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Abstract

Feature attribution methods attempt to explain neural network predictions by identifying
relevant features. However, establishing a cohesive framework for assessing feature attribu-
tion remains a challenge. There are several views through which we can evaluate attribu-
tions. Onme principal lens is to observe the effect of perturbing attributed features on the
model’s behavior (i.e., faithfulness). While providing useful insights, existing faithfulness
evaluations suffer from shortcomings that we reveal in this paper. To address the limitations
of previous evaluations, in this work, we propose two new perspectives within the faithfulness
paradigm that reveal intuitive properties: soundness and completeness. Soundness assesses
the degree to which attributed features are truly predictive features, while completeness
examines how well the resulting attribution reveals all the predictive features. The two
perspectives are based on a firm mathematical foundation and provide quantitative metrics
that are computable through efficient algorithms. We apply these metrics to mainstream
attribution methods, offering a novel lens through which to analyze and compare feature
attribution methods.

1 Introduction

Understanding predictions of machine learning models is a crucial aspect of trustworthy machine learning
across diverse fields, including medical diagnosis [Bernhardt et al.| (2022); [Khakzar et al| (2021cgb), drug
discovery |Callaway| (2022); [Jiménez-Luna et al.| (2020)), and autonomous driving Kaya et al.| (2022)); (Can
et al.[(2022)). Feature attribution, indicating the contribution of each feature to a model prediction, serves as
a fundamental approach to interpreting neural networks. However, the outcomes from various feature attri-
bution methods can be inconsistent for a given input |Krishna et al.| (2022)), necessitating distinct evaluation
metrics to gauge how well a feature attribution elucidates the prediction.

Research has introduced various lenses through which we can evaluate attributions. One lens is assessing the
methods through sanity checks |Adebayo et al. (2018]). For example, by checking if the attribution changes
if network parameters are randomized. Another evaluates attributions against ground truth features [Zhang
et al.[(2018)); Yang et al.|(2022). Each lens reveals different insights. However, one lens is of particular interest
in our study, evaluation via faithfulness. Faithfulness measures the degree to which the attributions mirror
the relationships between features and the model’s behavior. For instance, how changing (e.g., removing)
attributed features affects the model’s performance. This analysis has taken several forms, for instance by
perturbing features according to their rankings and checking the immediate effect on output [Samek et al.
(2016)); |Ancona et al. (2018)), or first perturbing features, then re-training the network from scratch on the
perturbed features Hooker et al.| (2019); |Zhou et al| (2022); |[Rong et al.| (2022). However, one common
property exists between all these forms of faithfulness analysis. The evaluations solely consider the ranking
of attribution values and disregard the attribution values.

In this work, we leverage the notion of considering the value of attributions in addition to the order and
introduce two complementary perspectives within faithfulness: soundness and completeness. They serve as
an evaluation of the alignment between attribution and predictive features. Soundness assesses the degree to
which attributed features are truly predictive features, while completeness examines how well the resulting
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attribution map reveals all the predictive features. These proposed metrics work in tandem and reflect
different aspects of feature attribution methods. We first motivate the work by revealing issues within
existing faithfulness evaluations. We further see that by considering the attribution value in addition to the
order, our metrics are more distinctive compared to existing methods, enabling a more precise differentiation
between attribution methods. Through extensive validation and benchmarking, we verify the correctness of
the proposed metrics and showcase our metrics’ potential to shed light on existing attribution methods.

2 Related work

Feature attribution: Attribution methods explain a model by identifying informative input features given
an associated output. Gradient-based methods[Simonyan et al.| (2014)); Baehrens et al.| (2010)); Springenberg
let al| (2015)); [Khakzar et al|(2021a);Zhang et al.|(2018);/Shrikumar et al.| (2017) produce attribution based on
variants of back-propagation rules. Another family of methods attempts to approximate Shapley values
, where features are considered cooperative players with different contributions. Examples
of these methods include DeepSHAP [Lundberg & Lee| (2017) and Integrated Gradients (IG)
let al.| (2017); Sundararajan & Najmi| (2020); Lundstrom et al| (2022). Additionally, perturbation-based
methods [Fong & Vedaldi (2017); [Fong et al. (2019); Ribeiro et al.| (2016]) such as Extremal Perturbations
(ExPeturb) [Fong et al.| (2019) rely on perturbing input features and measuring the impact on output. More-
over, IBA |Schulz et al| (2020) and InputIBA |Zhang et al.| (2021) are derived from information bottlenecks.
Lastly, attribution methods based on activations like CAM |Zhou et al.| (2016)) and GradCAM
use activations or gradients of hidden layers.

Evaluation metrics: One category of metrics is expert-grounded metrics that rely on visual inspection
(2022), pointing game [Zhang et al| (2018), or human-AlI collaborative tasks Nguyen et al| (2021)).
However, the evaluation outcome is subjective and does not guarantee consistency. Another category is
functional-grounded metrics Petsiuk et al| (2018); Samek et al. (2016)); Ancona et al.| (2018) that perturb
input according to attribution order and measure the change of model’s output. Prior works usually consider
two removal orders: MoRF (Most Relevant First) and LeRF (Least Relevant First). Hooker et al.
proposed RemOve And Retrain (ROAR) to counter potential adversarial effects of feature
removal by retraining the model on perturbed datasets. Later, ROAD Rong et al. (2022) exposed that
perturbation masks could leak class information, thus overestimating evaluation results. Recently, Zhou et
al. [Zhou et al, (2022)) suggested injecting “ground truth” features into the training dataset and forced the
model to exclusively learn from these features, then testing the ability of attribution methods to identify
them. Besides, Khakzar et al| (2022)) introduced empirical evaluation of axioms, and |Adebayo et al.| (2018)
introduced sanity checks for saliency maps.

3 Analysis of prior evaluation metrics
In this section, an empirical analysis of various feature attribution evaluations is conducted, with the objective
of delineating the advantages and disadvantages of existing evaluation metrics. Later, we design our metrics

with care to circumvent the potential pitfalls in the previous evaluations.

3.1 Retraining-based evaluation metrics

Retraining-based evaluations, such as ROAR |Hooker et al| (2019), involve retraining the model on a per-
turbed dataset and measuring the accuracy of the retrained model on a perturbed test set. A sharper
decrease in accuracy suggests a greater information loss resulting from the perturbation of attributed fea-
tures, thus indicating better feature attribution. Since the model is retrained, it is not subject to OOD
effects instigated by perturbation, as observed in Insertion/Deletion. However, the perturbation may give
rise to other spurious features when the original ones are removed. The model might learn these newly
introduced features, as there are no stringent constraints in the learning process to prevent the model from
doing so. Therefore, if the retrained model leverages these spurious features rather than relying exclusively
on the remaining ones to make predictions, the testing accuracy might not accurately represent the extent
of information loss.
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Figure 1: Analysis of retraining-based metrics. Compared to (a) ]D)S))Train, (b) Dg )Train introduces an
additional class-related spurious correlation during perturbation, visible in the upper-right region of the
sample. (c) Despite equivalent removal of informative features (central portions of images) using both per-
turbation strategies, the two retrained models demonstrate different test accuracy (0.66 vs. 0.88), suggesting
that the test accuracy of the retrained model does not accurately reflect the quantity of information removal.

We illustrate the issue of retraining via a falsification experiment, following the ROAR setting. We perturb
70% of pixels in each image in the CIFAR-10 (Krizhevsky et al. 2009a)) training and test datasets. The
model is then retrained on the perturbed training set and evaluated on the perturbed test set. Specifically,
we employ two perturbation strategies: Strategy 1, which perturbs a central circular region to remove class-
related objects (Figure nd Strategy 2, which perturbs the image center and a small edge region based
b
(1

on the class label (Figure [Lb]), introducing a spurious class correlation. We refer to the Perturbed Training

set using strategy 1 as Dy 7,.;, - Analogously, we have Dg)ﬁain, ]D)g)TeSt, and Dg )Test. We then train a model

on the original dataset, retrain it on DS’)Train and Dg )Train, and report the accuracy of both the original and

retrained models on Dg’)Test and ]D)g )Test. Additional details are in Appendix As shown in Figure the

original model performs poorly on ]D)S’)Test and ID);Z) )Test due to the perturbation on substantial class-related

pixels. However, the two retrained models achieve distinct accuracy on their test sets. While the model

retrained on D%,{)Tmin still performs badly on ID)S)TGSt7 the model retrained on ]D)g )Tmin has almost 90% test

accuracy on ]D)g )Test, as the latter model learns the spurious correlation introduced by perturbation. Despite
both perturbation strategies notably disrupting the central informative part of an image, the model retrained
on Dg )TYain still achieves high test accuracy. Therefore, spurious features can have a great impact on the
evaluation outcome.

3.2 Evaluation on semi-natural datasets

If we have access to the features that are truely relevant to labels, we can compare them with attribution
maps to evaluate attribution methods. |Zhou et al| (2022) proposed training the model on a dataset with
injected ground truth features. However, our subsequent experiment reveals that the evaluation outcome
can be affected by the design of ground truth features. Moreover, results from semi-natural datasets may
diverge from those on real-world datasets, as utilizing semi-natural datasets changes the original learning
task.

The way we construct semi-natural datasets significantly influences the properties of the introduced ground
truth, such as its size and shape. With prior knowledge of semi-natural dataset construction, we can tailor
attribution methods to outperform others on this dataset. To illustrate this, we create two Semi-natural
Dataset ]D)él) and ]D)g) from CIFAR-100 |Krizhevsky et al.l (]2009b[). In the case of ]D)(Sl), numeric watermarks

that correspond to class labels are injected (Figure [2afirst row, left column), whereas for ]D)g), each image
is divided into seven regions, and stripes are inserted, acting as binary encoding for class labels (Figure
second row, left column). For example, watermarks are put in the 4th and 6th regions for class 40 (i.e.,

01010002). Additionally, we design Rect attribution method to take advantage of the prior knowledge that
)

the watermarks in ID)(S1 are square patches, and we design Pooling attribution for Dé2) by exploiting the fact
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Figure 2: Analysis of evaluation on semi-natural datasets. (a) Designed semi-natural datasets and
attribution maps from crafted attribution methods. (b) Each method excels on the dataset for which it has
prior knowledge, but it underperforms on the other.
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Figure 3: Evaluation on semi-natural datasets vs. on real-world datasets. Evaluation results on

a semi-natural and real dataset can be markedly different. On the semi-natural dataset ID)S), A “dummy”

)

method Rect simply using the prior information about the dataset ]D)é1 performs the best, while it has the

worst performance on CIFAR-100.

that a stripe watermark in ID)(S2) forms a rectangle spanning an entire row. The name “Pooling” comes from
the operation of averaging attribution values within each row-spanning region in ]D)(Sg), then broadcasting this
pooled value across the region. Further details can be found in Appendix[D.2] Figure[2a]visualizes attribution
maps for Rect and Pooling. Using the Attr% metric|Zhou et al|(2022)), we evaluate both methods on both
datasets (Figure [2b)). Each method excels on the dataset it was designed for but performs poorly on the
other, demonstrating the inconsistency of evaluations on semi-natural datasets with different ground truth

features.

Besides the insights from the previous experiment, we further show the inconsistency between evaluation
results on semi-natural and real datasets. Due to the absence of ground truth on real datasets, we replace
the Attr% metric with ROAD Rong et al|(2022) to assess attribution methods. We utilize CIFAR-100 as the
real dataset and evaluate four distinct attribution methods (details in Appendix [D.1)). The ROAD results

on semi-natural dataset ]D(Sl) and CIFAR-100 are depicted in Figure [3al and Figure respectively. These
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Figure 4: Graphical demonstration for a better understanding of (a) the relationship between two attri-
butions (A and A’). Although A and A’ have equal soundness (1.0 in this case), A" has higher completeness.
(b) Although A and A’ have equal completeness, A’ has higher soundness. (¢) We compare A NZ with A
and Z to measure soundness and completeness.

figures demonstrate that our tailored Rect method excels in ROAD evaluation on the semi-natural dataset,
particularly at high mask ratios, but underperforms on CIFAR-100, indicating the bias in evaluations on
semi-natural datasets. Similarly, non-customized attribution methods like GradCAM, IG, and DeepSHAP
exhibit inconsistent performance across the two datasets, underscoring that evaluation on semi-natural and
real datasets can yield distinct results.

4 Method

To circumvent the shortcomings revealed by the analysis in Section [3, we seek an alternative approach
that does not involve model retraining or building additional datasets. Our approach originates from the
observation that misalignment between attributed features and ground truth predictive features occurs in
two distinct ways: (1) non-predictive features are incorrectly attributed; (2) predictive features receive zero
attribution. Motivated by this observation, we formalize two essential properties of feature attribution:
attribution soundness and attribution completeness. The combined evaluation of these two properties offers
a more refined and comprehensive assessment of the faithfulness of an attribution method.

4.1 Problem formulation

Our evaluation scenario is restricted to a specific model and dataset. This focus stems from our demonstration
in Section [3] that the performance of attribution methods can significantly vary across different models and
datasets. To aid readers, we include a table of mathematical notations in this work in Appendix [A] Given a
model f that takes a set of features F as input, we define the predictive information measurement function
¢ and attribution method n as follows:

Definition 4.1 (Predictive information measurement ¢). For a feature set F and a feature F' € F,
©(F, F; f) € R>q represents the amount of predictive information of F'.

Definition 4.2 (Attribution method n). For a feature F' and a feature F' € F, n(F,F; f) € Rxq is the
attribution value of F' determined by the attribution method 7.

Definition [4.1]and Definition [4.2] establish the frameworks for measuring true information and the attribution
process within a model, using functions. We provide a concrete illustrative example for better understanding.
Consider model f as an image classification model that takes an image as input. Here, the feature set F
represents the input image, and the feature F' is a pixel in the input image. Since we constrain our discussion
to a particular model and input data, we omit parameters f and F and use n(F') or ¢(F) in the following text
for notation simplicity. For a model f, there only exists a unique ¢ that measures the predictive information
for the model. However, ¢ is inaccessible since knowing it requires a complete understanding of the model
and its inner working mechanism. In contrast, there exist numerous possible attribution methods . We can
define the optimality of an attribution method as functional equivalence:
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Definition 4.3 (Optimality of attribution method). An attribution method 7 is optimal, if 5 equals ¢.

However, it is challenging to directly compare the attribution method n with the predictive information
measurement  because their analytical forms are usually not accessible. Instead, we assess their outcomes.
To do so, we focus on two specific subsets of the feature set F. For a model f, a feature set F, and an
attribution method ¢, the predictive feature set Z and the attributed feature set A are defined as follows:

Definition 4.4 (Predictive feature set 7). Z C F is a predictive feature set if Z = {F € F | ¢(F) > 0}.
Definition 4.5 (Attributed feature set A). A C F is an attributed feature set if A = {F € F | n(F) > 0}.

In essence, Z C F represents the features that are utilized by the model for decision-making , while A C F
encompasses features identified as significant by the attribution method 7. Therefore, we can compare the
alignment between A and Z to determine the faithfulness of the attribution method 7 on a certain feature
set.

Definition 4.6 (Optimality of attributed feature set A). Given a predictive feature set Z, an attributed
feature set A is sound if A C Z, complete if Z C A, and optimal (sound and complete) if A =Z.

Definition delineates two necessary conditions for an attributed feature set to be optimal, that is, an
attributed feature set needs to be both sound and complete. For a non-optimal A, we hope to quantify the
alignment between A and Z. To this end, we propose two metrics that quantitatively measure the soundness
and completeness of A. We first introduce operator | - |, to measure the cardinality of a set as follows:

Definition 4.7 (Operator | - |;). Given a feature set F and a function g, |F|g = Y pcrg(F). For ), we
define |@|, = 0.

In other words, for a set of features F, |F|, computes the total attribution of all features in F as determined
by the attribution method 7, while | F|, computes the total amount of predictive information in F. Following
our earlier definitions, we can finally define the two properties of attribution:

Definition 4.8 (Soundness). For a set of attributed features .4, the soundness is the ratio |’TQ|IN‘".
Definition 4.9 (Completeness). For a set of attributed features A, the completeness is the ratio |’T;|I‘“”.
®

Note that we use two operators separately in Definition and Definition Soundness measures how
much of the attributed features actually contain predictive information. Complementary to soundness,
completeness evaluates how comprehensively the attribution captures all predictive features. Both metrics
are necessary to evaluate an attribution method. Figure [dh illustrates two sets of attributed features with
equivalent soundness but divergent levels of completeness, whereas Figure b depicts two sets of attributed
features that share equal completeness but exhibit different soundness. Figure [ illustrates the relationship
between ANZ, A, and Z.

Given our formulation, one challenge of measuring soundness and completeness is that we have no information
about predictive features Z. Therefore, it is infeasible to directly calculate either |[ANZ|, or [ ANZ|,. Despite
this absence of explicit knowledge about the model’s predictive features, we can leverage the model to provide
indirect indications. We make the following assumption throughout the work:

Assumption 4.10. Given a dataset D, let F be the set of all input features in D, f be a model, and p be
a performance metric to assess the performance of model f.

V]:.l,./_'é g -Fa if p(f(‘/—'.l)) < p(f(fQ))? then \Iﬂ]:le < |Im‘7-.2|<P7
where Z C F is the set of predictive features for the model f.

Based on Assumption we can compare |Z N Fi|, with |ZNF,|, using the model performance given two
sets of features F; and F5. Specifically, the model performance is not applicable for measuring the difference
between |ZNFi|, and |ZNFz|,. We conjecture Assumption to be true for models converged in training.
Next, we show how to measure soundness and completeness based on our definitions and Assumption
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Figure 5: Soundness evaluation. Computing the soundness of A in a single step is unfeasible. Instead, we

incrementally include a subset Aj,. in input and compute its soundness. This process involves identifying

the optimal set A* and calculating ‘L’é*l‘" . A particular A* is associated with a specific predictive level (i.e.,
incln

model performance). When comparing two attribution methods, we can standardize the predictive level,
allowing us to evaluate the soundness at this fixed level.

Algorithm 1 Soundness evaluation at predictive level v

1: Input: labeled dataset D = {z(, y®}N  with attribution maps {A®}Y |, model f, predictive level v,
accuracy threshold e.

2. Initialize s = 0, {AD}Y | = {AN . // Start with empty Ajnc.-
3: while s < v do .
ALY N {AAOWN = Expand ALY N // Expand by adding the features with the
incSi=1 i=1 incSi=1 p y g

highest attribution from A\ Ainc,
and record newly included features.
§ = Accuracy(f, {A](l?C7 yOIN
if §— s < ethen
LAOWY, = (A0 U AAORY,;
end if
s =35;
10: end while '
11: {A*WN = {Al(rlll \AON // Find A* by excluding accumulated SN (F\Z).
12 R = (|4l /1AL s
13: Return ¢ = %Zf;l q® // Average soundness for all samples.

4.2 Soundness evaluation

Owing to the intractability of |.A N Z|,, the direct calculation of the soundness of A in a single step is
infeasible. However, we shall demonstrate that an iterative approach can effectively gauge the soundness for
a subset Aj,. € A that is included within the input. To ensure a fair evaluation across various attribution
methods, we define A, in our implementation as a subset of the features that possess the highest attribution
values, satisfying the condition p(f(Ainc)) = v > 0. In essence, this subset encompasses predictive features
that cumulatively attain a specified predictive level v. A predictive level can be measured in various ways.
For instance, in a classification task, it can be measured by Accuracy. The subsequent theorem shows the
methodology for identifying the truly predictive portion within A;,., as well as the means to compute the
soundness.

Theorem 4.11. Given a set Ainc € A and Aine NZ # 0, suppose that Sy(Ainc) = {S C Ainc : p(f(8)) =

p(f(Ainc))} is not empty for any Aine € A. Let A* € argminges, (4,..) |Sly. Then, the soundness of Ainc is
A",

[Aineln *

inc
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Algorithm 2 Completeness evaluation at attribution threshold ¢

1: Input: dataset D = {z() y(I}N | with attribution maps {A®}¥ | model f, attribution threshold ¢.
2: Initialize sy = Accuracy(f,D);

3: {.Al W :Threshold({A(i)}f\Ll,t); // Include features w/ attr. wval. > t.
g {A“’ = {f\A‘” At

5: - {"4<t7 }z 1; B

6: Return As; = sg — Accuracy(f, D) // compare As; for completeness comparison.

Proof: For any S € S,(Ainc) including A*, Assumption [£.10]and the condition p(f(Ainc)) = p(f(S)) imply
that |AincNZ|, = |SNZ|,. Note that S C Ajnc implies [SNZ|, < |AincNZ|,, with the equality being achieved
when S NZ = Ajnc NZ. Therefore, SNT = Ajpc NZ. Then, the minimization problem minges, (4;..) [Sly =
minges, (4;,0) (ISNZ], + SN (]-'\I)| ) boils down to minges, (4;,.) [S N (F\Z)|,, because SNT = A, NT
implies = |Ainc N Z],, which is a constant with fixed Ajn.. Thus, according to the definition of A*
and Aine NZ # 0, we have |A* N (F\Z)], = 0 and |A*|,, = |Ainc N Z|, + |[A* N (F\ )|, = |Ainc N Z]s.

AineNT A* . .
Therefore, the soundness of Aj, is | “““ | b — ‘l |‘" We can also prove that our minimizer A* is the set
Aincln incln

that contains all predictive information of Ainc. |A*N(F\Z)|, = 0 indicates A* C T since n(F’) > 0 holds for
all F e A* C A. Next, A* C7Z and A* C Ajpc yields A* C (Ainc NZ). Combining with [A*|, = |Ainc N Z|,,
we have A* = A, NZ. O

Theorem shows that the soundness of Aj,. can be computed by finding an element from S, (Aj,c) that
has the minimum attribution. Figure [§] depicts the relationship between A*, A, and Z. Additionally,
it is crucial to recognize that our definition of Aj,. satisfies the conditions in Theorem [£11] specifically
Aine € A and Ajp. NZ # (). This inequality holds because p(f(Ainc)) > 0, and Assumption implies
[ Ain ﬂIlw > le

To facilitate comparison between different attribution methods, we can compute and compare their soundness
at a fixed predictive level v. Algorithm [T] shows how to compute the soundness at predictive level v. We
gradually include features with the highest attribution values in the input. During the set expansion of
Aine, we simultaneously perform minimization as shown in Theorem by examining and excluding non-
predictive features based on the change in the model’s performance. After reaching predictive level v, we
can directly calculate soundness based on the set Aj,. and the optimized set A*. A detailed algorithm for
overall soundness evaluation is in Appendix [E] In addition, linear imputation Rong et al.| (2022) is used in
soundness (and completeness) evaluation procedure to mitigate OOD effects caused by feature removal (as
we progressively include a portion of features).

4.3 Completeness evaluation

Completeness, as previously discussed, assesses the extent to which all predictive features are detected within
attribution maps. Per Definition removing attributed features from a complete attribution map might
also remove predictive features. However, if the attribution method has low completeness, removing the
attributed features would not eliminate all predictive features in the input. Theorem [£.12] tells us how to
compare the completeness using the remaining features after the removal of attributed features.

Theorem 4.12. Let A; and Az be the attributed features given by two attribution methods, respectively. If
p(f(F\ A1) < p(f(F\ Az)), then the attribution method associated with A; is more complete than the one
associated with As.

Proof: The condition of p(f(F \ A1)) < p(f(F \ A2)) together with Assumption implies that |Z N
(FN A < [ZN(F\ Az)|,. Here, for any set S, |ZN(F\S)lp = X peznrms)) E) = X per () —
>reans) ¢F) = Il — [T N S|,. Using this for S = A; and Az, we have that [T N (F\ Aj)], <

TN (F\ Ao)ly & [Tlo = 120 Aily < [T], — |0 Ao, & Egele < Endule, O
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Figure 6: Completeness and soundness evaluations on the synthetic dataset. The curve and error
bar respectively represent the mean and variance across 1000 trials. The curves of Remove and Ground
Truth are overlapped in (a) as they both saturate at 1. Both soundness and completeness evaluations can
reliably reflect the modifications in the attribution maps.

Based on the above analysis, we present Algorithm [2]for evaluating completeness at an attribution threshold
t. We start by removing input features with attribution values above t. Then we pass the remaining features
along with imputed features to the model and report the difference in the model performance between the
original and the remaining features. A higher score difference means higher completeness. The detailed
procedure of completeness evaluation is shown in Appendix [F]

5 Experiments

In this section, we begin by validating our proposed metrics in a controlled setting, serving as a sanity check.
We subsequently underscore the importance of considering attribution values during evaluation, rather than
just focusing on feature ranking order. This allows for differentiation between methods that rank features
identically but assign differing attribution values. Lastly, we further demonstrate that using our two metrics
together provides a more fine-grained evaluation, enabling us to gain a deeper understanding of how an
attribution method can be improved.

5.1 Validation of the proposed metrics

In this section, we first validate whether the metrics work as expected and reflect the soundness and com-
pleteness properties. In other words we evaluate whether the proposed algorithms follow the predictions
of our theories. We empirically validate the soundness and completeness metrics using a synthetic setting.
Through a designed synthetic dataset and a transparent linear model, we obtain ground truth attribution
maps that are inherently sound and complete. These inherently sound and complete attribution maps are
then modified to probe expected effects in completeness or soundness, allowing us to test how our proposed
metrics behave in different situations. By increasing the attribution values of non-predictive features, we
introduce extra attribution (termed as Introduce) which hurt soundness but improve completeness. Con-
versely, removing attribution (denoted as Remove) lower completeness without influencing soundness. Our
objective is to evaluate these modified attribution maps to ensure our proposed metrics accurately capture
changes in both soundness and completeness.

The synthetic two-class dataset consists of data points sampled from a 200-dimensional Gaussian N(0,T).
Data points are labeled based on the sign of the sum of their features. Let x; be the i-th input feature and
o(-) is a step function that rises at 0. The linear model, formulated as y = o(3_, x;), is designed to replicate
the data generation process and is transparent, allowing us to obtain sound and complete ground truth
attribution maps. Appendix [G.] provides further details. We randomly add and remove attribution from
ground truth feature maps 1000 times each. Then, we compare the soundness and completeness between
modified and original attribution maps.

Statistical results in Figure [f] show that Remove consistently outperforms ground truth attribution in Com-
pleteness, whereas Introduce underperforms ground truth attribution in Completeness. In Soundness evalua-
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Figure 7: Analysis of our metrics and order-based metrics. (a) Modified attribution maps. The
modifications result in only minimal changes to the feature order. These modified maps are noticeably
different from the original. An evaluation metric should capture this distinctiveness. By taking attribution
values into account, Completeness (b) and Soundness (c) aptly distinguish the modifications in the attribution
maps. Conversely, the differences between curves are less obvious in ROAD (d) and Deletion (e). A side
note on (c) is that Remove might not always preserve soundness. This is because original attribution maps
are not always the same as ground truth maps (inaccessible in real world), and Remove can eliminate both
predictive and non-predictive features.

tion, the ranking of the three methods inverses. Note that the optimum soundness of ground truth attribution
is 1, which can be also reached by Remove. In conclusion, the evaluations behave as expected, validating
our proposed metrics in this case.

5.2 Comparison with order-based metrics

Attribution methods aim to determine the contribution values of features beyond merely ranking them by
importance. Consequently, evaluating these methods necessitates consideration of the actual attribution
values. Both Completeness and Soundness metrics incorporate attribution values: the former uses value-

based thresholds for feature removal, while the latter, denoted as ‘lA L , inherently captures variations in

attribution values. Next, we show that this consideration of attrlbutlon values results in a more refined
evaluation.

For the following experiments, we employ a VGG16 |Simonyan & Zisserman (2015) pre-trained on Ima-
geNet Deng et al.| (2009)) and conduct feature attribution on the ImageNet validation set. We apply the Re-
move and Introduce modifications to the original attribution maps produced by a given attribution method,
such as GradCAM, as visualized in Figure [Ta] These modifications are intentionally designed to slightly
adjust the ordering of attributions, yet they significantly alter the attribution values. Consequently, the
original attribution maps and those modified by Remove and Introduce are differentiated not just in terms
of attribution values but also in their visual presentation, as illustrated in Figure A well-designed evalu-
ation metric must be capable of capturing these differences clearly. Therefore, for a metric to be considered
effective, the curves representing the evaluation results for the original, Remove-, and Introduce-modified
attribution maps should be distinct and non-overlapping.
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Table 1: Minimal Hausdorff distances across evaluation curves for Original, Remowve-, and Introduce-modified
attribution maps. Near-zero distances in ROAD and Deletion imply curve overlap, indicating limited dif-
ferentiation between the attribution maps. Conversely, significant distances in Completeness and Soundness
highlight their ability to distinctively evaluate and differentiate attribution maps, showcasing their finer
granularity.

Metric Completeness Soundness Deletion ROAD
Hausdorff
. 0.503 £0.112 0.183£0.046 0.019+£0.011 0.014 £ 0.009
Distance
1.0 — IG”“’"":"\':;\\ \ ?D' tion of I . *Direclion of Improvement 1 *Direcuon of Improvement
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Figure 8: Benchmark of IG ensembles. By employing both the Completeness and Soundness metrics,
we can see that the superiority of ensemble methods over IG is predominantly in their soundness.

As illustrated in Figure [7} the curves representing Remove and Introduce overlap in ROAD and Deletion.
This is attributed to the fact that these metrics are based solely on the order of attribution, which remains
nearly unchanged between Remove and Introduce-modified attribution maps. In contrast, the curves for the
value-sensitive metrics Completeness and Soundness are noticeably distinct, highlighting their sensitivity
to changes in attribution values. To quantitatively assess the differences between evaluation curves, we
calculate the minimal Hausdorff distance between pairs of curves, denoted as min, , Hausdorff(p, ¢), where
p,q € {Original, Introduce, Remove}. A minimal Hausdorff distance approaching zero signifies an overlap
in the evaluation results, indicating that the metric fails to distinguish between the modified and original
attribution maps.

We implement three pairs of different modification schemes for Introduce and Remove, which are elaborated
in Appendix [G] These modification schemes were applied to attribution maps generated by GradCAM, IG,
and ExPerturb, and the process of modification and evaluation was iterated for each scheme. The resulting
minimal Hausdorff distances were then averaged. As indicated in Table [ the Hausdorff distances for Com-
pleteness and Soundness metrics are significantly greater than zero. This demonstrates that these metrics
can effectively differentiate between the modified and original attribution maps, even when the changes in
attribution order are minimal. Conversely, the order-based metrics, ROAD and Deletion, demonstrate over-
laps in their curves, indicating their inadequacy in discerning subtle distinctions. This contrast highlights the
superior sensitivity of Completeness and Soundness metrics in evaluating the nuances of attribution maps.

5.3 Benchmark experiments

As previously discussed, the misalignment between attributed features and predictive features arises from
two types of attribution errors. By employing both the Completeness and Soundness metrics, we can identify
which type of error reduction contributes to the superior performance of one method.

Benchmark of ensemble methods Several ensemble methods have been proposed as a means to im-
prove attribution methods. In this study, we focus specifically on three ensembles of IG: SmoothGrad
(IG-SG) [Smilkov et al.| (2017), SmoothGrad? (IG-SQ) Hooker et al. (2019), and VarGrad (IG-Var) |Adebayo
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Figure 9: Benchmark of different methods. Although no method exhibits superior performance in both
Completeness and Soundness, some of them perform well in one of these metrics, implying their suitability
for applications which have high demand for the corresponding property.

et al.[(2018])). Intriguingly, only IG-SG displays an enhancement in completeness (F igure, consistent with
visual results from earlier studies. We present supplementary visual results in Appendix [G.4] for further
scrutiny. Previous research Smilkov et al.| (2017) has observed that gradients can fluctuate significantly in
neighboring samples. Consequently, the aggregation of attribution from neighboring samples can mitigate
false attribution—specifically those arising from non-predictive features receiving attribution—and notably
enhance soundness, as depicted in Figure However, the benefits of ensemble methods are not so clear in

ROAD (Figure or Deletion (Figure .

Benchmark of various attribution methods We conduct a comparative analysis of multiple attribution
methods using our metrics with the goal of guiding the selection of suitable methods for diverse applications.
As illustrated in Figure [0] most of the evaluated methods excel in one metric over the other, suggesting
their suitability varies based on specific scenarios. For applications like clinical medicine, where capturing
all relevant features is essential, methods with higher completeness, like ExPerturb, stand out. On the
other hand, in situations where falsely identifying non-predictive features as significant could be detrimental,
methods showcasing superior soundness, such as IBA or GradCAM, are preferable.

6 Conclusion and limitations

In this paper, we first revealed the potential pitfalls in existing faithfulness evaluation of attribution methods.
Subsequently, we defined two important properties of attribution: soundness and completeness. We also
proposed methodologies for measuring and comparing them. The two metrics work in conjunction and offer
a higher level of differentiation granularity. Empirical validation convincingly demonstrated the effectiveness
of our proposed metrics. Furthermore, we undertook a benchmark of ensemble methods, revealing that
these methods can considerably improve the soundness of the baseline. Lastly, we extended the comparative
analysis to a broader range of attribution methods to provide a guidance for selecting methods for different
practical applications. One limitation of our evaluations is that their efficacy hinges on the assessment of
model performance. Accuracy may not be the appropriate performance metric in some cases. Therefore,
additional research in the future is needed to find better performance indicators for different tasks. In
addition, Theorem does not limit the selection of Aj,., and better set expansion strategies for Ajpc
could yield more precise evaluation outcomes.
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A Notations
Table [2] summarizes the notations used in this paper.

Table 2: Table of notations.

v a predictive level (i.e. a specific level of model performance)
f a model to be explained

P a performance metric to assess the performance of model f
D a (labeled) dataset

]D);Z )Train a perturbed training set using perturbation strategy ¢

D;STest a perturbed test set using perturbation strategy @

]D)g3 a semi-natural dataset constructed by modifying the original dataset using modification method 4
F a set that contains all features in the dataset

A a set of attributed features

A a set of predictive features for the model

e the operator to calculate the sum of attribution

| 1o the operator to calculate the sum of class-related information

F a single feature in F

o(F) a function that returns the information value of a feature F’

n(F) a function that returns the attribution value of a feature F

Aine a subset of the most salient features that reach p(f(Ainc)) =v >0

Sy (Ainc) | for a given set Ajye, we define S, (Aine) = {S C Aine : p(f (Aine)) = p(f(S))}

A* minimizer of mingeg, (A

)|S|n

inc

B Broader Impacts

We believe that our proposed completeness and soundness evaluations open up many innovative directions.
For instance, we have shown that the ensemble methods can greatly enhance the soundness of baselines
such as IG and DeepSHAP. However, the gain in completeness is very marginal. It would be interesting
to investigate how to also improve the completeness of IG, DeepSHAP, or their ensembles. In addition,
Extremal Perturbations demonstrate lower soundness than IBA and GradCAM that perform attribution on
the hidden neurons. This might suggest that the semantic information in hidden layers can be utilized in
the optimization process of the Extremal Perturbations to reduce false attribution.

C Additional experiments for revealing the issues with retraining-based metrics

In this section, we report an additional experiment to further illustrate the issue with retraining-based eval-
uation. For this additional experiment, we use the CIFAR-10 (Krizhevsky et al., 2009a) dataset. The model
is a tiny ResNet (He et al.l 2016]) with only 8 residual blocks. Training is conducted using Adam (Kingma
& Bal [2015) optimizer with a learning rate of 0.001 and weight decay of 0.0001. The batch size used for
the training is 256, and we train a model in 35 epochs. Next, we describe how to construct the maliciously
modified dataset for retraining.

In the retraining experiment shown in Figure[I0| we generate a modified dataset from the original CIFAR-10
dataset. In this additional experiment, we only perturb 5% of each training image and replace the perturbed
pixels with black pixels. The perturbation is correlated with class labels. For different classes, we select
different positions close to the edge of the image so the object (usually at the center of the image) is barely
removed.

The result is shown in Figure [I0] We summarize our finding in the caption of Figure [I0]
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Figure 10: Retrain on the perturbed dataset with spurious correlation. (a) illustrates sample images from
the perturbed training set. Only a small portion of pixels on edge is removed. Hence, the class object
is usually intact after perturbation. However, the position of the removed region depends on the label
of the image. (b) Test accuracy on the unperturbed test set. Although objects are not removed in the
perturbed training set, the retrained model achieves much lower test accuracy on the original test set than
the model trained on the original dataset. This means that the retrained model ignores the object but learns
to perform classification based on the spurious correlation introduced by perturbation. We would like to
further demonstrate the issue of retraining, that the retrained model fails to learn exclusively from remaining
features in the perturbed dataset. Hence, we cannot use the model performance to measure the information
loss caused by perturbation.

D Additional Experiments and Experiment Configurations on Semi-natural Datasets

D.1 Evaluation with Models Retrained on CIFAR-100, Semi-natural, and Pure Synthetic Datasets
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Figure 11: Semi-natural datasets with different watermarks. Two types of attribution maps are crafted
based on IG attribution maps by utilizing prior knowledge about the watermarks. Rect is designed to fit

D", while Pooling is designed to fit DS
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Figure 12: ROAD evaluation on different datasets. The performance of attribution methods is very distinct
across different datasets. We observe that the ROAD result on the original dataset is different from semi-
natural dataset and pure synthetic dataset. However, the ROAD result on the semi-natural dataset is very
similar to the result on the pure synthetic dataset. This implies that the semi-natural dataset changes the
implicit learning task from learning representations of the original images to learning representations of
synthetic symbols introduced during dataset construction. Subsequently, the task is greatly simplified and
substantially divergent from the real dataset.

In Section we argue that the attribution methods can behave much differently when explaining the
model retrained on a semi-natural dataset. As a result, it is not faithful to use the evaluation result on the
semi-natural dataset as an assessment for the feature attribution methods. In this section, we demonstrate
this issue with an experiment.

We first show the datasets used in the experiment. we re-assign the labels for CIFAR-100 (Krizhevsky et al.|
2009b) images as suggested in (Zhou et al., [2022). Next, we inject two types of watermarks into the images
and a blank canvas, obtaining two pairs of semi-natural and pure synthetic datasets, respectively. Note
that the semi-natural datasets are also used in Section The watermarks are designed as follows:

e Number watermark: as depicted in Figure left, we first insert a black rectangular region in
the image and then put the white number sign within the black region.

e Stripe watermark: as depicted in Figure left, we first encode the label into a 7-digit binary
number and divide the image into 7 equal-height regions. Next, we set the pixels in each region to
255 if the corresponding digit is 1; otherwise, we leave the pixels unchanged.

The following experiment is conducted on the semi-natural and pure synthetic dataset with number water-
marks. We first train a VGG-16 on the CIFAR-100, semi-natural, and pure synthetic datasets, respectively.
After obtaining the classifiers, we apply GradCAM, IG, and DeepSHAP to them to get the attribution maps.
In the end, we benchmark the three attribution methods on each dataset using ROAD (Rong et al.l [2022).

The models achieve 70.4% on CIFAR-100, 99.4% on the semi-natural dataset, and 99.9% on the pure synthetic
dataset, respectively. The difference in accuracy shows that the learning tasks are differently complex across
three datasets. Furthermore, as depicted in Figure[I2] GradCAM outperforms IG and DeepSHAP on CIFAR-
100, while IG and DeepSHAP are much better than GradCAM on the semi-natural and pure synthetic
datasets. The evaluation results on the semi-natural dataset cannot correctly reflect attribution methods’
performance on the real-world dataset.

D.2 Details on Designing Rect and Pooling Attribution Maps

In this section, we show how we design attribution maps by leveraging prior knowledge about semi-natural
datasets. The target is to craft two types of attribution maps, with one performing well on the semi-natural

dataset with number watermarks (i.e., D(Sl) in Section ) and another performing well on the semi-natural
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dataset with stripe watermarks (i.e., ID)(SQ) in Section . Both attribution maps are generated based on IG

attribution maps. The following are the design details:

o Rect is designed to fit ]D)él), where the modified pixels (i.e., Effective Region in (Zhou et all 2022))
are the black rectangular region (where the numbers are located) that we injected into an image.
To craft attribution maps, we can also put a rectangular region full of value 1.0 on a background
of value 0.0. The question is where to put such a rectangular region. For each IG attribution map,
we average across the pixels’ spatial locations using the attribution values as weights, obtaining a
“weighted center” of the attribution map. Then, we put the rectangular region of spatial size 60 x 60
at the weighted center. More samples are shown in Figure

e Pooling is designed to fit ]D)éz), where the modified pixels are the equal-height regions associated
with digit 1. After knowing the shape of watermarks, we can design attribution maps composed of
7 equal-height regions. To do so, we apply average pooling to each IG attribution map, obtaining
a T-element attribution vector. Next, we fill each region in the crafted attribution map with the
corresponding value in the attribution vector. More samples are shown in Figure

E Implementation Details of Soundness Metric

Values in attribution maps are usually continuous. Hence, it is possible that an attribution method only has
satisfactory performance only in a certain attribution value interval. To evaluate the overall performance
of an attribution method, we use Algorithm [I] as a basic building block to establishing the progressive
evaluation procedure. Specifically, we evaluate soundness at different predictive levels indicated by the model
performance. How soundness is calculated at specific predictive level have been explained in Section

Since the attribution method considers features with higher attribution values to be more influential for the
model decision-making, we expand our evaluation set by gradually including the most salient features that
are not yet in the evaluation set. As shown in Algorithm [3] the expansion of the evaluation set happens by
decreasing the mask ratio. For the soundness metric, the mask ratio v means that the top v pixels in an
attribution map sorted in ascending order are masked (i.e., area-based LeRF). We start from v = 0.98 and
decrease v by the step size of 0.01. This is equivalent to first inserting 2% of the most important pixels in
a blank canvas and inserting 1% more pixels at each step. If the accuracy difference between the current
step and the previous step is smaller than the threshold 0.01, then the attribution of newly added pixels is
deemed to be false attribution and will be discarded. Algorithm [3| demonstrates a more detailed procedure
compared to Algorithm [I]in Section Note that some notations are overloaded.

F Implementation Details of Completeness Metric

To obtain the overall completeness performance of an attribution method, we again select subsets of an
attribution set and evaluate the completeness of these subsets.

Algorithm [f] demonstrates the full computation process. For the completeness metric, the attribution thresh-
old ¢ means that the pixels with attribution between [¢, 1] will be masked (i.e., value-based MoRF). We start
from v = 0.9 and decrease t by the step size of 0.1. Compared to Algorithm [2]in Section [I.3] the pseudo-code
in Algorithm [4 is more detailed and closer to the actual implementation. Note that some annotations are
overloaded.

G Validation and Benchmark Experiments

G.1 Validation Tests
We create a two-class dataset of 1000 sample data points, and each data point has 200 features. The data

point is sampled from a 200-dimensional N (0, I) Gaussian distribution. If all features for a sample point sum
up to be greater than zero, we assign a positive class label to this sample. Otherwise, a negative class label is
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Algorithm 3 Soundness evaluation with accuracy (s,,) as performance indicator

1: Input: f: model; D = {x(i),y(i)}f\;l: labeled dataset with attribution maps {A(i) N |5 ¢ perturbation
function; ¢: noisy linear imputation function; M = {0.99,0.98,0.97,...0.01}: mask ratios (by area);
Accuracy: accuracy evaluation function. e: accuracy threshold; NewAdded: function that identifies the
included features at the current step and newly added features compared to the last step.

2: Output: P: A list of tuples with each tuple being the accuracy and the soundness value.
3: Initialize P «+ [ |;

4 {ADYN |« {P}V; // Initialize the set of features with false attribution.
5: mg <~ 1; // Initialize the mask ratio at the previous step.

6: So <~ 0; // Initialize the accuracy at the previous step.

7: for m in M do

8 D, <0 // Initialize imputed dataset

9:  for (z(V,y@), A® in (D, {AD}N ) do

10: 20— ¢(z@ A m); // Perturb image in LeRF order.

11: #D « p(2®); // Impute image.

12: Ai(;)c,AA(i) + NewAdded(A®,m,mg); // Identify included features at the current step

and newly added feature compared to the last step.

13: Append(ID,,,, (2, y®, .Ai(fl)c, AAD));

14:  end for

15: Sy < Accuracy(f, ]ﬁ)m); Accuracy on the imputed dataset.
16:  if s, — 59 < € then

17: for (9, y®, AY AAD), AD) in (D,,, {AD)}Y,) do

18: A — A® UAA(i); Update the features with false attribution.
19: end for
20:  end if ' . . .
21:  for (89, AD AAD) AD) in (Dy,, {AD)}Y, do
. (D) _1 4()
22: g ¢ Humel AT

| incl

23:  end for
24:  q 4+ %Zf;l ¢’ // Attribution ratio at the current step.
25:  Append(P, (s;,q)) // Update results.
26:  So < Sm; // Update the accuracy at the previous step.
27 mg < m; // Update the mask ratio at the previous step.
28: end for

Return: P

assigned (as described in the main text). The model is a linear model and can be formulated as y = o (>, x;),
where x; is the i-th feature, and o(-) is a step function that rises at x =0, o(z) = -1 if 2 < 0, and o(z) =1
if z > 0. In other words, the model also sums up all features of the input and returns a positive value if
the result is greater than zero. Hence, the model can classify the dataset with 100% accuracy. Lastly, we
describe how we create ground-truth attribution maps for this model and dataset. As the model is a linear
model, and each feature x; is sampled from a zero-mean Gaussian distribution, the Shapley value for x; with
o(x;) = 11is then 1-(z; —E[z]) = x;. Similarly, the Shapley value for x; with o(x;) = —1 is —z;. We confirm
that attribution maps generated by Shapley values are fully correct for linear models. As a result, for positive
samples, the attribution values are the same as feature values. For negative samples, the attribution values
are the negation of feature values, which means that negative features actually contribute to the negative
decision. Finally, we modify the attribution maps to be compatible with our soundness and completeness
evaluation. Since our evaluation only supports positive attributions, we clip negative attribution values to
zero. This conversion step has no negative effect on the actual evaluation. The rest of the evaluation setup
is identical to other experiments.
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Algorithm 4 Completeness Evaluation

1: Input: f: model; D = {z( y@O1N . labeled dataset and attribution maps {A®}Y | for each (z;,4;);
¢: perturbation function; : noisy linear imputation function; T = {0.9,0.8,0.7,...,0.1}: attribution
thresholds; Accuracy: accuracy evaluation function.
Output: Sa: Accuracy differences associated with attribution thresholds T.
Initialize Sa < [ ];
so ¢ Accuracy(f,D);
for ¢t in T do
D, « []; // Initialize dataset of imputed images
for (20, y), AW in (D, {AD}Y) do
20— ¢(z®, AD ), // Perturb pixels whose attribution exceed t
£ «4(2™); // Impute the perturbed image

// Accuracy on the unperturbed dataset

© P NPT

10:  Append(Dy, (29, y™));
11:  end for 3
12: s < Accuracy(f,D;); // Accuracy on the imputed dataset

13:  Append(Sa, so — 5t);
14: end for
15: Return Sa

// Accuracy difference at the current step

Implementation Removing attribution Introducing attribution

Constant Subtract the attribution map by a | Add the attribution map with a con-
constant 0.6. stant 0.6.

Random Sample a shift from U(—0.6,0) for | Sample a shift from 2/(0,0.6) for each
each pixel independently, and add the | pixel independently, and add the at-
attribution of each pixel with the cor- | tribution of each pixel with the corre-
responding shift. sponding shift.

Partial Sort the attribution map in ascending | Sort the attribution map in ascending
order and select the pixels in the in- | order and select the pixels in indexing
dexing range [0.6N, 0.8 N], where N is | range [0,0.4N], where N is the num-
the number of pixels. Then set the at- | ber of pixels. Then set the attribution
tribution of these pixels to 0. of these pixels to qg.g, where ¢; denotes

the t-th quantile of attribution values.
Table 3: The modifications of attribution maps on ImageNet.
G.2 ImageNet images for feature attribution

We randomly select 5 images for each class in the ImageNet validation set, obtaining a subset with 5000
images. When performing attribution, the images and attribution maps are resized to 224 x 224 before being
fed into the pretrained VGG16 model.

This subsection presents the configurations for generating attribution maps on ImageNet. For GraCAM,
We resize the resulting attribution maps to the same size as the corresponding input images. We use the
implementations of GradCAM, DeepSHAP, IG, IG ensembles in Captum (Kokhlikyan et al.; 2020). Some
hyper-parameters for producing attribution maps are:

o GradCAM We perform attribution on the features.28 layer of VGG16 (i.e. the last convolutional
layer).

e DeepSHAP, IG and IG ensembles We choose 0 as the baseline for attribution. We clamp the
attribution to [0, 1].

21



Under review as submission to TMLR

Original Constant (R)  Constant (I) Random (R)  Random (I) Partial(R) Partial (I)
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Figure 13: Examples of modified attribution maps. (R) and (I) denote the Remove and Introduce modifica-
tion, respectively. The authors ensure that samples are not cherry-picked.

G.3 Modifications of attribution maps on ImageNet

We implement three different modification schemes and modify the attribution maps. The details thereof
are presented in Table [3| We show some examples of modified attribution maps in Figure The images
are randomly selected.

N
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Figure 14: Examples of IG and IG ensembles attribution maps. The authors ensure that samples are not
cherry-picked.

G.4 Benchmarking Ensemble Methods of IG

In each ensemble method, we use an isotropic Gaussian kernel A'(0, 0.3 - I) to sample 20 noisy samples for a
given input sample. Figure [14] shows additional examples of IG and its ensemble methods. The images are
randomly selected.

In addition, we also compare IG and IG ensembles using ROAD in LeRF order, and the result is shown in
Figure For convenience, we copy the figures of other metrics from Figure [8| and paste them in Figure
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Figure 15: Evaluations of IG ensembles. Not all ensembles improve the completeness (a) of IG, but they
significantly improve soundness (b). However, the advantage of ensemble methods over IG is not notable in
ROAD (c)-(d) or Deletion (e) compared to that in soundness.

Similar to ROAD in MoRF order, IG ensembles do not show a considerable advantage in the results of
ROAD in LeRF order.
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