kv

Lu

)

≤

 TKu∏
τ=(T−1)Ku+1

(
1 +

µuLu

τ

)(∆T−1
u,Ku

+
2σu

SLu

)
+

 TKu∏
τ=(T−1)Ku+1

(
1 +

µuLu

τ

) Luv∆
T
v,Kv

Lu

≤

[
TKu∏

τ=t0K+k0+1

(
1 +

µuLu

τ

)](
∆t0

k0
+

2σu

SLu

)
+

[
TKu∏

τ=t0K+k0+1

(
1 +

µuLu

τ

)]
Luv∆

T
v,Kv

Lu

≤

[
TKu∏

τ=t0K+k0+1

e(
µu
τ )

](
2σu

SLu
+

Luv∆
T
v,Kv

Lu

)

Expand the first item, then we have:

∆T
u,Ku

≤ e
µuLu

(∑TKu
τ=t0K+k0+1

1
τ

)(
2σu

SLu
+

Luv∆
T
v,Kv

Lu

)

≤ e
µuLu ln

(
TKu

t0K+k0

)(
2σu

SLu
+

Luv∆
T
v,Kv

Lu

)

≤
(
TKu

τ0

)µuLu
(

2σu

SLu
+

Luv

Lu

(
TKv

τ0

)µvLv 2σv

SLv

)

≤
(
TKu

τ0

)µuLu 2σu

SLu
+

(
TKu

τ0

)µuLu
(
TKv

τ0

)µvLv 2Luvσv

SLvLu
.

We can see that the bound of the local stability term for the shared variables in C-PFL has an extra

term
(

TKu

τ0

)µu
(

TKv

τ0

)µv
2Luvσv

SLvLu
. This is the alignment error caused by the alternative update for

the personalized and shared variables, which is related to the smoothness of Lu, Lv, Luv, the local
epochs Ku,Kv and the variance bound σv .
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Therefore, we get the combination of ∆T
u,K and ∆T

v,K as ∆T
K :

∆T
K = ∆T

u,Kv
+∆T

v,Ku
≤
(
TKu

τ0

)µuLu 2σu

SLu
+

(
TKv

τ0

)µvLv
(
1 +

Luv

Lu
(
TKu

τ0
)µuLu

)
2σv

SLv
.

According to the Lemma 2, the first term in the stability (condition is omitted for abbreviation) can
be bound as:

E∥wT+1
i − w̃T+1

i ∥

= E∥ 1
n

∑
i∈St

(
wT

i,K − w̃T
i,K

)
∥ =

1

n
E∥
∑
i∈St

(
wT

i,K − w̃T
i,K

)
∥

≤ 1

n
E
∑
i∈St

∥
(
wT

i,K − w̃T
i,K

)
∥ =

1

n

n

m
E
∑
i∈[m]

∥
(
wT

i,K − w̃T
i,K

)
∥

=
1

m

∑
i∈[m]

E∥
(
wT

i,K − w̃T
i,K

)
∥ =

1

m
∆T

K

≤
(
TKu

τ0

)µuLu 2σu

mSLu
+

(
TKv

τ0

)µvLv
(
1 +

Luv

Lu
(
TKu

τ0
)µuLu

)
2σv

mSLv
.

Therefore, we can upper bound the stability in C-PFL as:

E∥f(wT+1
i ; z)− f(w̃T+1

i ; z)∥

≤ GE∥wT+1
i − w̃T+1

i ∥+ nUτ0
mS

≤
(
TKu

τ0

)µuLu 2Gσu

mSLu
+

nUτ0
mS

+

(
TKv

τ0

)µvLv
(
1 +

Luv

Lu
(
TKu

τ0
)µuLu

)
2Gσv

mSLv
.

Obviously, we can select a proper event ξ with a proper τ0 to minimize the upper bound. For

τ ∈ [1, TK], by selecting τ0 =
(
2σlG
nUL

) 1
1+µL (TK)

µL
1+µL , we can minimize the bound as:

E∥f(wT+1; z)− f(w̃T+1; z)∥

≤ 2nUτ0
mS

=
2nU

mS

(
2σlG

nUL

) 1
1+µL

(TK)
µL

1+µL

≤ 4

S

(
σlG

L

) 1
1+µL

(
n

µL
1+µL

m

)
(UTK)

µL
1+µL .

E.3 GENERALIZATION BOUNDS FOR D-PFL

Lemma 9 (Bounded the local gradients). When (t, k) < (t0, k0), the sampled data is always the
same between the different datasets, which shows Γt

k = 0. When t = t0, only those updates at k ≥ k0
are different. When t > t0, all the local gradients difference during local K iterations are non-zero.
Thus we can first explore the upper bound of the stages with full K iterations when t > t0. Let the
data sample z be the same random data sample and z/z̃ be a different sample pair for abbreviation,
when t ≥ t0, we have: If we sample the same data z (not the zi⋆,j⋆ ) in dataset C and C̃ at k iteration
on round t, we have:

E∥ηuΓt
u,k∥ ≤

(
τ

τ0

)µuLu 2µuσu

τS
. (19)

Proof. According to the Lemma 4 and 8, we can also bound the local stability term for the personal
variables. Let the learning rate ηv = µv

τ = µv

tKv+k is decayed as the communication round t and
iteration k where µv is a specific constant, we have:

∆t
v,k +

2σv

SLv
≤
(

τ

τ0

)µvLv 2σv

SLv
. (20)
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For the shared variables, we have:

E∥ηuΓt
u,k∥ = E∥ηu

[
gtu,0,k − g̃tu,0,k, g

t
u,1,k − g̃tu,1,k, · · · , gtu,m,k − g̃tu,m,k

]⊤ ∥

≤ ηu
∑
i∈[m]

E∥gtu,i,k − g̃tu,i,k∥

≤ ηu
∑
i ̸=i⋆

E∥∇ufi(u
t
i,k, v

t
i,Kv

, z)−∇ufi(ũ
t
i,k, ṽ

t
i,Kv

, z)∥

+
(S − 1)ηu

S
E∥∇ufi⋆(u

t
i⋆,k, v

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z)∥

+
ηu
S
E∥∇ufi⋆(u

t
i⋆,k, v

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z) +∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

, z̃)∥

≤ ηu
∑
i ̸=i⋆

(
LuE∥ut

i,k − ũt
i,k∥+ LuvE∥vti,Kv

− ṽti,Kv
∥
)

+
(S − 1)ηu

S
(LuE∥ut

i,k − ũt
i,k∥+ LuvE∥vti,Kv

− ṽti,Kv
∥)

+
ηu
S

(
LuE∥ut

i,k − ũt
i,k∥+ LuvE∥vti,Kv

− ṽti,Kv
∥
)

+
ηu
S
E∥(∇fi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

, z)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

))−
(
∇ufi⋆(ũ

t
i⋆,k, ṽ

t
i⋆,Kv

, z̃)−∇ufi⋆(ũ
t
i⋆,k, ṽ

t
i⋆,Kv

)
)
∥

≤ ηu
∑
i∈[m]

(LuE∥ut
i,k − ũt

i,k∥+ LuvE∥vti,K − ṽti,K∥) + 2ηuσu

S

= ηuLu(∆
t
u,k +

Luv∆
t
v,K

Lu
+

2σu

SLu
).

According to the Lemma 4, 8 and Eq.(20), we bound the gradient difference as:

E∥ηuΓt
u,k∥ ≤ ηuLu

(
∆t

u,k +
Luv∆

t
v,K

Lu
+

2σu

SLu

)

≤
(

τ

τ0

)µuLu 2µuσu

τS
+

(
Luv

Lv

)(
τ

τ0

)µvLv 2µuσv

τS
.

where τ = tK + k.

Lemma 10 (Bounded the local gradients). When (t, k) < (t0, k0), the sampled data is always the
same between the different datasets, which shows Γt

k = 0. When t = t0, only those updates at k ≥ k0
are different. When t > t0, all the local gradients difference during local K iterations are non-zero.
Thus we can first explore the upper bound of the stages with full K iterations when t > t0. Let the
data sample z be the same random data sample and z/z̃ be a different sample pair for abbreviation,
when t ≥ t0, we have: If we sample the same data z (not the zi⋆,j⋆ ) in dataset S and S̃ at k iteration
on round t, we have:

E∥ (I−P) Φt
u,Ku

∥ ≤ 4µuσuκλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lv
)
4µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
,

(21)

E∥ (A−P) Φt
u,Ku

∥ ≤ 2µuσuλκλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lv
)
2µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
.

(22)

Proof. In the decentralized method, the aggregation performs after K local updates which demon-
strates that the initial state of each round is Ut

0 = AUt−1
Ku

. It also works on their difference
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Φt
u,0 = AΦt−1

u,Ku
. Therefore, we have:

Φt
u,Ku

= Φt
u,0 −

Ku−1∑
k=0

ηuΓ
t
u,k = AΦt−1

u,Ku
−

Ku−1∑
k=0

ηuΓ
t
u,k.

Then we prove the recurrence between adjacent rounds. Let P = 1
m11⊤ ∈ Rm×m and I ∈ Rm×m

is the identity matrix, due to the double stochastic property of the adjacent matrix A, we have:

AP = PA = P.

Thus,

(I−P) Φt
u,Ku

= (I−P)AΦt−1
u,Ku

− (I−P)

Ku−1∑
k=0

ηuΓ
t
u,k

=

(
AΦt−1

u,Ku
−

K−1∑
k=0

ηuΓ
t
u,k

)
−PAΦt−1

u,Ku
+PAΦt−1

u,Ku
−P

(
AΦt−1

u,Ku
−

Ku−1∑
k=0

ηuΓ
t
u,k

)
.

By taking the expectation of the norm on both sides, we have:

E∥ (I−P) Φt
u,Ku

∥ ≤ E∥AΦt−1
u,Ku

−
Ku−1∑
k=0

ηuΓ
t
u,k −PAΦt−1

u,Ku
∥+ E∥

Ku−1∑
k=0

ηuΓ
t
u,k∥

≤ E∥AΦt−1
u,Ku

−PAΦt−1
u,Ku

∥+ 2E∥
Ku−1∑
k=0

ηuΓ
t
u,k∥

= E∥ (A−P) (I−P) Φt−1
u,Ku

∥+ 2E∥
Ku−1∑
k=0

ηuΓ
t
u,k∥

≤ λE∥ (I−P) Φt−1
u,Ku

∥+ 2E∥
Ku−1∑
k=0

ηuΓ
t
u,k∥.

The equality adopts (A−P) (I−P) = A−P−AP+PP = A−PA. We know the fact that
Φt

k = 0 where (t, k) ∈ (t0, k0). Thus unwinding the above inequality we have:

E∥ (I−P) Φt
u,Ku

∥ ≤ λt−t0+1E∥ (I−P) Φt0−1
u,Ku

∥+ 2

t∑
s=t0

λt−sE∥
Ku−1∑
k=0

ηuΓ
s
u,k∥

= 2

t∑
s=t0

λt−sE∥
Ku−1∑
k=0

ηuΓ
s
u,k∥.

To maintain the term of A, we have:

(A−P) Φt
u,Ku

= (A−P)AΦt−1
u,Ku

− (A−P)

Ku−1∑
k=0

ηuΓ
t
u,k

= (A−P) (A−P) Φt−1
u,Ku

− (A−P)

Ku−1∑
k=0

ηuΓ
t
u,k.

The second equality adopts (A−P) (A−P) = (A−P)A−AP+PP = (A−P)A. Therefore
we have the following recursive formula:

E∥ (A−P) Φt
u,Ku

∥ ≤ E∥ (A−P) (A−P) Φt−1
u,Ku

∥+ E∥ (A−P)

K−1∑
k=0

ηuΓ
t
u,k∥

≤ λE∥ (A−P) Φt−1
u,Ku

∥+ λE∥
K−1∑
k=0

ηuΓ
t
u,k∥.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The same as above, we can unwind this recurrence formulation from t to t0 as:

E∥ (A−P) Φt
u,Ku

∥ ≤ λt−t0+1E∥ (A−P) Φt0−1
u,Ku

∥+
t∑

s=t0

λt−s+1E∥
Ku−1∑
k=0

ηuΓ
s
u,k∥

=

t∑
s=t0

λt−s+1E∥
Ku−1∑
k=0

ηuΓ
s
u,k∥.

Unwinding the summation on k and adopting Lemma 5, we have:

t∑
s=t0

λt−sE∥
Ku−1∑
k=0

ηuΓ
s
u,k∥

≤
t∑

s=t0

λt−s
Ku−1∑
k=0

E∥ηuΓs
u,k∥

≤ 2µuσu

SτµuLu

0

t∑
s=t0

λt−s
Ku−1∑
k=0

τµuLu

τ
+ (

Luv

Lv
)
2µuσv

SτµvLv

0

t∑
s=t0

λt−s
Ku−1∑
k=0

τµvLv

τ

≤ 2µuσu

SτµuLu

0

t∑
s=t0

λt−s
Ku−1∑
k=0

(sKu)
µuLu

sKu
+ (

Luv

Lv
)
2µuσv

SτµvLv

0

t∑
s=t0

λt−s
Ku−1∑
k=0

(sKu)
µvLv

sKu

=
2µuσu

S

(
Ku

τ0

)µuLu t∑
s=t0

λt−s

s1−µuLu
+ (

Luv

Lv
)
2µuσv

S

(
Ku

τ0

)µvLv t∑
s=t0

λt−s

s1−µvLv

≤ 2µuσu

S

(
Ku

τ0

)µuLu t−1∑
s=t0−1

λt−s−1

(s+ 1)
1−µuLu

+ (
Luv

Lv
)
2µuσv

S

(
Ku

τ0

)µvLv t−1∑
s=t0−1

λt−s−1

(s+ 1)
1−µvLv

≤ 2µuσuκλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lv
)
2µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
.

Therefore, we get an upper bound on the aggregation gap which is related to the spectrum gap:

E∥ (I−P) Φt
u,Ku

∥ ≤ 2

t∑
s=t0

λt−sE∥
Ku−1∑
k=0

ηuΓ
s
u,k∥

≤ 4µuσuκλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lv
)
4µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
,

E∥ (A−P) Φt
u,Ku

∥ ≤
t∑

s=t0

λt−s+1E∥
K−1∑
k=0

ηuΓ
s
u,k∥

≤ 2µuσuλκλ

S

(
Ku

τ0

)µuLu 1

t1−µuLu
+ (

Luv

Lv
)
2µuσvκλ

S

(
Ku

τ0

)µvLv 1

t1−µvLv
.

The first inequality provides the upper bound between the difference between the averaged state and
the vanilla state, and the second inequality provides the upper bound between the aggregated state
and the averaged state.

Main Proof for Theorem 2 According to the Lemma 4 and 8, it is easy to bound the local stability.
We obverse it when the event ξ happens, and we have ∆t0

k0
= 0. Therefore, we unwind the recurrence

formulation from T,K to t0, k0. Let ηu = µu

τ = µu

tK+k and ηv = µv

τ = µv

tK+k are decayed as the
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communication round t and iteration k where µu ≤ 1
Lu

and µv ≤ 1
Lv

are specific constants, we have:

∑
i∈[m]

E∥ut+1
i,Ku

− ũt+1
i,Ku

∥

=
∑
i∈[m]

E∥
(
ut+1
i,0 − ũt+1

i,0

)
−

K−1∑
k=0

ηtk
(
gtu,i,k − g̃tu,i,k

)
∥

=
∑
i∈[m]

E∥
(
ut+1
i,0 − ũt+1

i,0

)
−
(
ut
i,Ku

− ũt
i,Ku

)
+
(
ut
i,K − ũt

i,Ku

)
−

Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

≤
∑
i∈[m]

[
E∥
(
ut+1
i,0 − ũt+1

i,0

)
−
(
ut
i,Ku

− ũt
i,Ku

)
∥+ E∥

(
ut
i,Ku

− ũt
i,Ku

)
∥+ E∥

Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥
]

≤
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

+mE

 1

m

∑
i∈[m]

∥
(
ut+1
i,0 − ũt+1

i,0

)
−
(
ut
i,Ku

− ũt
i,Ku

)
∥


≤
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

+mE

√√√√ 1

m

∑
i∈[m]

∥
(
ut+1
i,0 − ũt+1

i,0

)
−
(
ut
i,Ku

− ũt
i,Ku

)
∥2

=
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

√
mE∥Φt+1

u,0 − Φt
u,Ku

∥+
∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

Let Φt+1
u,0 = AΦt

u,Ku
, we have:

∑
i∈[m]

E∥ut+1
i,Ku

− ũt+1
i,Ku

∥

≤
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

√
mE∥AΦt

u,Ku
− Φt

u,Ku
∥+

∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

≤
∑
i∈[m]

E∥
(
ut
i,Ku

− ũt
i,Ku

)
∥+

∑
i∈[m]

E∥
Ku−1∑
k=0

ηu
(
gtu,i,k − g̃tu,i,k

)
∥

+
√
mE∥ (A−P) Φt

u,Ku
∥+

√
mE∥ (P− I) Φt

u,Ku
∥.

Since vt+1
i,0 = vti,Kv

for the private variables, then we have the recursion:
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∑
i∈[m]

E∥vt+1
i,Kv

− ṽt+1
i,Kv

∥ =
∑
i∈[m]

E∥
(
vt+1
i,0 − ṽt+1

i,0

)
−

Kv−1∑
k=0

ηtk
(
gtv,i,k − g̃tv,i,k

)
∥

≤
∑
i∈[m]

[
E∥
(
vti,Kv

− ṽti,Kv

)
∥+ E∥

Kv−1∑
k=0

ηv
(
gtv,i,k − g̃tv,i,k

)
∥

]

≤
∑
i∈[m]

E∥
(
vti,Kv

− ṽti,Kv

)
∥+

∑
i∈[m]

E∥
Kv−1∑
k=0

ηu
(
gtv,i,k − g̃tv,i,k

)
∥.

Therefore, we can bound this by two terms in one complete communication round. One is the process
of local multi-times SGD iterations, and the other is the aggregation step. For the local training
process, we can continue to use Lemma 9, 7, and 8. Let τ = tK + k as above, we have:

∆t
u,Ku

+
2σu

SLu

≤

[
Ku−1∏
k=0

(1 + ηuLu)

](
∆t

u,0 +
2σu

SLu

)
=

[
Ku−1∏
k=0

(
1 +

µuLu

τ

)](
∆t

u,0 +
2σu

SLu

)

≤

[
K−1∏
k=0

e
µuLu

τ

](
∆t

u,0 +
2σu

SLu

)
= eµL

∑Ku−1
k=0

1
τ

(
∆t

u,0 +
2σu

SLu

)

≤ eµuLu ln( t+1
t )
(
∆t

u,0 +
2σu

SLu

)
=

(
t+ 1

t

)µuLu
(
∆t

u,0 +
2σu

SLu

)
≤
(
t+ 1

t

)µuLu
[
∆t−1

u,Ku
+
√
m(E∥ (A−P) Φt

u,Ku
∥+ E∥ (P− I) Φt

u,Ku
∥) + 2σu

SLu

]
≤
(
t+ 1

t

)µuLu
(
∆t−1

u,Ku
+

2σu

SLu

)
+
√
m

(
t+ 1

t

)µuLu (
E∥ (A−P) Φt

u,Ku
∥+ E∥ (P− I) Φt

u,Ku
∥
)

≤
(
t+ 1

t

)µuLu
(
∆t−1

u,Ku
+

2σu

SLu

)
︸ ︷︷ ︸

local updates

+
6
√
mµuσuκλ

S

(
Ku

τ0

)µuLu
(
t+ 1

t

)µuLu 1

t1−µuLu︸ ︷︷ ︸
aggregation gaps

+ (
Luv

Lv
)
6
√
mµuσvκλ

S

(
Ku

τ0

)µvLv
(
t+ 1

t

)µvLv 1

t1−µvLv︸ ︷︷ ︸
aggregation gaps

.

The last adopts the Eq.(21) and (22), and the fact λ ≤ 1. Obviously, in the decentralized federated
learning setup, the first term still comes from the updates of the local training. The second term
comes from the aggregation gaps, which is related to the spectrum gap λ.

For the private variables, since we do not exchange them with neighbors, we have:
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∆t
v,Kv

+
2σv

SLv
≤

[
Kv−1∏
k=0

(1 + ηvLv)

](
∆t

v,0 +
2σv

SLv

)

=

[
Kv−1∏
k=0

(
1 +

µvLv

τ

)](
∆t

v,0 +
2σv

SLv

)

≤

[
Kv−1∏
k=0

e
µvLv

τ

](
∆t

v,0 +
2σv

SLv

)
= eµvLv

∑Kv−1
k=0

1
τ

(
∆t

v,0 +
2σv

SLv

)
≤ eµvLv ln( t+1

t )
(
∆t

v,0 +
2σv

SLv

)
=

(
t+ 1

t

)µvLv
(
∆t

v,0 +
2σv

SLv

)
.

Unwinding this from t0 to T , we have:

∆T
u,Ku

+
2σu

SLu
≤
(
TKu

τ0

)µuLu 2σu

SLu
+

6
√
mµuσuκλ

S

(
Ku

τ0

)µuLu T∑
t=t0+1

(
t+ 1

t

)µuLu 1

t1−µuLu

+
6
√
mµuσvκλLuv

SLv

(
Ku

τ0

)µvLv T∑
t=t0+1

(
t+ 1

t

)µvLv 1

t1−µvLv

≤
(
TKu

τ0

)µuLu 2σu

SLu
+

12
√
mµuσuκλ

S

(
Ku

τ0

)µuLu T∑
t=t0+1

1

t1−µuLu

+ (
Luv

Lv
)
12
√
mµuσvκλ

S

(
Ku

τ0

)µvLv T∑
t=t0+1

1

t1−µvLv

≤
(
TKu

τ0

)µuLu 2σu

SLu
+

12
√
mµuσuκλ

S

(
Ku

τ0

)µuLu tµuLu

µuLu

∣∣∣∣∣
t=T

t=t0+1

+ (
Luv

Lv
)
12
√
mµuσvκλ

S

(
Ku

τ0

)µvLv tµvLv

µvLv

∣∣∣∣∣
t=T

t=t0+1

≤
(
TKu

τ0

)µuLu 2 (1 + 6
√
mκλ)σu

SLu
+

(
Luv

Lv

)(
TKu

τ0

)µvLv 12
√
mκλσv

SLv
.

The second inequality adopts the fact that 1 < t+1
t ≤ 2 when t > 1 and the fact of 0 < µ < 1

L .

For the personalized variables, unwinding this from t0 to T , we have:

∆T
v,Kv

+
2σv

SLv
≤
(
TKv

τ0

)µvLv 2σv

SLv
.

Then the first term in the stability (conditions is omitted for abbreviation) can be bounded as:

E∥uT+1 − ũT+1∥ ≤ 1

m

∑
i∈[m]

E∥
(
uT
i,Ku

− ũT
i,Ku

)
∥

≤
(
TKu

τ0

)µuLu 2 (1 + 6
√
mκλ)σu

SLu
+

(
Luv

Lv

)(
TKu

τ0

)µvLv 12
√
mκλσv

SLv
,

E∥vT+1 − ṽT+1∥ ≤ 1

m

∑
i∈[m]

E∥
(
vTi,Ku

− ṽTi,Ku

)
∥ ≤

(
TKu

τ0

)µvLv 2σv

SLv
.
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Therefore, we can upper bound the stability in decentralized federated learning as:

E
[
∥f(wT+1

i ; z)− f(w̃T+1
i ; z)∥

]
≤ GE

[
∥wT+1

i − w̃T+1
i ∥ | ξ

]
+

Uτ0
S

≤ GE
[
∥uT+1 − ũT+1∥ | ξ

]
+GE

[
∥vT+1 − ṽT+1∥ | ξ

]
+

Uτ0
S

≤ 2σuG

SLu

(
1 + 6

√
mκλ

m

)(
TKu

τ0

)µuLu

+
Uτ0
S

+

(
Luv

Lv

)(
TKv

τ0

)µvLv 12
√
mκλσvG

SLv
+

2σvG

SLv

(
TKv

τ0

)µvLv

≤ 2σuG

SLu

(
1 + 6

√
mκλ

m

)(
TKu

τ0

)µuLu

+
2σvG

SLv

(
1 +

6
√
mκλ

m

(
Luv

Lv

))(
TKv

τ0

)µvLv

+
Uτ0
S

.

The same as the centralized setup, we can select a proper event ξ with a proper τ0 to
minimize the error of the stability. To simplify subsequent analysis, we assume µL =
max{µuLu, µvLv} and K = max{Ku,Kv}. For τ ∈ [1, TK], by selecting τ0 =[
2GσuL

2
v(1+6

√
mκλ)+2GσvLuLuv(m+6

√
mκλ)

UmLuL2
v

] 1
1+µL

(TK)
µL

1+µL , we get the minimal generalization
bound for D-PFL:

E
[
∥f(wT+1; z)− f(w̃T+1; z)∥

]
≤ 2Uτ0

S

=
2U

S

[
2GσuL

2
v(1 + 6

√
mκλ) + 2GσvLuLuv(m+ 6

√
mκλ)

UmLuL2
v

] 1
1+µL

(TK)
µL

1+µL

=
4

S

[
σuG

Lum
(1 + 6

√
mκλ) +

σvG

Lv
(1 +

6
√
mκλLuv

mLv
)

] 1
1+µL

(UTK)
µL

1+µL .
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